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Assessment of scoring functions to rank the quality of 3D 
subtomogram clusters from cryo-electron tomography
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1Institute for Quantitative and Computational Biosciences, Department of Microbiology, 
Immunology, and Molecular Genetics, University of California Los Angeles, 520 Boyer Hall, Los 
Angeles, CA 90095.

2Quantitative and Computational Biology, Department of Biological Sciences, University of 
Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA.

3Department of Biological Sciences, Bridge Institute, Michelson Center for Convergent 
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Abstract

Cryo-electron tomography provides the opportunity for unsupervised discovery of endogenous 

complexes in situ. This process usually requires particle picking, clustering and alignment of 

subtomograms to produce an average structure of the complex. When applied to heterogeneous 

samples, template-free clustering and alignment of subtomograms can potentially lead to the 

discovery of structures for unknown endogenous complexes. However, such methods require 

scoring functions to measure and accurately rank the quality of aligned subtomogram clusters, 

which can be compromised by contaminations from misclassified complexes and alignment errors. 

Here, we provide the first study to assess the effectiveness of more than 15 scoring functions for 

evaluating the quality of subtomogram clusters, which differ in the amount of structural 

misalignments and contaminations due to misclassified complexes. We assessed both experimental 

and simulated subtomograms as ground truth data sets. Our analysis showed that the robustness of 

scoring functions varies largely. Most scores were sensitive to the signal-to-noise ratio of 

subtomograms and often required Gaussian filtering as preprocessing for improved performance. 

Two scoring functions, Spectral SNR-based Fourier Shell Correlation and Pearson Correlation in 

the Fourier domain with missing wedge correction, showed a robust ranking of subtomogram 

clusters without any preprocessing and irrespective of SNR levels of subtomograms. Of these two 
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scoring functions, Spectral SNR-based Fourier Shell Correlation was fastest to compute and is a 

better choice for handling large numbers of subtomograms. Our results provide a guidance for 

choosing an accurate scoring function for template-free approaches to detect complexes from 

heterogeneous samples.

Graphical Abstract

1. Introduction

Cryo-electron tomography (CryoET) has evolved as a promising tool to explore the world 

within a cell at molecular resolution (Beck and Baumeister, 2016; Oikonomou and Jensen, 

2017; Schur, 2019; Zhang, 2019). With the advancement and increased automation of 

CryoET, it has become easier to collect a vast number of tomograms in a short period of 

time. Thus, we also require automated methods for the efficient analysis of these 

tomograms. Over the last few years, various efforts have been made to extract relevant 

information from tomograms by semi-automated and fully-automated methods. These 

include use of neural-networks (Che et al., 2018; Chen et al., 2017; Yu and Frangakis, 2011), 

template-based detection (Beck et al., 2009; Böhm et al., 2000; Lebbink et al., 2007) and 

template-free pattern mining (Frazier et al., 2017; Martinez-Sanchez et al., 2020; Xu et al., 

2019, 2012, 2011). Template-based and neural-network-based methods are successful in 

detecting complexes in tomograms. However, they are limited to discover only those 

complexes for which structures are already known.

Template-free, unsupervised methods stand out as they are capable of identifying structures 

of unknown complexes in tomograms. We previously developed the Multi-Pattern Pursuit 

(MPP) (Xu et al., 2019), which allows large-scale template-free detection of macromolecular 

structures in tomograms of heterogeneous samples. The method performs unsupervised 

clustering of subtomograms into different structural classes and uses an iterative 

optimization process to select the best combination of alternative clustering results. The 

underlying structure is then retrieved by averaging the aligned subtomograms in each cluster. 

MPP, and all other methods based on unsupervised subtomogram clustering, require an 

effective scoring function for robust quality assessment of clusters and for filtering out 

unreliable results. Such a quality score can distinguish the homogeneous and well-aligned 

subtomogram clusters from contaminated and misaligned clusters.

A variety of scoring functions have been developed for image comparisons and cryo-

Electron Microscopy (cryoEM) density fitting (Vasishtan and Topf, 2011). These scoring 

functions measure how well the atomic structure of a complex fits into its electron density 

maps. Similarly, scoring functions have been used to compare the alignments between 3D 

electron microscopy volumes (Joseph et al., 2017). However, currently, not much attention 

has been devoted to scoring functions for assessing subtomogram alignments and the overall 
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quality of a subtomogram cluster, a set of aligned 3D subtomograms that likely contain the 

same underlying complex. Averaging these subtomograms then produces the structure of the 

complex. The quality of subtomogram clusters depends on alignment errors between 

subtomograms and whether or not all the subtomograms in a cluster contain the same 

underlying complex. These clusters of subtomograms could have been generated by 

supervised classification and alignment methods or from unsupervised (i.e., reference-free) 

clustering methods from cryo-electron tomograms of purified complexes, cell lysates or 

native cellular landscapes containing heterogeneous set of complexes.

In contrast to template-based methods, clusters from unsupervised methods cannot be 

assessed by comparison to known template structures. So, they must be evaluated by cross-

comparison of the similarity of aligned subtomograms. Here, we tested more than 15 scoring 

functions and compared their ability to rank the quality of subtomogram clusters without 

knowledge of template structures. The quality of a cluster is ranked higher when they; i) are 

homogenous in terms of their complex composition, and ii) constituent subtomograms are 

well-aligned to each other. Scoring functions were tested on sets of both simulated and 

experimental ground truth subtomograms. For simulated tomograms, we chose five 

complexes of varying size and shape from the Protein Data Bank (PDB) (Berman et al., 

2000) to realistically simulate subtomograms in various different orientations and at three 

different SNRs (0.001, 0.01, 0.1 - Section 2.1.1). For the test on experimental 

subtomograms, we used a set of ~800kDa GroEL14 and GroEL14/GroES7 subtomograms 

that have been used in other studies as quasi-standard in the field and a set of mammalian 

80S ribosome collected with mixed defocus values (Section 2.1.2).

2. Methods

2.1 Data preparation

2.1.1 Simulated data—As a test set, we used five protein complexes (Table 1) with 

varying sizes and shapes. Atomic structures of all the five complexes were converted into 

density maps using the pdb2vol program in the situs package (Wriggers et al., 1999) at 0.4 

nm voxel spacing and bandpass filtered at 2 nm. The process takes into consideration the 

varying number of electrons in different atom types and limits the density map to desired 

resolution (2 nm). We generated ground truth data sets following a previously established 

approach for the realistic simulation of the tomographic image reconstruction process (Beck 

et al., 2009; Förster et al., 2008; Nickell et al., 2005; Pei et al., 2016; Xu et al., 2019, 2012, 

2011). It allows the inclusion of noise, tomographic distortions due to missing wedge, and 

electron-optical factors such as Contrast Transfer Function (CTF) and Modulation Transfer 

Function (MTF). The density maps served as input for realistically simulating the cryo-

electron imaging process with a noise-factor-SNR (SNR: Signal-to-Noise Ratio) of 0.001, 

0.01, 0.1 and tilt angle range ±60°. Noise and CTF is added to simulated electron 

micrographs of each tilt projection. The noise-added and CTF distorted projections are then 

used in the back-propagation algorithm to reconstruct the final 3D subtomogram. The size of 

the box in real space is defined by the size of the tilt projection that confines the largest 

complex. Following a well-established procedure, subtomograms were simulated with voxel 

size = 0.4 nm, the spherical aberration = 2.2 mm, the defocus value = 7 μm, the voltage = 
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300 kV, the MTF corresponding to a realistic electron detector, defined as sinc(πω/2) where 

ω is the fraction of the Nyquist frequency. The mean intensity values of Fourier components 

for simulated subtomograms at different frequencies is very similar to the mean intensity of 

an experimental subtomogram as described in Section 2.1.2 (Supplementary Figure 1). 

Finally, we use a back-projection algorithm (Nickell et al., 2005) to generate a subtomogram 

from the individual 2D micrographs generated at the various tilt angles (Beck et al., 2009; 

Xu et al., 2011). For each protein complex, we generated 1000 subtomograms, each 

containing a randomly rotated complex. After simulation, the density values of each 

subtomogram were normalized to zero mean and unit variance.

We also generated two additional set of simulated subtomograms:

Defocus close to focus: Subtomograms were also simulated for all PDB IDs in the 

Table 1 at SNR = 0.001, voxel size = 0.4 nm, spherical aberration = 2.2 mm, voltage 

= 300kV but at defocus value of 2 μm, which is closer to the focus compared to 7 μm. 

This dataset was used for the assessment of subtomograms with defocus values closer 

to focus.

Variable defocus: Subtomograms were simulated for PDB IDs: 1FNT and 3DY4, at 

SNR = 0.001, voxel size = 0.4 nm, spherical aberration = 2.2 mm, voltage = 300kV 

but at five different defocus values (5 μm, 5.5 μm, 6 μm, 6.5 μm and 7 μm). This 

dataset was used for the assessment of subtomograms with variable defocus values.

Preferred angular distributions: Another additional dataset was simulated using 

complexes GroEL14 (PDB ID: 1KP8) and GroEL14/GroES7 (PDB ID: 1AON) for 

assessment of biased angular distributions. The subtomograms were simulated at 

SNR = 0.001, voxel size = 0.4 nm, spherical aberration = 2.2 mm, voltage = 300kV 

and defocus value = 5 μm, but instead of randomly rotating the complex before 

simulation, the rotation was restricted to maximum of 10 degrees for each Euler angle 

from the starting orientation. The starting orientation was aligned such that the 

cylindrical axis for both complexes was along the electron beam. This cause the cap 

region of GroEL14/GroES7 to be distorted due to the missing wedge region for all 

subtomograms.

2.1.2 Experimental Data—We used two sets of experimental subtomograms, one of 

which has previously been established as a benchmark set in various studies of subtomogram 

alignment and classification (Förster et al., 2008; Heumann et al., 2011; Hrabe et al., 2012; 

Scheres et al., 2009; Xu and Alber, 2012; Yu and Frangakis, 2011) and another is a recent 

dataset collected with state-of-the-art experimental setup (Khoshouei et al., 2017).

GroEL dataset:  Förster et al., (2008) collected 786 subtomograms, at voxel size 6Å, of the 

~800 kDa GroEL14 and GroEL14/GroES7 complexes (GroEL14: 214 subtomograms and 

GroEL14/GroES7: 572 subtomograms). Subtomograms were optimally aligned to a template 

by PyTom (Hrabe et al., 2012) using default parameters and imposed 7-fold symmetry. Out 

of 572 aligned GroEL14/GroES7 subtomograms, 500 were used to generate a primary cluster 

for computing quality scores. The primary GroEL14/GroES7 subtomogram cluster was 

contaminated, at varying levels, with GroEL14 subtomograms. Voxel densities of each 
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subtomogram were normalized to zero mean and unit variance. PDB structures of GroEL14 

and GroEL14/GroES7 are shown in Supplementary Figure 2.

Ribosome dataset:  The pre-aligned set of ~3800 subtomograms of 80S mammalian 

ribosomes (Khoshouei et al., 2017) were provided by the Förster laboratory. Subtomograms 

were extracted from several tomograms, imaged under varying defocus values and a voxel 

size of 2.62Å. To trim surrounding empty regions, subtomograms were cropped from 1923 

size to 1223 voxels. We ranked the aligned subtomograms based on their cross-correlation 

score with the subtomogram average and selected the top 500 subtomograms for our further 

cluster analysis. To create contaminations of ribosome clusters, we generated mirror images 

of the top 500 subtomograms along the x-y plane. The voxel density values of all 1000 

subtomograms were normalized to zero mean and unit variance. The PDB structure of 80S 

ribosome is shown in Supplementary Figure 2.

2.2 Generation of Subtomogram Clusters

A subtomogram cluster is a set of 3D subtomograms, which contains, with exception of 

contaminations, the same complex. These subtomograms may not be perfectly aligned 

(Section 2.2.1 and 2.2.2). Subtomogram clusters are frequently produced by supervised or 

unsupervised clustering methods to identify and align target subtomograms. We created a 

large set of different subtomogram clusters of varying quality. The subtomogram cluster 

quality depends on the level of misalignments, i.e., the amount of alignment errors for 

subtomograms in a cluster and the level of contamination, i.e., the number of subtomograms 

in a cluster that does not contain the target complex. Contaminations are the result of 

misclassifications or clustering errors, especially when heterogeneous samples are involved. 

We generated benchmark sets of simulated and experimental subtomograms at different 

levels of SNRs. In the following section, we define how misalignment and contamination 

errors were emulated for subtomogram clusters.

2.2.1 Misalignment—Consider cluster C c1 = Si
c1

i = 1
N

 of size N, where Si
c1 ∈ ℝ3 is a 

3D subtomogram of complex c1 in the original orientation as extracted from a tomogram. 

Say, ϕi, θi, ψi i = 1
N  represents the set of Euler rotational angles with which subtomograms in 

cluster C(c1) can be rotated to achieve perfect alignment. C0(c1) represents a perfectly 

aligned cluster with misalignment = 0:

C0 c1 = Rotϕi, θi, ψi Si
c1

i = 1
N

, where Rotϕi, θi, ψi denotes the rotation of the subtomogram 

Si
c1 using Euler angles (ϕi, θi, ψi).

To generate alignment errors in a subtomogram cluster, with misalignment = m, we rotated 

all the subtomograms in a cluster from their correctly aligned orientation with Euler angles 

(ϕi
m, θi

m, ψim) sampled from a normal distribution ℕ 0, m
3  with zero-mean and 

standard deviation = m
3 , i.e. ϕi

m, θi
m, ψim ∈ N 0, m

3 . At a standard deviation of m
3  approximately 

99.7% of sampled Euler angles are within the range [−m, m] degrees (Supplementary Figure 
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3). For example, a misalignment m = 27 means that subtomograms were rotated in each 

Euler direction with angles sampled from a normal distribution ℕ 0, 27
3 , which selects 

~99.7% angles between [− 27°, 27°].

So, Cm(c1) represents a cluster of subtomograms containing complex c1 with misalignment 

= m:

Cm c1 = Rotϕim, θim, ψim Rotϕi, θi, ψi Si
c1

i = 1
N

Equation 1

The rotational transformations are also applied to the missing-wedge mask of each 

subtomogram, and, Rotϕim, θim, ψim Rotϕi, θi, ψi Mi i = 1
N

 represents the set of missing-wedge 

masks corresponding to the subtomograms in the cluster Cm(c1), where Mi is a binary 

missing-wedge mask of subtomogram Si
c1.

A set of subtomogram clusters containing only complex c1, and misalignment m ∈ [0, 54], is 

represented as: Cm ∈ [0, 54](c1)

Here, we do not include shift misalignment, because it would have added another variable 

parameter, and would have dramatically increased the complexity of the study. Overall, the 

shift misalignment is easier to refine compared to rotational misalignment, because the 

rotation has a much larger search space for optimization.

2.2.2 Contamination—In both supervised classification and unsupervised clustering of 

subtomograms, complexes of different types but similar shapes or sizes may be falsely co-

assigned to the same cluster. To assess scoring functions for their ability to detect 

contamination, we generated clusters Cp(c1,c2) that mainly contain subtomograms of 

complex c1 and subtomograms of contaminant complex c2, of similar size or shape:

Cp c1, c2 = Si
c1

i = 1
N1

⊕ Sj
c2

j = 1
N2

Equation 2

where, ⊕ represents concatenation of two sets and Si
c1 and Si

c2 are subtomograms containing 

complex c1 and c2, respectively. N1 and N2 are the numbers of subtomograms for each 

complex. N1 + N2 = N (cluster size). p is the amount of contamination error, defined as the 

percentage of the total number of subtomograms in the cluster that contain contaminant 

complex c2, i.e., N2 = pN
100 .

A subtomogram cluster can have both alignment and contamination error. Cp
m c1, c2

represents a cluster of subtomograms containing complex c1, contaminated with complex c2 

with p contamination percentage, as well as having m degrees of misalignment error:
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Cp
m c1, c2 = Rotϕim, θim, ψim Rotϕi, θi, ψi Si

c1
i = 1
N1

⊕ Rotϕjm, θjm, ψjm Rotϕj, θj, ψj Sj
c2

j = 1
N2 Equation 3

A set of clusters having misalignment = m and different contamination error p, p ∈ [0, 40], 

is represented as Cp ∈ [0, 40]
m c1, c2 . We assessed scoring functions for their performance in 

ranking cluster quality with a set of clusters, containing varying levels of misalignments or 

contaminations or both. Clusters were generated using ten different pairs of complexes for 

simulated subtomograms (Table 1) and two pairs of complexes for experimental 

subtomograms.

2.2.3 Simulated benchmark set—For each of the five complexes, clusters were 

generated with misalignment values m ranging from [0, 54] degrees with a step size of 5.4. 

Also, subtomogram clusters for each complex were contaminated with another complex, 

with a contamination percentage p ranging from [0, 40] with a step size of 10. For each 

subtomogram cluster, we tested the assessment for contamination with two different 

contamination complexes. Moreover, all clusters were simulated for three different SNR = 

{0.001, 0.01 and 0.1} (Table 1 and Supplementary Figure 2). In total, we generated a 

benchmark set of 1650 simulated subtomogram clusters with varying quality in terms of 

misalignment, and level of contamination and SNR. Each cluster contained a total of 500 

subtomograms.

2.2.4 Experimental benchmark set—Subtomogram clusters were generated for 

experimental subtomograms of GroEL14/GroES7 and ribosomes using the same 

misalignment and contamination range as applied for simulated subtomograms. GroEL14/

GroES7 clusters were contaminated with GroEL14 and ribosome clusters were contaminated 

with subtomograms containing the mirrored image of each ribosome. In total, a benchmark 

set of 55 subtomogram clusters were generated for each experimental dataset. Each cluster 

contained a total of 500 subtomograms.

2.3 Voxel Regions

We define three different regions of voxels in a subtomogram for computing the individual 

scores (Figure 1).

Global: The global score is computed from all the voxels in the subtomogram (Figure 1).

Contoured scores: Global scores can be affected by voxels that are not occupying the 

target complex and largely represent noise. To reduce the impact of noise-dominant voxels, 

we define a contoured region using only voxels that are likely to occupy any of the two 

target complexes. This procedure will prioritize complex containing voxels when computing 

the scores, therefore reducing the contribution of noise. To define contoured region, we 

select all the voxels with density values higher than one-and-half times the standard 

deviation of all voxel densities (> 1.5 σ). The score between two subtomograms is then 
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calculated from the union of selected voxels in both subtomograms. A threshold of 1.5 σ 
gives the highest value of the Jaccard index between the segmented masks and the complex 

containing voxels in the subtomogram (Supplementary Figure 4). The Jaccard index 

measures the similarity of two regions as the number of voxels in the intersection of both 

voxel sets divided by the number of voxels in the union of both sets. The sigma value can be 

customized based on the application and prior testing. For our analysis sigma = 1.5 is a good 

choice.

Overlap: A threshold is applied as in the contoured score definition. The score between two 

aligned subtomograms is calculated from the intersection of selected voxels in both 

subtomograms, focusing only on the overlapping complex-containing region.

2.4 Scoring Functions

In this section, we define the scoring functions for quality assessment of subtomogram 

clusters. The density values of each subtomogram image are normalized to zero mean and 

unit variance.

2.4.1 SFSC: Spectral SNR-based Fourier Shell Correlation—SFSC measures the 

SNR from the variance in the voxel intensities at all spatial frequencies, as previously 

introduced in the MPP method (Xu et al., 2019). SFSC uses all the subtomograms in the 

cluster and considers missing-wedge masks, one of the major distortions in cryoET, due to a 

limited range of angles to capture tilt series.

Say cluster C of size n contains the set of subtomograms {S1, S2…Sn}, with real component 

of Fourier Transforms {F1, F2…Fn} and corresponding binary missing wedge masks {M1, 

M2…Mn}. The Spectral-Signal-to-Noise Ratio (Spectral-SNR or SSNR) ηr at frequency r is 

defined as:

ηr = ∫ ∥ ξ | − r | < ΔrM(ξ) |μ(ξ)|2

∫ ∥ ξ | − r | < Δrσ2(ξ)
Equation 4

where Δr = 1, ξ ∈ ℝ3 is location in Fourier space, M is sum of missing wedge masks:

M(ξ) = ∑iMi(ξ) Equation 5

μ(ξ) =
∑i Mi(ξ)Fi(ξ)

M(ξ)
Equation 6

and

σ2(ξ) =
∑i Mi(ξ)|Mi(ξ)Fi(ξ) − μ(ξ)|2

M(ξ) − 1
Equation 7

Given the ηr (i.e., SSNR, Eq. 4) at frequency r, ζr (i.e., FSC, Eq. 8) can be estimated as:
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ζr = ηr
2 + ηr

Equation 8

Then SFSC is defined as sum of FSC over all frequencies:

ζ = ∑rζr Equation 9

The higher the value of ζ  (i.e., SFSC, Eq. 9), the higher is quality of a subtomogram cluster.

The SFSC score is computed from the set of all individual subtomograms, while all other 

scores are calculated from pairwise comparisons of subtomograms in the same cluster.

2.4.2 gPC: Global Pearson Correlation—gPC is the global Pearson correlation score 

and uses all the voxels in real space for both subtomograms to calculate the Pearson-

correlation. The gPC between a pair of subtomograms (X, Y) is calculated as follows:

gPC(X, Y ) = cov(X, Y )
σXσY

=
∑i Xi − μX Y i − μY

∑i Xi − μX
2 ∑i Y i − μY

2 Equation 10

where Xi and Yi are density values for the ith voxel of subtomograms X and Y, respectively. 

μX and μY are mean density values over corresponding voxel region in each subtomogram.

Because each subtomogram is normalized to zero mean and unit variance (μX = μY = 0 and 

σX = σY = 1), gPC becomes directly proportional to the cross-correlation function (CCF).

gPC(X, Y ) =
∑iXiY i

N ∝ ∑i XiY i = CCF (X, Y ) Equation 11

The gPC score and all following scores are calculated by randomly picking 10% of all 

possible pairs of subtomograms in a cluster. The total score is then defined as the average 

over all the pairwise scores. We show separately that for the gPC and all following scores, a 

random selection of 10% of pairs is sufficient to capture the population mean by comparing 

10% and 50% of all possible pairs. Due to increased time complexity for computing 50% 

pairs (62375 pairs), we show this test for only one structure (PDB ID: 2GHO), contaminated 

with structures (PDB IDs: 1QO1, 2H12) at SNR = 0.01, misalignment = 21.6 degrees and 

contamination range [0, 30] percentage. Supplementary Table 1 shows the resulting scoring 

value for few scoring functions for 10% and 50% pairs. We observed that 10% of 

subtomogram pairs are sufficient to capture the same amount of information as 50% 

subtomogram pairs.

2.4.3 cPC: Contoured Pearson Correlation—cPC is calculated as defined in gPC. 

However, only the union of voxels in both subtomograms with density values larger than the 

threshold (Xi,Yi > 1.5 σ) are considered.
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2.4.4 oPC: Overlap Pearson Correlation—oPC is calculated as defined in gPC. 

However, only the intersection of voxels from both subtomograms with density values larger 

than the threshold (Xi,Yi > 1.5 σ) are considered.

2.4.5 FPC: Pearson correlation in Fourier space—We computed the Pearson 

correlation in the Fourier Space as well. Say F(X) and F(Y) are real components of Fourier 

Transforms of subtomogram X and Y respectively. Then Pearson Correlation in Fourier 

space is computed as:

FPC(X, Y ) =
∑i Fi(X) − μF (X) Fi(Y ) − μF (Y )

∑i Fi(X) − μF (X)
2 ∑i Fi(Y ) − μF (Y )

2 Equation 12

where Fi(X) and Fi(Y) are values at ith voxel of Fourier Transforms of subtomograms X and 

Y, respectively. μF(X) and μF(Y) are mean intensity values of voxels in Fourier Transforms.

2.4.6 FPCmw: Pearson correlation in Fourier space with missing wedge 
correction—We also calculated the Pearson correlation in Fourier space with missing 

wedge correction. The overlap missing wedge mask in Fourier’s space is defined as the 

intersection of missing wedge masks of both subtomograms. Say F(X) and F(Y) are real 

components of Fourier Transforms and M(X) and M(Y) are binary missing wedge masks of 

subtomogram X and Y respectively, then FPCmw score can be written as:

FPCmw(X, Y )
=

∑iMi(X)Mi(Y ) Fi(X) − μF (X) Fi(Y ) − μF (Y )

∑iMi(X)Mi(Y ) Fi(X) − μF (X)
2 ∑i Mi(X)Mi(Y ) Fi(Y ) − μF (Y )

2
Equation 13

where,

μF (X) =
∑i Mi(X)Mi(Y )Fi(X)

M
Equation 14

μF (X) =
∑i Mi(X)Mi(Y )Fi(Y )

M
Equation 15

M = ∑iMi(X)Mi(Y ) Equation 16

FPCmw (Xu and Alber, 2012) is similar to the constrained cross-correlation (CCC), which is 

widely used for subtomogram alignment (Förster et al., 2008). Both FPCmw and CCC are 

constrained cross-correlation functions, which consider missing wedge corrections—the 

only difference is that CCC is computed in real space (after missing wedge correction), 

rather than Fourier space (after missing wedge correction) for FPCmw. Therefore, FPCmw 

is faster as it does not require the computation of the inverse Fourier Transform. We show 

the close similarity of both scores for simulated subtomogram clusters Cp
m(1FNT , 1BXR) and 
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Cp
m(1FNT , 3DY 4) with m ∈ [0, 54] and p ∈ [0, 40] (Section 2.2.2) in Supplementary Figure 

5.

Overall, we have five variants of the Pearson correlation scores defined, i.e. gPC, cPC, oPC, 

FPC and FPCmw.

2.4.7 gMI: Global Mutual Information—Mutual information scores were previously 

used (i) to improve the alignment of class-averages in Single Particle Analysis (SPA) 

(Shatsky et al., 2009), (ii) to fit crystal structures in cryo-density maps and (iii) to assess 

structures determined by cryo-electron microscopy (Joseph et al., 2017; Vasishtan and Topf, 

2011). Here we define a mutual information score to calculate the quality of a subtomogram 

cluster. The density values of all voxels in the desired voxel region were divided into k 
number of bins. The number of bins k was defined following the Sturges rule (Sturges, 

1926) as:

k = int 1 + log2n Equation 17

where n is the total number of voxels.

Marginal entropies were then calculated for both the subtomograms X and Y as

HX = − ∑i = 1
kX pi * log2 pi Equation 18

HY = − ∑j = 1
kj pj * log2 pj Equation 19

where pi and pj are the probabilities of finding a voxel density value in ith and jth bins in 

subtomogram X and Y respectively. kX and kY are the number of bins into which 

subtomogram X and Y were divided.

pi

= Number of voxels in tℎe voxel region of subtomorgam Xwitℎ density value in itℎ bin 
 Total number of voxels in tℎe voxel region of subtomogram X ,

i ∈ 1, kX
Equation 20

Similarly, pj is defined for subtomogram Y with j ∈ [1, kY].

The joint entropy was computed as

HXY = − ∑i = 1
kX ∑j = 1

kY pij * log2 pij Equation 21

where, pij is the probability of finding the pair of bins i,j in the subtomogram pair. The joint 

entropy is minimum when there is no difference between subtomogram X and Y. Then gMI 

was calculated using all voxels in the subtomograms as:
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gMI(X, Y ) = HX + HY − HXY Equation 22

Also, if subtomograms X and Y are normalized to have zero means and unit standard 

deviations, HX and HY are approximately equal and constant for any pair of subtomograms 

containing the same structure and SNR. Therefore, mutual information, in that case, is 

inversely proportional to joint entropy.

2.4.8 cMI: Contoured mutual Information—cMI score is calculated as defined in 

gMI. However, only the union of voxels in both subtomograms with density values larger 

than the threshold (Xi,Yi > 1.5 σ) are considered.

2.4.9 oMI: Overlap mutual Information—oMI score is calculated as defined in gMI. 

However, only the intersection of voxels in both subtomograms with density values larger 

than the threshold (Xi,Yi > 1.5 σ) are considered. oMI has also been used before but called 

Local Mutual Information (Joseph et al., 2017).

2.4.10 NMI: Normal Mutual Information—We also calculated a normalized version of 

the mutual information sore. The NMI score is calculated as:

NMI(X, Y ) = HX + HY
HXY

Equation 23

where HX and HY as the marginal entropies calculated from subtomograms X and Y and 

HXY is the joint entropy. The statistical power of estimated probabilities decreases as the 

overlap between subtomograms decreases. But NMI (Studholme et al., 1999) make gMI 

more robust to overlap volume.

2.4.11 gNSD: Global Normalized Squared Deviation—Squared Deviation (SD) 

between two subtomograms is defined by the sum of squared difference between the density 

values of corresponding voxels in the two aligned subtomograms.

SD(X, Y ) = ∑i Xi − Y i
2

Equation 24

where Xi and Yi are voxel densities at ith voxel of subtomograms X and Y respectively. For 

global Squared Deviation (gSD), the score comes out to be directly proportional to cross 

correlation function.

gSD(X, Y ) = ∑iXi2 − 2XiYi + Yi2

= ∑iXi2 + Yi2 − 2∑iXiY i
= constant − 2CCF (X, Y )
∝ CCF (X, Y )

The gNSD score is then defined by min-max normalization of gSD scores of set of clusters 

under analysis and by a subtraction from 1 to define a score that increases with quality.
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gSD(X, Y ) = 1 − minmax normalized gLSF Equation 25

2.4.12 cNSD: Contoured Normalized Squared Deviation—The cSD score is 

calculated as

CSD =
∑i = 1

N Xi − Y i
2

N
Equation 26

where Xi and Yi are voxel densities at ith voxel in the contoured voxel region of 

subtomograms X and Y respectively and N is the total number of voxels in the contoured 

region.

In contrast to gNSD, only the union of voxels in both contoured subtomograms with density 

values larger than the threshold (Xi,Yi > 1.5 σ) are considered for cNSD.

2.4.13 oNSD: Overlap Normalized Squared Deviation—oNSD score is calculated 

as defined in cNSD. However, only the intersection of voxels in both subtomograms with 

density values larger than the threshold (Xi,Yi > 1.5 σ) are considered.

2.4.14 DSD: Difference Squared Deviation—The DSD score is similar to SD. 

However, instead of using density values directly, it uses the difference of density values 

between the pairs of corresponding voxels in the two subtomograms.

DSD(X, Y ) = ∑i, j Xi − Xj − Y i − Y j
2

Equation 27

where (i,j) is the pair of voxels, Xi, Xj, Yi, Yj are density values at voxel indices i and j for 

subtomograms X and Y. As the number of all possible voxel pairs can be very expensive to 

compute, we only used 10,000 randomly selected voxel pairs that have density values higher 

than a particular threshold. Here we chose that threshold to be the standard deviation of 

voxel densities in a subtomogram. Similar to SD, DSD also represents the difference 

between the subtomograms, so after min-max normalization of the score, we subtract it from 

1. DSD we mention throughout Results section is:

DSD = 1 − minmax normalized DLSF Equation 28

2.4.15 OS: Overlap Score—The overlap score is defined as the fraction of contoured 

voxel regions that are part of the intersection of both subtomograms.

OS(X, Y ) = voloverlap(X, Y )
min volcontoured(X), volcontoured(Y ) Equation 29

where volcontoured is the volume of contoured regions in a subtomogram and voloverlap(X, Y) 

is the volume for overlap regions in subtomograms X and Y (contour and overlap regions are 

defined as previously described).
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Table 2 summarizes the scoring functions compared in this study categorized based on 

different voxel regions used for computing the score value. Supplementary Table 2 

summarizes previously published literature for scoring functions in Table 2. The 

implementation of scoring functions is also available on GitHub (https://github.com/

alberlab/cryoET_ScoringFunctions).

2.5 Estimation of effective-SNR

We estimated the effective-SNR of subtomograms as previously described (Frank and Al-

Ali, 1975; Xu et al., 2019). By calculating effective-SNR levels for both experimental and 

simulated tomograms, we validated that SNR levels of simulated subtomograms are at a 

comparable range to those in experiment.

2.5.1 Simulated Data—At each SNR level, we sampled 10,000 pairs of aligned 

subtomograms for each of the five complexes. For each pair of subtomograms, we calculated 

the Pearson correlation of their voxel densities and then estimated the corresponding 

effective-SNR according to (Frank and Al-Ali, 1975):

effective−SNR =
∑p = 1

N cp
1 − cp

N
Equation 30

where, N is the number of pairs of aligned subtomograms and cp is the Pearson correlation 

between subtomograms in pair p. To estimate the effective-SNR for a given simulated SNR 

level, we average the effective-SNR for each of the five complexes. This procedure 

calculates an effective-SNR of ~0.002, ~0.01 and ~0.08 for subtomograms simulated at SNR 

levels of 0.001, 0.01 and 0.1, respectively (Supplementary Table 3).

We also tested the effective-SNR when only a subset of voxels is selected in real and Fourier 

space. We tested these three additional criteria: i) using only voxels of the actual complex in 

real-space, ii) using all frequencies in Fourier space, and iii) using only frequencies excluded 

from the missing-wedge mask in Fourier space. We show that using the complex containing 

voxels in real-space or considering missing wedge mask in Fourier space still estimates the 

SNR with the same order of magnitude (i.e., decimal range) as the simulated SNR 

(Supplementary Table 4).

2.5.2 Experimental Data—We also calculated the effective-SNR for experimental 

tomograms from 10,000 aligned subtomogram pairs. The effective-SNR for GroEL14/

GroES7 was ~0.115, for GroEL14 ~0.113 and for ribosomes ~0.0001 in real space and 

~0.0003 in Fourier space.

2.6 Gaussian Filtering of subtomograms

We also evaluated scoring functions when, as a preprocessing step, a Gaussian filter, with 

two kernel values (σ = 1 and σ = 2), is applied to subtomograms. Gaussian filtering in real-

space is equivalent to Gaussian low-pass filtering in Fourier space, and the filtered resolution 

can be directly computed from the standard deviation of the Gaussian function used for 

blurring the subtomogram (Supplementary Note 1). It removes high frequency components 
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and subsequently density variance from noise-dominated voxels, which improves the 

segmentation of contour and overlap mask segmentation in single subtomograms 

(Supplementary Figure 6). We used python package Scipy to filter the 3D subtomograms 

(Virtanen et al., 2020). The standard deviation of Gaussian filter used in real space directly 

relates to frequencies low bandpass filtered in Fourier space (Supplementary Note 1).

3. Results

The quality of a subtomogram cluster depends on various factors, including (i) subtomogram 

misalignments and (ii) cluster contaminations. Subtomogram misalignments (i.e., alignment 

errors) are non-optimal alignments of two subtomograms, which result from low accuracy of 

alignment programs, in particular for subtomograms of low resolution and with high noise 

levels. Cluster contaminations (i.e., assignment errors) occur when subtomograms with 

structures other than the target complex are classified into the same cluster. This can be the 

result of errors in classification programs due to subtomograms with low resolution and 

higher noise levels.

To assess each scoring function for correctly ranking the quality of subtomogram clusters 

based on misalignment and contamination errors we compute the Spearman’s rank 

correlation coefficient (ρ) between the predicted subtomogram cluster quality and the 

amount of actual error in the clusters. A Spearman’s correlation of ρ = 1 indicates a strictly 

monotonic behavior of the quality score so that the scoring function values decrease with 

increasing errors in the subtomogram clusters. The main criteria to categorize the scoring 

function as useful will be its ability to correctly rank the clusters in the order of their actual 

quality, i.e., a monotonic decrease in the determined cluster quality score will then agree 

with an increase in the amount of alignment or contamination errors.

3.1 Assessment against Misalignment

We first assess the scoring function performance when only alignment errors are introduced 

in clusters, i.e., contamination = 0 for perfectly homogeneous clusters. Each cluster contains 

a total of 500 subtomograms. We generated 11 clusters for each of the five benchmark 

complexes, and each sampled with an increasing range of misalignments from 0 to 54° (step 

size = 5.4 degrees, Section 2.2). Because the angles for misalignments are sampled 

randomly from a normal distribution, we repeated the process three times and averaged the 

scores over the three replicates.

Figure 2A shows average structures from subtomogram clusters with increasing 

misalignment levels and the performance of all scoring functions to rank the quality of 

clusters for an example complex (PDB ID: 1FNT, using subtomograms at SNR = 0.001, i.e., 

Cp = 0
m ∈ [0, 54](1FNT ) (Section 2.2.1). To allow comparison between scoring functions, scores 

were min-max normalized to the range [0, 1]. Also, to compute Spearman’s correlation (ρ), 

we ranked zero misalignment as the top rank among error amounts.

Supplementary Table 5 lists the Spearman’s correlations (ρ) for all scoring functions 

averaged over all benchmark complexes. The scoring functions differed greatly in their 

performance, with Spearman’s correlations ρ ranging from 1.0 to −0.93. Five scoring 
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functions, SFSC, gPC, gNSD, FPC and FPCmw (Section 2.4) stand out as they showed 

excellent performance with averaged Spearman’s correlations ρ > 0.95 over the entire 

benchmark set, indicating that clusters can be well ranked by their ground truth quality. We 

noticed that all scoring functions that depend on segmented subtomogram regions (i.e., 

contoured and overlap regions) did not perform well for subtomograms at such low SNR 

value (SNR = 0.001). That is because thresholding for selecting candidate voxel regions 

cannot always correctly identify the volume containing the actual structure of the complex 

(Supplementary Figure 6A). Preprocessing can improve the thresholding for segmenting 

regions of the actual target complex even for very low SNR subtomograms (Section 3.3). 

Global and Overlap Mutual Information failed to rank clusters with subtomograms at such 

high noise levels. Mutual Information is inversely proportional to the joint entropy of two 

subtomograms containing the same underlying structure (Section 2.4.7). If subtomograms 

were perfectly aligned, their joint entropy is lower compared to misaligned subtomograms, 

i.e., the Mutual Information is higher for aligned subtomograms. This holds true only when 

bins with voxel intensity values of the target complex have higher probabilities than those of 

other regions in the subtomogram. But at very high noise levels, probabilities are more 

widespread across intensity bins. The performance of the mutual information score will 

improve by increasing the SNR of subtomograms or by preprocessing individual 

subtomograms. The ρ values of gMI and oMI improved when subtomograms were Gaussian 

filtered or were generated at higher SNR (Sections 3.3, 3.5).

3.2 Assessment of Cluster Contamination

We then assessed scoring functions with respect to cluster contamination, which can result 

from assignment errors. Clusters of a benchmark complex were contaminated with 

subtomograms containing other structures (Section 2.2.2, Table 1). We generated 5 clusters 

per benchmark complex, which varied in the level of contamination ranging from 0 to 40%. 

We first assessed these clusters without containing any alignment errors. Figure 3 shows the 

cluster averages and depicts the min-max normalized scores for an example complex (PDB 

ID: 1FNT) contaminated with another complex (PDB ID: 1BXR), i.e., 

Cp ∈ [0, 40]
m = 0 (1FNT , 1BXR) (Eq. 3). Also, here, the scores SFSC, gPC, gNSD, FPC and 

FPCmw showed the best performance in predicting the quality of the contaminated clusters 

(Supplementary Table 6). Similar to the assessment against misalignments, most scoring 

functions that depend on segmented subtomogram regions and scores based on mutual 

information failed to rank the quality of clusters accurately.

3.3 Effect of Gaussian Filtering

Next, we tested if preprocessing of subtomograms with Gaussian filtering improves the 

performance of scoring functions, in particular for subtomograms with low SNR values. 

Gaussian filtering in real-space is equivalent to Gaussian low-pass filtering in Fourier space, 

which means damping higher frequencies to reduce the amount of noise. We tested Gaussian 

filtering with two different kernels (σ = 1 and 2, Section 2.6). Applying a Gaussian kernel 

enhanced the global structural features of the complex against background noise for 

subtomograms with low SNR of 0.001 (Supplementary Figure 6B). However, with an 

increase in σ, naturally, the structures also lose their high-resolution features. At very low 
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SNR (SNR = 0.001), Gaussian filtering improved the automatic thresholding of 

subtomograms to detect contoured and overlap regions (Supplementary Figure 6A). 

Gaussian filtering, therefore, improved the performances for some of the scoring functions 

(Table 3).

The scores gPC, gNSD, FPC and FPCmw, which performed well without applying 

Gaussian filtering, maintain their good performance. The scores cPC, oMI, cNSD, DSD and 

OS, which failed to rank the quality of subtomogram clusters without Gaussian filter 

preprocessing, now show sufficiently improved Spearman’s correlation with ρ > 0.95 for 

assessment against misalignment and ρ > 0.85 for assessment of cluster contamination 

(Table 3). Therefore, these scores can rank clusters in the desired order of quality based on 

subtomogram misalignments and cluster contamination. In general, scores based on Mutual 

Information (gMI, cMI) fail across all Gaussian kernel settings for both misalignment and 

contamination tests, except for the overlap based Mutual information score (oMI), which 

shows reasonable improvements when applying a Gaussian filter (Table 3). Some scores 

only perform well with a narrow window of Gaussian kernel value. For instance, oPC 
(overlap Pearson correlation) performs best using Gaussian kernels with an intermediate 

value (σ = 1) and lose their performance with larger kernel values (Table 3). This holds true 

for both misalignment and contamination tests. SFSC decreases in performance when 

applying a Gaussian kernel with relatively high σ values because SFSC measures the 

variance of voxel intensities between the constituent subtomograms of the cluster (Table 3). 

With an increase in σ, the variation in high-frequency structural features is lost. So, SFSC 
works well when subtomograms are not preprocessed using a Gaussian filter.

3.4 Varying Misalignment and Contamination at the same time

In our analysis so far, we tested scores separately either with respect to misalignments or 

contamination error. Now, we want to assess how scoring functions perform when 

misalignments and contaminations are introduced simultaneously. We assessed the 

performance by calculating the average Spearman’s correlation ρ for a given score across all 

ten target-contaminant pairs (each benchmark complex is tested with two different 

contaminant, Table 1 and Supplementary Figure 2). We first tested the scoring function’s 

ability to rank clusters with varying levels of misalignments at each level of contamination 

(from 0 to 40%). These tests were performed with subtomograms simulated with relatively 

low SNR level (SNR=0.001), i.e., Cp = 0
m ∈ [0, 54], Cp = 10

m ∈ [0, 54] … Cp = 40
m ∈ [0, 54] (see Section 2.2, Eq. 

3). The SFSC score showed excellent performance for ranking clusters against misalignment 

errors across all contamination levels (Figure 4A). Scoring functions based on global 

Pearson correlation (gPC), its Fourier-based variants with (FPCmw) and without missing 

wedge corrections (FPC), and global Normalized Squared Deviation (gNSD) also showed 

excellent performance against misalignments (with ρ > 0.95), except for the highest 

contamination level of 40% (Figure 4A). All other scoring functions, in comparison, 

perform very poorly. Also, some scoring functions (cPC, gMI, oMI, NMI and OS) had 

high negative correlations. However, the negative correlation is not consistent across all SNR 

levels and datasets (Section 3.5), which implies that these scoring functions are not reliable 

for estimating subtomogram cluster quality.
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Next, we assessed the scores for their ability to rank clusters with varying levels of 

contamination for each level of misalignment, ranging from 0 to 54 degrees (i.e., Cp ∈ [0, 40]
m = 0 , 

Cp ∈ [0, 40]
m = 5.4 … Cp ∈ [0, 40]

m = 54 , see Section 2.2, Eq. 3). Also here, SFSC, gPC, FPCmw, FPC and 

gNSD showed excellent performance to rank contamination across all levels of 

misalignments, except for the highest misalignment error of 54 degrees, at which FPC and 

FPCmw dropped performance below our threshold level of ρ = 0.85. All other scores 

performed very poorly across all misalignment ranges and, therefore, cannot rank correctly 

cluster quality (Figure 5A).

In practical applications, both assessment against misalignment and contamination will be 

useful. For example, if we have two clusters A and B, say, with different sets of 

subtomograms containing the same target complexes containing possibly different levels of 

contaminations, then we can first minimize alignment errors for clusters A and B 

independently, by finding alignments that produce a maximum score (Section 3.1). Then the 

score difference between cluster A and B will primarily be due to contamination, i.e., the 

cluster with the higher score is more homogeneous (Section 3.2).

Preprocessing with Gaussian filters: Preprocessing of subtomograms with Gaussian 

filters (σ= 2) improved the performance for those scoring functions that rely on segmented 

subtomograms. Particularly, cPC and oMI showed dramatic improvements with Gaussian 

filters (at σ = 2) for ranking misalignments across all levels of contamination even at 

SNR=0.001 (Supplementary Figure 7B). However, these scores performed much poorer for 

the ranking of contamination errors, especially when larger levels of misalignment errors 

were present (Supplementary Figure 7D). cNSD and OS scores performed better in their 

ability to rank clusters with varying levels of contamination only for lower levels of 

misalignment errors (Supplementary Figure 7D). Global scores based on Pearson 

correlations, in real and Fourier space, (gPC, FPC and FPCmw) retained their good 

performance with applied Gaussian filtering at high misalignment and contamination levels. 

Also, as seen earlier, SFSC’s performance decreased with increasing σ in Gaussian filtering, 

due to loss in voxel-density variations (Supplementary Figure 7). These observations 

confirm that SFSC scores work best without subtomogram preprocessing with Gaussian 

filters.

Average masked scoring functions: So far, contoured scoring functions (cMI, cNSD, 

cPC) considered target regions from the union of separately detected contour regions in each 

subtomogram. We also tested the performance of contoured scoring functions when the 

target regions were detected by the average of all subtomograms in the cluster. To do so, we 

selected the target region by defining a mask from the cluster average, instead of the density 

values of each subtomogram. We therefore introduced the contour average-masked scoring 

functions: i) average-masked Mutual Information (amMI), ii) average-masked Normalized 

Squared Deviation (amNSD), iii) average-masked Pearson Correlation (amPC), and iv) 

average-masked Constrained Cross-Correlation (amCCC). The amCCC is a widely used 

scoring function for subtomogram alignments. We tested the performance of all these 

additional scoring functions both against misalignment and contamination for simulated 

subtomograms at SNR = 0.001. We observed that the cluster average-mask scoring 
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functions, except amCCC performed poorly and below the required threshold for simulated 

subtomograms at SNR = 0.001 (Supplementary Figure 8). amCCC is the only scoring 

function among these four that have performed above the required threshold.

Assessment for subtomograms with defocus level close to focus: We repeat the 

analysis conducted for SNR = 0.001 and 7 μm defocus, but for defocus value of 2 μm, which 

is closer to focus value. We observed that SFSC performs far better than any other scoring 

function for smaller defocus value, both against misalignment (Supplementary Figure 9A) 

and contamination (Supplementary Figure 9B).

Assessment for subtomograms with variable defocus levels: When particles are 

extracted from different tomograms, it is possible that they were imaged with different 

defocus levels. These differences can affect the assessment of cluster quality. We, therefore, 

also tested the performance of scoring functions with subtomograms collected with different 

defocus levels, i.e., with subtomograms distorted with different CTF. We simulated sets of 

subtomograms for complex pair (1FNT, 3DY4), with 5 different defocus values ranging 

between 5 μm and 7 μm (Supplementary Figure 10AB, Section 2.1.1). Each cluster 

contained a mix of subtomograms simulated with different defocus. Scoring functions were 

then tested against cluster misalignment and contamination errors. We observed similar 

results to our analysis with subtomograms generated from a single defocus value. The same 

set of scoring functions (SFSC, gPC, FPC, FPCmw and gNSD) performed well and above 

the required threshold, while all others failed to provide robust quality ranking 

(Supplementary Figure 10CD). Also, out of the four average-masked scoring functions only 

amCCC showed good performance.

3.5 Assessment against SNR

Signal-to-Noise-Ratio (SNR) is one of the important factors that affect the performance of 

scoring functions. So, we simulated subtomograms at three different SNRs [0.001, 0.01 and 

0.1]. For these simulated subtomograms, we also computed the effective-SNR as described 

previously (Xu et al., 2019). The effective-SNR levels (for target SNR 0.001, 0.01 and 0.1) 

were 0.002, 0.01 and 0.08, respectively (Section 2.5.1), which indicates that the simulation 

process adds the required amount of noise to the subtomograms. At low SNR levels 

(SNR=0.001), only 5 out of 15 scoring functions were capable to rank clusters based on 

misalignment and contamination errors (Figure 4A, 5A). With increasing SNR levels, we 

observed improved performances even without Gaussian filtering, for those scoring 

functions that rely on threshold-based segmentation of contoured and overlap voxel regions. 

At the highest SNR = 0.1, almost all scoring functions (SFSC, gPC, cPC, FPC, FPCmw, 

oMI, gNSD, cNSD, DSD and OS) showed excellent performance and were all equally 

competent to distinguish the amount of misalignment in the clusters across all contamination 

levels (Figure 4C). However, for the ranking of contamination levels, only SFSC, gPC, 

FPC, FPCmw and gNSD performed above the threshold, except for very high misalignment 

levels, for which SFSC’s performance dropped below the threshold to rank cluster 

contamination (Figure 5BC). oPC, cMI and oNSD still performed very poorly across all 

contamination and error levels (Figure 5C).
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As expected, gMI, oMI and NMI scores, which are based on mutual information, increased 

in performance with increasing SNR (Figure 4). However, at intermediate and low SNR, all 

three scores still failed to rank clusters reliably. At the highest SNR=0.1, only the oMI score 

reached an acceptable Spearman’s correlation ρ > 0.95 threshold for ranking misalignments 

across all levels of contamination (Figure 4C). gMI, oMI and NMI were able to rank 

clusters based on contamination errors only if low levels of misalignment errors are present 

(Figure 5C). The cMI score failed to rank clusters even at the highest SNR levels. We also 

observed that the Overlap score (OS), performed well at the highest SNR level and ranked 

well misalignments across all contamination levels (Figure 4C). With an improved signal 

component in the subtomograms, the thresholding for selecting accurate overlap voxel 

regions improves. So, misalignment among subtomograms were easily recognized by the 

Overlap score (OS). Also, our complexes have non-spherical shapes, and complexes with a 

more spherical distribution of electron density will remain indistinguishable for overlap 

scores across different alignment errors. However, contaminations can only be ranked by the 

OS score when relatively low levels of misalignment errors are present (Figure 5BC).

The SFSC, gPC, FPC, FPCmw and gNSD scores still outperformed all other scoring 

functions even at high SNR levels (Figure 4 and Figure 5). Gaussian filtering with σ = 2 for 

subtomograms at SNR = 0.1, improved the Spearman’s correlation against contamination for 

many scores but only cPC and oPC showed performance above our cut-off of ρ > 0.85.

3.6 Assessment of biased angular distributions

It is possible that complexes have a preferred orientation in the sample, leading to non-

uniform angular distributions of complexes with respect to the tomographic tilt axis. Such 

behavior can lead to undersampling of structure factors in missing wedge regions that are 

not sampled by any subtomograms (Supplementary Figure 11A). To study the effect of 

biased angular distributions, we simulated subtomograms of GroEL14 and GroEL14/GroES7 

complexes with orientations sampled from a biased, instead of a uniform, distribution—the 

orientations were restricted to rotations of maximum 10 degrees from the perfectly aligned 

position (Section 2.1.1).

Almost all scoring functions, except cPC, gMI, oMI, NMI and OS, performed very well for 

detecting misalignment errors across all contamination levels, despite the biased angular 

distributions of the samples (Supplementary Figure 11B). However, ranking contamination 

levels with biased angular distributions is more challenging for this particular complex. The 

most distinct differences between GroEL14 and GroEL14/GroES7 structures (at the cap 

region) were affected most by the under sampled structure factors due to a preferred 

orientation of the missing-wedge region. Despite these challenges, SFSC, gPC, gNSD, 

FPC, FPCmw and amCCC performed well for ranking contamination levels, but only for 

clusters with relatively low misalignment errors (Supplementary Figure 11C).

3.7 Assessment for Experimental Subtomograms

We further assessed the scoring functions with experimental subtomograms, namely clusters 

of GroEL14/GroES7 (Förster et al., 2008), contaminated with GroEL14 as well as clusters of 

ribosomes contaminated with mirror-imaged subtomograms of ribosomes (Section 2.1.2). As 

Singla et al. Page 20

J Struct Biol. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



it is challenging to know the exact SNR of experimental subtomograms, we estimated the 

effective-SNR of all subtomograms following a procedure previously described in (Xu et al., 

2019). The aligned experimental subtomograms have an effective-SNR of ~0.11 for the 

GroEL dataset and ~0.0001 for the ribosomal dataset (Section 2.5, Eq. 30). Notably, the 

GroEL14/GroES7 complexes showed also a restricted angular distribution (i.e., a preferred 

orientation with respect to the tilt axes,) evident by the missing region in the averaged 

missing-wedge mask of aligned subtomograms (Supplementary Figure 11A).

Experimental GroEL dataset: All scoring functions, except oNSD, performed well for 

ranking misalignments in experimental subtomograms across all contamination levels, 

improved from performance seen in simulated subtomograms (at SNR = 0.1), which also 

showed a poor performance of oNSD (Figure 6A). The ranking of clusters based on 

contamination (across different levels of misalignments) was more challenging, again 

similar to the results observed for simulated subtomograms. gPC, FPC, gMI, oMI and 

gNSD ranked the contamination of clusters well, but only for clusters with relatively low 

misalignment errors and failed with increasing levels of misalignments. This behavior was 

similar to the assessment of biased angular distributions using simulated subtomograms in 

Section 3.6.

Ribosomal dataset: We observed that SFSC, cMI, cNSD, oNSD and DSD rank clusters 

well against misalignment (Figure 6B). However, when considering cluster contamination, 

SFSC was the only score that could robustly rank clusters in increasing order of 

contamination, but even then, only for clusters with lower misalignment errors (Figure 6D). 

We also tested an additional ‘cluster average-masked constrained cross-correlation’ 

(amCCC) scoring function. amCCC performed below required threshold against both 

misalignment and contamination.

3.8 Assessment with respect to cluster Size

We also tested performance of scoring functions for different cluster sizes. Tests were 

performed for simulated subtomograms (complexes 1FNT and 3DY4 at misalignment = 12) 

at two different contamination error levels (p=0 and p=10). With increasing cluster size 

SFSC scores increase (i.e., indicating better quality) for clusters at the same error level. 

SFSC is based on the spectral signal-to-noise ratio, which improves with a larger number of 

subtomograms at the same error level. All other scoring functions, based on pairwise 

subtomogram comparisons, maintain score values with increasing cluster size at similar 

error levels (except for small variations due to random sampling of subtomogram pairs) 

(Supplementary Figure 12). At comparable error level, a cluster with a larger number of 

particles will naturally produce an average density map with a higher resolution. And so, for 

comparable cluster quality, the larger clusters should preferentially be selected. We also note 

that for some scoring functions (gPC, FPC, FPCmw and gNSD) score values for clusters at 

lower contamination level are always higher than those for clusters with higher 

contamination, irrespective of cluster sizes (Supplementary Figure 12).
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3.9 Time Complexity

The time complexity of scoring functions varies based on the type of computations required. 

Fourier Space-based scores (SFSC, FPC and FPCmw) require computing the Fourier 

Transform of each subtomogram, whereas all the mutual information variants need to bin the 

voxel densities first. The time complexity reported here is calculated on a single-core 

machine with all 500 subtomograms and 500 corresponding missing-wedge regions loaded 

in the memory. I/O operations are, therefore, not included in the time complexity 

measurements. Gaussian filtering, or any other preprocessing step, increases the time 

complexity further. Table 4 shows the time required to compute each score, without 

Gaussian filtering, for a cluster with 500 subtomograms. SFSC shows the best 

computational efficiency and is computationally more efficient by orders of magnitudes 

compared to almost all other scores. Also, SFSC scales linearly with the cluster size and all 

other scores scale quadratically, which makes SFSC computationally favorable. gPC and 

gNSD are linearly proportional to one another and, without Gaussian filtering, produce 

similar performance in ranking the cluster quality. Because gNSD takes only one-fifth of the 

time required by gPC, gNSD is a better choice than gPC for increasing computational 

efficiency. Calculations of all scores are parallelizable on multi-core machines, including the 

SFSC score (Xu et al., 2019).

4. Discussions

We compared more than fifteen scoring functions to test their ability to rank the quality of 

subtomogram clusters, which can vary in the amount of misalignment errors—non-optimal 

alignments of subtomograms—and contaminations errors—false assignments of non-target 

complexes to the subtomogram clusters. Such clusters can readily be generated, by 

unsupervised clustering methods, from tomograms, containing a heterogeneous set of 

complexes. A scoring function, if applicable as accurate similarity metric, will facilitate such 

clustering efforts. An accurate, well-performing, scoring function should be able to rank or 

distinguish clusters in their order of quality, according to the amount of misalignment and 

contamination errors. Here, we assessed a variety of scoring functions for their ability to act 

as accurate similarity metrics, using simulated subtomograms and experimental datasets over 

a wide range of SNR levels.

Overall, we observe a large variation in the performance of scoring functions. Spectral 
SNR-based Fourier Shell Correlation (SFSC) showed the best performance to rank 

alignment as well as contamination errors across all conditions without the need for 

subtomogram preprocessing. Pearson correlation in Fourier space with missing wedge 
constraint (FPCmw) was also a robust scoring function performing well across all datasets. 

The FPCmw score is similar to the constrained cross-correlation score (CCC) (a commonly 

used score in many alignment methods), except that it is directly calculated in Fourier Space, 

and therefore saves considerable computation time, because it does not need to compute the 

inverse Fourier Transform thousand to millions of times for each cluster evaluation. It is 

important to note, that both SFSC and FPCmw utilize missing wedge information (Section 

2.4.1 and 2.4.6), which gives these scores an advantage by constricting their computation to 

only valid, rather than unreliable, frequency regions. SFSC showed several other 
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advantages. Its computation was the fastest, in some cases by several orders of magnitudes, 

among all the scoring functions. SFSC is calculated from all subtomograms in the cluster 

and does not require, unlike all other scoring functions, computation of scores for randomly 

selected pairs of subtomograms. Therefore, the SFSC score is free from potential biases in 

cluster quality assessment, introduced by the limited sampling of randomly selected 

subtomogram pairs in large clusters. Moreover, SFSC performs well for subtomograms with 

low SNR levels, even without Gaussian blurring of subtomogram.

Pearson correlation scores that are based on contoured and overlap voxel regions (cPC, 

oPC) fail for subtomograms at low SNR levels, in particular for ranking clusters based on 

contaminations when larger levels of misalignments are present. Preprocessing with 

Gaussian filtering (Gaussian low-pass filtering) can improve their performance, but not to a 

sufficient level for robustly ranking these clusters.

Scores based on mutual information are highly sensitive to SNR levels and fail to rank 

clusters at low SNR levels. Among all mutual information-based scores, only the overlap 
Mutual Information (oMI) performs above our threshold (ρ > 0.95) for ranking 

misalignments, but only at the highest SNR level of SNR = 0.1 or after Gaussian filtering 

with σ = 2 for simulated subtomograms with lower SNR. In previous studies (Joseph et al., 

2017; Vasishtan and Topf, 2011), mutual information-based scores performed much better 

when applied to the ranking of atomic structures fitted into density maps from cryo-electron 

microscopy. This is because the 3D volumes used in previous studies have density values 

concentrated on the target complex regions, i.e., almost no noise component in the 3D-EM 

volumes. The probability of density values, used by the mutual information scores, are only 

accurately reproduced without high noise levels. When high noise levels and missing wedge 

effects are present, mutual information scores are only accurate when the score calculation is 

restricted to the overlap regions, which ensures density values are considered only from 

voxels of the target complex. This is only reliably possible either at high SNR level or after 

Gaussian filtering. NMI was able to rank the experimental subtomograms only for 

subtomograms with relatively high SNR levels.

We also conclude that preprocessing of subtomograms with Gaussian low-pass filters 

improves the performance of some scoring functions that depend on contoured and overlap 

voxel regions and decreases the performance of scores like SFSC that are dependent on the 

global variation of voxel intensities. Applying Gaussian filters to all subtomograms adds 

further to the time complexity. Moreover, scoring functions like oPC perform well only in a 

certain window of Gaussian filtering, which introduces uncertainty in determining the 

optimal σ value when performing a quality assessment of subtomogram clusters. Using 

scores that perform well without Gaussian filtering seems to be a better, more robust, choice.

Conclusion

Scoring functions, as metrics of subtomogram similarities, are of fundamental importance to 

assess the quality of subtomogram alignments, and subsequently relevant to maximize the 

accuracy of subtomogram classifications and averaging to determine structures of 

macromolecular structures. Here, we perform a comprehensive analysis of strengths and 
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weaknesses for a series of relevant scoring functions, commonly used as image similarity 

metrics in the image analysis field. This comparison will be highly relevant in the field of 

subtomogram averaging and complex detection from heterogeneous samples. Our analysis 

narrows down a set of scoring functions for accurate detection of cluster quality. These 

scoring functions vary in their performance, depending on the specific context and goal of 

the problem statement. We believe the analysis done in this paper, will help users to choose a 

relevant function for their problems, as we move towards unsupervised methods in cryo-

electron tomography. Overall, the SFSC and FPCmw scores have the most robust 

performance to assess the quality of subtomogram clusters over a large range of conditions. 

Accurate assessment of clusters opens up new, currently unexplored, avenues of cluster 

optimization, for instance, through ensemble methods, which leverage multiple 

complementary alignment methods to identify clusters of highest quality.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Scoring functions to assess the quality of CryoET 3D subtomogram clusters

• Assessment for alignment errors and contamination from other complexes in 

a cluster

• SFSC is most robust to rank clusters based on alignment and contamination 

errors
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Figure 1: Voxel regions.
Schematic representation of global, contoured and overlap regions (highlighted in red) used 

for computing scores between two subtomograms.
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Figure 2: Assessment against misalignment for example complex 1FNT.
A) Averages of subtomogram clusters containing complex 1FNT. Clusters have zero 

contamination and vary in misalignment error increasing from 0 (Far left) to 54 degrees (Far 

right). B) Line plots showing min-max normalized score values on y-axis varying with 

misalignment on x-axis for clusters constituting 1FNT subtomograms. Legend in each 

subplot mentions the scoring function and its performance in Spearman’s correlation to rank 

clusters based on misalignment. Scores that have Spearman’s correlation above the cutoff of 

0.95 are outlined with red line.
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Figure 3: Assessment for cluster contamination for example complex 1FNT.
A) Averages of subtomogram clusters containing complex 1FNT with contamination of 

complex 1BXR. Clusters have no misalignment error but vary in contamination percentage, 

p ∈ [0, 40], with contamination levels increasing from 0 (Far left) to 40% (Far right). B) 
Line plots shows min-max normalized score values on y-axis varying with contamination on 

x-axis for clusters constituting target complex (PDB ID: 1FNT) and contaminated with 

contaminant complex (PDB ID: 1BXR). Legend in each subplot mentions the scoring 

function and its performance in Spearman’s correlation to rank clusters based on 

contamination. Because we have only five sample points to compute ρ, we lower the 

threshold and select those functions as well-performing that have ρ > 0.85. Scores that have 

Spearman’s correlation above the cutoff of 0.85 are outlined with red line.
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Figure 4: Assessment against Misalignment at different contamination levels.
Spearman’s correlation ρ (y-axis) of scoring functions (x-axis) on simulated subtomograms 

without Gaussian filtering. Each panel is a scatter plot of Spearman’s correlation (ρ) of 

scoring functions vs. misalignment for clusters at different contamination levels, i.e., 

Cp = 0
m ∈ [0, 54], Cp = 10

m ∈ [0, 54] … Cp = 40
m ∈ [0, 54] (Section 2.2, Eq. 3). Clusters generated with the target 

complex can be contaminated with other complexes (Table 1, Section 2.2.2). So, each point 

is average ρ across all the ten target-contaminant complex pairs, except for contamination = 

0, where it is averaged over only five target complexes. Red dashed line shows a cutoff value 

of 0.95. Subtomograms simulated at different SNR levels are shown in separate panels: (A) 
SNR = 0.001 (B) SNR=0.01 (C) SNR = 0.1.
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Figure 5: Assessment of cluster Contamination at different misalignment levels.
Spearman’s correlation ρ (y-axis) of scoring functions (x-axis) on simulated subtomograms 

without Gaussian filtering. Each panel is a scatter plot of Spearman’s correlation (ρ) of 

scoring functions vs. contamination for clusters with different misalignment errors, i.e., 

Cp ∈ [0, 40]
m = 0 , Cp ∈ [0, 40]

m = 5.4 … Cp ∈ [0, 40]
m = 54  (Section 2.2, Eq. 3). Clusters generated with the target 

complex and contaminated with other complexes can still have a varying amount of 

misalignment within the subtomograms. Each point is average ρ across all the ten target-

contaminant complex pairs. Red dashed line shows a cutoff value of 0.85. Subtomograms 

simulated at different SNR levels are shown in separate panels: (A) SNR = 0.001 (B) 
SNR=0.01 (C) SNR = 0.1.
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Figure 6: Assessment on experimental subtomograms:
Scatter plot showing Spearman’s correlation (ρ) (y-axis) of scoring functions (x-axis) on 

experimental subtomograms without Gaussian filtering. Each scatter point is a ρ value. (A, 
B) Spearman’s correlation of Scoring functions vs. Misalignment at different contamination 

levels. Red dashed line shows threshold value 0.95 (A: GroEL, B: Ribosomal). (C, D) 
Spearman’s correlation of Scoring functions vs. Contamination at different misalignment 

levels. Red dashed line shows threshold value 0.85 (C: GroEL, D: Ribosomal). GroEL14/

GroES7, subtomogram clusters were contaminated with GroEL14 subtomograms and 

ribosome subtomogram clusters were contaminated with mirrored subtomograms of 

ribosomes.
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Table 1:
Complexes for simulated studies.

PDB IDs of complexes used to generate clusters. First column shows PDB IDs of the target complex in the 

cluster and second and third column contains PDB ID of complexes with which target complex is 

contaminated with. The structures of these PDB IDs are shown in Supplementary Figure 2.

Target complex PDB ID Contaminant complex PDB IDs

1F1B 2BO9 1A1S

1FNT 1BXR 3DY4

2GHO 1QO1 2H12

2GLS 1KP8 1VPX

2REC 1VPX 1VRG

J Struct Biol. Author manuscript; available in PMC 2022 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Singla et al. Page 35

Table 2:
Scoring Functions.

Acronyms of all the scoring functions and their variations based on voxel regions used for computing scores. 

Scoring functions marked with * are only discussed in section 3.4, 3.6 and 3.7.

Scoring Function Global Contoured Overlap Average-masked Significant 
Voxels

Spectral SNR-based 
Fourier Shell 
Correlation

SFSC (Xu et al., 2019)

Pearson Correlation
gPC
FPC

FPCmw (Xu and Alber, 2012)
cPC oPC amPC*

Mutual Information gMI
NMI (Joseph et al., 2017) cMI

oMI (Joseph et 
al., 2017; 

Shatsky et al., 
2009)

amMI*

Squared Deviation gNSD cNSD oNSD amNSD* DSD (Joseph et 
al., 2017)

Overlap Score OS

Constrained cross-
correlation

CCC* (Castaño-Díez et al., 
2012; Himes and Zhang, 2018; 

Hrabe et al., 2012)

amCCC* (Castaño-
Díez et al., 2012; 
Himes and Zhang, 
2018; Hrabe et al., 

2012)
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Table 3:
Effect of Gaussian Filtering:

Column 2–4: Spearman’s correlation (ρ) of Scoring functions vs. Misalignment for homogeneous clusters 

(i.e., contamination = 0). Column 5–7: Spearman’s correlation (ρ) of Scoring functions vs. Contamination for 

perfectly aligned clusters (i.e., misalignment = 0). ρ values are averaged over all the 10 target-contaminant 

complex pairs (Table 1). Cells with bold text shows average ρ values that are above the cut-off, average ρ > 

0.95 against misalignment and average ρ > 0.85 against contamination. All values of ρ are rounded to 2 

decimal places. Subtomograms were simulated at SNR = 0.001 and Gaussian filtered with σ = 1 and 2.

Scoring 
Functions

Against Misalignment Against Contamination

No Gaussian 
filtering

Gaussian kernel 
σ = 1

Gaussian kernel 
σ = 2

No Gaussian 
filtering

Gaussian kernel 
σ = 1

Gaussian kernel 
σ = 2

SFSC 0.99 0.98 0.55 0.94 0.92 0.39

gPC 0.99 0.99 1.00 1.00 1.00 1.00

cPC −0.58 0.99 0.99 0.62 0.97 0.93

oPC 0.66 0.95 0.07 0.33 0.50 0.38

FPC 0.99 1.00 1.00 1.00 1.00 1.00

FPCmw 1.00 1.00 1.00 0.99 1.00 1.00

gMI −0.82 −0.77 0.76 0.18 0.39 0.78

cMI 0.55 −0.03 0.01 −0.22 −0.46 0.11

oMI −0.73 0.95 1.00 0.42 0.97 0.92

NMI −0.82 −0.75 0.72 0.16 0.44 0.86

gNSD 0.99 0.95 0.99 1.00 0.84 0.95

cNSD 0.82 0.97 0.98 −0.09 0.76 0.87

oNSD 0.71 −0.79 −0.18 −0.17 −0.47 −0.10

DSD 0.79 0.91 0.97 −0.19 0.39 0.86

OS −0.67 0.97 1.00 0.51 0.97 0.93
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Table 4:
Time complexity:

Time required to compute score values on cluster size of 500 subtomograms and with subtomogram and mask 

of size 913 voxels. Time was computed without Gaussian filtering, on single core computer and with all the 

files already loaded in the memory.

Score Time (in seconds)

SFSC 28.70

gPC 261.84

cPC 497.96

oPC 426.82

FPC 1047.05

FPCmw 985.62

gMI 1353.70

cMI 1584.96

oMI 1689.41

NMI 1369.82

gNSD 52.91

cNSD 476.84

oNSD 408.29

DSD 13190.03

OS 380.24
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