UC Berkeley

UC Berkeley Electronic Theses and Dissertations

Title
Applications and Advances in Similarity-based Machine Learning

Permalink
https://escholarship.org/uc/item/6ch0g569

Author
Spaen, Quico Pepijn

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/6ch0g56s
https://escholarship.org
http://www.cdlib.org/

Applications and Advances in Similarity-based Machine Learning

by

Quico Pepijn Spaen

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in
Engineering - Industrial Engineering and Operations Research
in the
Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Dorit S Hochbaum, Chair
Professor Alper Atamturk
Assistant Professor Paul Grigas
Professor Satish Rao

Fall 2019

Applications and Advances in Similarity-based Machine Learning

Copyright 2019
by
Quico Pepijn Spaen

Abstract

Applications and Advances in Similarity-based Machine Learning
by
Quico Pepijn Spaen
Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research
University of California, Berkeley
Professor Dorit S Hochbaum, Chair

Similarity-based machine learning methods differ from traditional machine learning methods
in that they also use pairwise similarity relations between objects to infer the labels of
unlabeled objects. A recent comparative study for classification problems by Baumann
et al. [2019] demonstrated that similarity-based techniques have superior performance and
robustness when compared to well-established machine learning techniques. Similarity-based
machine learning methods benefit from two advantages that could explain superior their
performance: They can make use of the pairwise relations between unlabeled objects, and
they are robust due to the transitive property of pairwise similarities.

A challenge for similarity-based machine learning methods on large datasets is that the
number of pairwise similarity grows quadratically in the size of the dataset. For large datasets,
it thus becomes practically impossible to compute all possible pairwise similarities. In 2016,
Hochbaum and Baumann proposed the technique of sparse computation to address this
growth by computing only those pairwise similarities that are relevant. Their proposed
implementation of sparse computation is still difficult to scale to millions objects.

This dissertation focuses on advancing the practical implementations of sparse computation
to larger datasets and on two applications for which similarity-based machine learning was
particularly effective. The applications that are studied here are cell identification in calcium-
imaging movies and detecting aberrant linking behavior in directed networks.

For sparse computation we present faster, geometric algorithms and a technique, named
sparse-reduced computation, that combines sparse computation with compression. The
geometric algorithms compute the exact same output as the original implementation of sparse
computation, but identify the relevant pairwise similarities faster by using the concept of
data shifting for identifying objects in the same or neighboring blocks. Empirical results
on datasets with up to 10 million objects show a significant reduction in running time.
Sparse-reduced computation combines sparse computation with a technique for compressing
highly-similar or identical objects, enabling the use of similarity-based machine learning
on massively-large datasets. The computational results demonstrate that sparse-reduced
computation provides a significant reduction in running time with a minute loss in accuracy.

A major problem facing neuroscientists today is cell identification in calcium-imaging
movies. These movies are in-vivo recordings of thousands of neurons at cellular resolution.
There is a great need for automated approaches to extract the activity of single neurons from
these movies since manual post-processing takes tens of hours per dataset. We present the
HNCcorr algorithm for cell identification in calcium-imaging movies. The name HNCcorr
is derived from its use of the similarity-based Hochbaum’s Normalized Cut (HNC) model
with pairwise similarities derived from correlation. In HNCcorr, the task of cell detection is
approached as a clustering problem. HNCcorr utilizes HNC to detect cells in these movies
as coherent clusters of pixels that are highly distinct from the remaining pixels. HNCcorr
guarantees, unlike existing methodologies for cell identification, a globally optimal solution
to the underlying optimization problem. Of independent interest is a novel method, named
simalarity-squared, that we devised for measuring similarity between pixels. We provide an
experimental study and demonstrate that HNCcorr is a top performer on the Neurofinder cell
identification benchmark and that it improves over algorithms based on matrix factorization.

The second application is detecting aberrant agents, such as fake news sources or spam
websites, based on their link behavior in networks. Across contexts, a distinguishing charac-
teristic between normal and aberrant agents is that normal agents rarely link to aberrant
ones. We refer to this phenomenon as aberrant linking behavior. We present an Markov
Random Fields (MRF) formulation, with links as the pairwise similarities, that detects
aberrant agents based on aberrant linking behavior and any prior information (if given).
This MRF formulation is solved optimally and in polynomial time. We compare the optimal
solution for the MRF formulation to well-known algorithms based on random walks. In our
empirical experiment with twenty-three different datasets, the MRF method outperforms the
other detection algorithms. This work represents the first use of optimization methods for
detecting aberrant agents as well as the first time that MRF is applied to directed graphs.

Contents

Contents
List of Figures
List of Tables

1 Introduction

1.1 Models for Similarity-Based Machine Learning: Hochbaum’s Normalized Cut
and Markov Random Fields

1.2 Sparse Computation for Mitigating the Quadratic Growth of Similarities

1.3 Applications: Cell Identification in Neuroscience and Aberrant Agent Detection
in Networks with Similarity-based Machine Learning

1.4 Overview of this Dissertation

Improved Methods for Sparse Computation: Geometric Algorithms and
Sparse-reduced Computation

2.1 Overview of Sparse Computation
2.2 Geometric Algorithms for Sparse Computation
2.3 Experimental Analysis of Geometric Algorithms for Sparse Computation

2.4 Compression for Massively-Large Datasets: Sparse-Reduced Computation . .
2.5 Experimental Analysis of Sparse-Reduced Computation
2.6 Conclusions

Cell Identification in Calcium-Imaging Movies with HNCcorr

3.1 Hochbaum’s Normalized Cut (HNC) Model
3.2 A Description of the HNCcorr Algorithm
3.3 Experimental Comparison of Cell Identification Algorithms
3.4 Conclusions

Detecting Aberrant Linking Behavior in Directed Networks with Markov
Random Fields

4.1 Preliminaries
4.2 Markov Random Fields (MRF) Model

10
13
20
22
28

29
31
37
46
52

4.3 Markov Random Fields Model for Detecting Aberrant Agents
4.4 Performance Evaluation Metrics
4.5 Experimental Setup
4.6 Results

4.7 Conclusions

5 Concluding Remarks

Bibliography

i

60
61
65
67
69

71

72

il

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Effect of sparse computation on accuracy. 8
Visualization of the block enumeration strategy. 11
Visualization of the object shifting strategy. 12
Visualization of the block shifting strategy. 14
Average running times for sparse computation algorithms 18
Duplication ratio for sparse computation with data shifting. 19
Dimensional scaling for sparse computation algorithms. 20
Data-reduction step in Sparse-Reduced Computation 21
Construction of auxiliary graph for linearized HNC. 36
Example of Sparse Computation for HNCcorr 41
Visualization of correlation images of six pixels 43
Percentage of active cells by dataset. 48
Cell identification results for datasets with active cells. 51
Contours of identified cells for two datasets. 51
Cell identification results for leading Neurofinder submissions. 53

Running time results by dataset. 54

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2

4.1
4.2
4.3
4.4

Notation
Dataset statistics.
Reported grid resolutions.
Average runtime vs. grid resolution. L.
Dataset statistics
Comparison of sparse and sparse-reduced computation for dataset COV.
Comparison of sparse and sparse-reduced computation for dataset KDD.
Comparison of sparse and sparse-reduced computation for dataset RLC.
Comparison of sparse and sparse-reduced computation for dataset BOW2.
Comparison of sparse and sparse-reduced computation for dataset RNG.

Dataset characteristics
Dataset-dependent parameter values for HNCccor by dataset.

Complexity of Markov Random Fields (MRF) problems.
Dataset characteristics. Lo
Modularity performance by algorithm.
Ad-hoc metrics performance by algorithm.

v

Acknowledgments

This work and the completion of my PhD would not have been possible without the support
of numerous people. In particular, I would like to thank:

My parents, Frank Spaen and Jolande IJsseldijk, for guiding me to find my own path in
life, giving me the freedom to move to another continent, and for their unwavering support
for me; My girlfriend Aisling Scott for spicing up my life with fun over the past two years, her
advice on numerous topics, and for believing in me; My brother and sister Joep and Floor
Spaen for being the best brother and sister ever and for annihilating me at board games.

My advisor Dorit S. Hochbaum for her guidance, wisdom, and for believing in me. I really
appreciate the countless hours we spent to discuss, analyze, and strategize for our research
and teaching followed by extensive conversations about the most diverse and unrelated topics.
We sometimes disagreed but our discussions were productive and always resulted in a better
outcome.

My main co-authors, Roberto Asin Acha, Philipp Baumann, Christopher Thraves Caro,
and Mark Velednitsky, for our fruitful and enjoyable collaborations; Professors Alper Atamturk,
Paul Grigas, Hillel Adesnik, and Satish Rao for their willingness to serve on my committee;
The IEOR department staff, Keith McAleer, Diana Salazar, James Percy, Anayancy Paz, and
Rebecca Pauling, for their support, helping me with questions I had, and for their positive
energy; Professor Rhonda Righter for her care and interest in the well-being of students in
the department.

My roommates Jian (Sam) Ju, Rob Clarke, and Valence Li for making me feel at home
and for our many late-night conversations; My friend and fellow PhD student Amber Richter
for our near-daily lunches and for introducing me to Aisling; My friends from the GPC
Tuesday ride for sharing my joy in cycling and for keeping me healthy; Sheila Satin and
friends for organizing so many fun social activities.

I would also like to thank all my fellow PhD students for our friendships, bar nights,
Lunch & Learns, good advice, and many fun conversations. My thanks go to: Erik Bertelli,
Clay Campaigne, Haoyang Cao, Junyu Cao, Ying Cao, Chen Chen, Carlos Deck, Shiman
Ding, Yuhao Ding, Ilgin Dogan, Pelagie Elimbi Moudio, Salar Fattahi, Han Feng, Hao Fu,
Andrés Gomez, Dean Grosbard, Tugce Giirek, Pedro Hespanhol, Anran Hu, Arman Jabbari,
Titouan Jehl, Hansheng Jiang, Yusuke Kikuchi, Heejung Kim, Jiung Lee, Kevin Li, Tianyi
Lin, Paula Lipka, Heyuan Liu, Sheng Liu, Stewart Liu, Alfonso Lobos, Cheng Lu, Yonatan
Mintz, Igor Molybog, Julie Mulvaney-Kemp, Matt Olfat, Sangwoo Park, Georgios Patsakis,
Meng Qi, Wei Qi, Xu Rao, Amber Richter, Rebecca Sarto Basso, Jiaying Shi, Auyon Siddiq,
Birce Tezel, Mark Velednitsky, Renyuan Xu, Nan Yang, Min Zhao, Mo Zhou, Ruijie Zhou,
and many others. Finally, I would like to thank all my other Berkeley friends and my fellow
Graduate Assembly (GA) participants.

Chapter 1

Introduction

In supervised learning, the goal is to predict the label of an object based on the object’s
feature vector. Most traditional machine learning methods approach this task by learning a
function from a labeled training dataset that maps a feature vector to a label. This function
is then applied to decide labels for unlabeled objects. A less common approach is to infer the
labels of unlabeled objects based on pairwise similarity relations between all objects in the
dataset, including those that are unlabeled, in addition to feature vectors. We refer to this
approach as similarity-based machine learning.

There is mounting evidence that adding pairwise similarities considerably enhances the
quality of pattern recognition and data mining techniques. This was demonstrated in a recent
comparative study of fourteen different supervised learning techniques across twenty different
datasets [Baumann et al., 2019]. In this study, similarity-based machine learning methods
provided superior performance, as measured by Fl-score, relative to non-similarity-based
methods for classification problems. Similar observations have been made previously for
classification problems [Dembczynski et al., 2009], medical diagnosis [Ryu et al., 2004], and
for semi-supervised learning [Zhu et al., 2003].

A major advantage for similarity-based algorithms is that they benefit from a transitivity
property. Distantly-similar objects can be labeled or grouped together due to a transitive
chain of similarities [Kawaji et al., 2004]. The transitivity property also provides similarity-
based algorithms with robustness, since similarity between a pair of objects is not only
measured by comparing the two objects directly but also via multiple other paths of pairwise
similarities via intermediate objects.

Another advantage for certain similarity-based machine learning methods is that they
make use of the pairwise relations between unlabeled objects such as those in the test dataset.
There are two similarity-based machine learning algorithms, Hochbaum’s Normalized Cut
(HNC) [Hochbaum, 2010, 2013b] and Markov Random Fields (MRF) [Geman and Geman,
1984; Hochbaum, 2001], that have this unique feature. Other similarity-based machine
learning algorithms, such as the k-Nearest Neighbors algorithm [Fix and Hodges, 1951] that
classifies an object based on the labels of its k closest neighbors, are limited to pairwise
similarities relations between labeled and unlabeled objects. Empirical evidence by Tresp

CHAPTER 1. INTRODUCTION 2

[2000] indicates that the performance of a method can improve by considering the relation
between unlabeled objects. In his study, the performance of his ensemble method, the
Bayesian Committee Machine (BCM), improved when considering multiple test objects
simultaneously. This occurred because the BCM utilized the covariance between the test
objects.

There are two primary reasons as to why similarity-based machine learning models are
rarely used in practice. The first reason is the perceived lack of efficient machine learning
techniques for dealing with pairwise similarities. However, efficient algorithms exist for e.g.
both the HNC and MRF models [Ahuja et al., 2003, 2004; Hochbaum, 2001, 2010, 2013a]. The
second concern is that it becomes practically impossible to compute all pairwise similarities
for a large dataset, since the number of pairwise similarities grows quadratically in the size of
the dataset. Hochbaum and Baumann [2016] introduced the method of sparse computation
to mitigate this problem.

This dissertation focuses on advancing the practical implementations of sparse computation
and on two applications for which similarity-based machine learning was particularly effective.
These applications are: Cell detection in calcium-imaging movies and detecting aberrant
agents in networks based on link behavior. We now provide a brief description of the
similarity-based models HNC and MRF that were used in these applications. Subsequently,
we discuss the method of sparse computation for mitigating the quadratic growth in the
number of pairwise similarities and two extensions for larger datasets. We then introduce the
two applications in more detail.

1.1 Models for Similarity-Based Machine Learning:
Hochbaum’s Normalized Cut and Markov
Random Fields

Two models for similarity-based machine learning are Hochbaum’s Normalized Cut (HNC)
[Hochbaum, 2010, 2013b] and Markov Random Fields (MRF) [Geman and Geman, 1984;
Hochbaum, 2001, 2013a]. Both the HNC model and the MRF model with convex penalties
are solved to global optimality in polynomial time with combinatorial algorithms [Ahuja
et al., 2003, 2004; Hochbaum, 2001, 2010, 2013a].

Hochbaum’s Normalized Cut (HNC)

The clustering model Hochbaum’s Normalized Cut (HNC) [Hochbaum, 2010, 2013b] is a
variant of the Normalized Cut problem for image segmentation that was popularized by Shi
and Malik [2000]. The HNC model is defined on graph where nodes represent objects and
edges are pairwise similarity relations. The model provides a trade-off between two objectives:
High similarity between the objects in the cluster (homogeneity), and low similarity between
objects in the cluster and the remaining objects (distinctness). The trade-off between the

CHAPTER 1. INTRODUCTION 3

two objectives is represented as either a ratio or a weighted linear combination. In either
form, the model is polynomial time solvable [Hochbaum, 2010, 2013b] with combinatorial
algorithms. In contrast, the Normalized Cut problem is known to be NP-Hard [Shi and Malik,
2000].

HNC is applicable to both supervised and unsupervised problems, and it has been
successfully used across different contexts. These include image segmentation [Hochbaum
et al., 2013], evaluating the effectiveness of drugs [Hochbaum et al., 2012|, the detection of
special nuclear materials [Yang et al., 2013], tracking moving objects in videos [Fishbain et al.,
2013], and a comparative study on classification problems by Baumann et al. [2019]. In this
study, it was demonstrated that the supervised variants of HNC (SNC & K-SNC) have the
best overall performance and were the most robust among all algorithms considered, which
included state-of-the-art machine learning techniques. Hochbaum et al. [2012]; Yang et al.
[2013] also provide similar but less comprehensive comparisons between machine learning
methods for drug ranking and the detection of special nuclear materials. These experiments
also indicated that SNC was among the top performing machine learning methods for these
contexts.

Markov Random Fields Problem (MRF)

The Markov Random Fields (MRF) [Geman and Geman, 1984; Hochbaum, 2001, 2013a;
Kleinberg and Tardos, 2002] was originally considered in image segmentation, where pixels
from a noisy image should be assigned to a set of colors. Similar to the HNC model, the
objective in the MRF model also presents a trade-off. The trade-off for the MRF model is
between two types of similarities: The similarity between an object and its prior and the
pairwise similarity between pairs of objects. Each type has an associated penalty in the
objective function: A deviation penalty for when the assigned value of an object deviates
away from a prior value, and a separation penalty for when the assigned values of a pair
of objects differ. In image segmentation, the deviation penalties penalizes deviations with
respect to the original color of the pixel whereas the separation penalties smooth the colors
assigned to adjacent pixels. When the separation penalty functions are convex, the MRF
problem is solved optimally and efficiently in either continuous or integer variables [Ahuja
et al., 2003, 2004; Hochbaum, 2001]. The problem is NP-hard otherwise [Hochbaum, 2001].

Aside from image segmentation [Hochbaum, 2001, 2013a; Qranfal et al., 2011], MRF has
been applied successfully for group decision-making [Hochbaum and Levin, 2006], rating
customers’ propensity to buy new products [Hochbaum et al., 2011], ranking the credit risk of
countries [Hochbaum and Moreno-Centeno, 2008], and for yield prediction in semiconductor
manufacturing [Hochbaum and Liu, 2018]. In all of these applications, the separation penalties
were defined on undirected graphs. The MRF application presented below is unique in that
the separation penalties are directional and are defined on a directed graph. The algorithms
listed above apply to both types of graphs.

CHAPTER 1. INTRODUCTION 4

1.2 Sparse Computation for Mitigating the Quadratic
Growth of Similarities

A challenge for similarity-based machine learning methods on large datasets is that the number
of pairwise similarity grows quadratically in the size of the dataset. For large datasets, it
thus becomes practically impossible to compute all possible pairwise similarities.

Hochbaum and Baumann [2016] proposed the technique of sparse computation to address
this growth by computing only those pairwise similarities that are relevant. Sparse com-
putation enables the scaling of similarity-based algorithms to large datasets. The method
first project the objects’ feature vectors into a low-dimension space. This is commonly done
with the dimension reduction method approximate principle component analysis, a variant of
principle component analysis (PCA). Sparse computation uses closeness of two objects in
the low-dimensional space as a proxy for the relevance of the associated pairwise similarity.
To identify close pairs of objects in the low-dimensional space, the low-dimensional space is
discretized into grid blocks. A pair of objects is considered relevant if the objects belong to
the same or adjacent grid blocks. The pairwise similarities are then computed for all relevant
pairs with the original feature vectors.

The Hochbaum and Baumann [2016] implementation of sparse computation is still difficult
to scale to millions objects. We present in this work two extensions that scale the method of
sparse computation to very-large datasets (see also [Baumann et al., 2016, 2017]).

The first extension consists of faster geometric algorithms for sparse computation. These
geometric algorithms compute the exact same output as the original implementation of sparse
computation, but identify the relevant pairwise similarities faster by using the concept of
data shifting for identifying objects in the same or neighboring blocks. Empirical results on
datasets with up to 10 million objects show a significant reduction in running time. The
new algorithms also result in improved scaling for sparse computation with respect to the
dimension of the low-dimensional space.

The second extension is the technique of sparse-reduced computation. Sparse-reduced
computation combines sparse computation with a technique for compressing highly-similar
or identical objects, enabling the use of similarity-based machine learning on massively-large
datasets. Due to the compression, sparse-reduced computation provides a different output
than sparse computation and replaces groups of objects by new representative objects. The
computational results demonstrate that sparse-reduced computation provides very similar
accuracy as sparse computation with a significant reduction in runtime. Sparse-reduced
computation allows for highly-accurate classification of datasets with millions of objects in
seconds.

CHAPTER 1. INTRODUCTION d

1.3 Applications: Cell Identification in Neuroscience
and Aberrant Agent Detection in Networks with
Similarity-based Machine Learning

A major problem facing neuroscientists today is detecting cells in calcium-imaging movies.
Calcium imaging is a modern technique used by neuroscientists for recording movies of in-vivo
neuronal activity at cellular resolution. Using genetically encoded calcium indicators and fast
laser-scanning microscopes, it is now possible to record thousands of neurons simultaneously.
However, the manual post-processing needed to extract the activity of single neurons requires
tens of hours per dataset. Consequently, there is a great need to develop automated approaches
for the extraction of neuronal activity from imaging movies.

We present a similarity-based algorithm, named HNCcorr, for cell detection in calcium
imaging movies (see also [Asin-Aché et al., 2019; Spaen et al., 2019]). The name HNCcorr
is derived from the use of HNC and that of pairwise similarities based on correlation. In
HNCecorr, the task of cell detection in calcium imaging movies is approached as a clustering
problem. HNCcorr utilizes HNC to detect cells in these movies as coherent clusters of pixels
that are highly distinct from the remaining pixels. HNCcorr guarantees, unlike existing
methodologies for cell identification, a globally optimal solution to the underlying optimization
problem. Of independent interest is a novel method, named similarity-squared, that we devised
for measuring similarity between pixels. We provide an experimental study and demonstrate
that HNCcorr is a top performer on the Neurofinder cell identification benchmark and that it
improves over algorithms based on matrix factorization [Pachitariu et al., 2017; Pnevmatikakis
et al., 2016]. This algorithm represents the first use of similarity-based machine learning
methods in neuroscience.

The second application is detecting aberrant agents in networks based on their link
behavior. Agents with aberrant behavior are commonplace in today’s networks; there are
fake profiles in social media, spam websites on the internet, and fake news sources that are
prolific in spreading misinformation. The viral spread of digital misinformation has become
so severe that the World Economic Forum considers it among the main threats to human
society [World Economic Forum, 2013]. Tt is thus crucially important to be able to identify
aberrant agents. Across contexts, a distinguishing characteristic between normal and aberrant
agents is that normal agents rarely link to aberrant ones. We refer to this phenomenon as
aberrant linking behavior.

We present an MRF formulation that detects aberrant agents based on the link behavior
of agents in the network. The formulation balances two objectives: to satisfy aberrant linking
behavior by having as few links as possible from normal to aberrant agents, as well as to
deviate minimally from prior information (if given). The MRF formulation is solved optimally
and efficiently. We compare the optimal solution for the MRF formulation to well-known
algorithms based on random walks [Rajaraman and Ullman, 2011], including PageRank [Page
et al., 1999], TrustRank [Gyongyi et al., 2004], and AntiTrustRank [Krishnan and Raj, 2006].
To assess the performance of the algorithms, we present a variant of the modularity clustering

CHAPTER 1. INTRODUCTION 6

metric that overcomes the known shortcomings of modularity in directed graphs. We show
that this new metric has desirable properties and prove that optimizing it is NP-hard. In our
empirical experiment with twenty-three different datasets, the MRF method outperforms the
other detection algorithms. This work is the first use of optimization methods for detecting
aberrant agents as well as the first time that MRF is applied with directed links.

1.4 Overview of this Dissertation

Chapter 2 presents the improved methodologies for sparse computation. The chapter starts
with an overview of the sparse computation method. Then, the geometric algorithms for
sparse computation are presented, and their performance is analyzed in a computational
study. Subsequently, the sparse-reduced computation method is presented. Sparse-reduced
computation extends sparse computation by adding compression of highly-similar objects.
An experimental study of its performance relative to sparse computation is provided.

Chapter 3 introduces the HNCcorr algorithm for cell detection in calcium imaging. The
chapter includes a discussion of the HNC model and algorithms for solving it. The HNCcorr
algorithm is described, and a discussion of how it incorporates HNC and sparse computation
is provided. Having described the algorithm, the chapter concludes with an experimental
comparison between HNCcorr and other cell identification algorithms.

Chapter 4 lays out our approach for detecting aberrant agents in directed networks
based on their linking behavior with MRF. The chapter provides the general MRF model,
algorithms for solving it, and our MRF formulation for the detection of aberrant agents. The
experimental performance of MRF is compared with other well-known algorithms.

Chapter 2

Improved Methodologies for Sparse
Computation: Geometric Algorithms
and Sparse-Reduced Computation

Computing pairwise similarities poses a challenge in terms of scalability as the number of
pairwise similarities between objects grows quadratically in the number of objects in the
dataset. For large datasets, it is prohibitive to compute and store all pairwise similarities.

Various methods have been proposed that sparsify a complete similarity matrix, which
contains all pairwise similarities, while preserving specific matrix properties [Arora et al.,
2006; Jhurani, 2013; Spielman and Teng, 2011]. A sparse similarity matrix requires less
memory and allows faster classification as the running time of the algorithms depends on the
number of non-zero entries in the similarity matrix. These approaches are not suitable for
large-scale datasets because they require as input the complete similarity matrix.

Recently, Hochbaum and Baumann [2016] introduced a methodology called sparse com-
putation that generates a sparse similarity matrix without having to compute the complete
similarity matrix first. Sparse computation enables the scaling of similarity-based machine
learning methods to large dataset by significantly reducing the running time of the classifiers
without affecting their accuracy (see Figure 2.1). In sparse computation the data is efficiently
projected onto a low-dimensional space using a probabilistic variant of principal component
analysis. The low-dimensional space is then subdivided into grid blocks and pairwise simi-
larities are only computed between objects in the same or in neighboring grid blocks. The
density of the similarity matrix can be controlled by varying the grid resolution. A higher
grid resolution leads to a sparser similarity matrix. In section 2.1, we review the sparse
computation technique in more detail.

For large-scale datasets, the computational bottleneck of sparse computation is the
identification of pairs of adjacent blocks in the grid structure. For each non-empty block,
it identifies adjacent blocks and checks whether these blocks are non-empty. This process
is referred to as block enumeration. For large-scale datasets to which sparse computation is
applied with a high grid resolution, the vast majority of adjacent blocks are empty, but are

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 8

__100.0
=
., 975 o & —©
Q
g
g 907 —e— KNN
<
= 9254 SNC
ke —*— SVM
90.0 +———r1T—— ———————
0 50 90 95 98

Degree of sparsity (%)

Figure 2.1: Accuracy at selected sparsity levels for the letter recognition (LER) dataset
obtained with three similarity-based classifiers - k-nearest neighbors, SNC [Hochbaum, 2010],
and SVM [Cortes and Vapnik, 1995] - on a sparse similarity matrix generated with sparse
computation. Sparsity, reported on a log scale, is measured as the percentage of matrix
entries that are not computed. The runtime of the algorithms is inversely proportional to the
sparsity of the similarity matrix.

still checked. Hence, a large fraction of the computational workload is unnecessary.

In section 2.2, we present two new algorithms for sparse computation that address this
computational bottleneck. The algorithms are based on a computational geometry concept
called data shifting, which is used to identify pairs of similar objects in a low-dimensional
space much faster than with state-of-the-art techniques.

Computational experiments in section 2.3 demonstrate that the new algorithms for sparse
computation are up to five times faster. The improved algorithms enable the scaling of sparse
computation to datasets with millions of objects. Furthermore, the new algorithms improve
the scaling of sparse computation with respect to the dimension of the low-dimensional space.

Regardless of which sparse computation algorithm is applied, it may occur that large
groups of highly-similar or identical objects project to the same grid block even when the grid
resolution is high. As a result, a large number of pairwise similarities between nearly-identical
objects is identified by sparse computation. The computation of similarities between these
objects is unnecessary as they often belong to the same class. In massively-large datasets,
large numbers of highly-similar objects are particularly common. The grid block structure
created in sparse computation reveals the existence of such highly-similar objects in the
dataset.

In section 2.4, we propose an extension of sparse computation called sparse-reduced
computation that avoids the computation of similarities between highly-similar and identical
objects through compression. The method builds on sparse computation by using the grid
block structure to identify highly-similar and identical objects efficiently. In each grid block,
the objects are replaced by a small number of representatives. The similarities are then
computed only between representatives in the same and in neighboring blocks. The resulting
similarity matrix is not only sparse but also smaller in size due to the consolidation of objects.

We evaluate sparse-reduced computation on four real-world and one artificial benchmark

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 9

Table 2.1: Notation

Symbol Description

n Number of objects

d Number of features

x1,...,x, € RY Objects - represented by their feature vectors

P Number of dimensions in low-dimensional space

k and k' Grid resolution

K Sub-block grid resolution in sparse-reduced computation
w Pre-specified L., distance

datasets containing up to 10 million objects in section 2.5. Sparse-reduced computation
delivers highly-accurate classification at very low computational cost for most of the studied
datasets.

Throughout this chapter, we use the notation given in Table 2.1.

2.1 Overview of Sparse Computation

Sparse computation [Hochbaum and Baumann, 2016] takes as input a dataset with n objects
x1,...,x, € R? and d features. The method consists of the steps: dimension reduction, grid
construction and selection of pairs, and similarity computation.

In the dimension reduction step, the input data is projected from a d-dimensional space
onto a p-dimensional space, where p < d. The projection is done with a probabilistic variant
of PCA called approximate PCA [Hochbaum and Baumann, 2016]. Let the data in the
p-dimensional space be normalized, i.e., the values of each dimension are scaled to the range
[0, 1].

In the grid construction and selection of pairs step, the goal is to select all pairs of objects
that have an L., distance smaller or equal to w in the p-dimensional space. This is achieved
as follows. First, the range of values along each dimension is subdivided into k& = % equally
long intervals. This partitions the p-dimensional space into kP grid blocks. Parameter k
denotes the grid resolution. Each object is then assigned to a single block based on its p
coordinates. Objects which lie exactly on a grid line (horizontally and/or vertically) are
assigned to the upper and/or right grid block. If the upper and/or right grid block is outside
the grid, then the object is assigned to the lower and/or left block.

Since the largest L, distance within a block is equal to w = %, all pairs of objects that
belong to the same block are selected. In addition, some pairs of objects are within a distance
of w but fall in different blocks. To select those pairs as well, horizontally, vertically, and
diagonally adjacent blocks need to be considered. Each block has up to 37 — 1 neighbors. We
refer to this process as block enumeration. By selecting all pairs of objects that are assigned
to adjacent blocks, it can be guaranteed that all pairs of objects whose distance is less than

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 10

or equal to w are selected. It is possible that pairs of objects whose L, distance is more than
w but less than 2w are selected as well, whereas objects whose distance is more than 2w will
not be selected.

The total number of selected pairs depends on the grid resolution k and the dimension
of the low-dimensional space p. A higher grid resolution results in smaller blocks and thus
reduces the set of pairs that fall in a block or its adjacent blocks. Similarly, when the number
of dimensions of the low-dimensional space is increasing, the blocks contain fewer objects
and this reduces the number of pairs selected.

In the similarity computation step, a similarity function is used to quantify the similarity
for each of the pairs selected in the previous step. The similarity value is computed with
respect to the original d-dimensional space.

The selection of pairs in sparse computation relies on enumerating (37 — 1)/2 adjacent
blocks for each non-empty block to determine pairs of adjacent non-empty blocks!'. This
computation becomes the bottleneck of the method when a) the number of non-empty blocks
is large, and b) most of the adjacent blocks are empty. Checking empty blocks is unnecessary
and only contributes to the runtime. Conditions a) and b) are often met when sparse
computation is applied with high grid resolution to a large-scale dataset with millions of
objects. To illustrate this issue, Figure 2.2 shows a two-dimensional projection of a dataset
that contains 12 objects. With a grid resolution of £ = 4, the two-dimensional space was
partitioned into 16 blocks, six of which are non-empty. To find the adjacent blocks of the
six non-empty blocks, 24 other blocks (visualized by arrows) are considered. Only 6 out of
these 24 blocks are non-empty (blue arrows). The plot on the right hand side of Figure 2.2
highlights all selected pairs by blue lines that connect the corresponding objects.

2.2 Geometric Algorithms for Sparse Computation

To address the bottleneck of identifying pairs in adjacent blocks, we introduce a computational
geometry concept called data shifting. We show how data shifting can be used to devise
two geometric algorithms for sparse computation: object shifting and block shifting. These
algorithms replace the block enumeration process in the second step of sparse computation.

The object shifting algorithm shifts the objects multiple times along different directions
within the grid structure. For each shift, the pairs of objects that fall in the same block are
deemed to be similar. Object shifting avoids having to explicitly compute adjacent blocks,
but the same pair of objects may be selected for multiple shifts. We refer to such pairs as
duplicate pairs. The block shifting algorithm partially addresses the drawback of duplicate
pairs by identifying all pairs of non-empty adjacent blocks by shifting representatives for
non-empty blocks instead of the individual objects. Note that these two algorithms generate
the exact same set of pairs as sparse computation with block enumeration.

'For each non-empty block, only half of the adjacent blocks need to be checked since the adjacency
relation is symmetric.

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 11

Legend:

O Object in low-dimensional space
Non-empty block
- Coordinates that refer to an empty box
=P Coordinates that refer to a non-empty box

—— Selected pair

Figure 2.2: Visualization of the block enumeration strategy with k& = 4 and p = 2: a) for each
non-empty block, four adjacent blocks must be considered to identify all pairs of adjacent
non-empty blocks. The majority of considered blocks are empty (dotted arrows). b) all pairs
of objects that fall into the same or in neighboring blocks are selected (blue lines)

The concept of data shifting

Sparse computation relies on a grid to identify close pairs of objects in the low-dimensional
space. The identified pairs are all within an L., distance of w and potentially some within
an L., distance of 2w. In contrast to sparse computation with block enumeration, the
low-dimensional space is partitioned into k7 grid blocks for k' = % Each grid block is thus
twice as large in each dimension. All objects within a grid block are now within an L.,
distance of 2w. The grid, however, might still arbitrarily separate objects that are close by
a grid line. Two objects that are within an L., distance of w, but separated by a grid line,
are denoted as border pair. In a two-dimensional grid, there are three types of border pairs:
horizontal border pairs, vertical border pairs, and diagonal border pairs. In a p-dimensional
grid, there are 2P — 1 types of border pairs. Data shifting addresses the issue of identifying
border pairs by shifting the data from its initial position along a single or multiple axes such
that all border pairs of one type will no longer be separated by a grid line after the shift. To
capture all types of border pairs, 2P — 1 shifts are required. In each shift, the data is shifted
by w along the respective axes. This is sufficient to identify all close neighbors of an object,
since for each neighbor that is within a distance of w from the object there exist at least
one grid such that they belong to the same grid block. By efficiently identifying all close
neighbors, data shifting provides a 2-approximation for the problem of identifying, for each
object, the set of neighbors that are within an L., distance of w.

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 12

Initial position Right shift Upward shift Upward right shift

09

d)

Legend:
O Object in low-dimensional space —— Selected pair e Direction and length of shift
O Initial postion of object in low-dimensional space —— Redundant pair

Figure 2.3: Visualization of the object shifting algorithm with grid resolution k' = 2 for a
dataset projected to a p = 2 dimensional space: a) selection of pairs of objects that fall in
the same grid block, b) objects are horizontally shifted by 1/k to capture horizontal border
pairs. ¢) objects are vertically shifted by 1/k to capture vertical border pairs, d) objects are
diagonally shifted to capture diagonal border pairs. Redundant pairs are highlighted in red.

Object shifting algorithm

To get exactly the same selection of similar pairs as the block enumeration strategy with a
grid resolution of k, the object shifting algorithm first partitions the low-dimensional space
into £ grid blocks for k' = %k . Based on the concept of data shifting, 27 — 1 directions are
determined. Given p, the directions can be determined by generating binary representations
of width p of the integers [1, ..., 2 — 1]. Each bit corresponds to a dimension and a one
means that the data is shifted along this dimension. For example, if p = 2, the binary
representations are 01, 10, and 11. The algorithm is called object shifting because all objects
are shifted by % = 2%, in that direction. Based on the new coordinates, each object is assigned
to a single grid block and all pairs of objects that are assigned to the same block are selected.
Since the same pairs of objects might be assigned to the same block in different shifts, one
needs to identify and remove duplicate pairs. If the grid resolution is high and hence the
total number of selected pairs is low, the runtime for identifying and removing redundant
pairs is negligible. However, if the grid resolution is low and the total number of selected
pairs is large, then identifying and removing redundant pairs can become computationally
expensive. Figure 2.3 illustrates object shifting algorithm for our two-dimensional example.
The original position of the data is shown in the top left plot.

Block shifting

The disadvantage of object shifting is that certain pairs are selected for multiple shifts. In
particular, objects that fall in the same sub-block, defined by splitting the blocks in half in

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 13

each dimension, will fall in the same block for each shift and are thus repeated 27 — 1 times.
Block shifting addresses this by replacing them with a single object.

To generate the same pairs as sparse computation with block enumeration with grid
resolution k, the p-dimensional space is first partitioned with a grid resolution of k£ into k”
grid blocks and each object is assigned to the corresponding block. The corresponding pairs
for each block are selected. Instead of identifying the border pairs directly with data shifting
each non-empty block is first replaced with a representative object at its center. Note that
this new dataset consists of objects that are located at multiples of i along the dimensions.
All coordinates are within the range [ﬁ, 1— ﬁ] and the L., distance between pairs of objects
that represent adjacent blocks is exactly % Hence, we can apply the object shifting algorithm
to the new dataset with a grid resolution of k' = %k; to find all pairs of adjacent blocks.
Finally, all pairs of objects that consists of objects in adjacent blocks are selected. Figure 2.4
illustrates block shifting for our two-dimensional example.

Runtime analysis

The runtime of block enumeration, object shifting, and block shifting depends on the
parameters k and p and on the distribution of the objects within the low-dimensional space.
Since all algorithms have the same output, they only differ with respect to the overhead
(unnecessary work performed): The object/block shifting algorithms may identify pairs of
objects/representatives more than once, and the block enumeration algorithm may enumerate
empty adjacent blocks.

The overhead of the block enumeration is large when objects fall into many isolated
blocks. This typically occurs for large k and p. The overhead of object shifting is large when
many objects fall into few adjacent blocks. This typically occurs for small £ and p. The
overhead of block shifting is only large when the number of adjacent representatives is large.
This does not occur for small or for large values of £ and p. To obtain a large number of
adjacent representatives, few objects must fall in a large number of adjacent blocks. Hence,
the number of adjacent representatives tends to initially increase with increasing p and £, but
decreases again once the blocks become isolated. In practice, we observe that block shifting
identifies a pairwise similarity no more than twice. For more details, see the experimental
results in section 2.3 and Figure 2.6.

2.3 Experimental Analysis of Geometric Algorithms
for Sparse Computation

We compared the runtime of block enumeration, object shifting, and block shifting for different
grid resolutions on nine datasets. We evaluated only runtime because all algorithms generate
the same output when the grid resolutions are chosen accordingly. Extensive empirical results
on how sparse computation and thus the new algorithms affect the accuracy of (un)supervised
learning algorithms are presented in [Baumann, 2016; Hochbaum and Baumann, 2016].

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 14

0]
o Legend:
(] gen
O Object in low-dimensional space
o © ° D Non-empty block
© o o O Center of non-empty block
o O Initial postion of center of non-empty block
@) . . .
o o || Direction and length of shift
o
o —— Selected pair
(¢} —— Redundant pair
o =p Coordinates that refer to a non-empty box
O
a) b)
Initial position Right shift Upward shift Upward right shift
/D m :\ I O o I
o of [S o [o O] = o’ | |
/] o O 8] u] O oo
of [S o O o’
c) d) e) f)
O O
o

A &

X a4

O

- 5

o
1l
Yo

O
Q

g) h) i)

Figure 2.4: Visualization of the block shifting algorithm with grid resolution k£ = 4 for a
dataset projected to a p = 2 dimensional space: a) low-dimensional space is partitioned with
grid resolution k, b) each non-empty block is replaced by a representative, c)—f) the object
shifting algorithm is applied with grid resolution & = 2 to find pairs of representatives that
correspond to neighboring blocks (redundant pairs of representatives are highlighted in red),
g)—i) the identified pairs of representatives are used to select pairs of objects that fall within
the same or within neighboring blocks.

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 15

We implemented the algorithms and the computational analysis in Python 3.5. The source
code is available at https://github.com/hochbaumGroup/sparsecomputation. The source
code of the computational analysis is available at https://github.com/quicO/sparse-
experiments.

datasets

The datasets represent various domains including life sciences, engineering, social sciences
and business and have sizes ranging from hundreds to millions of objects. Six real-world
datasets were taken from the UC Irvine Machine Learning Repository [Lichman, 2013], two
datasets were taken from previous studies [Breiman, 1996; Dong, Jian-xiong et al., 2005;
Lee and Mangasarian, 2001; Tsang et al., 2005], and one real-world dataset was taken from
the Neurofinder public benchmark for calcium imaging [CodeNeuro, 2017]. In all datasets,
we substituted categorical features by a binary feature for each category and removed any
duplicate objects. We briefly describe each dataset and mention further modifications that
we made. Statistics about each of the datasets are provided in Table 2.2.

The dataset Adult (ADU) [Kohavi, 1996] stems from the census bureau database and each
object represents a person. In the original dataset there is a categorical and a continuous
feature to capture the educational level of the persons. To avoid double use, we removed the
categorical feature. In addition, we removed all features that contain missing values.

In the Bag of Words dataset (BOW), the objects are documents from five different
sources. The sources are Enron emails, KOS blog entries, New York Times articles, NIPS full
papers, and PubMed abstracts. A document in this dataset is represented as a bag of words,
i.e., a set of vocabulary words. This representation disregards word order but keeps word
multiplicity. We generated two datasets from the bag of words dataset: BOW1 contains the
NIPS full papers and the Enron emails. For each document in BOW1, we divide the number
of occurrences of each word by the total number of words in the document to obtain the

Table 2.2: Statistics of the datasets (after modification)

Abbreviation # of objects # of unique objects # of features

NEU 961 961 800
LER 20,000 18,668 16
BOW1 41,361 37,993 33,781
ADU 45,222 45,170 88
CcOov 581,012 581,012 o4
CKR 1,000,000 999,910 2
RLC 5,749,132 5,749,133 16
BOW2 8,544,543 3,087,117 100
RNG 10,000,000 10,000,000 20

https://github.com/hochbaumGroup/sparsecomputation
https://github.com/quic0/sparse-experiments
https://github.com/quic0/sparse-experiments

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 16

relative frequencies. BOW2 contains the New York Times articles and the PubMed abstracts.
For BOW2, we limit the feature space to the 100 words with the largest absolute difference
in mean relative frequency between the New York Times articles and the PubMed abstracts.
A binary vector indicates which of those words occur in the respective document.

The dataset Checkerboard (CKR) is an artificial dataset that has been used for evaluating
large-scale SVM implementations [Lee and Mangasarian, 2001; Tsang et al., 2005]. Each
object represents a point on a 4 x 4 checkerboard that is characterized by two features
which represent the x- and the y-coordinates. Following [Tsang et al., 2005], we create a
checkerboard dataset with 1 million objects by randomly choosing the x- and y-coordinates
of objects between -2 and 2 according to a uniform distribution.

The dataset Covertype (COV) [Blackard and Dean, 1999] contains cartographic character-
istics of forest cells in northern Colorado. There are seven different cover types which are
labeled 1 to 7.

The dataset Letter Recognition (LER) [Frey and Slate, 1991] comprises 20,000 objects.
Each object corresponds to an image of a capital letter from the English alphabet.

The dataset Neuron (NEU) [CodeNeuro, 2017] is a calcium imaging recording of a neuron,
a brain cell. The objects are the pixels in the recording and the features are the intensity
of a pixel for each of the frames. Sparse computation is used as a subroutine in a leading
algorithm for cell identification in calcium imaging recordings [Spaen et al., 2019].

In the dataset Record Linkage Comparison Patterns (RLC) [Schmidtmann et al., 2009],
the objects are comparison patterns of pairs of patient records. We substitute the missing
values with value zero and introduce a binary feature to indicate missing values. The objects
can be classified as match or no-match.

The dataset Ringnorm (RNG) is an artificial dataset that has been used in [Breiman,
1996] and [Dong, Jian-xiong et al., 2005]. The objects are points in a 20-dimensional space
and belong to one of two Gaussian distributions. Following the procedure of [Dong, Jian-xiong
et al., 2005], we generate a Ringnorm dataset instance with 10 million objects.

Experimental design

We compared the runtime of sparse computation with block enumeration, object shifting,
and block shifting on the nine datasets for different grid resolutions k. For large datasets, it
was impossible to construct the complete similarity matrix due to memory limitations of our
machine. The grid resolutions used for each of the datasets are described in Table 2.3. We
chose the number of dimensions p of the low-dimensional space to be 3 for all datasets except
for CKR for which we chose 2 because it only has two features. For the dimension reduction
step, we used approximate PCA [Hochbaum and Baumann, 2016] which is much faster than
exact PCA as it reduces the size of the original dataset by sampling a small fraction of objects
and features. Here we set the sampling fraction for objects to one percent and the sampling
fraction for features to five percent unless the number of features is less than 150 in which
case all features were used. Only the NEU and BOW1 datasets have more than 150 features.

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 17

Table 2.3: Grid resolutions reported for each dataset

Abbreviation Grid resolution k
NEU 4, 10, 20, 50, 100, 200
LER 4, 10, 20, 50, 100, 200
BOW1 4, 10, 20, 50, 100, 200, 500, 1000, 2000
ADU 4, 10, 20, 50, 100, 200, 500, 1000, 2000
COV 50, 100, 200, 500, 1000, 2000
CKR 100, 200, 500, 1000, 2000
RLC 200, 500, 1000, 2000, 4000, 10000
BOW2 200, 500, 1000, 2000, 4000, 10000
RNG 200, 500, 1000, 2000, 4000, 10000

We ran each combination of algorithm, dataset, and grid resolution five times and recorded
the mean runtime and the standard deviation across all five runs. In addition, we recorded
various statistics that affect the runtime of the algorithms. The computational analysis was
performed on a workstation with Intel Xeon CPUs (model E5-2667 v2) with clock speed 3.30
GHz and 256 GB of RAM.

Experimental results

The mean and standard deviations of the runtimes of the different algorithms are reported in
Figure 2.5 and for the largest three datasets in Table 2.4. Sparse computation with block
enumeration performs well at low grid resolutions, but gets slow when applied with high
grid resolutions. In contrast, sparse computation with object shifting performs poorly at low
grid resolutions because there is a large number of pairs consisting of objects that fall into
the same sub-block and are selected for each shift. Sparse computation with object shifting
performs well when the grid resolution is high. At these grid resolutions, few objects fall in
the same sub-block and fewer duplicate pairs are selected.

Sparse computation with block shifting combines the properties of sparse computation
with block enumeration and object shifting and provides (near-) best runtime across datasets
and grid resolutions. Although outperformed by object shifting at extremely high grid
resolutions, it does not suffer from the pitfalls that affect block enumeration and object
shifting. By replacing each sub-block by a single representative, it significantly reduces the
number of duplicate pairs. This results in faster runtimes for low grid resolutions when each
block typically contains multiple objects. Figure 2.6 shows that block shifting identifies only
few duplicate pairs for low grid resolutions. For all datasets block shifting identifies, on
average, a pair no more than twice independent of the grid resolution.

An interesting insight can be gained from the CKR dataset: although object shifting
generates more duplicate pairs than block shifting, it is still slightly faster for very high
grid resolutions. This is most likely due to the overhead resulting from generating the

10°

1071

Running time (s)

108

10"

Running time (s)

102

Running time (s)

10%

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 18
NEU LER BOW1
3 102 4 103 _;
] g—< 10° - \ 10° 3
L T T T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 500 1000 1500 2000
ADU COV CKR
3 102 4]
] 102 E
] 10" 4 ¥
§ 10"] _—
3 T T T T T T T T T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000 500 1000 1500 2000
RLC BOW2 RNG
102 18— 102 3
T T T T T T T T T T T i
0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000

Grid resolution - k

—}— Block enumeration

Grid resolution - k

Object shifting

Grid resolution - k

—— Block shifting

Figure 2.5: Mean runtimes, measured in log scale, across datasets for sparse computation with
block enumeration, object shifting, and block shifting. The error bars indicate the standard
deviation of the runtimes. Grid resolution is measured with respect to sparse computation
with block enumeration.

Table 2.4: Mean runtime for RLC, BOW2, and RNG for selected grid resolutions

Dataset

Algorithm RLC BOW2 RNG
500 2000 10000 500 2000 10000 500 2000 10000
Block enumeration 150 172 173 96 98 91 296 313 316
+6 + 2 +1 + 4 +3 + 2 + 18 + 12 +5
Object shifting 185 55 33 155 23 18 2466 137 62
+ 22 +5 + 0.07 + 23 + 0.2 + 0.04 + 122 + 15 + 2
Block shifting 88 42 31 74 26 21 276 135 61
+ 11 + 2 + 0.2 + 0.6 + 0.2 + 0.1 + 30 + 10 +5

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 19

NEU LER BOW1
2 6 6 6
%ﬁm
£8 4 4 44 4
T
<= 24 2 2
=
Q T T T T T T T T T T T T T T T
0 50 100 150 200 0 50 100 150 200 0 500 1000 1500 2000
ADU CoVv CKR
2 6 6 6
g,orlﬁ
£8 47 4 4
¥
<.g .] .
2 2 2 2
=
Q T T T T T T T T T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000 500 1000 1500 2000
RLC BOW2 RNG
2 6 6 6
g)oﬁi
£8 47 4 4
&
24— | 2 2
= ~
Q T T T T T T T T T T T T
0 2500 5000 7500 10000 0 2500 5000 7500 10000 0 2500 5000 7500 10000
Grid resolution - k Grid resolution - k Grid resolution - k
Object shifting —— Block shifting

Figure 2.6: Average duplication ratio across datasets for sparse computation with block
and object shifting. The duplication ratio is computed as 1 + # duplicate objects or
representative pairs / # unique object pairs. The error bars indicate the standard
deviation in the number of duplicate pairs. Grid resolution is measured with respect to sparse
computation with block enumeration.

representatives and mapping representatives to objects. In the CKR dataset, the objects are
uniformly spread, which means that at a grid resolution of £ = 1,000, there are 1 million
blocks (p = 2), that are mostly non-empty. Since there are only 1 million objects, each block
contains a single object in expectation. Therefore, block shifting gains little by replacing the
objects in each block by a representative but still incurs the overhead.

The computational effort required by sparse computation also depends on the number of
dimensions p of the low-dimensional space. For example, the number of (adjacent) blocks,
and the number of required shifts for object shifting and block shifting grow exponentially
in p. To explore the impact of the dimension of the low-dimensional space on runtime, we
applied the different algorithms to the COV dataset with p = 2, 3, and 4. As shown in
Figure 2.7, the runtime of sparse computation with block enumeration increases steadily
as p is increased even though the number of selected pairs decreases with increasing grid
resolution. Sparse computation with object shifting and block shifting scales much better

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 20

p=2 p=3 p=4

—~ 103 10% 4 10° 4
2
£
£ 107 5 10% 4 102 -
o0 E E e
g E 1 1
Elol—sk 101—5¥ 1004 S
= 3 3 3
m]]]

T T T T T T T T T T T T

0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
Grid resolution - k Grid resolution - k Grid resolution - k
—}— Block enumeration Object shifting —— Block shifting

Figure 2.7: Effect of the number of dimensions in the low-dimensional space, p, on the mean
runtimes of sparse computation with block enumeration, object shifting, and block shifting
for the COV dataset. The error bars indicate the standard deviation of the runtimes. Grid
resolution is measured with respect to sparse computation with block enumeration.

with increasing values of p.

2.4 Compression for Massively-Large Datasets:
Sparse-Reduced Computation

Sparse-reduced computation is an extension of sparse computation. The idea of sparse
computation is to avoid the computation of very small similarities as they are unlikely to
affect the classification result. Sparse-reduced computation not only avoids the computation
of very small similarities, but also avoids the computation of similarities between highly-
similar and identical objects. Intuitively, sparse-reduced computation not only “rounds” very
small similarities to zero but it also “rounds” very large similarities to one. Sparse-reduced
computation consists of the four steps of data projection, space partitioning, data reduction,
and similarity computation.

Data projection: The first step in sparse-reduced computation coincides with what is
done in sparse computation. The d-dimensional dataset is projected onto a p-dimensional
space, where p < d. This is implemented using a sampling variant of principal component
analysis called Approximate PCA [Hochbaum and Baumann, 2014]. Approximate PCA
computes principal components that are very similar to those computed by exact PCA as
shown in [Drineas et al., 2006], yet requires drastically reduced running time. Approximate
PCA is based on a technique devised by [Drineas et al., 2006]. The idea is to compute exact
PCA on a submatrix W of the original matrix A. The submatrix W is generated by random
selection of columns and rows of A with probabilities proportional to the Ly norms of the
respective column or row vectors.

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 21

Figure 2.8: Data reduction with resolution £ = 3 and k = 1. As shown in the magnified
block, the negative training objects (gray), the positive training objects (white fill), and the
testing objects (black) are each replaced by a single representative.

Space partitioning: Once all objects are mapped into the p-dimensional space, the next
step is to subdivide, in each dimension, the subspace occupied by the objects into k intervals
of equal length. This partitions the p-dimensional space into kP grid blocks. Using a uniform
value of k for all dimensions allows us to control the total number of grid blocks with a single
parameter. In the following, parameter k is referred to as the grid resolution. Each object is
assigned to a single block based on the respective intervals in which its p coordinates fall.

Data reduction: The grid is then used to reduce the size of the dataset by replacing
so-called d-identical objects by a single representative. Let § = % for K € N. In order to
identify d-identical objects we subdivide each block into P sub-blocks. The sub-blocks are
obtained by partitioning the grid block along each dimension into s intervals of equal length.
For each sub-block, we replace objects of the same type (negative training objects, positive
training objects and testing objects) by a single representative. For example, if x = 1, then
all objects of the same type that fall in the same grid block are considered d-identical and
are thus grouped together. If x = 2 for a three-dimensional space, then the grid block is split
into 23 = 8 sub-blocks and the replacement of objects by representatives is done for each
sub-block separately. Different values for £ can be selected for different blocks to account
for an unequal distribution of the data. The representatives are computed as the center of
gravity of the corresponding objects and have a multiplicity weight equivalent to the number
of objects they represent. Note that a representative may represent a single object. Figure 2.8
illustrates the data reduction step for a three-dimensional grid and x = 1.

Similarity computation: The sparse similarity matrix on the representatives is computed
based on the concept of grid neighborhoods. This concept is borrowed from image segmenta-
tion where similarities are computed only between adjacent pixels [Hochbaum et al., 2013].
Here, we use the space partitioning and first consider all representatives in the same block to
be adjacent and thus have their similarities computed. Then, adjacent blocks are identified
and the similarities between representatives in those blocks are computed. Two blocks are

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 22

adjacent if they are within a one-interval distance from each other in each dimension (the
L, metric). Hence, for each block, there are up to 37 — 1 adjacent blocks. The similarities
are computed in the original d-dimensional space. For very high-dimensional datasets, the
similarities could also be computed in the low p-dimensional space. A finer grid resolution
(higher value of k) generally leads to a lower density of the similarity matrix. Notice that for
k = 2 all representatives are neighbors of each other, and thus we get the complete similarity
matrix. The set of representatives and the generated similarity matrix constitutes the input
to the classification algorithms. The class labels that are assigned to representatives will be
passed on to each of the objects that they represent.

2.5 Experimental Analysis of Sparse-Reduced
Computation

We apply both sparse computation and sparse-reduced computation with two similarity-based
classifiers to five datasets. A comparison with existing sparsification approaches is not possible
because these approaches require to first compute the full similarity matrix, which would
exceed the memory capacity of our machine.

Similarity-based classifiers

We present two similarity-based machine learning techniques as binary classifiers that assign
a set of testing objects to either the positive or the negative class based on a set of training
objects. The two techniques are the K-nearest neighbor algorithm and the supervised
normalized cut algorithm [Hochbaum, 2010).

K-nearest neighbor algorithm (KNN): The KNN algorithm [Fix and Hodges, 1951]
finds the K nearest training objects to a testing object and then assigns the predominant
class among those K neighbors. We use the euclidean metric to compute distances between
objects and the nearest training object is used to break ties. When KNN is applied with
sparse-reduced data, we consider the multiplicity weight of the representatives to determine
the K nearest training representatives. For example, if K = 3 and the nearest training
representative is positive and has a multiplicity weight of 2 and the second nearest training
representative is negative and has a multiplicity weight of 5, the testing object is assigned
to the positive class. A testing object is assigned to the negative class if all similarities to
training objects are zero. In the experimental analysis we treat K as a tuning parameter.

Supervised normalized cut (SNC): SNC is a supervised version of HNC (Hochbaum’s
Normalized Cut), which is a variant of normalized cut Hochbaum [2010]. We provide a
detailed discussion of HNC in sectionsection 3.1, but we will give a short summary here for
the purpose of these experiments.

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 23

HNC is defined on an undirected graph G = (V, E'), where V' denotes the set of nodes
and E the set of edges. A weight w;; is associated with each edge [i, j] € E. A bi-partition of
a graph is called a cut, (S,5) = {[i,j] |i € S,j € S}, where S =V \ S. The capacity of a
cut (S, S) is the sum of weights of edges with one endpoint in S and the other in S:

cS,S) =Y wy

i€S,je8,li,jleE

In particular, the capacity of a set, S C V, is the sum of edge weights within the set 5,

C(S.8) =Y wy

i,j€S,[i,j]€E

In the context The nodes of the graph correspond to objects in the dataset and the edge
weights w;; quantify the similarity between the respective feature vectors associated with
nodes ¢ and j. Higher similarity is associated with higher weights.

The goal of one variant of HNC is to find a cluster that minimizes a linear combination
of two criteria. One criterion is to maximize the total similarity of the objects within the
cluster (the intra-similarity). The second criterion is to minimize the similarity between the
cluster and its complement (the inter-similarity). A linear combination of the two criteria is
minimized:

min C(S,S) — \C(S,9). (2.1)

hcScv

The relative weighting parameter A is one of the tuning parameters.

The input graph for SHNC contains labeled nodes (training data) whose class label (either
positive or negative) is known and unlabeled nodes. SNC is derived from HNC by assigning
all labeled nodes with a positive label to the set S and all labeled nodes with a negative label
to the set S. The goal is then to assign the unlabeled nodes to either the set S or the set S.
For a given value of A, this optimization problem is solved with a minimum cut procedure in
polynomial time [Hochbaum, 2013b].

We implement SNC with Gaussian similarity weights. The Gaussian similarity between
object ¢ and j is defined as:

wyj = e—allﬂﬁz‘—%‘\lz’

where parameter a represents a scaling factor, and z; and z; are the feature vector of
objects ¢ and j. The Gaussian similarity function is commonly used in image segmentation,
spectral clustering, and classification. When SNC is applied with sparse-reduced computation,
we multiply each similarity value by the product of the weights of the two corresponding
representatives. There are two tuning parameters: the relative weighting parameter of the
two objectives, A\, and the scaling factor of the exponential weights, «. The minimum cut
problems are solved with the MatLab implementation of the HPF pseudoflow algorithm
version 3.23 of [Chandran and Hochbaum, 2009] that was presented in [Hochbaum, 2008].

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 24

Table 2.5: Datasets statistics (after modifications)

Abbr # Objects # Features Zrositves

Negatives
COV 581,012 o4 0.574
KDD 4,898,431 122 4.035
RLC 5,749,132 16 0.004
BOW2 8,499,752 234,151 0.037
RNG 10,000,000 20 1.000

datasets

We select four real-world datasets from the UCI Machine Learning Repository [Lichman,
2013] and one artificial datasets from previous studies [Breiman, 1996; Dong, Jian-xiong
et al., 2005]. We substituted categorical features by a binary feature for each category. In
the following, we briefly describe each dataset and mention further modifications that are
made. The characteristics of the adjusted datasets are summarized in Table 2.5.

In the Bag of Words (BOW2) dataset, the objects are text documents from two different
sources (New York Times articles and PubMed abstracts). A document is represented as a
so-called bag of words, i.e. a set of vocabulary words. For each document, an vector indicates
the number of occurrences of each word in the document. We treated New York Times
articles as positives.

The dataset Covertype (COV) contains cartographic characteristics of forest cells in
northern Colorado. There are seven different cover types which are labeled 1 to 7. Following
[Caruana and Niculescu-Mizil, 2006], we treat type 1 as the positive class and types 2 to 7 as
the negative class.

The dataset KDDCup99 (KDD) is the full dataset from the KDD Cup 'twork. Each
connection is labeled as either normal, or as an attack. We treat attacks as the positive class.

In the dataset Record Linkage Comparison Patterns (RLC), the objects are comparison
patterns of pairs of patient records. We substitute the missing values with value 0 and
introduce an additional binary attribute to indicate missing values. The goal is to classify
the comparison patterns as matches (the corresponding records refer to same patient) or
non-matches. Matches are treated as positive class.

The dataset Ringnorm (RNG) is an artificial dataset that has been used in [Breiman,
1996] and [Dong, Jian-xiong et al., 2005]. The objects are points in a 20-dimensional space
and belong to one of two classes. Following the procedure of [Dong, Jian-xiong et al., 2005],
we generate a Ringnorm dataset instance with 10 million objects where each object is equally
likely to be in either the positive or the negative class.

For each of the five datasets, we generate five subsets by randomly sampling 5,000, 10,000,
25,000, 50,000, and 100,000 objects from the full dataset.

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 25

Experimental Design

Sparse computation and sparse-reduced computation are tested with the two similarity-based
machine learning algorithms KNN, and SNC. In the following, we use the term classifier to
refer to a combination of a machine learning algorithm and sparse /sparse-reduced computation.
The performance of the classifiers is evaluated in terms of accuracy (ACC) and F1-scores
(F1). The experimental analysis is implemented in MatLab R2014a and the computations
are performed on a standard workstation with two Intel Xeon CPUs (model E5-2687W) with
3.10 GHz and 128 GB RAM.

Tuning & Testing We randomly partition each dataset into a training set (60%), a
validation set (20%) and a testing set (20%). The union of the training and the validation
sets forms the tuning set which is used as input for a given classifier. We tune each classifier
with and without first normalizing the tuning set. Normalization prevents that features with
large values dominate distance or similarity computations [Witten and Frank, 2005]. For each
of the two resulting similarity matrices the classifier is applied multiple times with different
combinations of tuning parameter values. For KNN, we selected tuning parameter K from
the set {1,2,...,25}. For SNC, we selected tuning parameter « from the set {1,3,...,15}
and the tuning parameter \ from the set {0,1073,1072, 10!, 1}.

The testing is performed on the union of the training and the testing sets, i.e., the same
training objects are used for tuning and testing. Unlike most machine learning algorithms
that first train a model based on the training data and then apply the trained model to the
testing data, KNN and SNC require the training data for classifying the testing data. For a
given classifier, and performance measure, we select the combination of preprocessing option
and tuning parameter values which achieve the best performance with respect to the given
performance measure for the validation set. The performance measure is then reported for
the testing set.

Approximate PCA The fraction of rows selected for approximate PCA is one percent
for all subsets of the datasets. With this fraction, approximate PCA requires less than a
second of CPU time for all datasets, and the produced principle components are close to the
principle components returned by exact PCA as determined by manual inspection. For all
subsets of datasets other than BOW2, all features (columns) are retained in the submatrix 1.
For BOW2, we select the 100 columns that correspond to the words with the highest absolute
difference between the average relative frequencies of the word in the positive and the negative
training documents. In that, we deviate from the probabilistic column selection described in
section 2.4. For all subsets of BOW2, we compute the similarities in the low-dimensional
space, i.e., with respect to these 100 most discriminating words. Thereby, we first discretize
the feature vectors by replacing all positive frequencies with value 1.

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 26

Numerical Results

We compare sparse computation and sparse-reduced computation in terms of scalability
by applying both methods with the same grid resolution of £ = 40 and the same grid
dimensionality of p = 3 to all five datasets. With these values, the low-dimensional space
is partitioned into 64,000 blocks which is a good starting point for both methods across
datasets. For sparse-reduced computation, parameter § = % is set to 1.

Tables 2.6-2.10 show the results for each of the tested datasets and both classifiers. The
entry “lim” indicates that MatLab ran out of memory. This happens when we applied sparse
computation to the complete datasets. For the dataset KDD, MatLab already runs out of
memory for a sample size of 100,000.

The main conclusion from these tables is that sparse-reduced computation scales orders of
magnitude better than sparse computation while achieving almost equally high accuracy for all
datasets except COV (to be discussed below). The running time reduction is most impressive
for KDD and RLC. For these two datasets both sparse and sparse-reduced computation
perform equally well but the tuning times obtained with sparse-reduced computation are
up to 1,000 times smaller. Similar results have been obtained for datasets BOW2 and

Table 2.6: Comparison of sparse and sparse-reduced computation for dataset COV.

Sparse computation Sparse-reduced computation Speed-up

Accuracy [%] Fi-score [%] Tuning time [s] Accuracy [%] Fi-score [%] Tuning time [s] # Reps

Sample size KNN SNC|KNN SNC|KNN SNC|KNN SNC|KNN SNC|KNN SNC| |[KNN SNC
5,000/78.50 80.10]70.26 72.63| 2.1 2.6]72.20 72.90|61.13 59.42| 2.5 2.6 1,981 0.8 1.0
10,000(81.80 82.15(73.74 72.89| 3.6 5.573.35 73.55|58.64 60.37| 3.7 3.9| 3,060 1.0 1.4
25,000|88.04 87.94|83.51 83.23| 8.3 19.6(69.78 72.46|57.85 58.74| 4.5 48| 3504 1.8 4.1
50,000|91.42 91.90|88.22 88.81| 24.5 75.7|72.24 73.31/59.12 63.06| 6.9 7.3| 5,097 3.6 10.4
100,000/94.04 94.20|91.74 91.98| 60.1 195.9|72.37 74.06|59.88 61.28| 12.3 13.1] 5,427 4.9 15.0
581,012| lim lim| lim lim| lim lim|73.19 73.80|58.93 61.11| 17.1 176 4058 - -

Table 2.7: Comparison of sparse and sparse-reduced computation for dataset KDD.

Sparse computation Sparse-reduced computation Speed-up

Accuracy [%] Fi-score [%] Tuning time [s] Accuracy [%] Fi-score [%] Tuning time [s] # Reps

Sample size KNN SNC|KNN SNC|KNN SNC|KNN SNC|KNN SNC|KNN SNC| | KNN SNC
5,000(99.60 99.50]99.75 99.69| 3.0 11.8]99.60 99.50]99.75 99.69| 0.4 04| 200| 7.5 29.5
10,000(99.80 99.85(99.94 99.91| 11.8 53.8/99.85 99.85(99.91 99.91| 0.5 0.5 369| 23.6 107.6
25,000(99.82 99.80|99.89 99.87| 76.1 373.4(99.78 99.78|99.86 99.86| 1.0 1.0| 634| 76.1 373.4
50,000(99.83 99.85/99.89 99.91|303.9 1,520.2(99.71 99.74|99.82 99.84| 1.6 1.6| 876/189.9 950.1
100,000| lim lm| lim lim| lim lim{99.82 99.84[99.89 99.90| 2.7 2.8 1,085 - -

4,808,431] lim lim| lim lim| lim lim|99.91 99.91[99.94 99.94/165.0 167.0| 4,365 - -

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 27
Table 2.8: Comparison of sparse and sparse-reduced computation for dataset RLC.
Sparse computation Sparse-reduced computation Speed-up
Accuracy [%] Fi-score [%] Tuning time [s] Accuracy (%] Fi-score [%] Tuning time [s] # Reps
Sample size KNN SNC| KNN SNC|KNN SNC| KNN SNC| KNN SNC|KNN SNC| | KNN SNC
5,000|100.00 100.00]100.00 100.00] .9 3.2/100.00 100.00]100.00 100.00| 0.3 04| 421] 3.0 8.0
10,000|100.00 100.00|100.00 100.00| 3.4 14.8]100.00 100.00|100.00 100.00| 0.5 05| 864| 6.8 29.6
25,000/100.00 99.98|100.00 96.97| 21.6 97.2/100.00 99.98/100.00 96.97| 0.8 09| 903| 27.0 108.0
50,000 |100.00 100.00{100.00 100.00| 94.8 457.1|100.00 100.00|100.00 100.00| 1.7 1.8 1,021| 55.8 253.9
100,000 100.00 100.00| 99.30 100.00|382.0 1,714.7[100.00 100.00| 99.30 100.00| 2.0 2.1| 1,159|191.0 816.5
5,749,132 lim lim| lim lim| lim lim| 99.99 99.99| 98.76 98.82| 43.8 510 1,309 - -
Table 2.9: Comparison of sparse and sparse-reduced computation for dataset BOW2.
Sparse computation Sparse-reduced computation Speed-up
Accuracy [%] Fi-score [%] Tuning time [s] Accuracy [%] Fi-score [%] Tuning time [s] # Reps
Sample size KNN SNC|KNN SNC|KNN SNC|KNN ~SNC|KNN SNC| KNN SNC| |[KNN SNC
5,000(98.70 98.80|81.16 82.86| 3.2 3.6/98.70 98.80|81.16 82.86 3.4 34| 2418 0.9 1.1
10,000(99.05 98.95|83.76 81.74| 6.4 9.0/99.05 98.95(83.76 81.74 5.6 57| 2,749 1.1 1.6
25,000|98.38 98.22(70.55 67.16| 17.8 30.8/98.56 98.46(74.47 72.20| 13.6 14.1| 8,115| 1.3 2.2
50,000(99.46 99.51|91.84 92.61| 45.0 147.5(99.54 99.56(|93.09 93.43| 11.6 12.1| 5,137| 3.9 12.2
100,000{99.68 99.56|95.13 93.21|126.1 475.7|99.59 99.63(93.72 94.38| 204 21.1| 8,171| 6.2 22.5
8,544,543 lim lim| lim lim| lim lim [99.68 99.67|95.36 95.19|1,181.2 1,196.7\ 22,287\ - -
Table 2.10: Comparison of sparse and sparse-reduced computation for dataset RNG.
Sparse computation Sparse-reduced computation Speed-up
Accuracy [%] Fi-score [%] Tuning time [s] Accuracy [%] Fi-score [%] Tuning time [s] # Reps
Sample size KNN SNC|KNN SNC|KNN SNC|KNN ~SNC|KNN SNC| KNN SNC| |KNN SNC
5,000|79.40 81.00|78.18 82.36| 3.3 3.6[79.40 81.00|81.33 80.78 4.2 43| 3,206| 0.8 0.8
10,000 [81.25 81.30(82.29 82.67| 6.2 7.1|81.55 81.30(82.52 82.75 7.7 8.0 5,467 0.8 0.9
25,000(79.76 81.46|82.95 83.81| 14.3 23.2/81.32 81.42(83.81 83.69| 151 15.9| 8728 0.9 1.5
50,000(80.34 82.13[83.65 84.11| 32.8 87.5(81.43 82.15(83.87 84.19| 22.5 23.2| 12,925 1.5 3.8
100,000{79.81 82.24|82.80 83.61| 88.2 335.0|80.76 82.23(82.63 83.60| 33.3 35.3| 16,518 2.6 9.5
10,000,000 lim lim| lim lim| lim lim|82.48 83.76|84.12 85.31]1,960.1 1,990.9| 37,511 - -

CHAPTER 2. IMPROVED METHODS FOR SPARSE COMPUTATION 28

RNG as reported in Tables 2.9, and 2.10, respectively. For the dataset COV, we observe a
reduction in accuracy and F1l-scores with sparse-reduced computation. One way to improve
accuracy and Fl-scores is to select a value greater than 1 for k. Increasing s results in
additional representatives per grid block and thus improves the representation of the dataset.
Indeed preliminary work has shown improvements in COV results with an adjustment of the
sparse-reduced approach.

KNN and SNC achieve very similar accuracies and F1-scores for all datasets. KNN has
smaller tuning times than SNC because a smaller number tuning parameter combinations is
tested. Apart from the number of tuning parameter combinations, the tuning time is driven
by the size and the density of the similarity matrix. This can be seen from the relation
between the tuning times and the number of representatives in Tables 2.6-2.10. In sparse
computation the size of the similarity matrix is proportional to the sample size. On the
contrary, in sparse-reduced computation, the size of the similarity matrix is determined by
the number of representatives. When there are large groups of highly-similar objects as is
the case in the datasets KDD and RLC, the number of representatives is significantly lower
than the number of objects and an increase in sample size tends to increase the multiplicity
weight of the representatives but not the number of representatives.

2.6 Conclusions

We introduced two new algorithms for sparse computation that utilize a new computational
geometry concept called data shifting. These new algorithms enable the use of sparse
computation on very-large datasets. The use of data shifting allows the algorithms to find
pairs of close objects in a low-dimensional space faster than in the original implementation.
Based on real-world datasets with up to 10 million objects, we demonstrate that sparse
computation with block shifting provides overall the best runtime performance across grid
resolutions for datasets of up to 10 million objects.

Furthermore, we proposed a novel method named sparse-reduced computation that enables
similarity-based machine learning on massive datasets by compressing highly-similar objects
with only a minor loss of information. This is achieved by efficiently projecting the original
dataset onto a low-dimensional space. In the low dimensional space, a grid is used to identify
highly-similar and identical objects, which are replaced by representatives to reduce the
size of the dataset. A set of computational experiments demonstrates that sparse-reduced
computation achieves significant reductions in running time with minimal loss in accuracy.

Promising directions for future research include the application of data shifting in other
contexts, such as approximate nearest neighbor search and grid-based clustering, as well as a
variant of sparse-reduced computation where the degree of consolidation into representatives
is dependent on local properties of the objects in the low-dimensional space.

29

Chapter 3

Cell Identification in Calcium-Imaging
Movies with HNCcorr

In this chapter we study how the clustering model HNC is applied to an important application
in neuroscience: The identification of cells in calcium imaging movies. To our knowledge, it is
the first time that similarity-based machine learning methods and combinatorial optimization
are used for this problem. We demonstrate here how HNC is adapted to an algorithm, named
HNCecorr, for cell identification in two-photon calcium imaging movies. The name HNCcorr
is derived from HNC and the use of a similarity measure based on correlation.

Calcium imaging is an imaging technique used by neuroscientists for measuring calcium
concentrations at a cellular resolution in live and behaving animals [Stosiek et al., 2003]. It
is commonly used to simultaneously record the neuronal activity of thousands of neurons,
the primary component of the central nervous system. When a neuron activates (fires),
calcium ions are released into the cell. The cell then becomes fluorescent due to calcium
sensitive, genetically modified proteins. After the spike, the calcium concentration rapidly
decays to normal levels. These changes in fluorescence are recorded with fast-scanning laser
microscopes, producing movies of the fluorescence of cells in a slice of the brain. In these
movies, a pixel is characterized by a fluorescence signal value which changes over the length
of the movie. From these movies, researchers extract the activity signals from individual
neurons by estimating the time-varying fluorescence of these cells. The extracted activity
signals are then used as the starting point for all subsequent analyses to test hypotheses
about the function of neurons and neural circuits in relation to the behavior of the animal.

A crucial step in the analysis of calcium imaging datasets is to identify the locations
of the individual cells in the movie in order to extract their signal. This cell identification
problem consists of outlining the spatial footprint, represented by a set of pixels, of each cell
in the imaging plane. The identification is complicated by high noise levels in the recorded
movie, the presence of out-of-focus fluorescence sources above or below the imaging plane,
and the fact that most cells are only visible when they activate. Our interest here is in active
cells with measurable changes in fluorescence. The task of cell identification is cast here as a
clustering problem of constructing a cohesive cluster of pixels that are distinct from their

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 30

environment. The spatial footprint of a cell is such a cluster since the pixels in the footprint
share the unique time-varying signal of the cell.

If done manually, the process of identifying cells requires hours of manual user input for
each dataset, which, accumulated over a single project, adds up to hundreds of hours of time
committed by researchers. Hence, a number of automated methods have been developed for
cell identification in calcium imaging movies. These existing techniques can be classified into
three classes: Semi-manual region of interest (ROI) detection [Driscoll et al., 2017; Kaifosh
et al., 2014], shape-based detection algorithms [Apthorpe et al., 2016; Gao, 2016; Klibisz
et al., 2017; Pachitariu et al., 2013], and matrix factorization algorithms [Diego-Andilla
and Hamprecht, 2014; Levin-Schwartz et al., 2017; Maruyama et al., 2014; Mukamel et al.,
2009; Pachitariu et al., 2017; Pnevmatikaki and Paninski, 2013; Pnevmatikakis et al., 2016].
Semi-manual ROI detection techniques rely on user’s input for detecting and segmenting
cells. This process has been reported to be highly labor-intensive [Resendez et al., 2016] and
may miss cells with a low signal to noise ratio or a low activation frequency. Shape-based
identification methods locate the characteristic shape(s) of cells using deep learning [Apthorpe
et al., 2016; Gao, 2016; Klibisz et al., 2017] or dictionary learning [Pachitariu et al., 2013].
Shape-based techniques are typically applied to a summary image of the movie obtained by
removing the time dimension and compressing the movie to a single mean intensity image.
The third class of techniques uses a matrix factorization model to decompose a movie into
the spatial and temporal properties of the individual neuronal signals. The use of the matrix
factorization algorithm CNMF [Pnevmatikakis et al., 2016] is currently prevalent for the task
of cell identification.

A major distinction of HNCcorr as compared to most alternative algorithms is that HNC is
solved efficiently and to global optimality [Hochbaum, 2010, 2013b]. The optimality guarantee
of HNC makes the output of the optimization model transparent, since the effect of the
model input and parameters on the resulting optimal solution is well understood. In contrast,
most other approaches for cell identification, such as matrix factorization algorithms, rely on
non-convex optimization models that are intractable. This means that the algorithms cannot
find a global optimal solution to their optimization model, but instead they typically find a
locally optimal solution dependent on the initial solution. As a result, the algorithms provide
no guarantee on the quality of the delivered solutions and cells may remain undetected.

For HNCcorr, we devised a novel method for computing similarities between pairs of
pixels named (SIM)?, similarity-squared. The idea of (SIM)? is to associate, with each pixel, a
feature vector of correlations with respect to a subset of pixels. Similarities between pairs
of pixels are then computed as the similarity of the respective two feature vectors. An
important feature of (SIM)? over regular pairwise correlation is that it considers any two
background pixels, pixels not belonging to a cell, as highly similar whereas correlation deems
them dissimilar. This improves the clustering since it incentivizes that background pixels are
grouped together.

We present here the experimental performance of the HNCcorr on the Neurofinder
benchmark [CodeNeuro, 2017] for cell identification in two-photon calcium imaging datasets.
This benchmark is currently the only available benchmark that objectively evaluates cell

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 31

identification algorithms. The datasets in this benchmark are annotated two-photon calcium
imaging movies recorded under varying experimental conditions. On this benchmark, HNCcorr
achieves a higher average score than two frequently used matrix factorization algorithms
CNMF [Pnevmatikakis et al., 2016] and Suite2P [Pachitariu et al., 2017].

We further provide a running time comparison between the MATLAB implementations of
HNCcorr, CNMF, and Suite2P. HNCcorr has similar running time performance as Suite2P
and is about 1.5 times faster than CNMF. Python and MATLAB implementations of HNCcorr
are available at https://github.com/quicO/HNCcorr.

The remainder of this chapter is organized as follows: In section 3.1, we provide a detailed
discussion of the HNC problem. In section 3.2, we describe the HNCcorr algorithm and how
it relates to HNC. We describe the novel similarity measure (S1M)? in section 3.2 since the
motivation for (SIM)? is tied to the problem of cell identification. In section 3.3, we evaluate
the experimental performance of HNCcorr on the Neurofinder benchmark datasets. Finally,
we present concluding remarks in section 3.4.

3.1 Hochbaum’s Normalized Cut (HNC) Model

HNC [Hochbaum, 2010, 2013b] is a intuitive model for similarity-based data mining and
clustering. It is applicable for both supervised and unsupervised learning problems. We
describe here how HNC is defined and how it relates to Normalized Cut [Shi and Malik, 2000},

a well-known problem from image segmentation.

Notation

Let G = (V,E) denote an undirected graph. Let n denote the number of nodes in V/,

and let m be the number of edges in E. Every edge [i,j] € E has an associated weight

w;; > 0. We denote the weighted degree of node ¢ € V' by d; = Zm]eE w;j. For A, B CV, let

C(A,B) =) ijlep, wij be the sum of weights of the edges between nodes in the set A and the
i€A, jeB

set B. Note the féllowing relation for undirected graphs:), , d; = 2C(A, A) + C(A,V \ A).

Let the set S C V be a non-empty set of nodes. Its complement is S = V' \ S. The sets
(S,8) form a bi-partition referred to here as a cut. The capacity of a cut (S, S) is C(S,S).
Given a source node s € V and sink node t € V, an s, t-cut is a cut (S, S) where s € S and
t € S. The set S of an s,t-cut (S, S) is known as the source set of the cut, and the set S is
known as the sink set of the cut. The minimum s, t-cut problem on G is to find an s, t-cut
that minimizes C(S, S).

For a directed graph Gp = (Vp, A), let w;; > 0 denote the arc weight of arc (i,j) € A.
We use the same notation as for undirected graphs to denote a cut (S, S) and its capacity
C(S,S). Note that the capacity C(S,S) of a cut (5,5) in a directed graph includes only
the sum of weights on arcs from S to S and not on arcs in the reverse direction. Similar
to undirected graphs, the minimum s, t-cut problem on a directed graph Gp is to find an
s, t-cut that minimizes C(S9,S).

https://github.com/quic0/HNCcorr

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 32

The HNC Model

HNC [Hochbaum, 2010, 2013b] is a graph-based clustering model that trades-off two objectives:
The homogeneity of the cluster and the distinctness of the cluster to the remaining objects.
HNC is defined here on an undirected graph G = (V, E), but it applies to directed graphs as
well. The node set V' is the set of objects, and the edges in E are pairwise similarity relations
between objects. The pairwise similarity along edge [i, j] € E is measured with a similarity
weight w;; > 0. The objects 7 and j are considered more similar as w;; increases.

The cluster of interest in HNC is a non-empty set S C V. We represent the homogeneity
of the cluster S with C(S,5), the total sum of similarities between objects in the cluster.
We measure distinctness with the capacity of the cut C(S,S). This is the capacity of the
cut (S, S). The HNC model balances the maximization of C(S,S) and the minimization of
C(S,9).

HNC requires that S contains one or more seed objects, otherwise the optimal solution
is to select S =V with C(5,5) = 32 jjcpwi; and C(S, S) = 0. Let Sp C V denote a
non-empty set of positive seeds that must be contained in the cluster S. Similarly, Sy C V/
denotes the non-empty set of negative seeds that are in S. These seed sets guarantee that
both S and S are non-empty. In a supervised context, these seed sets contain the labeled
objects in the training data.

The HNC model is to optimize the ratio of distinctness and homogeneity:

min M (3.1)
ocscv _ C(S,S)
Sp€eS,SyeS

This objective is equivalent to minimizing the cut capacity C(.9,.S) divided by the weighted
degree of the nodes in S:

C(S,S
(/)Hémv %’ (3:2)
SPGCS,;gNGS ies

as shown next:

Lemma 1 (Hochbaum 2010). The set of optimal solutions to (3.1) and (3.2) are identical.

Proof.
cs,8) 208 2
o . . — n o Zie di '
C(S? S) ZZES dZ C<S7 S) Tsfg)— —1

The problems are thus equivalent, since they have equivalent objectives and the same set of
feasible solutions. O O

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 33

Relation to Normalized Cut

HNC is a close relative of the Normalized Cut (NC) problem. Its use in the context of image
segmentation was popularized by Shi and Malik [2000]. The NC problem is defined as:
_C(55) C(S.5)
min
bcsScv ZiES dl Zieg dl

Compared to (3.2), the NC problem has an additional term in the objective. Although this
change may seem minor, it has profound impact on the complexity of the problem. In fact,
Shi and Malik showed that the Normalized Cut problem is NP-hard [Shi and Malik, 2000]
whereas there is a practical, polynomial-time algorithm for the HNC problem [Hochbaum,
2010]. In previous work [Sharon et al., 2006], it was mistakenly assumed that the HNC
problem is identical to Normalized Cut and therefore NP-hard.

The Normalized Cut problem is often used as the theoretical motivation for the spectral
clustering method. Spectral clustering was popularized by Shi and Malik [2000] as a heuristic
for the Normalized Cut problem, since spectral clustering solves a continuous relaxation of the
Normalized Cut problem. HNC was shown to be a form of discrete relaxation of normalized
cut [Hochbaum, 2013b]. Yet, HNC is solved more efficiently than the spectral clustering
method. Furthermore, an extensive empirical comparison of HNC to spectral clustering for
the purpose of image segmentation was provided by Hochbaum et al. [2013]. The outcomes
of that comparison indicate that the HNC solutions are superior, both visually and in terms
of approximating the objective of the Normalized Cut problem, to the spectral clustering
algorithm.

(3.3)

Linearizing Ratio Problems

A common method to solve ratio problems such as (3.1) and (3.2) is to instead consider an
optimization problem over the epigraph of the ratio function. When you minimize a ratio

objective over a feasible region X, min,cx %, this optimization problem is equivalent to:
min A .
a3 >
f () <
s.t — <A s.t flx)—Ag(x) <0
o () ~ Mg()

re X ze X

This is equivalent to finding the smallest A such that there is a yes answer to the following
A-question: “Is there a solution z € X such that f(x) — Ag(z) < 07" This reduces the
optimization problem to a sequence of oracle calls to the A-question.

For the HNC formulation in (3.1), we can answer the associated A-question by solving the
linear optimization problem in (3.4) and checking whether the objective value is non-positive.

min (' (S, 5) —AC(S,9) (3.4)

bcScv _
SpeS,SNES

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 34

Similarly, we answer the A\-question for the HNC formulation in (3.2) with the linear opti-
mization problem in (3.5).

Jmin € (5,8) = A Z d; (3.5)
SpeS,Snes €S

We note that the linear formulations in (3.4) and (3.5) are alternative formulations of HNC
irrespective of their associated ratio problems, since they capture the trade-off between
homogeneity and distinctness.

Algorithms for Solving HNC

In section 3.1 we provide integer programming formulations for both (3.4) and (3.5). We show
how these formulations imply efficient polynomial time algorithms based on minimum cut
for solving linearized HNC with a fixed value of A [Hochbaum, 2010, 2013b]. In section 3.1,
we extend this analysis and demonstrate how (3.5) is solved for all A values simultaneously
in the same complexity, that of a single minimum cut, by using a parametric minimum cut
procedure [Hochbaum, 2010, 2013b]. This directly provides an algorithm to solve the ratio
version of HNC.

Solving for Fixed A\ Values

In this section, we demonstrate how to solve the linearized HNC problems in (3.4) and (3.5)
for a fixed value of A > 0. We first present an integer programming formulation for (3.4).
The integer program uses the decision variable x; to denote whether ¢ € V' is in the cluster S:

1 ifies,
xTr; = _
0 ifiesS.

We also define the decision variable z;; to denote whether edge [i, j] € E is in the cut, whereas
the decision variable y;; denotes for edge [i, j| whether ¢ and j are both in the cluster S:

Zij

{1 ificS jeSoricS,jes, , {1 ifi,jes,

0 otherwise, 0 otherwise.

With these decision variables, the following integer programming problem is a formulation of
HNC [Hochbaum, 2010]:

min Z wijzij—)\ Z wijyij, (36)

[i.4]1€E] [i.4]€E]

st. @ —x; < zy V[i,j] € E, xr;—x; < zj; V[i,jl € E,
vij < @ Vi, jl € E, vij < Vi, jl € E,
Ts, =1 Vsp € Sp, Tsy =0 Vsy € Sy,

x; € {0,1} VieV, Yij, zij € {0,1} Vi, j] € E.

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 35

This integer program is recognized as a monotone integer programing with up to three
variables per inequality (IP3) [Hochbaum, 2002]. Monotone IP3 are integer programs with
up to three variables per inequality, where in each constraint two of the variables appear with
opposite sign coefficients and a third variable, if present, appears only in one constraint. A
typical monotone constraint on three variables is a;;z; — b;jjx; < ¢;; + 2;; where a;; and b;; are
non-negative. Any monotone IP3 is solvable with a minimum cut on an associated directed
graph [Hochbaum, 2002]. The associated graph for the formulation in (3.6) has m + n nodes
and up to 4m + 2n arcs, where n is the number of nodes and m is the number of edges in G.
The complexity of solving the integer program in (3.6) is therefore T'(m + n + 2,4m + 2n).
The notation T'(n, m) = O(nmlog %2) denotes the complexity of solving the minimum s, t-cut
problem on a graph with n nodes and m arcs with the HPF (Hochbaum’s PseudoFlow)
algorithm [Hochbaum, 2008] or the Push-relabel algorithm [Goldberg and Tarjan, 1988].

The linearized version of (3.2) as given in (3.5) translates to another monotone IP3 for
which the associated graph is smaller [Hochbaum, 2013b]:

min Z WijZij—)\Zdlﬂiz, (37)

[i,7]€E] 1%

st @ —x; <zy Vi, jl€E, rj—x; <z Vi, j| € E,
Ts, =1 Vsp € Sp, ZTsy =0 Vsy € Sy,
z; € {0,1} VieV, z; € {0,1} Vi, j] € E.

The graph associated with the formulation in (3.7) is smaller and contains only O(n)
nodes. We now show the construction of the associated graph of this integer program, which
we name the auziliary graph [Hochbaum, 2013b].

Let the auxiliary graph be a directed graph G4 = (V U {s,t}, A). The arc set A consists
of the following sets of arcs: For every edge [i, j] € E, add the two arcs (7, 7) and (j,7) to A.
Both arcs have a capacity of w;; > 0. We also add arcs (s,) with capacity Ad; for every node
i € V. Finally, for every positive seed i € Sp we add an infinite capacity arc (s,), and for
every negative seed j € Sy we add an infinite capacity arc (j,t). A schematic of the auxiliary
graph is provided in Figure 3.1.

The source set of a minimum s, t-cut in the auxiliary graph G4 is an optimal solution to
the linearized HNC problem in (3.5):

Theorem 1 (Hochbaum 2013b). The source set S* of a minimum s,t-cut (S*U{s}, S*U{t})
in G4 is an optimal solution to the linearized HNC problem in (3.5) for a fized value of \.

Proof. Let (SU {s},SU{t}) be any finite s, t-cut in G 4. The infinite capacity arcs (s, i) for
i € Sp guarantee that Sp C S. Similarly, Sy C S. Thus, the set S is a feasible solution for
3.5. G4 always contains a finite cut when the seed sets are disjoint, Sp N Sy = 0.

The capacity of cut (S U {s}, S U {t}) is equal to:

C(SU{s}, SU{t}) = C(5.5)+A > di = C(5,5)+A (D - di> = AD+C(S.9)-A Y d,

icS €S €S

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 36

O—@
e)

(a) Similarity graph G with one edge. (b) Auxiliary graph G 4.

Figure 3.1: Schematics of a similarity graph G and the associated auxiliary graph G 4 for the
linearized HNC in (3.5). The node sp € Sp is a positive seed, whereas the node sy € Sy is
a negative seed.

where D =)., d; denotes the sum of weighted degrees. Thus, minimizing the capacity of
the cut is equivalent to minimizing C'(S,S5) =AY, s d;. O O

The auxiliary graph has n + 2 nodes and up to 2m + 2n, since every edge [i, j| € E has
two associated arcs and every node has up to two associated arcs. One arc connecting it to
the source node s with capacity Ad;, and potentially another arc that connects a seed node
to either the source node s or to the sink node ¢.

Corollary 1. The linearized HNC' problem in (3.5) for a fized value of A is solvable in
O (T(n+2,2m + 2n)).

Since the linearized HNC problem in (3.5) provides a more efficient algorithm than the
problem in (3.4), we will consider only this formulation and its associated ratio problem in
(3.2) moving forward.

Solving Simultaneously for All A\ Values

While the previous section describes an algorithm to solve the problem in (3.5) for a fixed
value of A\, we now show that we can solve (3.5) simultaneously for all values of A in the
complexity of a single minimum cut, T'(n + 2,2m + 2n), with a parametric minimum cut
problem [Gallo et al., 1989; Hochbaum, 2008]. This directly implies that the ratio version of
HNC in (3.2) is solved in the same complexity, since these problems are equivalent to finding
the smallest A such that the objective of the linear problem in (3.5) is non-positive.

Parametric minimum cut solves the minimum cut problem as a function of A on a special
type of graph, the parametric flow graph. A directed s,t-graph G(\) is a parametric flow
graph if all arcs capacities adjacent to the source node s are monotone non-decreasing and
all arc capacities adjacent to the sink node ¢ are monotone non-increasing as a function of .

The only arcs in G4 whose capacity depends on A are the arcs adjacent to the source node
s. The capacity of arc (s,i) € A is Ad; and is monotone non-decreasing in A since d;, the
weighted degree of node i, is non-negative for all nodes i € V. The graph G4()) is therefore
a parametric flow graph.

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 37

It was shown that the source set of a minimum cut in a parametric flow graph as a
function of X\ are nested:

Lemma 2 (Gallo et al. 1989; Hochbaum 2008). Let S*(\) denote the source set of a minimum
s, t-cut in the parametric flow graph G(\). Then, for Ay < Ag:

S*(A1) C S*(Aa).

Although the capacity of the cut increases with increased A, the source set of the minimum
cut is strictly incremented at most n times. This implies that there are at most n values
of 0 < A\ < Ay < --+ < A\ for which the source set is augmented by at least one node. We
refer to such A-values as breakpoints. Let the sets S7 C S5 C --- C S} denote the associate
minimal source sets of the minimum cut, where S} is the source set of the minimum cut for
A€ [0, Aq].

Gallo et al. [1989] showed that the breakpoints and their associated source sets are found
in the complexity of a single minimum cut with the push-relabel algorithm [Goldberg and
Tarjan, 1988]. Hochbaum [2008] showed that the HPF algorithm can also be used to identify
all breakpoints in the complexity of a single minimum cut. These are the only two known
algorithms that solve the parametric minimum cut in the complexity of a single minimum
cut. Since the auxiliary graph is a parametric flow graph with n + 2 nodes and 2m + 2n
arcs, it implies that solutions to the linearized HNC in (3.5) for all values of A are found
simultaneously in T'(n + 2,2n + 2m).

With the breakpoints \; and associated source sets S; for ¢ = 1,...,¢ we are able to
solve the ratio version of HNC as well. Recall that these problems are equivalent to finding
the smallest A such that the objective value of (3.5) is non-positive. Since the source sets
only change at the breakpoints, it is sufficient to find the smallest A-breakpoint where the
objective value of (3.5) is non-positive. The source set for this breakpoint is the optimal
cluster for the ratio version of HNC.

Theorem 2 (Hochbaum 2013b). The HNC ratio problem in (3.2) is solved in T (n+2, 2n+2m)
with a parametric minimum cut procedure.

3.2 A Description of the HNCcorr Algorithm

HNCcorr is an adaptation of HNC for cell identification in calcium imaging. It takes as input
a motion-corrected calcium imaging movie and outputs the spatial footprints of the cells that
were identified in the movie. The resulting spatial footprints can then be used to identify
the activity signal of each cell with specialized algorithms (cf. Grewe et al. 2010; Jewell and
Witten 2018; Pnevmatikakis et al. 2013; Theis et al. 2016; Vogelstein et al. 2010).

We now give a brief description of HNCcorr. Additional details on each aspect of the
algorithm is provided in the appropriate subsections. The HNCcorr algorithm initializes with
a nearly-exhaustive ordered list of candidate locations for cells. A candidate location is a

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 38

single pixel in the imaging plane that is indicative of a potential cell. A description of how
the list is generates is provided below. At each iteration, HNCcorr selects the next candidate
location in the list for evaluation. This repeats until all candidate locations are processed.
Let us refer to the selected pixel as pixel ¢. First, HNCcorr checks if pixel ¢ was part of a
spatial footprint of a previously identified cell. If it is, then pixel 7 is discarded. This prevents
repeated identification of the same cell. If it was not, it constructs a graph on a subset of
the pixels and computes the pairwise similarities with (S1M)? as explained below. For this
graph, we solve the HNC problem in (3.5) simultaneously for all A with the seeds selected as
described below. We refer to the clusters for each A-breakpoint as candidate clusters. Based
on these candidate clusters, a simple post-processor decided whether a cell was detected and
returns its spatial footprint if any. Potential extensions for HNCcorr are discussed at the end
of this section.

The pseudocode of the HNCcorr algorithm is provided in algorithm 1. The core elements of
the HNCcorr algorithm are the construction of the graph, the computation of similarity weights
with (stM)?, and the associated HNC instance. The other components of the algorithm, e.g.
the procedure for selecting candidate locations and the post-processing method for candidate
clusters, can be replaced with alternative methods. Python and MATLAB implementations
of HNCcorr are available on GitHub at https://github.com/quicO/HNCcorr.

Notation

A calcium imaging movie consists of T frames each with N = n; X ns pixels . We assume
that the pixels are numbered in row-major order. Each pixel 7 has an associated fluorescence
vector x; € Ri. Furthermore, the pairwise correlation corr(u,v) between pixel i and j is:

1 (Xu - ,&(XU))T(XU - [IJ(XU))
-1 &(Xu) CAT(XU) 7

corr(u,v) =
where [i(x) is the sample mean of the vector x and &(x) is the sample standard deviation.

Generating Candidate Locations for Cells

The candidate locations are an ordered list of pixels that indicate a potential location of a
cell in the dataset. With each candidate location, the goal is to identify a new cell. The
candidate locations are generated at the start of the algorithm and processed one at a time.
As mentioned, candidate locations are discarded if they are in previously identified cell’s
footprint. This prevents duplicate segmentations of the same cell.

The HNCcorr algorithm is indifferent to the method used to generate the list of candidate
locations. This feature allows for any, possibly parallelized, procedure. Our implementation
of HNCecorr uses a nearly-exhaustive enumeration method, so it is unlikely to miss any
prospective cell.

https://github.com/quic0/HNCcorr

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 39

Algorithm 1 Overview of the HNCcorr algorithm.

Input: M: Movie with fluorescence vector x; for pixels i =1,...,n
Output: Set of spatial footprints of cells
Parameters:
® Npatch = 31: Patch size in pixels
~v = 32%: Percentage of pixels selected from the patch for the reference set
k = 3: Size of super pixel for positive seeds
Nneg = 10: Number of negative seeds
p = 13 - Radius of the negative seeds circle (depends on m),
a = 1: Scaling factor
p = 3: Dimension of the low-dimensional space for sparse computation
r = 35: Grid resolution for sparse computation

function HNCCORR(M)
L <~ CANDIDATELOCATIONS(M)
S < () // Set of spatial footprints
SP <+ // Set of pixels in spatial footprints
for cl e L
if ¢l € SP // Skip to prevent duplication
continue
Construct npageh X Npaten patch of pixels centered at cl. V' is the set of pixels in the
patch. n = |V|.
Let Sp be the k x k super pixel centered at cl.
Select Sy, set of nye, negative seeds, uniformly from a circle of radius p centered at

le.
Sample without replacement pixels 7q,...,7,, from V for np = vy X n. // Sample
reference set for (sim)?
fori eV
(R;)p, = corr(i,ry) for h=1,... ,ng.

Use sparse computation with feature vectors R;, dimension p, and resolution s to
determine edge set F.
for [i,j] € £
wij = exp (—a[Ri — Ry[[3).

Solve linearized HNC in (3.5) on graph G = (V, E) with weights w;; and seed sets
SpéﬂKiSN.
Let Si,...,S, denote the candidate clusters.

Clean each candidate cluster Sy, ..., Sy to obtain the cleaned clusters S, ..., SC.
C é—PN)STI)R£X3ESS(HKQSF,...,wa // Select best cluster (empty set if not a
cell)
if C#£0
S+ Su{C}
SP+ SPUC

Y e |

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 40

The algorithm first computes, for each pixel, the average pairwise correlation to its 8
neighboring pixels. We refer to this value as the local correlation of pixel i:

1 o
le; = N Z corr(t, 5),

JEN(i)

where N (i) denotes the 8-neighborhood of pixel i and |N(i)| = 8. Subsequently, the pixels
are partitioned into ng.q X ngriq grid blocks starting from the north-west corner. By default,
ngria = 9. These grid blocks are used for spatial aggregation. For each grid block, it selects
the pixel with the highest local correlation. All other pixels are discarded. We sort the
remaining pixels from high to low in terms of local correlation. The top pseceq percent of the
these pixels are selected as candidate locations. A summary of this procedure is provided in
algorithm 2. The complexity of this step is O(N log N), where N is the number of pixels in
the dataset.

Algorithm 2 Method for generating candidate locations for cells.

Input: M: Movie with fluorescence vector x; for pixelst=1,...,n
Output: List of candidate locations
Parameters:

® ngid = 5: Size of each square grid block

® Piced = 40%: Percentage of candidate locations kept for processing

function GENERATELOCATIONS(M)
// Compute local correlation
for i1=1,...,n
1 .o
le; = @ ZjeN(i) corr(i, j)

// Select pixel from each grid block with highest local correlation
Initialize L as empty list
Split the pixels into a blocks By, ..., By of ngid X ngriq pixels starting at north-west pixel
forvb=1,...,k
i* < argmax,;cgp, (¢
Append i* to L

Sort L in decreasing order of local correlation: lcy > lco > lcg ...
return first [pgeeq X |L|| pixels in L.

Typically, pseeq is set to 40 percent. This value was decided based on an empirical study.
This study indicates that the benefit of increasing it above 40 percent is small for most
datasets, whereas it increases running time.

This procedure for selecting candidate location is an enumeration of all possible pixels
with two types of speedups: Spatial aggregation and discarding of pixels with low local

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 41

correlation. These speedups can be deactivate by constructing grid blocks of 1 x 1 pixel
(ngria = 1) and selecting all remaining pixels (pseea = 100%).

Construction of the Graph

Given a pixel as a candidate location, the algorithm constructs a graph on an npatch X Npatch
square subset of pixels, which we call a patch. The purpose of the patch is to limit the number
of cells and the size of the similarity graph. The patch is centered on the input pixel, the
candidate location. The patch size npacn should be chosen such that it contains a typical
cell. By default, npaen = 31, which is significantly less than the size of a movie, typically
ny X ny = H12 x 512 pixels.

The algorithm then constructs the graph G = (V| F) consisting of the set of nodes,
denoted by V', and the set of edges that represent the pairwise similarity relations. Each edge
has an associated similarity weight w;; > 0. The similarity weights are described in section
3.2. The nodes represent the pixels in the patch. The edge set is determined with sparse
computation [Hochbaum and Baumann, 2016], see section 2.1. We use sparse computation to
reduce the number of edges. Sparse computation also helps to identify structure in the data
as shown in Figure 3.2.

Patch Complete graph Sparse computation

) e pixel
A B c | o

Figure 3.2: Sparse computation constructs a sparse similarity graph. Comparison of a
complete similarity graph and the similarity graph constructed by sparse computation for
an example patch. For the purpose of illustration, the nodes are positioned based on the
2-dimensional PCA projection of the pixels’ feature vectors offset by a small uniformly
sampled perturbation. A) Mean intensity image of the patch with the outline of two cells
marked in red and blue. B) Complete similarity graph with an edge between every pair of
pixels. For the purpose of illustration, only 10,000 randomly sampled edges are shown. C)
Sparse similarity graph constructed by sparse computation with a three-dimensional PCA
projection and a grid resolution of k = 25. Two clusters of pixels (marked with red and
blue rectangles) are identified by Sparse Computation. These two clusters match the spatial
footprints of the two cells shown in A).

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 42

Similarity-Squared: A Novel Similarity Measure

In HNCcorr, the similarity weight w;; associated with edge [¢, j| € £ measures the similarity
between pixels i and j. We describe here the novel similarity measure (S1M)?. We devised
(stM)? to measure similarity between pixels in calcium imaging movies, but the concept itself
is applicable in other contexts as well. (SIM)? measures similarities between the similarity
patterns. The name (SIM)? explains that it measures second-order similarity.

Pairwise Correlation and Background Pixels

A common approach to assess the similarity between two pixels ¢ and j is to measure
the correlation corr(7, j) between their fluorescence signals across all frames of the movie.
Correlation is effective for measuring the similarity between two pixels from the same cell,
since the pixels have a correlated fluorescence pattern due to the shared signal of the cell.
Another important group of pixels is the background pixels. These pixels do not belong to a
cell, and they do not typically share a common pattern. Background pixels are only weakly
correlated to each other. As such, the similarity between these background pixels is low if
the similarity is measured by correlation.

However, the lack of strong correlation with other pixels is effectively what characterizes
background pixels. We use this observation to strengthen the similarity measure and aid the
clustering. In other words, the background pixels are similar to each other in the pattern of
being weakly correlated to every other pixel, whereas pixels that belong to a cell are highly
correlated to other pixels in the same cell.

Instead of computing the similarity between pixels directly based on their correlation, we
should evaluate the similarity between any two pixels based on how these two pixels correlate
with all pixels. Figure 3.3 illustrates this. For a small patch, six pixels are marked in red and
are shown with their pairwise correlation to all pixels in the patch. We refer to these images
as correlation images. Two pixels in each of the two visible cells are marked as well as two
background pixels. The correlation image for each pixel, e.g. pixel 1, shows the pairwise
correlation between pixel 1 and every pixel in the patch, represented by the color of the pixel,
with a lighter color corresponding to higher correlation. The following observations are drawn
from the figure: Pixels belonging to the same cell have nearly identical correlation images
(see pixels 1 & 2 and pixels 3 & 4). Furthermore, background pixels also have nearly identical
correlation images even though the pixels themselves are not correlated (see pixels 5 & 6).

Similarity between background pixels can thus be captured by comparing their correlation
images, whereas correlation or other standard similarity measures would not recognize this.
Comparing correlation images instead of computing signal correlation also boosts the similarity
between pixels in cells with a low signal-to-noise ratio, such as the cell containing pixel 3 & 4.
Whereas pixels 3 and 4 are only weakly correlated, their correlation images are nearly identical.
This approach is an application of a novel technique for computing pairwise similarities that
we call (SIM)?.

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 43

Pixel 1 Pixel 3 Pixel 5

o

1.00
0.75
0.50
Pixel 2 Pixel 4 Pixel 6
0.25
u ODD

Figure 3.3: Visualization of the correlation images of six pixels. The color (value) of each
pixel shown in each correlation image is the pixel-to-pixel correlation between that pixel and
the pixel marked in red. Lighter colors represent higher correlations, with the correlation
scale truncated at zero. The correlation image is a visualization of the feature vector of a
pixel. The patch is taken from the Neurofinder 02.00 training dataset and contains two cells.
Pixels 1 and 2 belong to the same cell, pixels 3 and 4 belong to the same cell, and pixels 5
and 6 are background pixels. Even though the pairs of pixels 1 & 2, pixels 3 & 4, and pixels
5 & 6 are not always highly correlated, their correlation images are nearly identical.

Similarity-Squared

The idea of (S1M)? is to determine the similarity between a pair of objects (here pixels), not
by directly comparing their features, but rather by comparing the objects’ similarities to a
set of reference objects, called the reference set. The resulting pairwise similarities between
objects can be interpreted as a similarity derived from other similarities, hence the name
(s1M)2.

Our use of (sTM)? in HNCcorr consists of a three-step procedure. In the first step, HNCcorr
samples a random subset of pixels. This subset of pixels forms the reference set. Let v denote
the percentage of pixels that are sampled. If n denotes the number of pixels in the patch,
then the reference set RS consists of pixels 7,...,r,, for ng = yn. We use sampling to
reduce the running time of the feature vector computation. It has a negligible effect on the
cell detection performance of HNCcorr as long as v is at least 25 percent.

In the second step, we compute the feature vector R; of pixel i. R; is a vector of dimension
ng. Mathematically, the k' element of the feature vector R; of pixel i € V is defined as
R;[k] = corr(i, r). Assuming that v = 100%, the feature vector can be interpreted as a vector
representation of the correlation image of pixel ¢ or as the row of pixel ¢ in the pixel-to-pixel
correlation matrix defined over the pixels in the patch.

In the third step, the similarity weights w;; are computed for every edge [i,j] € E. For
general (SIM)?, we can use any function of the feature vectors to compute the similarity. We

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 44

choose here the Gaussian similarity:
wij = exp (—al|Ri — Rjl3) , (3.8)

where « is a scaling parameter, which is typically set to 1. Note that w;; # corr(i, j). The
complexity of computing all similarity weights is O (vnimh (m + ngatChT)), where m is the
number of edges in the similarity graph and T is the number of frames in the movie.

The default value of v = 32% for sampling was determined based on an experimental
evaluation of the cell detection performance and the running time performance. The value of
32% provides a substantial improvement in running time compared to v = 100% and almost

no loss in cell detection accuracy.

The Selection of Seeds for HNC

Recall that HNC requires a set of positive seeds Sp for the cell S and a set of negative seeds
Sy for S. For a given candidate pixel and the associated patch, the algorithm selects a super
pixel, a square of k x k pixels, as positive seed set Sp. The super pixel is centered on the
input pixel and is thus located in the center of the patch. k is typically set to 3 or selected by
validation on a dataset annotated with cell locations. The super pixel forms the basis of the
cell cluster S. It also ensures that HNC attempts to delineate the footprint of the current
cell of interest.

In addition to the positive seed, HNC requires also a set of negative seeds Sy. These
negative seeds are pixels that cannot be selected as part of the cluster in HNC. The negative
seeds ensure that not all pixels are selected. The negative seeds are selected uniformly from
a circle of sufficiently large radius centered at the positive seed. The radius p of the circle is
chosen such that any cell that contains the positive seed is inside the circle. It is typically
chosen to be slightly less than %.

The seeds are selected in O(1) per patch.

Post-Processing

As output of the HNC problem, we obtain all nested optimal clusters S C S5 C ...S;.
These clusters are candidates for the footprint of a cell. A cleaning process is applied to
each of the clusters. Pixels that are not contiguous to the positive seed are removed, and
pixels that are fully enclosed by pixels in the candidate cluster are added to the cluster. The
resulting clusters are Si° C ;% C ... Sgc

The post-processing algorithm selects one of the cleaned candidate clusters as the cell
footprint or decides that no cell was detected. First, each cleaned candidate cluster is
compared against a user-provided size range, typically 40 to 200 pixels. A cleaned candidate

cluster Si*c is discarded if the number of pixels in the cluster,)Si* C’, falls outside the allowed

range. In case all clusters are discarded, then the algorithm returns an empty set, indicating
that no cell was detected. Otherwise, each remaining cluster’s size is compared to a preferred

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 45

Algorithm 3 Size-based post-processor of candidate clusters.

Input: S¢ = {Sfc - ...SZ‘C}: Set of cleaned candidate clusters, where each cluster is a set of
pixels
Output: Spatial footprint of the cell (empty set if no cell detected)
Parameters:
® Nmin: Minimum number of pixels in a spatial footprint (dataset dependent)
® N,y Expected number of pixels in a spatial footprint (dataset dependent)
® Nmax: Maximum number of pixels in a spatial footprint (dataset dependent)

function POSTPROCESSOR(C)

for s e S¢
if |S| < Nypin OT |S| > Nmax // Discard small/large clusters
SC « s¢ \ {s}.
if S =10
return ()
else)
return arg min (\/m — \/rfvg>

s€S¢

cell size that is set by the user. The candidate cluster which is closest in size to the expected

cell size is selected as the spatial footprint of the cell. We use 4/ |S;‘C for this comparison

since this best reflects the scaling of the area of a circle. This algorithm is summarized
in algorithm 3. More complex post-processing techniques based on convolutional neural
networks have been explored as well. However, preliminary experiments showed no substantial
improvements.

The complexity of this post-processing procedure is O(ngatché).

Extensions for HNCcorr

We discuss here how HNCcorr can be extended for real-time data collection and to counter
signal contamination due to overlapping cells.

Online, Real-time Data Collection

Most cell identification algorithms are designed for fully recorded movies, allowing the
algorithms to identify cells based on all available data. There is also an interest in online
algorithms that detect cells in real-time. Such algorithms enable closed-loop experiments,
where the environment is adapted according to previously recorded activity. Real-time
detection requires that cell identification algorithms works with streaming data, observing
only a single frame at a time.

We sketch here an adaptation of HNCcorr for online, real-time cell detection. Similar to
the offline implementation, we use local correlation to identify candidate locations for cells.

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 46

The main idea for enabling real-time processing is to implement HNCcorr in parallel, where
one process is responsible for maintaining the local correlation estimates, and one or more
other processes independently select and evaluate candidate locations to identify cells based
on the recorded data so far. This parallel setup requires that only the process for updating the
local correlation estimates runs in real-time, whereas the processes for evaluating candidate
locations can be run asynchronously.

To see how local correlation can be updated in real-time, we note that a straightforward
arithmetic manipulation shows that it is possible to update a pairwise correlation estimate in
constant time when a new frame arrives. This makes it possible to update the local correlation
estimate for a pixel in constant time. The work per new frame is thus O(N), where N is the
number of pixels in the movie. This approach enables the processing of movies with 512 x 512
pixels, at 100 frames per second or more, on a modern laptop or desktop computer.

Overlapping Cells

As it stands, HNCcorr does not have the capability to demix cell signals of overlapping.
However, it tends to identify the part of the spatial footprint that does not overlap with
another cell, unless the positive seed happens to be located on the overlap. This makes
HNCcorr robust to contamination. In order to further counter signal contamination for
overlapping cells, one could locally apply a matrix factorization method, initialized with the
footprints identified by HNCcorr, as post-processing.

3.3 Experimental Comparison of Cell Identification
Algorithms

To evaluate the experimental performance of HNCcorr we compare against other leading
algorithms on the Neurofinder benchmark. Specifically, we compare HNCcorr with the matrix
factorization algorithms CNMF [Pnevmatikakis et al., 2016] and Suite2P [Pachitariu et al.,
2017] as well as 3dCNN, a 3-dimensional convolutional neuronal network.

3dCNN is an algorithm that only recently appeared on the Neurofinder benchmark. As of
the submission of this manuscript, there is no corresponding publication nor is there publicly
available code for the algorithm. We requested the code for 3dCNN but have not received a
response so far. We therefore excluded the 3dCNN algorithm from the runtime analysis.

Experimental Setup
Datasets

The Neurofinder community benchmark [CodeNeuro, 2017] is an initiative of the CodeNeuro
collective of neuroscientists that encourages software tool development for neuroscience
research. The collective also hosts the Spikefinder benchmark, which has led to improved

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 47

algorithms for spike-inference in calcium imaging data [Berens et al., 2018]. The Neurofinder
benchmark aims to provide a collection of datasets with ground truth labels for benchmarking
the performance of cell detection algorithms.

The benchmark consists of 28 motion-corrected calcium imaging movies provided by four
different labs. Datasets are annotated manually or based on anatomical markers. They differ
in recording frequency, length of the movie, magnification, signal-to-noise ratio, and in the
brain region that was recorded. The datasets are split into two groups, training datasets and
test datasets. The eighteen training datasets are provided together with reference annotations
for the cell locations, whereas the reference annotations for the nine test datasets are not
disclosed.The test datasets and their undisclosed annotations are used by the Neurofinder
benchmark to provide an unbiased evaluation of the performance of the algorithms. The
characteristics of the test datasets are listed in Table 3.1. We note that some cells are not
marked in the reference annotation. This does not invalidate the experimental analysis since
the task of annotating cells remains equally difficult for each algorithm.

All datasets can be downloaded directly from the Neurofinder benchmark for cell identifi-
cation [CodeNeuro, 2017], https://neurofinder.codeneuro.org.

Active versus 1nactive cells

We group the datasets into two sub-groups: Datasets in which most annotated cells are
active, i.e. have a detectable fluorescence signal other than noise, and datasets in which most
annotated cells are inactive. We make this distinction because inactive cells cannot be found
by CNMF, Suite2P, and HNCcorr due to the lack of measurable changes in fluorescence other
than noise. These cells are detectable with shape-based detection algorithms - e.g. [Gao,
2016], when the cell’s fluorescence differs from the background.

The datasets with inactive cells are: 00.00, 00.01, and 03.00. The presence of inactive
cells in these datasets has been noted in previous work [Pachitariu et al., 2017] as well as

Table 3.1: Characteristics of the test datasets of the Neurofinder benchmark and their
corresponding training datasets. Data reproduced from Neurofinder [CodeNeuro, 2017].

Name Source Resolution Length Frequency Brain region Annotation method
00.00 Svoboda Lab 512 x 512 438 s 7.00Hz vl Anatomical markers
00.01 Svoboda Lab 512 x 512 458 s 7.00Hz vl Anatomical markers
01.00 Hausser Lab 512 x 512 300 s 7.50Hz vl Human labeling
01.01 Hausser Lab 512 x 512 667 s 7.50Hz vl Human labeling
02.00 Svoboda Lab 512 x 512 1000s 8.00Hz vl Human labeling
02.01 Svoboda Lab 512 x 512 1000 s 8.00Hz vS1 Human labeling
03.00 Losonczy Lab 498 x 467 300 s 7.50Hz dHPC CA1 Human labeling
04.00 Harvey Lab 512 x 512 444 s 6.75Hz PPC Human labeling
04.01 Harvey Lab 512 x 512 1000 s 3.00Hz PPC Human labeling

https://neurofinder.codeneuro.org

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 48

00.00
00.01
01.00
01.01
02.00
02.01
03.00
04.00
04.01

Training dataset

1
0 20 40 60 80 100
Percentage of cells with activity (%)

Figure 3.4: Approximate percentage of active cells among annotated cells in the training
datasets. To determine the activity of the cells in a movie we used the following approximate
analysis. First, we downsample the movie by averaging 10 frames. For every annotated
cell, we compute the average intensity over time of the pixels in the spatial footprint. This
timeseries is used an estimate of the cell’s signal. A cell is then considered active if the
Af/f [Jia et al., 2011] of this timeseries is at least 3.5 standard deviations above the median
of Af/f for a total of at least 3 time steps in the movie. Due to the approximate nature of
this analysis, its interpretation should be limited to understanding the general ratio between
active and inactive cells in the datasets.

in a discussion of the benchmark’s reference annotation on GitHub!. Experimentally, we
also observed that the percentage of annotated cells that are active is substantially lower
for training datasets 00.00, 00.01, and 03.00 as shown in Figure 3.4. Results for the test
datasets could not be evaluated due to the lack of a reference annotation but similar results
are expected.

Evaluation metrics

The list of cells identified by each of the algorithms is compared with the reference annotation.
For this comparison, we use the submissions on the Neurofinder website. Each algorithm’s
submission was submitted by the algorithm’s authors. This ensures that the results are
representative of the algorithm’s performance. Furthermore, the evaluation is fair since none
of the authors had access to the reference annotation.

The algorithms are scored based on their ability to reproduce the reference annotation
using standard metrics from machine learning. Each cell in the reference annotation is counted
as a true positive (TP) if it also appears in the algorithm’s annotation. The cells in the
reference annotation that are not identified by the algorithm are counted as false negatives
(FN), and the cells identified by the algorithm but that do not appear in the reference
annotation are counted as false positives (FP). Each algorithm’s performance is scored on

_ TP _ o TP
a dataset based on recall = 7575y and precision = 75 5. The overall performance of the

!See e.g. issues 16 and 24 on https://github.com/codeneuro/neurofinder.

https://github.com/codeneuro/neurofinder

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 49

algorithm on a dataset is summarized by the F1-score, which is the harmonic mean of recall
and precision. For all metrics, higher scores are better.

A cell in the ground truth annotation is identified if the center of mass of the closest cell
in the algorithm’s annotation is within 5 pixels. These two cells are then matched and can
not be matched with another cell. Each cell in either annotation is thus matched at most
once.

Code Accessibility

The software used to generate the results in this work is available for non-commercial use at
https://github.com/quic0/HNCcorr. The code is also available as supplementary material.

Computational Hardware

The experiments were run with MATLAB 2016a on a single core of a Linux machine running
Linux Mint 18.1. The machine is equipped with an Intel i7-6700HQ CPU running at 2.60
GHz and 16GB RAM.

Algorithm Implementations

The results in Figures 3.5 and 3.7 are taken directly from Neurofinder [CodeNeuro, 2017] and
were produced by the authors of the respective algorithms. The results in 3.8 were generated
by us. In the remainder, we describe the HNCcorr implementation used for all experiments
including those reported in Figures 3.5 and 3.7. We also describe the CNMF and Suite2P
implementation used for the experiment reported in Figure 3.8.

HNCcorr All datasets for HNCcorr were preprocessed by averaging every ten frames into
a single frame to reduce the noise. All parameters were kept at their default settings with the
exception of dataset specific parameters listed in Table 3.2. These parameters are dataset
dependent due to varying cell sizes across datasets. For the experiments reported in Figures
3.5 and 3.7, we used non-default values for the reference set sampling rate (v = 100%) and
the grid resolution used for sparse computation (k = 25). These changes have a marginal
effect on the cell detection quality of the algorithm, but they result in increased running
times.

CNMF The CNMF implementation was obtained from https://github.com/epnev/ca_
source_extraction. The base configuration was taken from the file run_pipeline.m in the
CNMF repository. We turned off the patch-based processing, and set the number of cells, as
denoted by K, equal to 600. We used the same values for the maximum and minimum cell size,
max_size thr and min size thr, as in HNCcorr. We also set the temporal down-sampling
tsub to 10 to match the down-sampling used with HNCcorr.

https://github.com/quic0/HNCcorr
https://github.com/epnev/ca_source_extraction
https://github.com/epnev/ca_source_extraction

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 50

Table 3.2: Dataset dependent parameter values used for the HNCcorr implementation.

Radius circle Size Post-processor Post-processor Post-processor
Dataset Patch size negative seeds superpixel lower bound upper bound expected size

(m) (p) (k) (nmin) (nmax) (navg)

00.00 31 x 31 10 pixels 5x5 40 pixels 150 pixels 60 pixels
00.01 31 x 31 10 pixels 5%X5 40 pixels 150 pixels 65 pixels
01.00 41 x 41 14 pixels 5x5 40 pixels 380 pixels 170 pixels
01.01 41 x 41 14 pixels 5x5H 40 pixels 380 pixels 170 pixels
02.00 31 x 31 10 pixels 1x1 40 pixels 200 pixels 80 pixels
02.01 31 x 31 10 pixels 1x1 40 pixels 200 pixels 80 pixels
03.00 41 x 41 14 pixels 5%X5 40 pixels 300 pixels 120 pixels
04.00 31 x 31 10 pixels 3x3 50 pixels 190 pixels 90 pixels
04.01 41 x 41 14 pixels 3x3 50 pixels 370 pixels 140 pixels

Suite2P The Suite2P implementation was obtained from https://github.com/cortex-
lab/Suite2P. The base configuration was taken from the file master file example.m in
the Suite2P repository. The diameter parameter was tweaked per dataset to maximize
the Fl-score on the Neurofinder training datasets. The selected values per (dataset) are: 8
(00.00), 10 (00.01), 13 (01.00), 13 (01.01), 11 (02.00), 11 (02.01), 12 (03.00), 11 (04.00), and
12 (04.01).

Cell Detection Performance

The experimental performance of the algorithms HNCcorr, 3dCNN, CNMF, and Suite2P
on the six test datasets containing active cells is shown in figure 3.5. The cells identified
by HNCcorr are shown for two datasets in Figure 3.6. Overall, the HNCcorr algorithm
has superior performance across datasets compared to the matrix factorization algorithms.
The HNCcorr algorithm achieves a 15 percent relative improvement compared to CNMF in
terms of average F1-score across datasets. It also attains a minor improvement of 4 percent
compared to Suite2P. However, it performs about 3 percent worse than 3dCNN, which detects
both active and inactive cells unlike HNCcorr, Suite2P, and CMNF.

HNCcorr performs particularly well on datasets 02.00 and 02.01 where it attains sub-
stantially higher F1-scores than the other algorithms, due to higher detection capability as
measured by recall. Although 3dCNN is able to match the near-perfect recall of HNCcorr, it
attains lower precision for datasets 02.00, 02.01. This indicates that 3dCNN detects either
cells that are not in the reference annotation or incorrectly marks non-cell regions as cells.

Leading Neurofinder Submissions

HNCcorr and matrix factorization algorithms identify cells based on their unique fluorescence
signal. As such, they are able to detect cells that activate, i.e. have one or more spikes

https://github.com/cortex-lab/Suite2P
https://github.com/cortex-lab/Suite2P

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING o1

F1-Score (%) Recall (%) Precision (%)
0 50 100 O 50 100 O 50 100

80% |
69% [

01.00 77% |
9% [
4% |
52%
01.01 34%
"S)'s 67%
g 75% | 94% | 2% |
I 63% 93% | 7% |
£ 02.00 72% 85% I 2%
3 62% 75% I 53%
B
) 8% | 89%
= 56% 89%
§ 02.01 56% 81% I
= 54% | 7% |
=]
[}
4 38%

55%

04.00 |_39%
39%
68% | 58% | 83% |
78% | 83% | 74% [
04.01 69% 57% 86% |
62% 59% 65% [
3 HNCcorr [3dCNN 3 Suite2P 1 CNMF

Figure 3.5: Cell identification scores for the HNCcorr, CNMF, and Suite2P algorithms on the
Neurofinder test datasets with active cells. For each of the listed metrics, higher scores are
better. The data is taken from Neurofinder submissions Sourcery by Suite2P, CNMF_PYTHON
by CNMF, 3dCNN by ssz, and submission HNCcorr by HNCcorr.

1.0
0.8
0.6

0.4

0.2

0.0
(a) Neurofinder 01.01 test. (b) Neurofinder 02.00 test.

Figure 3.6: Contours of the cells identified by HNCcorr for two Neurofinder datasets overlaid
on the respective local correlation image.

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 52

in calcium concentration, but they cannot detect cells without any signal. As discussed,
Neurofinder datasets 00.00, 00.01, and 03.00 have a large number of inactive cells. Therefore,
matrix factorization algorithms and HNCcorr only detect a small percentage of cells in these
datasets.

The leading Neurofinder submission for both Suite2P and HNCcorr therefore rely on a
shape-based detection algorithm for these datasets. The HNCcorr + Conv2d submission uses
the Conv2d [Gao, 2016] neural network for datasets 00.00, 00.01, and 03.00 and HNCcorr
for the remaining datasets. Similarly, Suite2P + Donuts submission uses Donuts [Pachitariu
et al., 2013] for the datasets 00.00, 00.01, and 03.00 and Suite2P for the remaining datasets.
Together with the 3dCNN, these submissions are the top three submissions for the Neurofinder
benchmark. Figure 3.7 shows how the three submissions compare. In particular, the 3dCNN
algorithm outperforms the other shape-based detection algorithms on datasets 00.00, 00.01,
and 03.00. As discussed before, HNCcorr attains higher Fl-scores for the 02.00 and 02.01
datasets.

Runtime Analysis

We compared the running time performance of HNCcorr, CNMF, and Suite2P on nine
training datasets of the Neurofinder benchmark. 3dCNN was excluded since the underlying
code is not available. Running time results are given in Figure 3.8. The measured time for
CNMF and Suite2P also includes the time to provide the associated cell signals, since they
are determined simultaneously, whereas for HNCcorr it does not. On average, HNCcorr is 1.5
times faster than CNMF. Compared to Suite2P, HNCcorr performs equally well on average.
We observed similar performance for a large experimental dataset consisting of 50,000 frames
not reported here.

3.4 Conclusions

We present here the HNCcorr algorithm for cell detection in two-photon calcium imaging
datasets. The HNCcorr algorithm builds upon the combinatorial clustering problem HNC and
makes use of the newly devised similarity measure (SiM)2. Experimentally, we demonstrate
that HNCcorr is a top performer for the Neurofinder benchmark both in terms of cell detection
quality and running time. HNCcorr achieves a higher average score than CNMF and Suite2P
with similar or faster running time. This work demonstrates that similarity-based machine
learning and combinatorial optimization are valuable tools for analysis in neuroscience or
other disciplines.

In future work, HNCcorr could be extended to support real-time data, which enables
direct feedback experimentation. Another extension of interest is adapting HNCcorr for
one-photon and light-field calcium imaging [Prevedel et al., 2014], where the main challenge
is dealing with overlapping cells.

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING

00.00

00.01

01.00

01.01

02.00

02.01

Neurofinder Test Dataset

03.00

04.00

04.01

F1-Score (%)

Recall (%)

Precision (%)

100

0 50 100 O 50 100 O 50
55% 43% 75%
63% 54% 75%
45% 37% 58% |
61% 51% 76% |
72% 59% 74%

53% 44% 67%

53% 39% 80% |
63% 58% 69% T
62% 52% 77% |
56% 42% 84% |

54% 57% 52%

45% 68% 34%
75% | 94% | 52% |
63% 93% | 47% |
72% 85% 62% |
68% | 89% 55%
56% 89% 41%
56% 81% [43%
81%] 76% | 86% |
89% | 90% 89% |
84% [85% 83% [
38% 50% 31%
55% 45% 69%
39% 57% 29%
68% | 58% | 83% |
78%] 83% 74% T
69% | 57% | 86% |
3 HNCcorr + conv2d 1 3dCNN [Suite2P + Donuts

53

Figure 3.7: Cell identification scores on all test datasets for the three leading submissions
of the Neurofinder benchmark in July 2018. For each of the listed metrics, higher scores
are better. The 3dCNN entry is based on the Neurofinder submission 3dCNN by ssz. The
Suite2P + Donuts [Pachitariu et al., 2013] entry is taken from the submission Sourcery by
Suite2P. It uses the Donuts algorithm for datasets 00.00, 00.01, and 03.00 and the Suite2P
algorithm for the remaining datasets. The HNCcorr + Conv2d entry is taken from the
submission HNCcorr + conv2d by HNCcorr. It uses the Conv2d algorithm [Gao, 2016] for
datasets 00.00, 00.01, and 03.00 and the HNCcorr algorithm for the remaining datasets. The
results obtained with the Conv2d algorithm reported here differ slightly from the Conv2d
submission on the Neurofinder benchmark since the Conv2d model was retrained by the
authors of this manuscript.

CHAPTER 3. HNCCORR: CELL IDENTIFICATION FOR CALCIUM-IMAGING 54

[HNCcorr [CNMF [Suite2P

1000

%%%mm%%mmm

00.00 00.01 01.00 01.01 02.00 02.01 03.00 04.00 04.01
Neurofinder Training Dataset

Running time (s)

Figure 3.8: Running time results for nine training datasets of the Neurofinder benchmark.
The measured time for CNMF and Suite2P also includes the time to provide the associated
cell signals, since they are determined simultaneously, whereas for HNCcorr it does not.
Running times are based on a single evaluation.

%)

Chapter 4

Detecting Aberrant Linking Behavior
in Directed Networks with Markov
Random Fields

Agents with aberrant behavior are commonplace in today’s networks. There are malicious
websites on the internet, fake profiles in social media, and fake news sources prolific in
spreading misinformation. There is considerable interest in detecting such aberrant agents in
networks. Across contexts, the unifying theme is that normal agents rarely link to aberrant
ones. We call this property aberrant linking behavior. This behavior occurs in a number of
different contexts.

Aberrant linking behavior was observed in web graphs in the early days of search engines.
In these web graphs, the goal is to separate informative websites (normal) from spam or
malicious websites (aberrant). Informative websites typically link to other relevant and
informative websites, whereas spam websites link to either informative websites or other spam
websites. Spam websites linking to each other creates “link farms” [Castillo et al., 2007; Wu
and Davison, 2005]. From the linking behavior of the websites, the expected structure of
normal and aberrant agents, with aberrant linking behavior, arises. In one empirical study,
this structure of normal and spam sites is verified in a Japanese web graph with 5.8 million
sites and 283 million links [Saito et al., 2007].

In social networks, the goal is to separate real profiles (normal) from fake profiles (aberrant).
On Facebook, it is estimated that nearly 10% of accounts are either fake or otherwise
“undesirable” (intentionally spreading misinformation) [Fire et al., 2014]. In an empirical
study of 40,000 fake Twitter accounts, it was observed that most users of authentic social
media accounts avoid following fake accounts [Ghosh et al., 2012]. A similar study of 250, 000
fake accounts on LinkedIn corroborated this result [Xiao et al., 2015]. It is evident that the
expected structure of normal and aberrant agents, with aberrant linking behavior, arises in
these settings.

In the context of fake news, the goal is to separate credible sources (normal) from dubious
ones (aberrant) [Shu et al., 2017, 2019; Térnberg, 2018]. Credible sources typically link to

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 56

other credible sources and will not link to dubious ones. Thus, the expected structure of
normal and aberrant agents, with aberrant linking behavior, arises. In [Shu et al., 2017], the
authors observe that the credibility of a news event is highly related to the credibility of the
sources it references. In [Shu et al., 2019] and [T6érnberg, 2018], the authors use the colloquial
term “echo chamber” to describe small networks of agents that amplify the spread of false
information by repeating it.

The problem of aberrant agent detection is formalized here as a classification problem on
a directed graph, where each vertex represents an agent and each arc represents a link from
one agent to another. In contrast to an agent-based approach that classifies an agent based
on its individual features [Erdélyi et al., 2011; Ntoulas et al., 2006; Webb et al., 2008], we use
information about the links in the graph to perform the classification [Becchetti et al., 2006;
Gan and Suel, 2007]. These agent-based and link-based approaches are synergistic [Becchetti
et al., 2008; Roul et al., 2016]. For example, the output of an agent-based machine learning
algorithm can be incorporated in a link-based approach as prior scores for the agents.

Multiple link-based techniques have been proposed in the literature, including spectral
methods and random walks.

Spectral techniques for classifying aberrant agents typically optimize a symmetric objective
function, which is the sum of a measure of disagreement between adjacent agents [Von Luxburg,
2007; Wu and Chellapilla, 2007; Zhou et al., 2007]. Such methods are sometimes called “graph
regularization methods”, since they interpolate missing labels from known ones [Abernethy
et al., 2010]. In other work, the objective functions are NP-hard cut problems, such as
normalized cut [Shi and Malik, 2000] or generalized weighted cut [Meila and Pentney, 2007].
Since these cut problems are NP-Hard, they are approximated with spectral methods on an
appropriately chosen symmetric matrix. After the spectral algorithm returns a partition,
further refinements may be made with pairwise swaps until a local optimum is reached
[Malliaros and Vazirgiannis, 2013].

Random-walk based approaches include PageRank [Page et al., 1999], TrustRank [Gyongyi
et al., 2004], AntiTrustRank [Krishnan and Raj, 2006], and several domain-specific variants
which have been proposed over the years [Gori and Pucci, 2006; Liu, 2009; Rosvall and
Bergstrom, 2008; Sayyadi and Getoor, 2009; Shu et al., 2019; Wu and Chellapilla, 2007]. If a
set of agents is highly internally connected and minimally externally connected, a random
walk starting in that set is expected to spend a lot of time inside it before exiting. Thus, in a
graph with aberrant linking behavior, a random walk is expected to visit the normal agents
more frequently than the aberrant agents [Rosvall and Bergstrom, 2008]. In some cases, the
behavior of random walks is equivalent to optimizing an explicit objective function. In other
cases, no objective function is specified. We describe the mechanics of these algorithms in
detail in section 4.1.

we propose a new approach that formulates the problem for the first time as a Markov
Random Fields (MRF) problem [Geman and Geman, 1984]. This formulation balances
obeying any given prior information with minimizing the number of links from normal to
aberrant agents. The optimal solution to the formulation is obtained efficiently with known
algorithms [Hochbaum, 2001]. One advantage of the proposed formulation is its ability to be

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 57

given prior labels for the agents with various degrees of confidence.

In an extensive empirical study, we compare MRF with three well-known algorithms
from the literature: PageRank [Page et al., 1999], TrustRank [Gyongyi et al., 2004], and
AntiTrustRank [Krishnan and Raj, 2006]. We also use a random classifier as a baseline
algorithm. We find that MRF outperforms its competitors. The average score of MRF is
approximately 25% higher than the next-best algorithm.

The main contributions in this chapter are:

1. We formulate the problem of detecting aberrant linking behavior as a directed Markov
Random Fields (MRF) problem. The formulation is solved optimally and efficiently.
This is the first time that MRF is used to model the detection of aberrant agents and
the first use of MRF for directed graphs.

2. We develop a new variant of the modularity metric [Newman and Girvan, 2004] that
addresses its known shortcomings on directed graphs. We show that our metric has
desirable properties and prove that optimizing it is NP-hard.

3. We present an extensive empirical study in which we compare MRF with three well-
known algorithms from the literature.

The rest of this chapter is organized as follows: in section 4.1, we present preliminaries,
including the details of the existing algorithms. In section 4.2, we present the MRF model.
In section 4.3, we provide an MRF formulation for aberrant agent detection. In section 4.4,
we describe the methods we used to evaluate the quality of the results of the algorithms.
In section 4.5 and section 4.6 we describe the experimental setup and results. Finally, we
conclude the manuscript in section 4.7.

4.1 Preliminaries

Notation We represent the network as a directed graph G = (V, A), where V is the set of
vertices and A is the set of arcs. Each node in the graph G represents an agent, and an arc
represents a link from one agent to another. Each arc (4, j) € A has an associated w;; € R,
which represents the number of links from agent i to agent j. We use d?"* and di* to denote
the weighted out-degree and in-degree of vertex i, respectively.

We will ultimately partition V' into two sets: Cp, the set of “normal” vertices and C', the
set of “aberrant” vertices. The notation W,, denotes the total weight of arcs from C, to C,.

That is,
qu == E wij .
1€Cp,j€C,

We also define W = 37, ;s , wy; to denote to the total sum of weights.

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 58

Priors All the algorithms described here will take as input a graph in which some or all of
the vertices have prior values associated with them. We use Vo € V' to denote the set of
vertices which have priors, and we use ¢; € [0, 1] to denote the prior value of vertex i. These
priors could represent information about known vertices, the ratings of human judges or
the output of another algorithm. The prior values do not represent “ground truth”. The
priors may have various degrees of confidence and may occasionally be imprecise or unreliable.
Besides the structure of the graph itself, the priors are the only information we have on which
to base our final classifications.

Output All algorithms output a continuous score, z; € [0, 1], for every vertex i € V', where
closer to 0 means more likely normal and closer to 1 means more likely aberrant. From these
continuous scores, we decide how to partition V into Cy and C4.

Existing Algorithms We consider the three existing algorithms that are most prevalent
in the literature: PageRank, TrustRank, and AntiTrustRank.

In PageRank [Page et al., 1999], a Markov chain is defined over the vertices in the graph.
The trust score of vertex i € V' is equal to the stationary probability that the Markov chain
is in state ¢. The state transitions from vertex i to vertex j with probability

’LUij
Pij =a dout
)

+(1—a)r; V(,j)eVxW

Here, a € [0, 1] is a hyperparameter known as the attenuation factor and r; € [0, 1] is the
probability of restarting the Markov chain from vertex j. The values of r; must sum to 1:
> jev i =1
In PageRank, r; = %Vj € V. The unique eigenvector with eigenvalue 1, 7, is computed
with the Power method. The score, x;, returned by PageRank, is equal to 1 — ;.
TrustRank [Gyongyi et al., 2004] is a modification of PageRank where the probability for
(re)starting at vertex j is proportional to 1 — ¢; (a measure of how “trusted” the vertex is):

1—c¢; .
rtj‘ust — J \V/j c V})rior-

! Zievprior (1 - C'L)

The intuition behind TrustRank is that from trusted nodes you should only reach other
trusted nodes. Like PageRank, the returned score is 1 — m;, where m; is the probability that
the Markov chain is in state i.

AntiTrustRank [Krishnan and Raj, 2006] is similar to TrustRank, but differs in two
aspects: The Markov chain traverses the graph in the reverse direction, and the (re)start
distribution is proportional to ¢; (a measure of how “distrusted” the vertex is):

. Cs .
anti _ _ 7) vj c ‘/;)rior-

J .
Zie Vprior CZ

r

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 59

The underlying idea is that from normal vertices you should rarely reach aberrant vertices,
and thus if you follow arcs in the reverse direction, then from aberrant vertices you should
reach mostly aberrant vertices.

In contrast to PageRank and TrustRank, in AntiTrustRank the eigenvector with eigenvalue
1 represents the distrust of the vertices. The score, x;, returned by AntiTrustRank for vertex
1 € V is equal to ;.

4.2 Markov Random Fields (MRF) Model

The MRF model [Geman and Geman, 1984] is defined on a directed graph G = (V, A), where
each node ¢ € V' has an associated decision variable x;. For given deviation functions G; and
separation functions Fj;, the MRF model is defined as:

min A\ Z Gl(l’l, Ci) + Z Ej(iﬂl — l’j)
eV (i,7)€A

The deviation function G;(-,-) penalizes a deviation of the variable x; away from the prior
value ¢;, whereas the separation function Fj;(-) penalizes the difference between the values
assigned to neighboring nodes in the graph. The trade-off parameter A > 0 determines the
trade-off between the deviation and separation penalties. When the separation functions
F;;(+) are convex, this problem is solved optimally and efficiently in either continuous or
integer variables. The problem is NP-hard otherwise. The algorithms and their complexity
are listed in Table 4.1.

Table 4.1: Complexity of Markov Random Fields (MRF') problems. For complexity results in
this table, let U = max; |z;| be the number of labels, n = |V| be the number of nodes in the
graph, and m = |A| be the number of arcs in the graph. A bi-linear function refers here to a
function of the form f(z) = max{u*z,—u"z} for u™,u~ > 0 and z € R.

Deviation Separation

function G;(z;) function Fj;(z; — z;) Complexity Reference
Convex Convex O(mnlog % lognU) Ahuja et al. [2003]
Convex Bi-linear O(mnlog % +nlogU) Hochbaum [2001]
Quadratic Bi-linear O(mnlog) Hochbaum [2001]
Non-linear Convex O(mnU? log V) Ahuja et al. [2004]

Linear Non-linear NP-Hard Hochbaum [2001]

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 60

4.3 Markov Random Fields Model for Detecting
Aberrant Agents

For the problem of detecting aberrant agents, a “good” solution is characterized by two
properties. First, there should be few links from normal to aberrant agents. Second, the
difference between the score assigned to an agent and its prior value, if any, should be small.
These goals naturally map to an MRF model.

For each vertex 7 € V)., With associated prior ¢;, we choose a quadratic penalty function
G; = (x; — cl-)2 to measure the deviation between the assigned x; and the prior ¢;. The
remaining vertices without priors do not have an associated deviation penalty. That is,
Gi(zi,¢;) = 0 for ¢ ¢ V0. For each arc (7,7) € A with weight w;;, we have a separation
function F; = w;; (z; — z;)", where (xj — ;)" = max{x; — x;,0}. This separation function
results in a penalty of w;;(x; — z;) for arc (¢, j) € A if the score z; of vertex ¢ is lower than
the score z; of vertex j, since the (more) normal vertex ¢ links to a (more) aberrant vertex j.

The resulting optimization problem is:

min A Z (z; — i) + Z wij (v; —2;) " (MRF-Detection)
7:ex/prior (’L,])GA
st. 0<zg; <1 Viel.

In the optimization problem, each agent ¢ € V' is assigned a score x; € [0, 1]. The behavior
of an agent with a score of 1 is considered aberrant, whereas a score of 0 corresponds to
normal behavior.

(MRF-Detection) is a special case of the MRF problem with convex deviations and bi-
linear separation functions', which was shown by Hochbaum [2001] to be solvable with a
parametric minimum cut problem in the complexity of a single minimum cut problem plus the
complexity required to find the minima of the convex deviation functions. Two parametric
cut algorithms, based on the pseudoflow algorithm [Hochbaum, 2008; Hochbaum and Orlin,
2013] or the push-relabel algorithm [Gallo et al., 1989; Goldberg and Tarjan, 1988], achieve
this complexity. Since the deviation functions are quadratic here, the complexity of finding
the minima of the deviation functions is O(|V]), which is dominated by the complexity of a
minimum cut problem. As a result, the complexity of solving this parametric minimum cut

problem with either of these two algorithms is expressible as O (mn log %) where n is the

number of nodes in the graph and m is the number of arcs. These results imply that we can
solve the MRF formulation for aberrant agent detection efficiently and optimally.

LA bi-linear function refers here to a function of the form f(z) = max{u*tz, —u~z} for u™,u~ > 0 and
z € R.

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 61

4.4 Performance Evaluation Metrics

In the datasets available to us, there is no “ground truth” to which we can compare our
results. Instead we assess the classification performance in terms of how well the resulting
partition obeys the property of having few links from normal vertices to aberrant vertices.
For this purpose, we will lay out several metrics. The first are a series of ad-hoc metrics,
such as the average out-degree from normal vertices to aberrant ones. We also present a
directed variant of the established modularity clustering metric [Newman and Girvan, 2004].

Ad-Hoc Metrics

Aberrant linking behavior implies that there should be few arcs from normal to aberrant.
For that reason, a relevant metric is WTOJ, the average degree of a normal vertex to the set of
aberrant vertices.

As a baseline for comparison, we also calculate WTT? the average degree of an aberrant
vertex to the set of aberrant vertices. If our labeling has the desired property, then we expect
that WT‘? will be significantly smaller than WTT F

In order to normalize these values of across graphs, we divide the degree measures by the

Woo+Wo1+Wio+Wii

average degree of the graph, day, = NN, . This leads to the following two metrics:

Woi/No and W11/N1'

davg avg

WOI/NO Wll/Nl and WOI
davg , davg ’ WOI + Wll .

Modularity

A metric commonly used in the graph partitioning literature is modularity [Newman and
Girvan, 2004]. It measures how many edges are within clusters versus edges between clusters
and compares that to a random graph with the same degree distribution [Kim et al., 2010;
Newman and Girvan, 2004].

Given a weighted, undirected graph and a partition of the set of vertices into clusters
Co, ..., C, modularity [Newman and Girvan, 2004] is defined as

1
2W

i,jeEV

{wij - Zidj] 8(i,7). (UndirMod)

Here, d; is the weighted degree of vertex i, and

50, j) = 1 dpli,jed,,
"/ 0 otherwise.

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 62

A larger modularity value indicates that the cluster assignment is superior since there are
more edges within the clusters than in a random graph. It is NP-hard to find the set of
clusters that maximize modularity in a graph [Brandes et al., 2006].

When modularity is applied to directed graphs, there is no agreed-upon generalization [Kim
et al., 2010; Newman, 2006; Rosvall and Bergstrom, 2008]. One straightforward adaptation
of modularity to directed graphs would be to calculate [Kim et al., 2010; Newman, 2006;
Rosvall and Bergstrom, 2008]

dout dln

w3 [

’L_]EV

] 04, 7). (DirMod)

Several issues with this generalization have been observed. In [Malliaros and Vazirgiannis,
2013], small example graphs are shown in which certain arcs can be reversed without affecting
the modularity. This is problematic given our interest in asymmetry between clusters.

In fact, we show in claim 1 that this definition of directed modularity, with 2 clusters,
is proportional to the determinant of a matrix with entries W;; for i, 7 € {0,1}. We defer
the proof to the appendix. This result implies that this definition is symmetric with respect
to the cluster assignment and that the cluster labels are exchangeable without affecting the
modularity.

Claim 1. Let G = (V, A) be a directed graph with vertex labels in {0,1}, defining two
clusters Cy and Cy. The modularity of the clustering assignment on G, as defined in equation
(DirMod), is proportional to

WooWi1 — Wor Who.

Proof.

The expression for modularity is

7 3 (-

z]GV

dout dln

|
Since W is constant, we can multiply by W?:

o Y Wy — d™dr] 6(i, 5)

1,j€EV

=Wy wid(i,g) — Y ddRa(i,).

i,j€V i,j€V

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 63

Now, since 6(7,j) = 1 if and only if ¢ and j are in the same cluster:

=W(Woo+ Win) = Y Y ddr =)y ddr

1€Co j€Co 1€Cy jeCh
= (Woo + Wor + Wig + Wi1)(Woo + Wh1)
— (Woo + Wor)(Woo + Wio)

— (Wh1 + Wio) (Wi + W)
= 2(WooW11 — WioWn)

]

Corollary 2. Let G = (V, A) be a directed graph with vertex labels in {0,1}, defining a
cluster assignment C. Let C' be the assignment with opposite labels. Then, the modularity of
cluster assignment C on G, as defined in equation (DirMod), is the same as the modularity
of assignment C'.

The symmetry with respect to the clustering labels is undesirable for the problem of agent
detection, since only links from a normal vertex to an aberrant one should be penalized. That
is, we would like to penalize arcs from Cj to C; without penalizing arcs from C; to Cy. If the
labels can be interchanged, then these penalties are necessarily symmetric. We will propose a
change to the modularity metric which overcomes this deficiency.

One option might be to change the definition so that 6(1,0) = (0,0) = (1,1) =1. In
other words, “rewarding” arcs from C to Cj in addition to arcs within clusters. However,
repeating the calculation in Claim 1 gives a surprising result: even with the new definition
of 9, the modularity metric remains proportional to WyyWi; — Wy Wig. For that reason, a
different change is needed.

We suggest a new variant of the directed modularity metric, which captures the asymmetric
nature of the relation between normal and aberrant vertices. Our metric only penalizes arcs in
one direction between the two clusters. We keep the Wy, term, but instead of subtracting
off Wy1 Wi, we subtract off %WO%. We add the % coefficient to account for the larger expected
value of the term W@ as compared to Wy Wip?. Our new definition of directed modularity
in the two-cluster case is:

4 (WooWiy — 3W5)
W2

Similarly to the result for undirected modularity, we establish that maximizing AsymMod
is NP-hard. Our reduction is from the minimum bisection problem, which is different from
the undirected case. Again, we defer the proof to the appendix.

: (AsymMod)

Claim 2. Mazimizing (AsymMod) is NP-Hard.

>The coefficient 3 is chosen such that the terms have equal expectation when the W, /W values are

drawn independently and uniformly from the unit interval.

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 64

Proof. The proof is a reduction from the minimum bisection problem on an undirected and
unweighted graph G = (V, E). A bisection (Cy, C1) is a partition of the set of vertices V' such
that |Cy| = |C1| = n/2, where n is the number of nodes in the original graph. The minimum
bisection problem is to find a bisection (Cy, Cy) that minimizes Wy; = Wjo. This problem is
known to be NP-Hard [Garey et al., 1974].

Consider an undirected and unweighted graph G on which we would like to solve the
minimum bisection problem. We create the graph G’ where we copy G by turning each edge
into two directed arcs and add two vertices, s and ¢, with an arc from s to every vertex in G
and an arc from every vertex in G to t. Let the weight of all these arcs be M, for sufficiently
large M (e.g. M > m? where m is the number of arcs in the original graph).

Consider a partition of this new graph into Cp and C}. We still use W, to denote the
total weight in the original graph between clusters p and q. We break the modularity 3
calculation into four cases, depending on which clusters s and t are in:

se Cy,teCy:

(2IColM + Woo) (Waa) = 5 (IGH M + Wy)?
se Cy,teCh:

(IColM + Wao) (|C1[M + Why) — Z (nM + Wy)?
se (Cq,teCy:

(ICHIM -+ W) (ICIM + W) = = (Wor)?
se(Cy,teCh:

3
(Woo) (2|C1|M + Why) — 1 (|Co| M + Wy)?

Expanding these expressions, we see that the coefficient of M? is largest when s € C},
t € Cp, and |Cy| = |Cy| = n/2. Thus, for sufficiently large M, these are necessary conditions
to maximize the modularity of the clustering in G'. The expression becomes:

2
n n 3

ZMQ + 3 (Woo + W) M + WooeWiy — ZWO21-

Assuming M is sufficiently large, an optimal solution maximizes §M (Wyo + Wi;) and thus
Woo + W11. However, maximizing this quantity is equivalent to minimizing Wy, + Wi = 2Wp.
Thus, the partition which maximizes modularity in G’ gives us the minimum bisection in

G.]

3We ignore the normalization term %.

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 65

From now on, when we refer to modularity, it is assumed that we are referring to

(AsymMod).

4.5 Experimental Setup

We compare MRF against the algorithms PageRank [Page et al., 1999], TrustRank [Gyongyi
et al., 2004], AntiTrustRank [Krishnan and Raj, 2006], and a randomized baseline algorithm,
which we name Random. We measure the performance of the algorithms in terms of modularity
score and the ad-hoc metrics described in section 4.4.

Datasets We evaluate the experimental performance of MRF on twenty-one different
datasets from the KONECT project [Kunegis, 2013], as well as two Web Spam datasets
[Castillo et al., 2006]. The datasets in KONECT are categorized into twenty-three categories.
We chose twenty-one datasets in categories in which we plausibly expected to find high-
modularity clusters. The two Web Spam datasets are based on web crawls of the .uk
top-level domain. The properties of the datasets are summarized in Table 4.2. The KONECT
datasets are available at http://konect.uni-koblenz.de/, and the Web Spam datasets
are available at http://chato.cl/webspam/datasets/. We excluded from our analysis four
Konect datasets for which no algorithm was able to attain a modularity score above 0.2.

Priors Since we do not have access to datasets with prior labels, we generate priors with
a simple heuristic. For each dataset, we assign priors such that p,.,, < 50% percent of
the vertices are marked aberrant and the same number of vertices are marked normal. The
vertices are chosen according to the difference between out-degree and in-degree, since we
expect that nodes with high out-degree and low in-degree are potentially aberrant. We
define A; = d** — di™ for every vertex i € V. The vertices are then sorted such that
Agy > Ag2) = -+ 2 Ay The first nprior = |[Pprior 7| vertices with the highest A value
are considered aberrant and given the prior values ¢; = 1. The last np;or vertices with the
lowest A value are considered normal and given the prior values ¢; = 0.

Labeling Each of the algorithms returns a score z; € [0, 1] for every vertex i € V. We
convert these scores into a binary assignment to the clusters Cy and C; by means of a
threshold 7. The clusters are given by:

Ci(r)={ieV .z, >1}
Co(r)={ieV iz, <7}

We report the highest modularity obtained over a set of thresholds T

max Modularity (Cy(7), C1 (7))

TeT

http://konect.uni-koblenz.de/
http://chato.cl/webspam/datasets/

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 66

Table 4.2: Basic properties of twenty-one datasets from the KONECT project and the two
datasets from the Web Spam project.

Dataset Vertices Arcs Link Significance Weights
Animal - Bison 26 314 Dominance behavior between bisons. yes
Animal - Cattle 28 217 Dominance behavior between cattle. yes
Animal - Hens 32 496 Pecking order among hens. no
Citation - Cora 23166 91500 Scientific citations. no
Citation - DBLP 12591 49728 Scientific citations in computer science. no
Communication - Company 167 5783 FEmails within manufacturing company. yes
Communication - DNC Emails 1891 5517 FEmails within committee. yes
Communication - Slashdot 51083 130370 Responses to messages. yes
Communication - University 1899 20296 Messages within university. yes
Hyperlink - Blogs 1224 19022 Links between political blogs. no
Hyperlink - Google 15763 170335 Links between internal Google pages. no
Hyperlink - Spam 2006 11402 730774 Links between UK sites. yes
Hyperlink - Spam 2007 114529 1771291 Links between UK sites. yes
Infrastructure - Airports 1 3425 37594 Flights between airports. yes
Infrastructure - Airports 2 2939 30501 Flights between airports. no
Metabolic - Proteins (Small) 1706 6171 Interactions between proteins. no
Social - Advogato 6539 47135 Trust relationships between users. yes
Social - Dorm 217 2672 Friendship ratings between students. yes
Social - High School 70 366 Friendship ratings in a high school. yes
Social - Physicians 241 1098 Trust relationships between physicians. no
Social - Twitter 23370 33101 Following relationships between users. no
Trophic - FL. Dry Season 128 2137 Carbon exchanges between organisms. yes
Trophic - FL. Wet Season 128 2106 Carbon exchanges between organisms. yes

For the MRF algorithm, the set of thresholds 7" is given by the set of unique values of
the scores {z; : ¢ € V'}. For the other algorithms, the set of threshold values T" consists of
the O 58 . 100" percentiles of the scores {z; : i € V'}. We apply a different method for
MREF since its solution typically contains only a few distinct values. In the results reported
here, the median number of unique scores in the MRF solution is 13. In contrast, the node
scores tend to be unique for each of the other algorithms.

Algorithm Implementations For MRF, we use the formulation as described in equation
(MRF-Detection) with one modification: we normalize the trade-off parameter A. We call
this new hyperparameter the normalized trade-off parameter, \,,.,,. It is defined by the
following equation:
Z(i,j)eA Wi

|‘/p7‘io7‘| '
We expect that the normalized parameter \,,., is more consistent across datasets, since it
corrects for the size of the graph.

A= /\narm

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 67

We use a parametric implementation of the pseudoflow algorithm [Hochbaum, 2008] to
solve the parametric minimum cut problem.

For PageRank, we use the implementation of PageRank in the NetworkX package for
Python [Hagberg et al., 2008]. For TrustRank and AntiTrustRank, we wrote a wrapper
around the NetworkX implementation of PageRank. We use the default settings of the
PageRank solver, except for the attenuation factor «, which we treat as a hyperparameter.
The maximum number of iterations is set to 1000.

The Random algorithm provides baseline comparison. Each vertex is assigned a score,
x;, uniformly drawn from the unit interval. We report the average of the best modularity
obtained in each of 10 trials.

Our implementations of these algorithms, as well as the code used to run the experiments,
are available open-source at removedfordouble-blindreview.

Hyperparameters All algorithms, except for Random, have hyperparameters. The hy-
perparameters for MRF are the normalized trade-off parameter A\, and the percentage of
priors pprior- The hyperparameters for TrustRank and AntiTrustRank are the attenuation
factor @ and the percentage of priors pyior. PageRank has only the attenuation factor o as
its hyperparameter, since the algorithm does not utilize the prior values.

For each algorithm and dataset, we tested 200 combinations of hyperparameter values
to maximize modularity. Each combination of hyperparameter values was selected with the
Tree-structured Parzen estimator (TPE) algorithm [Bergstra et al., 2011] based on previous
evaluations and a prior distribution for each of the parameters. The TPE algorithm uses
approximate Bayesian Optimization to select a combination of hyperparameter values that
has the highest expected increase in modularity score. Bayesian optimization methods, such
as TPE, have been shown to outperform grid search and random search [Bergstra and Bengio,
2012] and to rival domain experts in finding good hyperparameter settings [Bergstra et al.,
2011].

The prior distributions for the hyperparameters were selected as follows: For the normalized
trade-off parameter A, we used a lognormal distribution with zero mean and a standard
deviation of two. For the attenuation factor a, we used a uniform distribution on the unit
interval, and for the percentage of priors pprio; We used a uniform distribution over the interval
from 1 to 50 percent.

4.6 Results

For each of the twenty-three datasets and five algorithms, we report the best modularity
found after the hyperparameter search. In Table 4.3, in the final column we report the highest
modularity score found by any algorithm. In the remaining columns, we show the percentage
of the top modularity score obtained by each algorithm. Thus, one algorithm always scores
100 percent.

removed for double-blind review

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 68

Table 4.3: Normalized asymmetric modularity score by algorithm for twenty-three datasets.
The scores are normalized as a percentage of the highest asymmetric modularity score obtained
for the dataset.

Trust AntiTrust Page Best Modularity

Dataset MRF Rank Rank Rank Random Score (100%)
Animal - Bison 82.4 100.0 94.3 84.4 36.2 0.279
Animal - Cattle 84.5 100.0 80.5 97.9 31.3 0.294
Animal - Hens 99.3 100.0 99.8 100.0 29.5 0.233
Citation - Cora 55.7 57.3 100.0 32.1 12.2 0.517
Citation - DBLP 100.0 89.3 41.2 58.1 16.4 0.409
Communication - Company 66.1 100.0 89.8 65.5 22.1 0.405
Communication - DNC Emails 100.0 474 37.7 22.3 21.2 0.402
Communication - Slashdot 93.9 69.2 100.0 49.9 20.7 0.321
Communication - University 100.0 63.1 62.1 29.7 18.1 0.342
Hyperlink - Blogs 100.0 70.8 81.2 57.8 23.3 0.302
Hyperlink - Google 100.0 71.2 94.4 53.1 15.7 0.448
Hyperlink - Spam 2006 100.0 53.4 91.5 37.2 12.8 0.743
Hyperlink - Spam 2007 100.0 47.6 63.7 45.5 19.9 0.505
Infrastructure - Airports 1 100.0 45.9 51.6 17.8 10.6 0.577
Infrastructure - Airports 2 100.0 71.2 47.9 19.9 10.7 0.591
Metabolic - Proteins (Small) 100.0 68.5 68.9 1.2 13.6 0.517
Social - Advogato 100.0 72.7 76.8 53.8 17.4 0.392
Social - High School 89.2 100.0 92.2 94.9 14.5 0.739
Social - Physicians 94.1 82.8 100.0 43.8 8.7 0.931
Social - Twitter 92.7 7.7 15.1 100.0 31.9 0.244
Social - University 57.3 100.0 66.4 63.4 11.1 0.615
Trophic - FL Dry Season 100.0 85.3 51.1 90.4 22.1 0.581
Trophic - FL. Wet Season 100.0 93.4 78.2 93.4 28.3 0.588
Average 92.0 73.8 73.2 57.0 19.5 —

On average, our MRF algorithm achieves the highest percentage of the maximum mod-
ularity, at 92%. The next best algorithms, TrustRank and AntiTrustRank, achieve 74%
and 73% respectively. MRF achieves the highest modularity on thirteen of the twenty-three
datasets.

In Table 4.4, we examine the properties of these partitions with maximum modularity,
using the ad-hoc metrics described in section 4.4. Across all datasets, the median value of
Wor/No g MRF is 0.04. For AntiTrustRank, it is 0.13. This suggests that MRF is indeed

davg
ﬁndigng partition with fewer arcs from normal to aberrant. It attains the smallest value on
twenty of the twenty-three datasets. Looking at the median value of Wclz:,v/ Nl, we see another
side of the story. For AntiTrustRank, the median value is 1.18. For MRF , it is 0.60. This
suggests that the vertices classified as aberrant by AntiTrustRank are more interlinked than
those classified by MRF. These results make sense: whereas MRF is minimizing the links from

normal to aberrant, without any stipulation about connections between aberrant vertices,

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 69

Table 4.4: Ad-hoc metrics of the partition returned by each algorithm. The results are
reported for the partition that maximizes asymmetric modularity, as in Table 4.3. For brevity,
we exclude PageRank and Random. For a partition that satisfies aberrant linking behavior
we expect the first and third metric to be small.

Wo1/No Wi1 /N1
dove g

MRF Trust AntiTrust MRF Trust AntiTrust
Animal - Bison 0.16 0.20 0.16 0.46 0.51 0.59
Animal - Cattle 0.02 0.08 0.03 0.58 0.63 0.69
Animal - Hens 0.03 0.04 0.04 0.45 0.48 0.48
Citation - Cora 0.00 0.02 0.05 0.36 0.41 0.98
Citation - DBLP 0.00 0.09 0.01 0.43 0.48 1.18
Communication - Company 0.33 0.94 0.19 0.83 0.55 1.91
Communication - DNC Emails 0.06 2.35 0.11 0.66 0.20 0.86
Communication - Slashdot 0.06 0.35 0.17 0.80 0.31 1.27
Communication - University 0.23 1.11 0.19 0.60 0.36 2.46
Hyperlink - Blogs 0.08 049 0.15 0.33 0.31 1.13
Hyperlink - Google 0.00 0.07 0.13 0.60 0.32 0.96
Hyperlink - Spam 2006 0.00 0.28 0.01 1.92 0.61 10.10
Hyperlink - Spam 2007 0.00 041 024 0.71 0.12 7.37
Infrastructure - Airports 1 0.24 1.84 0.19 0.87 0.25 4.15
Infrastructure - Airports 2 0.07 0.64 0.33 0.47 0.28 0.82
Metabolic - Proteins (Small) 0.19 0.69 0.22 052 0.37 1.25
Social - Advogato 0.11 0.75 0.13 0.39 0.29 1.86
Social - Dorm 0.19 0.21 0.25 0.55 0.65 0.86
Social - High School 0.04 0.08 0.09 0.62 0.85 0.76
Social - Physicians 0.00 0.00 0.00 0.88 0.79 1.03
Social - Twitter 0.00 0.03 0.00 0.80 0.74 1.57
Trophic - FL Dry Season 0.00 0.00 0.09 1.96 1.42 7.09
Trophic - FL. Wet Season 0.00 0.35 0.05 1.70 0.34 5.80
Median 0.04 0.28 0.13 0.60 0.41 1.18

AntiTrustRank is working backwards from known aberrant vertices to find aberrant clusters.
The running times of all algorithms, with the exception of Random, were in the same
order of magnitude.

4.7 Conclusions

We studied here the problem of identifying agents with aberrant behavior in networks. Such
agents frequently appear in today’s networks, including malicious websites on the internet,
fake profiles in social media, and fake news sources prolific in spreading misinformation. The
unifying property of these networks is that normal agents rarely link to aberrant ones. We
call this aberrant linking behavior.

CHAPTER 4. DETECTING ABERRANT LINKING BEHAVIOR IN NETWORKS 70

We formulated the detection problem in a novel way: as a directed Markov Random
Fields (MRF) problem. This formulation balances obeying any given prior information with
minimizing the links from normal to aberrant agents. We discussed how the formulation is
solved optimally and efficiently.

To compare the performance of the algorithms, we developed a new, asymmetric variant
of the modularity metric for directed graphs, addressing a known shortcoming of the existing
metric. We showed that our metric has desirable properties and proved that maximizing
it is NP-hard. We also used several ad-hoc metrics to better understand properties of the
solutions.

In an empirical experiment, we found that the MRF method outperforms competitors
such as PageRank, TrustRank, AntiTrustRank, and Random. The solutions returned by
MRF had the largest modularity score on thirteen of the twenty-three datasets tested. The
modularity for MRF was, on average, 25 percent better than the modularity returned by
TrustRank or AntiTrustRank.

71

Chapter 5

Concluding Remarks

This dissertation focuses on the advantages and challenges of similarity-based machine learning.
One such challenge is the quadratic growth in the number pairwise similarities. The technique
of sparse computation was introduced to mitigate the quadratic growth [Hochbaum and
Baumann, 2016]. We devise in this work two algorithmic extensions for sparse computation.
We demonstrate the effect of similarity-based machine learning via two important applications
where similarity-based machine learning yields strong results: Cell identification in calcium-
imaging movies and detecting aberrant agents in networks based on link behavior.

The first extension for sparse computation consists of faster, geometric algorithms for
sparse computation. These algorithms use the novel computational geometry concept of
data shifting to identify pairs of close objects faster than in the original implementation.
A computational study demonstrates that the geometric algorithms provide a significant
reduction in running time.

The second extension is the sparse-reduced computation technique that combine sparse
computation with compression technique for highly-similar objects. The use of compression
enables similarity-based machine learning on datasets with up to 10 million objects. An
experimental comparison between sparse-reduced computation and sparse computation shows
that sparse-reduced computation attains similar accuracy with a significant reduction in
running time.

For the problem of cell identification in calcium imaging we demonstrate how HNCcorr
detects cells based on pairwise similarities between pixels. The algorithm is a top performer
for cell identification according to the Neurofinder benchmark and outperforms matrix
factorization methods. For the detection of aberrant agents in network based on link behavior,
we discuss an MRF formulation with links as pairwise similarities and an associated algorithm.
The MRF approach outperforms competing algorithms based on random walks. Both
applications provide evidence that similarity-based machine learning is an effective tool.

72

Bibliography

J. Abernethy, O. Chapelle, and C. Castillo. Graph regularization methods for web spam
detection. Machine Learning, 81(2):207-225, 2010.

R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. Solving the Convex Cost Integer Dual
Network Flow Problem. Management Science, 49(7):950-964, 2003. doi: 10.1287/mnsc.49.
7.950.16384.

R. K. Ahuja, D. S. Hochbaum, and J. B. Orlin. A Cut-Based Algorithm for the Nonlinear
Dual of the Minimum Cost Network FlowProblem. Algorithmica, 39(3):189-208, 2004. doi:
10.1007/s00453-004-1085-2.

N. Apthorpe, A. Riordan, R. Aguilar, J. Homann, Y. Gu, D. Tank, and H. S. Seung.
Automatic neuron detection in calcium imaging data using convolutional networks. In
Advances in Neural Information Processing Systems, pages 3270-3278, 2016.

S. Arora, E. Hazan, and S. Kale. A Fast Random Sampling Algorithm for Sparsifying
Matrices. In J. Diaz, K. Jansen, J. D. P. Rolim, and U. Zwick, editors, Approxzimation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, Lecture
Notes in Computer Science, pages 272-279. Springer Berlin Heidelberg, 2006.

R. Asin-Acha, D. S. Hochbaum, and Q. Spaen. HNCcorr: Combinatorial Optimization for
Neuron Identification. Annals of Operations Research, 2019. Under consideration (minor
revision).

P. Baumann. Sparse-reduced computation for large-scale spectral clustering. In 2016 IEEE

International Conference on Industrial Engineering and Engineering Management (IEEM),
pages 1284-1288, 2016. doi: 10.1109/TEEM.2016.7798085.

P. Baumann, D. S. Hochbaum, and Q. Spaen. Sparse-Reduced Computation - Enabling
Mining of Massively-large Data Sets:. In Proceedings of the 5th International Conference
on Pattern Recognition Applications and Methods, pages 224-231, Rome, Italy, 2016.
SCITEPRESS. doi: 10.5220/0005690402240231.

P. Baumann, D. S. Hochbaum, and Q. Spaen. High-performance geometric algorithms for
sparse computation in big data analytics. In 2017 IEEE International Conference on Big
Data (Big Data), pages 546-555, 2017. doi: 10.1109/BigData.2017.8257970.

BIBLIOGRAPHY 73

P. Baumann, D. Hochbaum, and Y. Yang. A comparative study of the leading machine
learning techniques and two new optimization algorithms. Furopean Journal of Operational
Research, 272(3):1041-1057, 2019. doi: 10.1016/j.ejor.2018.07.009.

L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and R. Baezayates. Linkbased charac-
terization and detection of web spam. In 2nd International Workshop on Adversarial
Information Retrieval on the Web, AIRWeb 2006-29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2006, 2006.

L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and R. Baeza-Yates. Web spam detection:
Link-based and content-based techniques. In The European Integrated Project Dynamically
FEvolving, Large Scale Information Systems (DELIS): Proceedings of the Final Workshop,
volume 222, pages 99-113, 2008.

P. Berens, J. Freeman, T. Deneux, N. Chenkov, T. McColgan, A. Speiser, J. H. Macke,
S. Turaga, P. Mineault, P. Rupprecht, S. Gerhard, R. W. Friedrich, J. Friedrich, L. Paninski,
M. Pachitariu, K. D. Harris, B. Bolte, T. A. Machado, D. Ringach, J. Stone, L. E. Rogerson,
N. J. Sofroniew, J. Reimer, E. Froudarakis, T. Euler, M. Roman Roson, L. Theis, A. S.
Tolias, and M. Bethge. Community-based benchmarking improves spike rate inference from
two-photon calcium imaging data. PLoS Computational Biology, 14(5):e1006157, 2018.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281-305, 2012.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for Hyper-Parameter
Optimization. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 2/, pages 2546—
2554. Curran Associates, Inc., 2011.

J. A. Blackard and D. J. Dean. Comparative accuracies of artificial neural networks and
discriminant analysis in predicting forest cover types from cartographic variables. Computers
and Electronics in Agriculture, 24(3):131-151, 1999. doi: 10.1016/S0168-1699(99)00046-0.

U. Brandes, D. Delling, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, and D. Wagner.
Maximizing modularity is hard. arXiv preprint physics/0608255, 2006.

L. Breiman. Bias, variance, and arcing classifiers. Technical Report 460, Statistics Department,
University of California, Berkeley, 1996.

R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learning algorithms.
In Proceedings of the 23rd International Conference on Machine Learning (ICML), pages
161-168, Pittsburgh, PA, 2006.

C. Castillo, D. Donato, L. Becchetti, P. Boldi, S. Leonardi, M. Santini, and S. Vigna. A
Reference Collection for Web Spam. SIGIR Forum, 40(2):11-24, 2006. doi: 10.1145/
1189702.1189703.

BIBLIOGRAPHY 74

C. Castillo, D. Donato, A. Gionis, V. Murdock, and F. Silvestri. Know your neighbors: Web
spam detection using the web topology. In Proceedings of the 30th Annual International

ACM SIGIR Conference on Research and Development in Information Retrieval, pages
423-430. ACM, 2007.

B. G. Chandran and D. S. Hochbaum. A computational study of the pseudoflow and push-
relabel algorithms for the maximum flow problem. Operations Research, 57(2):358-376,
2009.

CodeNeuro. The Neurofinder Challenge. http://neurofinder.codeneuro.org/, 2017.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273-297, 1995.
doi: 10.1007/BF00994018.

K. Dembczynski, W. Kotlowski, and R. Stowinski. Learning rule ensembles for ordinal
classification with monotonicity constraints. Fundamenta Informaticae, 94(2):163-178,
2009. doi: 10.3233/FI-2009-124.

F. Diego-Andilla and F. A. Hamprecht. Sparse space-time deconvolution for calcium image
analysis. In Advances in Neural Information Processing Systems, pages 64-72, 2014.

Dong, Jian-xiong, A. Krzyzak, and C. Y. Suen. Fast SVM training algorithm with decom-
position on very large data sets. IFEFE Transactions on Pattern Analysis and Machine
Intelligence, 27(4):603-618, 2005. doi: 10.1109/TPAMI.2005.77.

P. Drineas, R. Kannan, and . Mahoney. Fast monte carlo algorithms for matrices III:
Computing a compressed approximate matrix decomposition. SIAM J. Computing, 36:
184-206, 2006.

L. N. Driscoll, N. L. Pettit, M. Minderer, S. N. Chettih, and C. D. Harvey. Dynamic
reorganization of neuronal activity patterns in parietal cortex. Cell, 170(5):986-999, 2017.

M. Erdélyi, A. Garzo, and A. A. Benczir. Web spam classification: A few features worth
more. In Proceedings of the 2011 Joint WICOW/AIRWeb Workshop on Web Quality, pages
27-34. ACM, 2011.

M. Fire, D. Kagan, A. Elyashar, and Y. Elovici. Friend or foe? Fake profile identification in
online social networks. Social Network Analysis and Mining, 4(1):194, 2014.

B. Fishbain, D. S. Hochbaum, and Y. T. Yang. Real-time robust target tracking in videos
via graph-cuts. In Real-Time Image and Video Processing 2013, volume 8656, page 865602.
International Society for Optics and Photonics, 2013. doi: 10.1117/12.2002947.

E. Fix and . Hodges, Jr. Discriminatory analysis, nonparametric discrimination, consistency
properties. Randolph Field, Texas, Project 21-49-004, Report No. 4, 1951.

http://neurofinder.codeneuro.org/

BIBLIOGRAPHY 1)

P. W. Frey and D. J. Slate. Letter recognition using Holland-style adaptive classifiers. Machine
Learning, 6(2):161-182, 1991. doi: 10.1007/BF00114162.

G. Gallo, M. Grigoriadis, and R. Tarjan. A Fast Parametric Maximum Flow Algorithm and
Applications. SIAM Journal on Computing, 18(1):30-55, 1989. doi: 10.1137/0218003.

Q. Gan and T. Suel. Improving web spam classifiers using link structure. In Proceedings of
the 3rd International Workshop on Adversarial Information Retrieval on the Web, pages
17-20. ACM, 2007.

S. Gao. Conv2d: Convolutional neural network. https://github.com/iamshangl/
Projects/tree/master/Advanced_ML/Neuron_Detection, 2016.

M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete problems. In
Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, pages 47—63.
ACM, 1974.

S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6
(6):721-741, 1984.

S. Ghosh, B. Viswanath, F. Kooti, N. K. Sharma, G. Korlam, F. Benevenuto, N. Ganguly,
and K. P. Gummadi. Understanding and combating link farming in the twitter social

network. In Proceedings of the 21st International Conference on World Wide Web, pages
61-70. ACM, 2012.

A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum-flow Problem. J. ACM,
35(4):921-940, 1988. doi: 10.1145/48014.61051.

M. Gori and A. Pucci. Research paper recommender systems: A random-walk based approach.
In Web Intelligence, 2006. WI 2006. IEEE/WIC/ACM International Conference On, pages
778-781. IEEE, 2006.

B. F. Grewe, D. Langer, H. Kasper, B. M. Kampa, and F. Helmchen. High-speed in vivo
calcium imaging reveals neuronal network activity with near-millisecond precision. Nature

Methods, 7(5):399-405, 2010.

7. Gyongyi, H. Garcia-Molina, and J. Pedersen. Combating Web Spam with Trustrank. In
Proceedings of the Thirtieth International Conference on Very Large Data Bases - Volume
30, VLDB ’04, pages 576-587, Toronto, Canada, 2004. VLDB Endowment.

A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function
using NetworkX. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM
(United States), 2008.

https://github.com/iamshang1/Projects/tree/master/Advanced_ML/Neuron_Detection
https://github.com/iamshang1/Projects/tree/master/Advanced_ML/Neuron_Detection

BIBLIOGRAPHY 76

D. Hochbaum and P. Baumann. Sparse computation for large-scale data mining. In J. Lin,
J. Pei, X. Hu, W. Chang, R. Nambiar, C. Aggarwal, N. Cercone, V. Honavar, J. Huan,
B. Mobasher, and S. Pyne, editors, Proceedings of the 2014 IEEE International Conference
on Big Data, pages 354-363, Washington DC, 2014.

D. S. Hochbaum. An Efficient Algorithm for Image Segmentation, Markov Random Fields
and Related Problems. J. ACM, 48(4):686-701, 2001. doi: 10.1145/502090.502093.

D. S. Hochbaum. Solving integer programs over monotone inequalities in three variables: A
framework for half integrality and good approximations. European Journal of Operational
Research, 140(2):291-321, 2002. doi: 10.1016/S0377-2217(02)00071-1.

D. S. Hochbaum. The Pseudoflow Algorithm: A New Algorithm for the Maximum-Flow
Problem. Operations Research, 56(4):992-1009, 2008. doi: 10.1287/opre.1080.0524.

D. S. Hochbaum. Polynomial Time Algorithms for Ratio Regions and a Variant of Normalized
Cut. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):889-898,
2010. doi: 10.1109/TPAMI.2009.80.

D. S. Hochbaum. Multi-Label Markov Random Fields as an Efficient and Effective Tool
for Image Segmentation, Total Variations and Regularization. Numerical Mathematics:
Theory, Methods and Applications, 6(1):169-198, 2013a. doi: 10.1017/S1004897900001185.

D. S. Hochbaum. A Polynomial Time Algorithm for Rayleigh Ratio on Discrete Variables:
Replacing Spectral Techniques for Expander Ratio, Normalized Cut, and Cheeger Constant.
Operations Research, 61(1):184-198, 2013b. doi: 10.1287/opre.1120.1126.

D. S. Hochbaum and P. Baumann. Sparse Computation for Large-Scale Data Mining. IEFEE
Transactions on Big Data, 2(2):151-174, 2016. doi: 10.1109/TBDATA.2016.2576470.

D. S. Hochbaum and A. Levin. Methodologies and Algorithms for Group-Rankings Decision.
Management Science, 52(9):1394-1408, 2006. doi: 10.1287/mnsc.1060.0540.

D. S. Hochbaum and S. Liu. Adjacency-Clustering and Its Application for Yield Prediction
in Integrated Circuit Manufacturing. Operations Research, 66(6):1571-1585, 2018. doi:
10.1287/opre.2018.1741.

D. S. Hochbaum and E. Moreno-Centeno. Country credit-risk rating aggregation via the
separation-deviation model. Optimization Methods and Software, 23(5):741-762, 2008. doi:
10.1080,/10556780802402432.

D. S. Hochbaum and J. B. Orlin. Simplifications and speedups of the pseudoflow algorithm.
Networks, 61(1):40-57, 2013. doi: 10.1002/net.21467.

D. S. Hochbaum, E. Moreno-Centeno, P. Yelland, and R. A. Catena. Rating Customers
According to Their Promptness to Adopt New Products. Operations Research, 59(5):
1171-1183, 2011. doi: 10.1287/opre.1110.0963.

BIBLIOGRAPHY 7

D. S. Hochbaum, C.-N. Hsu, and Y. T. Yang. Ranking of multidimensional drug profiling
data by fractional-adjusted bi-partitional scores. Bioinformatics, 28(12):1106-1114, 2012.
doi: 10.1093/bioinformatics/bts232.

D. S. Hochbaum, C. Lyu, and E. Bertelli. Evaluating performance of image segmentation
criteria and techniques. EURO Journal on Computational Optimization, 1(1):155-180,
2013. doi: 10.1007/s13675-012-0002-8.

S. Jewell and D. Witten. Exact spike train inference via ℓ_{0} optimization. The Annals
of Applied Statistics, 12(4):2457-2482, 2018. doi: 10.1214/18-AOAS1162.

C. Jhurani. Subspace-preserving sparsification of matrices with minimal perturbation to the
near null-space. Part I: Basics. arXiv:1304.7049 [cs, math], 2013.

H. Jia, N. L. Rochefort, X. Chen, and A. Konnerth. In vivo two-photon imaging of sensory-
evoked dendritic calcium signals in cortical neurons. Nature Protocols, 6(1):28, 2011.

P. Kaifosh, J. D. Zaremba, N. B. Danielson, and A. Losonczy. SIMA: Python software for
analysis of dynamic fluorescence imaging data. Frontiers in Neuroinformatics, 8, 2014.

H. Kawaji, Y. Takenaka, and H. Matsuda. Graph-based clustering for finding distant
relationships in a large set of protein sequences. Bioinformatics, 20(2):243-252, 2004. doi:
10.1093 /bioinformatics/btg397.

Y. Kim, S.-W. Son, and H. Jeong. Finding communities in directed networks. Physical
Review E, 81(1):016103, 2010.

J. Kleinberg and E. Tardos. Approximation Algorithms for Classification Problems with
Pairwise Relationships: Metric Labeling and Markov Random Fields. J. ACM, 49(5):
616-639, 2002. doi: 10.1145/585265.585268.

A. Klibisz, D. Rose, M. Eicholtz, J. Blundon, and S. Zakharenko. Fast, Simple Calcium
Imaging Segmentation with Fully Convolutional Networks. In M. J. Cardoso, T. Arbel,
G. Carneiro, T. Syeda-Mahmood, J. M. R. Tavares, M. Moradi, A. Bradley, H. Greenspan,
J. P. Papa, A. Madabhushi, J. C. Nascimento, J. S. Cardoso, V. Belagiannis, and Z. Lu,
editors, Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical

Decision Support, Lecture Notes in Computer Science, pages 285-293. Springer International
Publishing, 2017.

R. Kohavi. Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-tree Hybrid.
In Proceedings of the Second International Conference on Knowledge Discovery and Data
Mining, KDD’96, pages 202—207. AAAI Press, 1996.

V. Krishnan and R. Raj. Web Spam Detection with Anti-Trust Rank. In Proceedings of the
Second International Workshop on Adversarial Information Retrieval on the Web, pages
45-48, 2006.

BIBLIOGRAPHY 78

J. Kunegis. Konect: The koblenz network collection. In Proceedings of the 22nd International

Conference on World Wide Web, pages 1343-1350. ACM, 2013.

Y. Lee and O. Mangasarian. RSVM: Reduced Support Vector Machines. In Proceedings of
the 2001 SIAM International Conference on Data Mining, Proceedings, pages 1-17. Society
for Industrial and Applied Mathematics, 2001. doi: 10.1137/1.9781611972719.13.

Y. Levin-Schwartz, D. R. Sparta, J. F. Cheer, and T. Adal. Parameter-free automated
extraction of neuronal signals from calcium imaging data. In IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 1033-1037. IEEE, 2017.

M. Lichman. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml, 2013.

T.-Y. Liu. Learning to Rank for Information Retrieval. Foundations and Trends in Information
Retrieval, 3(3):225-331, 2009. doi: 10.1561/1500000016.

F. D. Malliaros and M. Vazirgiannis. Clustering and community detection in directed networks:
A survey. Physics Reports, 533(4):95-142, 2013.

R. Maruyama, K. Maeda, H. Moroda, I. Kato, M. Inoue, H. Miyakawa, and T. Aonishi.
Detecting cells using non-negative matrix factorization on calcium imaging data. Neural
Networks, 55:11-19, 2014.

M. Meila and W. Pentney. Clustering by weighted cuts in directed graphs. In Proceedings of
the 2007 SIAM International Conference on Data Mining, pages 135-144. SIAM, 2007.

E. A. Mukamel, A. Nimmerjahn, and M. J. Schnitzer. Automated analysis of cellular signals
from large-scale calcium imaging data. Neuron, 63(6):747-760, 2009.

M. E. J. Newman. Modularity and community structure in networks. Proceedings of the
National Academy of Sciences, 103(23):8577-8582, 2006. doi: 10.1073/pnas.0601602103.

M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69(2):026113, 2004. doi: 10.1103/PhysRevE.69.026113.

A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly. Detecting spam web pages through
content analysis. In Proceedings of the 15th International Conference on World Wide Web,
pages 83-92. ACM, 2006.

M. Pachitariu, A. M. Packer, N. Pettit, H. Dalgleish, M. Hausser, and M. Sahani. Extracting
regions of interest from biological images with convolutional sparse block coding. In
Advances in Neural Information Processing Systems, pages 1745-1753, 2013.

M. Pachitariu, C. Stringer, M. Dipoppa, S. Schroder, L. F. Rossi, H. Dalgleish, M. Carandini,
and K. D. Harris. Suite2p: Beyond 10,000 neurons with standard two-photon microscopy.
bioRziv, page 061507, 2017. doi: 10.1101/061507.

http://archive.ics.uci.edu/ml

BIBLIOGRAPHY 79

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing
Order to the Web. Techreport SIDL-WP-1999-0120, Stanford InfoLab, Palo Alto, CA,
USA, 1999.

E. A. Pnevmatikaki and L. Paninski. Sparse nonnegative deconvolution for compressive
calcium imaging: Algorithms and phase transitions. In Advances in Neural Information
Processing Systems, pages 1250-1258, 2013.

E. A. Pnevmatikakis, J. Merel, A. Pakman, and L. Paninski. Bayesian spike inference from
calcium imaging data. In Asilomar Conference on Signals, Systems and Computers, pages
349-353, 2013.

E. A. Pnevmatikakis, D. Soudry, Y. Gao, T. A. Machado, J. Merel, D. Pfau, T. Reardon,
Y. Mu, C. Lacefield, W. Yang, M. Ahrens, R. Bruno, T. M. Jessell, D. S. Peterka, R. Yuste,
and L. Paninski. Simultaneous denoising, deconvolution, and demixing of calcium imaging
data. Neuron, 89(2):285-299, 2016.

R. Prevedel, Y.-G. Yoon, M. Hoffmann, N. Pak, G. Wetzstein, S. Kato, T. Schrodel, R. Raskar,
M. Zimmer, E. S. Boyden, and A. Vaziri. Simultaneous whole-animal 3D imaging of neuronal
activity using light-field microscopy. Nature Methods, 11(7):727-730, 2014.

J. Qranfal, D. S. Hochbaum, and G. Tanoh. Experimental Analysis of the MRF Algorithm
for Segmentation of Noisy Medical Images. Algorithmic Operations Research, 6(2):79-90,
2011.

A. Rajaraman and J. D. Ullman. Mining of Massive Datasets. Cambridge University Press,
New York, NY, USA, 2011.

S. L. Resendez, J. H. Jennings, R. L. Ung, V. M. K. Namboodiri, Z. C. Zhou, J. M.
Otis, H. Nomura, J. A. McHenry, O. Kosyk, and G. D. Stuber. Visualization of cortical,
subcortical, and deep brain neural circuit dynamics during naturalistic mammalian behavior
with head-mounted microscopes and chronically implanted lenses. Nature Protocols, 11(3):
566, 2016.

M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences, 105(4):1118-1123,
2008.

R. K. Roul, S. R. Asthana, M. Shah, and D. Parikh. Spam web page detection using
combined content and link features. International Journal of Data Mining, Modelling and
Management, 8(3):209-222, 2016.

Y. U. Ryu, R. Chandrasekaran, and V. Jacob. Prognosis Using an Isotonic Prediction
Technique. Management Science, 50(6):777-785, 2004. doi: 10.1287/mnsc.1030.0137.

BIBLIOGRAPHY 80

H. Saito, M. Toyoda, M. Kitsuregawa, and K. Aihara. A large-scale study of link spam
detection by graph algorithms. In Proceedings of the 3rd International Workshop on
Adversarial Information Retrieval on the Web, pages 45-48. ACM, 2007.

H. Sayyadi and L. Getoor. Futurerank: Ranking scientific articles by predicting their future
pagerank. In Proceedings of the 2009 SIAM International Conference on Data Mining,
pages 533-544. STAM, 20009.

[. Schmidtmann, G. Hammer, M. Sariyar, and A. Gerhold-Ay. Evaluation des krebsregisters
nrw-schwerpunkt record linkage-abschlussbericht. Technical report, Institut fiir medizinische
Biometrie, Epidemiologie und Informatik, Universitatsmedizin Mainz, Mainz, Germany,
2009.

E. Sharon, M. Galun, D. Sharon, R. Basri, and A. Brandt. Hierarchy and adaptivity in
segmenting visual scenes. Nature, 442(7104):810-813, 2006.

J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888-905, 2000. doi: 10.1109/34.868688.

K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu. Fake news detection on social media: A data
mining perspective. ACM SIGKDD Explorations Newsletter, 19(1):22-36, 2017.

K. Shu, H. R. Bernard, and H. Liu. Studying fake news via network analysis: Detection and
mitigation. In Emerging Research Challenges and Opportunities in Computational Social
Network Analysis and Mining, pages 43—65. Springer, 2019.

Q. Spaen, R. Asin-Ach&, S. N. Chettih, M. Minderer, C. Harvey, and D. S. Hochbaum.
HNCcorr: A Novel Combinatorial Approach for Cell Identification in Calcium-Imaging
Movies. eNeuro, 6(2):ENEURO.0304-18.2019, 2019. doi: 10.1523/ENEURO.0304-18.2019.

D. Spielman and S. Teng. Spectral Sparsification of Graphs. SIAM Journal on Computing,
40(4):981-1025, 2011. doi: 10.1137/08074489X.

C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth. In vivo two-photon calcium imaging
of neuronal networks. Proceedings of the National Academy of Sciences, 100(12):7319-7324,
2003.

L. Theis, P. Berens, E. Froudarakis, J. Reimer, M. R. Rosén, T. Baden, T. Euler, A. S. Tolias,
and M. Bethge. Benchmarking spike rate inference in population calcium imaging. Neuron,
90(3):471-482, 2016.

P. Toérnberg. Echo chambers and viral misinformation: Modeling fake news as complex
contagion. PloS one, 13(9):0203958, 2018.

V. Tresp. A Bayesian Committee Machine. Neural Computation, 12(11):2719-2741, 2000.
doi: 10.1162/089976600300014908.

BIBLIOGRAPHY 81

[. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core Vector Machines: Fast SVM Training on
Very Large Data Sets. Journal of Machine Learning Research, 6(Apr):363-392, 2005.

J. T. Vogelstein, A. M. Packer, T. A. Machado, T. Sippy, B. Babadi, R. Yuste, and L. Paninski.
Fast nonnegative deconvolution for spike train inference from population calcium imaging.
Journal of Neurophysiology, 104(6):3691-3704, 2010.

U. Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395-416,
2007.

S. Webb, J. Caverlee, and C. Pu. Predicting web spam with HT'TP session information. In
Proceedings of the 17th ACM Conference on Information and Knowledge Management,
pages 339-348. ACM, 2008.

. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, San Francisco, 2nd ed. edition, 2005.

World Economic Forum. Global Risks Report 2013. Technical report, World Economic
Forum, Cologny/Geneva, Switzerland, 2013. OCLC: 936624248.

B. Wu and K. Chellapilla. Extracting link spam using biased random walks from spam
seed sets. In Proceedings of the 3rd International Workshop on Adversarial Information
Retrieval on the Web, pages 37-44. ACM, 2007.

B. Wu and B. D. Davison. Identifying link farm spam pages. In Special Interest Tracks and
Posters of the 1/th International Conference on World Wide Web, pages 820-829. ACM,
2005.

C. Xiao, D. M. Freeman, and T. Hwa. Detecting clusters of fake accounts in online social
networks. In Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security,
pages 91-101. ACM, 2015.

Y. T. Yang, B. Fishbain, D. S. Hochbaum, E. B. Norman, and E. Swanberg. The Supervised
Normalized Cut Method for Detecting, Classifying, and Identifying Special Nuclear Mate-
rials. INFORMS Journal on Computing, 26(1):45-58, 2013. doi: 10.1287/ijoc.1120.0546.

D. Zhou, C. J. Burges, and T. Tao. Transductive link spam detection. In Proceedings of the
3rd International Workshop on Adversarial Information Retrieval on the Web, pages 21-28.
ACM, 2007.

X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-Supervised Learning Using Gaussian Fields
and Harmonic Functions. In Proceedings of the 20th International Conference on Machine
Learning, pages 912-919, Washington, DC, USA, 2003. AAAIL

	Contents
	List of Figures
	List of Tables
	Introduction
	Models for Similarity-Based Machine Learning: Hochbaum's Normalized Cut and Markov Random Fields
	Sparse Computation for Mitigating the Quadratic Growth of Similarities
	Applications: Cell Identification in Neuroscience and Aberrant Agent Detection in Networks with Similarity-based Machine Learning
	Overview of this Dissertation

	Improved Methods for Sparse Computation: Geometric Algorithms and Sparse-reduced Computation
	Overview of Sparse Computation
	Geometric Algorithms for Sparse Computation
	Experimental Analysis of Geometric Algorithms for Sparse Computation
	Compression for Massively-Large Datasets: Sparse-Reduced Computation
	Experimental Analysis of Sparse-Reduced Computation
	Conclusions

	Cell Identification in Calcium-Imaging Movies with HNCcorr
	Hochbaum's Normalized Cut (HNC) Model
	A Description of the HNCcorr Algorithm
	Experimental Comparison of Cell Identification Algorithms
	Conclusions

	Detecting Aberrant Linking Behavior in Directed Networks with Markov Random Fields
	Preliminaries
	Markov Random Fields (MRF) Model
	Markov Random Fields Model for Detecting Aberrant Agents
	Performance Evaluation Metrics
	Experimental Setup
	Results
	Conclusions

	Concluding Remarks
	Bibliography

