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Abstract
Exposure to the spatiotemporal statistics of the world is
thought to have a profound effect on shaping the response
properties of the visual cortex and our visual experience.
Here we ask whether subjects’ discrimination performance on
a set of parameterized shapes changes as a function of the
distribution with which the shapes appear in an unsupervised
paradigm.  During training, subjects performed a fixation task
while shapes drawn from a single axis of a parameterized
shape space appeared in the background.  The frequency with
which individual shapes appeared was determined by
imposing a normal distribution centered on the middle of the
shape axis.  Comparison of performance on a shape
discrimination task pre and post training showed that subjects'
d-prime increased as a function of the frequency with which
the exemplars appeared despite the lack of feedback and
engagement in a simultaneous task not directed at the shapes.
Performance on an untrained set of shapes was largely
unchanged across the two testing sessions. This suggests that
the visual system may optimize representations by fitting
itself to the distribution of experienced exemplars even
without feedback, providing the most discriminative power
where examples are most likely to occur.

Keywords: Unsupervised learning, vision, perceptual
learning.

Background
How people are able to discriminate visually similar items

while recognizing the same item across dramatic image
transformations is one of the fundamental problems of
vision. Experience is thought to play a critical role in
forming the underlying cortical representations that support
these abilities. One possibility that has been explored in
computational and behavioral studies is that the visual
system is able to discover and take advantage of statistical
regularities in the retinal input via simple unsupervised
learning mechanisms (Barlow, 1989a). Our proposal is that
unsupervised learning of the frequency of exemplars may
fine-tune cortical representations to best match the
distribution of exemplars within a category, thus providing

the selectivity needed to discriminate between highly similar
images where they are most likely to occur.

Unsupervised learning is a process whereby the brain
receives inputs but obtains neither supervised target outputs,
feedback, nor rewards and as a result finds patterns in the
data beyond what would be considered random noise
(Ghahramani, 2004). The theoretical framework is based on
the notion that the brain’s goal is to build representations of
the input (even without feedback) that can be used for
decision making and predicting future inputs (Poggio et al.,
1992). These self-organizing mechanisms could play a
crucial role in transforming the continuous flux of retinal
stimulation into the stable recognizable objects of our
everyday experience.  It is important to note that there may
be internal reward that guides learning (Seitz and Watanabe,
2005), but this takes place in the absence of explicit
feedback on performance.

 Numerous studies have shown that the visual
system adjusts itself as a function of experience even in
situations where subjects are uninstructed.  Adaptation
represents a phenomenon of this kind, where prolonged
exposure to some stimulus value can shift the sensitivity of
the visual system for a short period of time.  For example,
viewing rightward motion causes subsequently presented
static stimuli to appear as though they are moving to the left
(Anstis et al., 1998).   Such aftereffects are perceptually
compelling, and can be found for a wide variety of visual
features ranging from the relatively simple such as line
orientation to the very complex such as facial identity
(Leopold et al., 2001; Witthoft et al., 2006) and do not
require instruction or feedback (though some may require
attention; Moradi et al., 2005).   With respect to our
proposal, it has been argued that adaptation is not just a
useful way for psychologists to probe the visual system, but
reflects a functional mechanism by which vision increases
its sensitivity to changes in recent experience (Webster et
al., 2001; Barlow & Foldiak, 1989; Clifford & Rhodes,
2005).

Studies of perceptual learning also show
experience dependent changes, but have often relied on the
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notion that improvement in discrimination is heavily task
dependent and that mere exposure may not be enough to
drive performance changes (Shiu & Paschler, 1992; Karni &
Sagi, 1991).  However, recent work has suggested
discrimination performance can improve as a result of
unsupervised learning and when subjects are engaged in an
orthogonal task.  For example, Watanabe et al. (Nature,
2001) had subjects perform a central letter detection task
superimposed on a field of moving dots.  5% of the dots
were moving coherently in the same direction, but this
coherence was below the subjects’ detection threshold
meaning they were both unable to detect the direction of
coherence and engaged in a different task.  Following
training, subjects showed improved performance in
direction discrimination of just above threshold coherence
moving dots, but only in the vicinity of the direction seen
during training.  The authors argued that this irrelevant
learning (as they call it) means the visual system can
increase its sensitivity to a frequently occurring feature or
stimulus even when it is not task relevant.  More recently,
the same authors have suggested that internal feedback is
being supplied when there is a success on the orthogonal
task, and that at that time both task relevant and task
irrelevant features are strengthened (Seitz and Watanabe,
2005).

Lastly, numerous experiments have shown that
subjects can successfully learn the spatio-temporal structure
of visual stimuli even in the absence of explicit instruction
or feedback.  For example, following training on sequences
of shapes in which triplets repeat, subjects are able to
discriminate seen before triplets from novel ones (Fiser &
Aslin, 2002; Turk-Brown et al., 2005).  Similar results have
been obtained for arrangements of shapes within an image
(Fiser & Aslin, 2001) and for sequences using natural
scenes (Brady & Oliva, 2008) that show transfer to
sequences that only share categorical similarity and words.
Other work has shown that invariant object recognition (the
ability to recognize exemplars as the same across image
transformations such as position or view) may result from
the visual system taking advantage of spatio-temporal
correlations in the input (Cox et al., 2005; Wallis &
Bulthoff, 2001; Sinha & Poggio, 1996)  While our goal is
not to evaluate subjects’ ability to do the kind of visual
statistical learning for the generation of invariances, these
studies do show that subjects are sensitive to spatio-
temporal information in the visual input.

The idea that visual discrimination and recognition
might be shaped by the distribution of experienced items has
been examined most extensively in the face domain. Some
models of face perception (Valentine, 1991) propose that
faces are represented as points in an abstract vector space,
centered on the norm face representing the average of the
faces a person has seen (Leopold et al., 2001; Rhodes &
Jeffrey, 2006). It is typically assumed that faces are
normally distributed around the mean face with the highest
concentration of faces occurring near the norm. Clearly the
diet of faces that a particular individual is exposed to is

heavily dependent on their local environment and it is
believed that the set of features that might form an
individual’s space are tuned by that person’s experience.

An experiment that relies on training with faces to
test this idea may suffer from competition with the
overwhelming experience a subject brings to the laboratory.
However, a clever experiment by Webster et al. (Nature
2004) navigated this obstacle by asking Asian and
Caucasian-American subjects to set an ethnicity boundary
on a set of morphed faces between an Asian and a
Caucasian face.  Each group set that boundary closer to their
own ethnicity, presumably closer to the average of faces
they had seen and reflecting an increased sensitivity to
deviations from their own experience.  Interestingly, a
second group of Asian subjects who had been in the United
States for approximately one year also did the task, and their
boundary was shifted towards the Caucasian end of the
dimension with the size of the shift significantly correlated
with how long they had been in the US.  While this is not a
direct test of the hypothesis, as the experimenters could not
manipulate the frequencies of exposure across face space
directly, it is suggestive that subjects' representation of faces
is driven by the distribution of the input and that such
changes can occur even in adults.

While there has been much debate over whether
the mechanisms serving face perception are distinct from
those for other kinds of objects (Farah et al., 1998), it seems
likely that mechanisms that adjust sensitivity in order to
match the distribution of similar exemplars would be
generally useful across all classes of objects.    To test this
idea we created sets of novel parameterized shapes,
allowing us to control stimulus variation and frequency that
subjects would have no experience with, thus allowing a
direct test of the role of frequency in determining
sensitivity.  One way to view our shape dimensions is that
each dimension represents a category where the within
category exemplars vary along a physical continuum (as
with faces).  In our preliminary experiment, subjects’ ability
to discriminate similar shapes at various points along a
shape dimension was tested before and after unsupervised
training.  During training we manipulated the frequency
with which subjects experienced different parts of the shape
dimension by sampling shapes from a normal distribution
centered on the middle of the shape axis.  Our hypothesis is
that subjects will become most sensitive to changes in the
regions of the shape dimension that are most frequently
experienced even in the absence of feedback and while they
are engaged in an orthogonal visual task.  This change in
sensitivity would represent one way that the visual system
could adapt to environmental statistics to produce useful
representations for perception (Goldstone, 1998, Barlow &
Foldiak, 1989, Clifford & Rhodes, 2005).

Stimuli
Four “prototype shapes” were created using MATLAB.
Each prototype shape was constructed by placing 16
keypoints on a grid, plus 3 additional points that were fixed
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across prototypes (Figure 1A).  The points were made to
correspond across all prototypes, such that the 5th point on
one prototype corresponded to the 5th point on all other
prototypes, etc.  The points were connected (Figure 1B) and
these connections were then replaced by smooth bi-cubic
splines (Figure 1C). Finally, the resulting closed shape was
filled in (Figure 1D).  Care was taken when placing
keypoints to avoid loops in the final shape.

Figure 1. The construction of a prototype shape. (A)
Keypoints (16 variable and 3 fixed (outlined)) are placed on
a grid; (B) the points are connected; (C) the connections are

replaced with smooth bi-cubic splines; (D) the resulting
shape is filled in.

From the 4 prototype shapes (see Figure 2), two continuous
axes were generated joining two pairs of prototypes.  Since
each shape can be fully represented by the positions of its 16
variable keypoints, intermediate shapes between two
prototypes can be formed by linearly weighting the
positions of those keypoints across the prototypes and
recomputing the splines. For example, for an intermediate
shape 25% of the way between Prototype 1 and Prototype 2,
the x-position of first keypoint (x1intermediate) would be equal
to .75 * x1Prototype1 + .25 * x1Prototype2, and so forth. Figure 2
shows the two axes used in our training study, each
consisting of 7 reference shapes.  For the discrimination
tasks, 4 additional shapes were created for each reference
shape, 2 on each side of the shape axis.  One pair was nearer
and considered the hard discrimination, and one pair was
farther and considered the easy discrimination.

Figure 2. Two axes of shapes used in our training study. The
intermediate shapes between the prototypes (endpoints) are

constructed by linearly weighting the positions of the
keypoints and then recomputing the splines.

Methods
Subjects

8 subjects (4 female) participated in the experiment in
exchange for payment. All the experiments were
programmed using MATLAB and the psychophysics
toolbox (Brainard, 1997).   The experimental paradigm was
approved by the Stanford Human Subjects IRB.  All
subjects gave informed consent to participate and were paid
$10 for each session ($50 total for completing all sessions).

Stimuli were presented on Macintosh iMac computers.  One
subject (female) was removed due to poor performance on
the fixation task during training.  Including this data point
actually increases the significance of all our reported
findings, but we cannot be sure that this subject was not
attending to the shapes.
Pre-training Discrimination Test

To assess baseline performance, subjects performed a
same/different task on pairs of shapes (reference shape and
comparison shape). The reference shapes were the 7
examples for each axis shown in Figure 2.  The comparison
shapes were taken from either side of each reference, with
one closer pair (hard discrimination) and one farther pair
(easier discrimination).  We used two levels of difficulty as
we were uncertain as to how initial discriminability
performance might interact with training (Watanabe et al.,
2001). On each trial subjects were presented with a shape
for 200 milliseconds, followed by a 500 millisecond delay,
and then a second shape for 200 milliseconds.   Subjects
were instructed to indicate whether the two shapes were the
same or different by pressing the appropriate key.  A new
trial was not initiated until the subject responded. For each
reference shape there were two levels of comparison trials
(easy and hard) and two sides of the shape axis from which
comparison shapes were drawn.  Each possible comparison
was measured 15 times for a total of (4 comparisons x 7
shapes x 15 times x 2 shape dimensions) 840 different trials.
For each of the 14 shapes there were 30 same trials.  Trials
were presented in a random order and no feedback was
given on any of the trials.   Subjects were tested on shapes
from both shape dimensions, but only shapes from axis 1
were shown during training.
Unsupervised Training

Unsupervised training took place on each of the 3 days
following the initial discrimination experiment.  Subjects
performed a fixation change-detection task, and were
instructed to press a key when the fixation cross slightly
changed in size. The fixation cross was superimposed on a
stream of shapes that appeared at 2 Hz (the shape presented
for 300 milliseconds followed by a 200 millisecond blank)
for the duration of the experiment. These shapes were
sampled with a normal distribution discretized into 73
intervals centered on the shape dimension used in training.
6000 shapes were shown in each session that lasted
approximately one hour each day for a total of 18000 shapes
and 3 hours of training.   Each day’s training was divided
into 6 blocks of 1000 trials.  There were 40 fixation changes
for each block.   Timing of the fixation changes was set by
dividing each block into 40 equal intervals and then
inserting one change at a random time-point in each
interval.  Between blocks subjects were permitted to pause
as long as they felt they needed to.  Presentation of the
stimuli was such that the distribution of shapes was normal
at the block level. Critically, subjects were not instructed to
attend to the shapes nor were they given feedback of any
kind.  The fixation task was intended to draw attention away
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from the shapes thus testing for task irrelevant learning
(Seitz and Watanabe, 2005).
Post-training Discrimination Test

The post training discrimination test used the same stimuli
and design as the pre-training test and was conducted on the
day after the last training day.

Figure 3.  Performance of subjects on shape
discriminations before and after training.  The top panel
shows the easy discrimination and the bottom the hard
discrimination. Note the y axes differ slightly, in order to
show the effect for each level of discrimination. The x-axis
shows the reference shapes used in the experiment.  At
bottom are qualitative graphics indicating the distribution of
shapes during training.  For the trained it is Gaussian

centered on the shape axis, and for the untrained it is flat
and at 0 (i.e. no training).

Results
Examination of performance on the fixation task

during the training phase of the experiment showed that
subjects attended to fixation, detecting changes in cross size
91 percent of the time (SE= 2 percent).

For each subject false alarm and hit rates were
separately calculated for each comparison and reference
stimulus for the hard and easy conditions.  The hits and false
alarm rates were used to calculate d-primes(Green & Swets,
1966).  Separate 2 (pre vs post training) by 7 (reference
shape) repeated measures ANOVAs were used to examine
the effects of training in the 4 conditions (hard or easy
discrimination on the trained or untrained shape dimension).
Training showed similar but not identical effects for both
the hard  and easy discriminations (Figure 3 left, bottom and
top panels respectively).  For the hard discriminations, there
was a main effect of training, with higher d-prime following
training (F(1,13)=10.5, p<0.05).  There was also an effect of
stimulus (F(5,13)=2.9, p<0.05) reflecting the fact that on
average, shapes on one end of the dimension were more
discriminable than at the other despite the matched distances
in the parameterization.   For the easy discriminations, the
effects of training and position on the stimulus axis were
only marginal, (F(1,13)=4, p=0.09 for the training and
F(5,13)=8.5, p<0.05 for the effect of stimulus).

For the untrained stimuli, the harder
discriminations showed no significant improvement in
performance post- vs. pre-training (F(1,13)=2.9, p>0.1) and
no stimulus effect (F(6,13)=1.95, p>0.1) (Figure 3 bottom
right).  In the easy discrimination, subjects did significantly
improve as a function of doing the task twice (F(1,13)=6.5,
p>0.05, Figure 3 top right).  There was also a stimulus
effect, showing that for the easy discriminations at least, the
shapes at one end were easier than shapes at the other.  It is
important to note that for a direct comparison of the trained
vs. untrained conditions a second set of subjects is required
who have the relationship between shape dimensions and
training swapped.  Such an experiment is planned, but here
we note that there does not appear to be any effect of
learning which is dependent on the position of the stimulus
on the dimension.

A correlation analysis was used to more directly
assess the relationship between changes as a result of
training and the frequency with which each stimulus
appeared during training.  For each prototype, we created a
normalized frequency score by dividing the number of times
a reference shape appeared by the maximum number of
times a shape could appear (i.e. how often the shape at the
center of the distribution appeared). Critically, the mean
improvement in d-prime was predicted by the frequency of
stimuli during training for the hard discrimination, with
stimuli that were seen more often during training producing
a larger mean improvement in d-prime (r=0.78, p<0.05,
Figure 4 left).  A similar but marginally significant
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relationship was found for the easy discriminations (r=0.72,
p=0.068, Figure 4 right).

Figure 4. Correlations between normalized frequency and
the difference in d-prime pre and post training.  Left panel
shows the easy discriminations, right panel shows the hard

discriminations.

Discussion
These preliminary data show that discrimination

performance selectively improved as a function of the
frequency with which parameterized shapes were presented
in an unsupervised setting while subjects were engaged in
another task.  Our shape dimensions are meant to be
analogous to a within-category set of highly similar
exemplars which are encountered with varying frequency.
Our results suggest that the visual system automatically
tunes itself to this distribution, placing resources where they
are most likely to be needed.

Some caveats obviously obtain.  First it may be
that the learning effects are driven only by frequency rather
than the distribution (or relative frequency).  One can
imagine an experiment with much more training using the
same distribution such that the stimuli at the ends of the
shape dimension are seen as many times as the shapes in the
center of the distribution were seen in the experiment
presented here.  In the strong version of a matching
hypothesis, the same pattern of results would be seen, with
little learning at the ends of the shape dimension and
improved performance appearing only in the vicinity of the
most frequently seen shapes.   If learning depends only on
the frequency, then improvement should be seen across the
entire dimension, possibly reaching an asymptote.  Another
possibility is that discrimination centers around the mean of
the distribution which is here confounded with the
frequency.  This alternative can be tested by using a heavily
skewed distribution and seeing whether the best
performance follows the mean or the mode.

Another possibility is that learning is driven by the
co-occurrence of detected fixation changes with the shapes.
As suggested by Seitz and Watanabe (2005), it may be that
detection of a fixation change generates an internal reward,
and given that the task is not too demanding, all features
present at the time (including the shape onscreen) are

reinforced.  This intriguing hypothesis can be tested in a
number of ways using this paradigm, for example, by only
having fixation changes when an infrequently seen shape is
present.

Finally, this paradigm offers an interesting way to
examine questions of categorization.  For example, suppose
during training that the shapes are sampled using a bimodal
distribution (analogous to say male and female faces).
Although shapes that lie between the two modes are
presented with much lower frequency, this part of the shape
dimension has importance as it could correspond to a natural
category boundary (Rosenthal et al., 2001).  If the visual
system is sensitive to this complex distributional
information, an additional increased sensitivity may be
found at the boundary even though examples are
infrequently presented.  Such a result would suggest a
second mechanism which is takes advantage of multimodal
distributional information to create between category
separation.
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