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Spatially Dependent Multiple Testing Under Model 
Misspecification, With Application to Detection of Anthropogenic 
Influence on Extreme Climate Events

Mark D. Risser,Christopher J. Paciorek &Dáithí A. Stone

Abstract

The Weather Risk Attribution Forecast (WRAF) is a forecasting tool that uses 
output from global climate models to make simultaneous attribution 
statements about whether and how greenhouse gas emissions have 
contributed to extreme weather across the globe. However, in conducting a 
large number of simultaneous hypothesis tests, the WRAF is prone to 
identifying false “discoveries.” A common technique for addressing this 
multiple testing problem is to adjust the procedure in a way that controls the
proportion of true null hypotheses that are incorrectly rejected, or the false 
discovery rate (FDR). Unfortunately, generic FDR procedures suffer from low 
power when the hypotheses are dependent, and techniques designed to 
account for dependence are sensitive to misspecification of the underlying 
statistical model. In this article, we develop a Bayesian decision-theoretical 
approach for dependent multiple testing and a nonparametric hierarchical 
statistical model that flexibly controls false discovery and is robust to model 
misspecification. We illustrate the robustness of our procedure to model 
error with a simulation study, using a framework that accounts for generic 
spatial dependence and allows the practitioner to flexibly specify the 
decision criteria. Finally, we apply our procedure to several seasonal 
forecasts and discuss implementation for the WRAF workflow. 
Supplementary materials for this article, including a standardized description
of the materials available for reproducing the work, are available as an 
online supplement.

Keywords: Bayesian nonparametrics, Climate models, Decision theory, 
Empirical orthogonal functions, Event attribution, False discovery rate, 
Generalized double Pareto

1. Introduction

Event attribution (EA) is a field of study that seeks to understand and 
describe the influence of greenhouse gas emissions and other human 
activities on extreme weather (Stott et al. 2013; National Academies of 
Sciences and Medicine 2016). The increasing interest in this field arises from 
the realization that a major fraction of past, current, and future climate 
impacts and climate change-related impacts result from the occurrence of 
extreme weather (Arent et al. 2014; Smith et al. 2014). Risk-based EA 
studies quantify the effect of greenhouse gas (GHG) emissions and other 
anthropogenic factors on weather by comparing two climate scenarios: a 
factual real-world scenario (the “world as it is”) and a counterfactual, 
nonanthropogenic world (the “world as it might have been”). Then, using a 
probabilistic framework (Allen 2003; Stone and Allen 2005; Hansen et al. 



2014), a risk-based EA study compares the probabilities of predefined 
unusual weather in the two scenarios and estimates how much more or less 
likely extreme events are in the anthropogenically influenced world than 
they would have been otherwise (note: here and throughout we mean “risk” 
in the sense of epidemiological or relative risk, not statistical risk). Typically, 
the probabilities for each of these scenarios are estimated from simulations 
of climate models.

Risk-based EA studies can either be targeted or systematic in their approach.
Targeted studies examine one event (or a small number of events), studying 
in detail the meteorological mechanisms involved in the event and how the 
anthropogenic influence is transmitted through them, and are generally 
reactive in the sense that they are only conducted for an event that has 
actually occurred (e.g., Stott, Stone, and Allen 2004; Pall et al. 2011). 
Systematic studies cover a much larger number of events using an identical 
method for all events, but the rigidity of a single experimental design means 
that some events are not amenable to investigation (Angélil et al. 2017). An 
advantage of the systematic approach is that it does not necessarily depend 
on the occurrence of events, with it being possible to instead perform the 
analyses on a predefined list of events. This is the approach taken by the 
Weather Risk Attribution Forecast (WRAF, 
http://climate.web.runbox.net/wraf). To have EA information available in 
“real-time,” the WRAF performs analyses 1 month in advance using a 
predefined list of 232 extreme weather events, comprising an unusually hot, 
cold, wet, and/or dry month over each of 58 regions (Angélil et al. 2014). In 
the upcoming new version, the number of regions will be increased by a 
factor of about four (see, e.g., Figure 4; D. Stone, “A hierarchical collection of
political/economic regions for analysis of climate extremes,” submitted). 
Data for both the factual and counterfactual scenarios come from climate 
model simulations.

Formally, the forecast involves estimating the probability of a predefined 
extreme event for both climate scenarios in each of the regions. For region i 
= 1, …, M (in the upcoming version of the WRAF, M = 237), the forecast uses
the ratio of scenario-specific probabilities pFi (for the factual scenario) and pCi 
(for the counterfactual scenario) or “risk ratio” RRi = pFi/pCi to formally test 
for changes in the probability of an extreme month. In other words, a 
collection of statistical tests are conducted that have null hypotheses of the 
form

where, for example, c = 1 if we are interested in determining whether 
anthropogenic influence has resulted in an increase in the event probability. 
Ultimately, we wish to separately test collections of hypotheses like (1) for 
extreme temperature (both hot and cold) and precipitation (both wet and 
dry).



Of course, when the number of tests M is large, a classical testing procedure 
is prone to identifying false “discoveries,” or incorrectly rejecting null 
hypotheses (commonly referred to as Type I errors). As such, the testing 
procedure is often adjusted, attempting to control the false discovery rate 
(FDR), which is the proportion of true null hypotheses that are incorrectly 
rejected. Since the data arise from physical climate models, it is anticipated 
that the hypotheses might be dependent: in other words, there is likely 
strong dependence within each spatial field of probabilities. This dependence
might arise from the spatial proximity of the regions (i.e., strong dependence
between pFi and pFj for adjacent regions i and j) but also from potentially un-
specified long-range teleconnections (in which two probabilities pFi and pFj 
might be highly correlated even if regions i and j are far apart) that are 
common for atmospheric climate variables considered over the globe (see, 
e.g., Cressie and Wikle 2011). Unfortunately, while classical FDR procedures 
(Benjamini and Hochberg 1995; see Section 2) are theoretically valid for 
positively correlated hypotheses (Benjamini and Yekutieli 2001), they are 
also known to suffer from low power when the test statistics from each test 
are not independent (e.g., see Sun and Cai 2009). And, while the literature 
contains a number of methods for applying FDR procedures under 
dependence, the methods are outlined for specific underlying probability 
models and are sensitive to improper specification of this model (Sun et al. 
2015).

In this article, we develop an approach to the multiple testing problem for 
spatially dependent hypotheses in a systematic and decision-theoretical 
framework. Focusing on procedures that account for dependence among 
tests, we provide an overview of the diverse literature on false discovery 
control, including traditional methods and both Frequentist and Bayesian 
decision-theoretical approaches. The framework we use, originally 
introduced by Müller et al. (2004), allows the practitioner to flexibly specify 
the decision criteria for false discovery control, and we explore practical 
comparison of various FDR procedures and decision criteria that can be used 
when an empirical estimate of the correlation among tests is available. 
Furthermore, we introduce a robust yet practical modeling framework for 
addressing spatial dependence among hypotheses, address sensitivity of the
decision rule’s performance to statistical model misspecification, and 
demonstrate the robustness of our modeling framework for FDR control. 
While the methodology is designed specifically for the hypothesis testing 
setting of the WRAF, our framework is useful for a broader set of problems 
involving multiple testing over a spatial domain, particularly in the case 
where an empirical correlation estimate is available, which is often the case 
for climate science scenarios. In this context, the methods outlined in this 
article could be used for general hierarchical Bayesian models beyond just 
considering the probability of extremes or the risk ratio.

A reader familiar with the climate science literature will be aware of the 
concept of statistical field significance (Livezey and Chen 1983), which is an 



alternative multiple testing approach that seeks to evaluate the collective 
significance of a set of statistics. While field significance techniques are well-
established in climate science, we instead seek to control FDR following the 
arguments outlined in Ventura, Paciorek, and Risbey (2004), the most 
important of which is that field significance provides no specific information 
about which individual tests are significant. Interestingly, the idea of FDR-
control is growing in popularity among climate scientists, as evidenced by a 
recent article by Wilks (2016). Finally, note that if one is only concerned with 
a real-time attribution statement for a single region in advance, then the 
multiple testing framework presented here is not required.

The article proceeds as follows. In Section 2, we introduce a decision-
theoretical framework for FDR control and present a systematic and flexible 
Bayesian approach to the problem. In Section 3, we introduce our 
nonparametric Bayesian framework for modeling the factual and 
counterfactual probabilities and extreme ratios, while in Section 4 we 
conduct a simulation study to assess the sensitivity of the Bayesian FDR 
procedure to misspecification of the statistical model and identify a data-
driven approach that robustly controls the FDR. In Section 5, we apply the 
method to a real dataset to be used for the WRAF; Section 6 concludes the 
article.

2. Decision-Theoretical Approaches for False Discovery Control

The WRAF is generated based on monthly simulations of the Community 
Atmospheric Model version 5.1 (CAM5.1; see Section 5.2 for more details). 
Temperature and precipitation from the CAM5.1 climate model ensembles 
are aggregated monthly for each region, for both the factual (F) and 
counterfactual (C) scenarios. A climate model ensemble is a set of climate 
model runs such that each ensemble member has the same boundary 
conditions (e.g., atmospheric chemistry or sea ice concentrations) but 
stochastically perturbed initial conditions. Denote the resulting collection of 
random variables {Ykil: , where Y generically 
represents either average monthly temperature or total monthly 
precipitation and nensnens is the ensemble size (or number of replicates). 
Formally, for an extreme event type (e.g., cold months, wet months) in 
region i = 1, …, M, define random variables

(for hot and wet extremes; replace “>” with “<” for cold and dry extremes), 
where the extreme event is defined in terms of a region-specific threshold yi 
(e.g., exceeding a monthly average temperature threshold of 290 K; note 
that the event definition is common across scenarios). Define scenario-

specific data  these binomial random variables can be



used to estimate the event probabilities in each scenario {(pFi, pCi)} and 
establish evidence regarding the null hypotheses {Hi: i = 1, …, M} from (1).

For each null hypothesis, define a corresponding collection of unknown 
parameters that represent the true state for each hypothesis:

The testing problem involves generating a decision rule δ≡δ(Z)={δi:i=1,
⋯,M}, such that

In addition to specifying the form of the decision rule (often based on a test 
statistic, p-value, etc.), an underlying probability model must be specified to 
estimate the decision rule. The false discovery proportion (FDP) is defined as

. Note that the FDP is simply a function 
of unknown parameters (θi) and random variables (δi), and is hence 
fundamentally neither frequentist nor Bayesian.

For a full summary of classical, model-specific approaches to the multiple 
testing problem, we refer the interested reader to Appendix A in the 
supplemental materials. The original FDR procedure given by Benjamini and 
Hochberg (1995, henceforth BH) controls the (frequentist) FDR, defined as 
the expected FDP, that is, FDR ≡ E(FDP), where the expectation is taken over
repeated experiments. Their remarkably simple procedure ensures that FDR 
⩽ α; the proof in Benjamini and Hochberg (1995) is established for 
independent test statistics and any configuration of false null hypotheses. 
One alternative to BH is the adaptive FDR procedure (Benjamini and 
Hochberg 2000; Genovese and Wasserman 2002). Other alternatives to BH 
are based on a random mixture model formulation of the multiple testing 
problem, where the θi are Bernoulli random variables and (ZFi, ZCi)|θi ∼ θiF0 + 
(1 − θi)F1, where F0 and F1 are the null and alternative distributions, 
respectively. Using this framework, procedures were developed to control 
either the positive FDR pFDR = E(FDP|∑M

i = 1δi > 0) (Storey 2003), the 
marginal FDR mFDR = E(∑M

i = 1(1 − θi)δi)/E(∑M
i = 1δi) (Storey 2003), and 

Bayesian approaches to the problem using local FDR (Efron et al. 2001; Efron
2007) and the q-value (Storey 2003). Yet another alternative approach uses 
a weighted classification approach, wherein the decision rule δ is constructed
by minimizing the classification risk E[Lλ(θ, δ)], where the loss function is



here, λ > 0 is the loss attached to a false positive error (relative to a false 
negative error).

Unfortunately, proofs for the optimality of all of these procedures rely on the 
notion of independent hypotheses, and the optimality is called into question 
when the hypotheses are instead dependent. The decision rules of Benjamini
and Hochberg (1995), Benjamini and Hochberg (2000), Efron et al. (2001), 
and Sun and Cai (2007) are “simple,” meaning that δi is a function only of 
the data corresponding to hypothesis i. It is easy to imagine that in the case 
of correlated hypotheses, compound decision rules (i.e., decision rules δ 
such that δi depends on data corresponding to the other hypotheses) are 
preferred in that they might be able to identify nonnulls with a smaller signal
by pooling information across tests. As a result, Sun and Cai (2009) extended
the compound decision framework for multiple testing in the presence of 
dependence, specifically when the unknown θi arise from a hidden Markov 
model (HMM). Two recent articles by Sun et al. (2015) and Shu, Nan, and 
Koeppe (2015) extend this work further to provide similar results for spatial 
random fields and multi-dimensional Markov random fields (MRFs), 
respectively. However, proofs for the optimality of these procedures are 
model-specific; furthermore, Sun et al. (2015) also found that “the precision 
of [their] testing procedure shows some sensitivity to model 
misspecification.”

To move away from the classical model-specific procedures, we are 
motivated to consider fully Bayesian approaches to the multiple testing 
problem, first presented by Newton et al. (2004), Müller et al. (2004), and 
Müller, Parmigiani, and Rice (2006). Whereas the Frequentist FDR is defined 
as an expectation over repeated experiments, Müller et al. (2004) defined a 

Bayesian FDR  (i.e., the 
posterior expected FDP), where the expectation is with respect to the 
posterior distribution of the unknown states conditional on the data. 
Conditioning on the data and marginalizing with respect to θ, Müller et al. 
(2004) showed that

 is the 
posterior probability that the ith hypothesis is null. A similar expression can 
be obtained for the Bayesian false nondiscovery rate



, as well as 

count versions .

A Bayesian decision criteria that is similar in nature to the frequentist 
approaches (e.g., Sun and Cai 2007; Sun et al. 2015) is to minimize the

 subject to the constraint that . Müller et al. (2004) 
showed that the optimal decision rule for this criteria is δ*i = I(πi < t*α), 
where the threshold depends on the desired α. Interestingly, thisFigure 1 
decision rule can be written like the decision rule in Sun et al. (2015): after 
ranking the πi such that π(1) < π(2) < ⋅⋅⋅ < π(M), find

then , so that we reject . The difference 
between the decision rule in Sun et al. (2015) and (4) is that the former 
involves a probability conditional on the hyperparameters while the latter 
involves a probability that marginalizes over the hyperparameters. In other 
words, the fully Bayesian posterior probability πi is almost the same as the 
oracle statistic in Sun et al. (2015), but accounts for uncertainty in the 
hyperparameters. (Note, however, that while the oracle statistic in Sun et al. 
2015 is derived using a frequentist criteria, it is calculated using a Bayesian 
framework and coincides exactly with (4). Their simulation study verifies that
this strategy controls the frequentist FDR.)

The optimality of (4) for controlling   is true for “any probability 
model with nonzero prior probability for both the null and alternative 
hypotheses” (Müller, Parmigiani, and Rice 2006), which is quite powerful in 
light of the extensive work to develop model-specific oracle procedures in 
the Frequentist setting (e.g., Sun and Cai 2007, 2009; Sun et al. 2015; Shu, 
Nan, and Koeppe 2015). Of course, the Bayesian FDR ( FDR ‾≡E( FDP |Z)) is 
not the same as the frequentist FDR (FDR ≡ E(FDP)), but Müller et al. (2004) 
and Müller, Parmigiani, and Rice (2006) showed that controlling the Bayesian
FDR implies frequentist FDR control when tests are independent. 
Unfortunately, this is not necessarily true for dependent hypotheses (Pacifico
et al. 2004; Guindani et al. 2009), although the relationship between the 
decision rule in Sun et al. (2015) and (4) suggests a similarity between the 
two approaches.



A benefit of the decision-theoretical framework is that classification errors 
can be controlled in a variety of ways, beyond just the rate of false 
discoveries. In addition to the decision criteria that controls the Bayesian 
FDR introduced in the previous paragraph by minimizing a posterior 
expected loss (henceforth R1), Müller et al. (2004) defined two other decision
criteria. The first (denoted R2) is similar to the classification risk for (3):

This criteria minimizes the number of false negatives and false discoveries, 
where λ2 represents the cost for a false discovery relative to a false negative.
Like R1, Müller et al. (2004) showed that the optimal decision rule for R2 is a 
threshold rule, that is, δ*i = I(πi < t*λ), where the optimal threshold is t*λ = 1/
(λ2 + 1). The second (denoted R3) is similar in nature to R1, although instead 
of controlling the rate of false discoveries we control the number of false 
discoveries, that is, R3minimizes the  FN ‾, subject to  FD ‾≤γ. The optimal 
rule is again a threshold rule, now δ*i = I(πi < t*γ), and we can write the 
optimal threshold as a step-up procedure: findr

and set tγ*=π(r3+1) so that we reject H(1),⋯,H(r3). Note that by definition, 
R2 and R3 do not specifically control the false discovery rate. However, given 
that the optimal decision rule for both criteria is a threshold rule (like R1), 
they do imply FDR control at some level determined in an indirect way via λ2 
and γ.

With all of these tools at our disposal, which should we use? On one hand, 
the three different decision criteria R1, R2, and R3 allow the decision maker to 
choose a criteria based on their application of interest and what feels most 
natural. On the other hand, the criteria do not yield equivalent inference, 
even if the thresholds are “equivalent.” To illustrate this point, consider 
Figure 1, which simultaneously visualizes the three criteria by plotting 
artificial posterior probabilities πi=P(θi=0|Z) for M = 100 tests along with the 
threshold statistics corresponding to R1, R2, and R3. The x-axis corresponds to
the posterior probabilities πi, the light gray histogram in the background 
shows the distribution of the πi, and each y-axis corresponds to one of the 
decision criteria. First, the y-axis on the left side of the plot displays the 
threshold quantity for R2 (where π = 1/(λ2 + 1)↔λ2 = 1/π − 1, in blue). This 
axis can be thought of as the minimum λ2value for which a given πi would 
lead to rejection. The y-axes on the right show the threshold quantities for R1

(the cumulative average of the π(i), in green) and R3 (the cumulative sum of 
the π(i), in red).
Figure 1. A comparison of the various decision criteria, for a bimodal distribution of M = 100 artificial 
posterior probabilities. The triangular points are plotted on the scale of R1; the square points are 



plotted on the scale of R2; the circular points are plotted on the scale of R3. The horizontal threshold 
line illustrates the cutoff for all three decision criteria: R1, where we want to make sure that fewer than 
20% of our discoveries are false; R2 (which thresholds the raw probabilities), when we have specified a 
false discovery to be four times more costly than a false negative; and R3, where we want to make sure
that we have fewer than 20 total false discoveries.

Figure 1 shows “equivalent” horizontal thresholds at α = 0.2 for R1 (meaning 

that we want to control  at 20%), λ2 = 4 for R2 (meaning that we 
specify a false discovery to be four times as costly as a false negative), and γ
= 0.2*100 = 20 threshold for R3 (meaning that we want to ensure we have 
fewer than 20 false discoveries). The πi values for rejected null hypotheses 
are circled. The main point of Figure 1 is to show how threshold values from 
the decision criteria relate to each other. First, if we are willing to think of the

R1 and R2 cutoffs as equivalent (i.e., that controlling  at 20% is 
equivalent to a false discovery being four times as costly as a false 
negative), then we can see that R2 is more conservative than R1. This is true 
in general: R2 thresholds the raw posterior probabilities πi, while R1 
thresholds the cumulative average. Also, note that while a statistical model 
can use information from all regions to estimate the individual posterior 
probabilities (see Section 3), if one uses the R2 criteria then the distribution 
of the πi is unimportant: all posterior probabilities less than the threshold are 
classified as rejections, regardless of how they are distributed over (0, 1). 
Alternatively, R1 (and R3) considers the cumulative posterior probabilities 
when deciding the classification rule: for example, if there are many 
posterior probabilities near zero, then tests with posterior probabilities much 
larger than α can still be rejected (in Figure 1, note that a test with

 is rejected).



Similarly, if we are willing to think of the R1 and R3 cutoffs as equivalent (i.e., 
α = γ/M), then we can see that R1 is more conservative than R3 (again, this is
true in general). However, while equating the thresholds for R1 and R2 is 
reasonable, it is much more difficult to equate the thresholds for R1 and R3; 
therefore, it might not make sense to compare R1 and R3. The reason for this 
difference is that R1considers a rate of false discoveries, while R3 considers a 
count: as such, the total number of discoveries or rejections is very 

important. For example, out of 100 tests, setting out to control the   at
20% (using R1) means that if 10 tests are rejected, then having 2 of those 10 
rejections be incorrect is acceptable. This is quite different than being happy 
with 20 false discoveries out of 100 tests (which is the corresponding 
statement for R3).

Two other distributions are shown in Appendix B (in the supplementary 
materials), comparing the decision criteria for {πi} clustered near zero 
(Figure B.1) and clustered near one (Figure B.2). These figures reiterate the 
fact that the distribution of the {πi} is important for R1 and R3. When the πi 
are clustered near zero (as in Figure 1), both R1 and R3 are quite aggressive 
and yield qualitatively similar results, rejecting tests for which the posterior 
probability of the null is large (i.e., tests where πi ≈ 0.65). Alternatively, when
the πi are clustered near one, R1 is quite conservative and rejects only a few 
hypotheses, while R3 is still quite liberal and rejects many hypotheses. As will
be seen later, in Section 4, R3 is always nonconservative: using this decision 
criteria will always result in rejecting at least⌊γ⌋ tests, even when all πi = 1.

In conclusion, we reiterate that the choice of decision criteria for a specific 
application depends on the criteria that feel most natural for the decision 
maker: indeed, this is one reason that the decision-theoretical approach is so
helpful. In light of the differences in R1, R2, and R3, our simulation study (see 
Section 4) will apply each of these decision rules and summarize the 
performance of each in terms of their target criteria (i.e., the realized false 
discovery rate, loss, and false discovery count, respectively).

3. A Robust Nonparametric Bayesian Model with Sparsity for Extreme Ratios

A natural statistical model for the random variables

from (2) is a binomial likelihood

 which represents a “nonparametric” approach
to estimating the event probabilities, as no assumptions need to be made 
regarding the behavior of the underlying climate variable (as opposed to an 
extreme value distribution approach). A useful Bayesian framework for this 
likelihood involves a scenario-specific hierarchical model for the probabilities



for k ∈ {F, C}. Here, μk are scenario-specific (logit) means, βk = (βk1, …, βkM), 
and Gkis a scenario-specific, mean-zero prior distribution for the region-
specific effects that flexibly captures dependence among the regions. In 
principle, GC and GF need not be related; however, we model them as arising 
from the same class but allow for different hyperparameters (and hence the 
subscript).

While the literature contain a variety of options for how to model the Gk, 
existing approaches can neither flexibly model (potentially) non-Gaussian 
behavior nor directly account for irregular or long-range dependence due to 
teleconnections. As an illustration of the type of correlation, we might expect
to see in the scenario-specific probabilities, consider Figure 2, which shows 
boxplots of the empirical correlations in the logit probability of a hot January 
over 1959–2014 (binned by distance; see below for details on how this is 
calculated). Note that the correlations for each scenario tend to be positive, 
even at long distances. Standard stationary spatial models will likely not be 
able to account for these irregular dependence relationships.
Figure 2. Empirical correlation between the logit probability of a seasonally adjusted hot January 
(1959–2014; on the anomaly scale) versus distance, for both the factual (left) and the counterfactual 
(right) scenarios.

Therefore, we seek a model that more robustly uses available data to 
estimate the covariance between the hypotheses. One way to use prior 
knowledge to estimate the covariances between regions is to use long time 
series of climate model simulations: while the WRAF is generated based on 
monthly simulations of CAM5.1 (again see Section 5.2 for more details), 
there are also historical simulations of CAM5.1 available for both climate 
scenarios dating back to 1959. As such, we can use the empirical 
relationships between the historical simulations of both the factual and the 
counterfactual to inform the dependence relationships among the 



hypotheses. Formally, we can estimate monthly probabilities

 
(t represents the year, j represents the month) using a simple beta-binomial 
Bayesian model (maximum likelihood estimates are not used because zeros 
are possible), where the corresponding random variables {z(t)

ki} are 
calculated using a threshold specific to each month (note: the z(t)

ki are 
different than the random variables introduced in (2)). Both the threshold for 
what is considered “extreme” and the count variables are calculated based 
on anomaly data (i.e., the atmospheric variables for each year are mean 
zero). Then, for a forecast in month j, we have an M × T matrix of 

probabilities  that can be used to calculate an empirical covariance on 

the logit scale: , where

. (Note: the correlation 

matrices used to create Figure 2 are from the   for hot months.)

Unfortunately, since for our application we have T < M (the historical 
simulations only cover T = 56 years and there are M = 237 regions), the 
resulting empirical estimate will not be a positive definite matrix; 
furthermore, it is well-known that the empirical covariance is a poor 
estimator for the true covariance (see, e.g., Daniels and Kass 2001; Bickel 
and Levina 2008). Instead, we can use a basis function approach where the 

basis functions are the eigenvectors of the estimated covariance , also 
known as empirical orthogonal functions (EOFs; see Wikle 2010 or Cressie 
and Wikle 2011). EOFs are a popular strategy in modeling global climate 
variables, as the eigenvectors summarize the major modes of variability in a 
multivariate dataset. Furthermore, it can be shown that the modes of 
variability (i.e., eigenvectors) are the same for the true covariance and a 
noisy estimate of the covariance (e.g., Cressie and Wikle 2011). The main 
idea here is to base the current forecast on past data. While the “past” 
(here, 1959–2014) is not necessarily a stationary climate (especially for the 
factual scenario), it can be argued that the modes of variability should be 
approximately consistent. As an example of the spatial patterns that we are 
able to capture using the EOF approach, consider the leading empirical EOFs 
for the logit probability of a hot January, shown in Figures B.3 and B.4 of 
Appendix B (in the supplemental materials).



Suppressing the j notation, suppose for each month we have a set of p EOF 

basis functions  for each 

scenario, collected into an M × p matrix  (note 
that the EOFs are calculated separately for each scenario and event type). 
Then, following Wikle (2010), we can specify the following model for βk = 
(βk1, …, βkM):

where  is a random vector of basis function 
coefficients and ξk is a residual vector that captures discrepancies from the 
EOF basis function structure. Because the basis functions are orthogonal, the
elements of αk can be considered independent a priori.

Using (7), we must specify three components: a prior distribution for the 
residual vector ξk, a prior distribution for the basis function coefficients αk, 
and the number of EOFs to include in the model (i.e., p).

3.1. Accounting for Non-Gaussian Discrepancy from the EOF Structure

If the number of EOFs is large enough to account for both large-scale and 
small-scale spatial variability, we can model the residual vector as 
independent and identically distributed (iid) random variables. A standard 
approach in nearly all statistical modeling is to assume that error is mean-

zero and Gaussian, that is, . However, in modeling extreme
probabilities, such an assumption might be tenuous, even on the logit scale. 
Furthermore, in basing the dependence structure of the current forecast on 
past data, there is a risk of misspecifying the large-scale structure in the 
probabilities (i.e., the EOFs). Therefore, it behooves us to use a more flexible 
approach in accounting for discrepancies from the fixed EOF structure.

One approach to more flexibly model the residual vector is via the skew-t 
family of distributions (Fernández and Steel 1998; Azzalini and Capitanio 
2003; Frühwirth-Schnatter and Pyne 2010), which is a generalization of the 
Gaussian distribution that allows for skewness and heavy (nonexponential) 
tails. For a mean-zero random effect, this family involves three parameters: a
scale parameter, a skewness parameter, and the degrees of freedom, which 
controls the heaviness of the tails. Actually, we use what Arellano-Valle and 
Azzalini (2008) call the “centered” parameterization for the skew-t 
distribution, where σk > 0 is the scale parameter, δk ∈ ( − 1, 1) controls the 
skewness, and νk > 0 is the degrees of freedom (see Appendix C in the 



supplemental materials for details); we write . In 
any case, as the degrees of freedom ν approaches zero, the skew-t 
distribution becomes very heavy-tailed and allows quite large deviations 
from zero. Also, note that the standard Gaussian error approach is a special 
case of the skew-t: for δ = 0 and in the limit as ν → ∞, the residuals ξki are iid
Gaussian.

3.2. Sparsity-Imposing Prior for the EOF Coefficients

The EOF framework in (7) is a form of principal component regression (PCR), 
where the principal components (PCs) of a multivariate dataset are used as 
regressors or covariates. In general, selecting an appropriate subset of PCs 
for PCR is extremely important for the sake of interpretation and parsimony 
of the resulting model; furthermore, we want to avoid overfitting the signal 
with too many PCs. Existing approaches for selecting the number of PCs (see 
Jolliffe 2002) generally fall into one of three categories: graphical methods 
like the scree plot (Cattell 1966); computational methods such as cross-
validation (Wold 1978; Josse and Husson 2012); and model-based criteria like
reversible jump MCMC (Zhang et al. 2004), marginal likelihood estimation 
(Minka 2001), and model averaging (Katzfuss et al. 2017). Each of these 
approaches only consider “nested” PC models, in that a particular PC is 
included only if all lower-order PCs are included. Other approaches consider 
data-driven component selection for Bayesian PCR (Wang 2012; Lee and Oh 
2013; Junttila et al. 2015), which use various prior distributions to regularize 
the PC coefficients. For example, Junttila et al. (2015) specified

 where the prior variance v is estimated from the data, 
where the Gaussian prior corresponds to an L2 penalty in penalized 
regression. Other recent articles by Hughes and Haran (2013) and Guan and 
Haran (2018) combine a Gaussian prior for the PC coefficients with either 
model selection or cross-validation for choosing an appropriate number of 
PCs.

However, when dealing with empirical PCs, it is often the case that several of
the PCs have extremely large variance (corresponding to large coefficients) 
and many have small variance (corresponding to small coefficients). In a 
penalized framework, an L2 penalty corresponds to a linear smoother (see 
Tansey et al. 2017), which over-penalizes large signals and does not induce 
sparsity. Laplace priors, which correspond to an L1 penalty, do encourage 
sparsity but still overshrink large signals in the presence of many near-zero 
signals due to their light tails. This is problematic in the PCR setting. A recent
thread of research that addresses this problem in a Bayesian framework is 
the generalized double Pareto prior (GDP; Armagan, Dunson, and Lee 2013), 
which has a spike at zero (like the Laplace prior) but heavy student’s t-like 
tails. The GDP prior has a simple analytic form, yields a proper posterior 



distribution, and has a simple characterization as a scale mixture of Gaussian

distributions: if , 
then the marginal distribution of X is the GDP

written X∼GDP(s,r), where s and r are the 
Gamma shape and rate, respectively (Armagan, Dunson, and Lee 2013). The 
GDP prior avoids the overshrinkage problems associated with Gaussian or 
Laplace priors (Tansey et al. 2017) and encourages sparsity (Taddy 2013). 
(Note: related work by Polson and Scott (2012) and Carvalho et al. (2010) 
also introduce heavy-tailed shrinkage priors with similar properties, but 
unfortunately these priors are not available in closed form when 
marginalized.)

Thus, while shrinkage priors have been used for PC or EOF selection, in a 
novel approach we propose to use the GDP prior as a more appropriate 
framework for incorporating EOF selection into the prior specification. 
Instead of worrying about how many EOFs to include in (7), we will instead 
incorporate all T = 56 EOFs, so that p = T. Formally, the prior for the EOF 

coefficients is  Note that using an 
exchangeable prior on the coefficients in this way ignores information about 
smoothness of the signals, an aspect which is not present in all regression 
settings but is present in PCR. When dealing with PCs or EOFs, we expect the
variances of the empirical PCs to decay smoothly (following the eigenvalues),
so that an exchangeable prior on the coefficients is not quite right. Lee and 
Oh (2013) explicitly included a “smooth” prior for the coefficients by 
specifying a functional form for how their prior variances decay. However, in 
a general setting, it is not immediately obvious what type of decay is most 
appropriate. In our application, we use a different set of data to calculate the
EOFs (i.e., the historical simulations) than what is used to actually estimate 
the coefficients (i.e., the year of simulations corresponding to the forecast 
year). In this case, there may be some mismatch between the historical 
simulations and the new data with respect to the magnitude and ordering of 
the signals. Using an exchangeable prior can account for this mismatch and 
also does not require one to specify a functional form for the decay in the 
coefficient variances.

3.3. Hyperprior Specification and Computation

The hyperparameters for (7) are the mean μk, the skew-t parameters {σk, δk, 
νk}, and the GDP parameters {s, r}. For the mean and skew-t parameters, 
we use proper but noninformative priors, namely, p(μk) = N(0, 102), p(σk) = 
U(0, 100), p(δk) = U( − 1, 1), and p(1/νk) = U(0, 1), where U(a, b) is the 
uniform distribution over the interval (a, b). Note that the prior for the 



degrees of freedom is actually on 1/νk to improve mixing; furthermore, the 
upper bound of 1 on 1/νk limits the tails to be no heavier than those of a 
Cauchy distribution. The hyperparameters of the GDP are slightly more 
complicated. Armagan, Dunson, and Lee (2013) suggested fixing these at s 
= 1 and r = 1; Taddy (2013) fixed both hyperparameters at s = 1 and r = 
1/2, but found that his results were robust to other values of s. Tansey et al. 
(2017) also fixed s = 1 but encountered major problems when trying to 
estimate r and instead fit separate models across a discrete grid of fixed 
values for r and used DIC to choose the best value. Following these 
suggestions, we fix s = 1, but, given the relative simplicity of (7) (compared 
to Taddy 2013 and Tansey et al. 2017), we were able to estimate r from the 
data and used p(r) = U(0, 100).

As is usually the case, the posterior distribution for this model is not 
available in closed form regardless of prior specification, so we resort to 
Markov chain Monte Carlo (MCMC) methods to obtain samples from the joint 
posterior distribution. We fit the model using the nimble software for R (de 
Valpine et al. 2017), which is a BUGS-like system for building and sharing 
analysis methods for statistical models, particularly for hierarchical 
frameworks. The MCMC is relatively straightforward, and code to fit the 
model is available in the online reproducibility documents.

4. Sensitivity to Model Misspecification

The classical FDR procedures in the vein of Sun and Cai (2007) were 
developed for specific data models, and unfortunately Sun et al. (2015) 
found that the optimality of the procedure is quite sensitive to model 
misspecification. While the Bayesian procedures of Müller et al. (2004) are 
appropriate for more general classes of models, Newton et al. (2004) noted 

that the bounds on ,  are “approximate … because 
[they] rest on the accuracy of the fitted model.” Furthermore, as noted in 
Section 2, the performance of the Bayesian decision rules for Frequentist 
FDR is not guaranteed in the presence of correlation (Pacifico et al. 2004; 
Guindani et al. 2009). As such, we wish to understand how both model 
misspecification and dependence impact the performance of these decision 
rules for the WRAF application and, subsequently, ensure that the 
nonparametric Bayesian framework developed in Section 3 is robust to both 
correlation and error in specifying a statistical model for the probabilities 
{pki}, k ∈ {F, C}.

To compare the performance of our robust nonparametric Bayesian 
approach outlined in Section 3 (henceforth labeled RNB) as well as several 
other related models within the various Bayesian decision rules based on R1, 
R2, and R3, we perform a simulation study to explore the FDR performance 
for a variety of “true” states. For our simulation study, the number of regions
will match that of the WRAF regions, that is, M = 237, and we use ensemble 



sizes of . A total of Nrep=100 datasets will be 
generated from each of six “true states” (see Table 1) that are designed to 
represent the full space of all possible “states” for the CAM5.1 simulations. 
The hyperparameters for the true states will be fixed (see Appendix F of the 
supplemental materials), and the replicates will be drawn from the random 
effect distributions (as opposed to repeated binomial draws with the same 
effects). Complete details on the procedure for obtaining samples from each 
true state is provided in Appendix F, and code to generate samples from 
each true state is provided in the online reproducibility documents.

For comparison, we also use a variety of standard models that might 
traditionally be used for the WRAF. Each of these again use the Zki 
introduced in (2), as well as the binomial likelihood

 used in Section 3.

Classical likelihood ratio test. To compare new approaches with classical 
FDR, we first outline a method for calculating a p-value for each null 
hypothesis using a Frequentist likelihood ratio test. Rewriting the hypotheses
in terms of the probabilities H: pF/pC ⩽ c (for now ignoring the region-specific 
subscript), the test statistic for a likelihood ratio test considers the ratio of 
likelihoods for ZC = zC and ZF = zF:

where Θ0 is the parameter space defined by the null hypothesis and Θ is the 
entire (unrestricted) parameter space for pF and pC. The likelihood is the 
product of individual Binomial likelihoods:

It can be shown that the likelihood in the denominator is maximized for the 
MLEs p^C=zC/nC and p^F=zF/nF. Alternatively, for the numerator, the 
restricted MLEs 
arep^CR,p^FR=(p^C,p^F)ifp^F>(p^C/c)(p˜C,p˜C/c)ifp^F≤(p^C/c),where 
p˜C=(1/4)(-b-b2-8d): b=-[c(1+p^F)+1+p^C], and d=c(p^C+p^F) 
(Farrington and Manning 1990). Statistical theory says -2logλ(zC,zF)→dχ12 as
nC, nF → ∞ (Θ involves two free parameters while Θ0has just one); thus, an 
asymptotic p-value is p(χ2

1 > −2log λ(zC, zF)). Note that when p^F>p^C/c, 
the likelihood ratio is 1, − 2log λ(zC, zF) = 0, and the null hypothesis will 
never be rejected. The resulting collection of p-values can be used for a 
classical FDR (Benjamini and Hochberg 1995) or a Bonferroni-style family-
wise error rate (FWER) procedure.



Parametric Bayesian models for the risk ratio. Again using the independent 
binomial likelihood for the Zki in (2), the simplest Bayesian approach to 
modeling these probabilities is to estimate each of the pFi and pCi 
independently of each other and all of the other regions (an “independent 
across regions” model), henceforth M1. For k ∈ {F, C} and i = 1, …, M, 
simply use a conjugate beta prior π(pki)=B(ap,bp) for the binomial likelihood 
so that the posterior is

Posterior samples can be obtained by direct sampling from (9). Alternatively,
mirroring the hierarchical Bayesian framework in (6), a variety of prior 
models for Gk can be implemented:

M2 Exchangeable Gaussian prior: a random effects framework is useful 
for borrowing strength across the regions without the notion of 
spatial dependence. Here, we use βki∼iidN(0,τk2).

M3 Exchangeable skew-t prior: however, the Gaussian assumption may 
be too restrictive, in that the effects could be nonsymmetric and 
heavy-tailed. Alternatively, we can use the skew-t family of 
distributions (as in Section 3.1), with βki∼iidST(0,σk,δk,νk).

M4 Conditionally autoregressive (CAR) prior: a natural approach for areal 
data like the WRAF regions, a CAR prior models βk = (βk1, …, βkM) as a 
spatial random effect (see, e.g., Pascutto et al. 2000; Banerjee, 
Carlin, and Gelfand 2004). Using a Gaussian model, the joint 
distribution for βk can be defined in terms of the conditional 
distributions

where ∂i is the set of regions that share a border with region i (the 
“neighborhood”) and |∂i|=# regions in the neighborhood. This 
specification is also called an intrinsic CAR model which is an 
improper prior (Rue and Held 2005 outline various ways to address 
this issue; see Appendix E).

M5 Hybrid CAR/exchangeable prior: the model outlined in Leroux, Lei, 
and Breslow (2000) offers a compromise between M2 and M4. As 
outlined in Leroux, Lei, and Breslow (2000), the τ2

kparameter in M4 
represents both overdispersion and spatial dependence, and these 
features may be in stark contrast. A variety of strategies are used in 
the literature to address this problem (see, e.g., Cressie 1991); 
Leroux, Lei, and Breslow (2000) instead specified an approach based 
on “additive precisions,” in which the precision matrix of the random 
effects is a convex combination of the exchangeable and CAR 



precision matrices:

where Q is the CAR precision correlation matrix; λk ∈ [0, 1] is a 
parameter that controls the degree of spatial dependence. Note that 
in this framework, λk = 0 corresponds to M2 while λk = 1 corresponds 
to M4; furthermore, Σk-1 is full rank for λ ∈ [0, 1). Using (10), the full 
conditional distributions for the individual random effects are

M6 Gaussian process prior: another alternative to M4 is to use a Gaussian
process prior for βk, defined for the centroids of each region (e.g., 
Kelsall and Wakefield 2002). Like M5, independent random effects are
a special (limiting) case of the Gaussian process prior, such that M6 
can flexibly model both independent and dependent effects (unlike 
M4). For this approach, βk∼NM(0,Σk): Σkij=τk2Mν(||si-sj||/ϕk), where 
Mν(·) is the Matérn correlation function with smoothness ν, si,sj are 
the three-dimensional coordinates for the centroids of regions i and j, 
and || · || represents Euclidean distance on R3. In practice, since we 
are fitting a Gaussian process model to areal data and therefore do 
not observe data at very short distances, we fix ν = 0.5.

M7
-9 

EOF-based structure with a Gaussian prior for a fixed number of 
coefficients: for comparison, we use (7) with a more traditional 
exchangeable Gaussian prior on the coefficients, that is, 
αkl∼iidN(0,σ2α)αkl∼iidN(0,σα2), where σ2

α is estimated from the 
data. In this framework, we use three different EOF truncations: p = 
30, which matches the number of EOFs used in the data generation 
(henceforth M7); p = 10, where we use too few EOFs (henceforth M8);
and p = 50, where we use too many EOFs (henceforth M9). Models 
M7–9 will allow us to assess the performance of the GDP prior relative
to more traditional priors with a specified truncation.

A summary of all the fitted models and their labels is given in Table 2. 
Details on the hyperpriors and computation (via MCMC) are given in 
Appendices D and E (in the supplemental materials).



For each of the simulated datasets, the performance of the three decision 
criteria R1, R2, and R3 will be compared by fitting each of the models outlined 
in Table 2. The null hypothesis for each simulation will use a threshold value 
of c = 1 (testing for an increase in pF relative to pC) while attempting to 
control FDR in ways comparable to the classical 0.1 significance level: for R1, 
set α = 0.10; for R2, set λ2 = 1/0.1 − 1 = 9; for R3, set γ = 0.10M = 23.7. 
Three different sets of hyperparameters will be used for each model, 
corresponding to cases in which most tests are true rejections (Scheme 1, ≈ 
0.85), around half of tests are true rejections (Scheme 2, ≈ 0.5), and most 
tests are true nulls (Scheme 3, ≈ 0.15). More details are provided in 
Appendix F.

Two final notes regarding the model fitting. First, for the Gaussian process 
model M6, note that the correlation function is set to be exponential, while 
the true states GP-S and GP-L have a Matérn correlation with smoothness ν =
2. Second, all of the EOF approaches (RNB and M7-M9) require the initial step
of estimating the EOF matrix, which is considered fixed when fitting the 
model. The EOFs used for true states EOF-G and EOF-NG are estimated from 
the historical simulations of temperature in January as described in Section 
3.1 (the same EOFs are used for both generating datasets and model fitting).
However, the benefit of the EOF framework is that it can robustly use 
available data to improve the model; therefore, when fitting RNB and M7-M9 



to the other true states (G-RE, NG-RE, GP-S, and GP-L), we first calculate the 
EOFs using T = 56 replicates drawn from the true state, separately for each 
scenario. For example, the EOFs used to fit data from GP-L would correspond
to the covariance of a stationary Gaussian process with Matérn correlation 
function.

Results, summarized across simulated replicates. We present results for the 
R1criteria here, in the main text of the article, as this decision criteria 
corresponds most closely with the classical notions of FDR; see Figure 3. The 
top, middle, and bottom sub-plots show the FDR and power (i.e., the 
probability of rejecting a false null) for Schemes 1, 2, and 3 (respectively), 
averaged over the Nrep=100replicated datasets. The sub-panels show the 
six true states, and the different methods/fitted models are shown along the 
x-axes.
Figure 3. FDR and power using the R1 criteria, aggregated over the Nrep=100replicates, for schemes 1,
2, and 3. Note that the x-axis in each subgrid corresponds to the different methods/fitted models. The 
target of α = 0.1 is plotted for FDR.



The first observation to make is that the frequentist p-value approaches 
(FWER and BH) are clearly over-conservative, such that the realized FDR is 
approximately zero (well below the target α = 0.1) across all schemes, 
ensemble sizes, and true states. This over-conservativeness shows up in the 
power plots as well, with the FWER procedure in particular suffering from 
extremely small power, even for the largest ensemble size. Interestingly, the 



Bayesian models RNB and M1-M9 each seem to do fairly well at controlling 
the FDR and maximizing the power (minimizing the FNR) for Scheme 1, 
across true states (aside from the independence model M1, which has 
somewhat reduced power particularly for the true states with spatial 
dependence).

Schemes 2 and 3 tell a different story: for each of these schemes, and across
true states, the independence model M1 is anti-conservative and fails to 
control the FDR (except for the largest ensemble size in Scheme 2). 
Otherwise, several items are noteworthy: the CAR model M4 performs poorly
for the true states that do not include spatial dependence (G-RE and NG-RE); 
only the models that can accommodate skewness (models M3, M7-M9, and 
RNB) control the FDR for the NG-RE data. Otherwise, each of the models is 
mostly able to control the FDR, although major differences show up in the 
power. While, for example, M2 (a model without spatial dependence) is able 
to control the FDR for the GP-L simulations in Scheme 2, the power is 
significantly smaller than for a model that does accommodate dependence, 
for example, M4.

The EOF models M7-M9 and RNB perform comparably for the independent 
random effects (G-RE and NG-RE) with respect to both FDR and power, but 
yield major differences for the true states with spatial dependence. These 
differences are again most obvious in the power, where we can clearly see 
how under or overfitting the EOFs plays out. For the GP-S and GP-L effects, 
M8 (which uses only 10 EOFs) has reduced power relative to M7, M9, and 
RNB. This is not entirely surprising since 10 EOFs might be insufficient for 
characterizing a Matérn covariance. For the EOF-G and EOF-NG true states, 
recall that these data were generated with 30 EOFs, so that M7 (which also 
uses 30 EOFs) is in a sense the “correct” model. However, as is discussed in 
Appendix F of the supplemental materials, to mimic the decay present in the 
corresponding empirical eigenvalues, the last 20 EOF coefficients have very 
small prior variance (see Table F.5 in the supplement). Therefore, M8 (with 
10 EOFs) is also approximately the “correct” model. In fact, M8 performs 
best for the EOF true states, while overfitting the EOFs as in M9 results in 
greatly reduced power. Our new approach RNB nearly matches the power of 
M8 for these true states without having to specify an EOF truncation. 
Interestingly, the presence of spatial dependence (or lack thereof) in the 
simulated data has a larger effect on the power than the FDR: when the 
effects do not include dependence (G-RE and NG-RE), the power is roughly 
the same for models M2-M9 and RNB. This is true even for the NG-RE effects,
for which the Gaussian-based models M2, M4, M5, and M6 struggle to control
the FDR.

Therefore, if one were to choose a “best” model for the R1 decision criteria, 
the robust nonparametric Bayesian model with a sparsity-imposing prior for 
the EOF coefficients and skew-t discrepancy (RNB) is the clear choice, as it 
performs well across schemes and true states. RNB is able to control the FDR
at approximately the nominal level for every combination of true 



state/scheme, and yields (almost) the largest power with the exception of 
the EOF-G/NG true states in Schemes 2 and 3. The only model that performs 
better for these true states is M8, which is suboptimal for the GP-S/L true 
states. Thus, RNB performs nearly as well as the best of the other EOF 
approaches, without requiring the specification of an EOF truncation. In some
ways, this is not surprising, since the magnitude of the EOF coefficients 
together with their GDP shrinkage prior can differentiate between cases both
with and without spatial dependence and the flexibility of the skew-tresiduals
can capture both symmetric and nonsymmetric effects. Furthermore, this 
approach allows us to more robustly use the data at hand (in this case, the 
historical CAM simulations) to capture irregular (nonstationary) spatial 
dependence patterns.

The story is largely the same for the R2 and R3 criteria (see Figures B.5 and 
B.6 in Appendix B of the supplemental materials): the RNB model yields the 
smallest loss (almost always), and controls the number of FDs while 
minimizing the number of FNs. Therefore, we have good reason to select the 
RNB model combined with the decision rule of interest as the procedure that 
best controls the realized loss, FDR, and FD.

5. Applying the Multiple Testing Procedure to the WRAF

Having identified the robust nonparametric Bayesian model as an approach 
that flexibly controls false discoveries for each of the procedures outlined in 
Section 2, we now turn to applying the procedure to a real dataset of climate
model simulations.

5.1. Selection of Decision Criteria

For this application, we decided not to use the second decision criteria (R2) 
because it is not clear for the WRAF what the relative loss for each type of 
error should be; in other words, there is no obvious way to equate the cost of
a false discovery and a false negative. In deciding between R1 and R3, we 
were initially drawn to R3 because certain choices for the threshold γ allow us
to make sure our statements are scientifically significant. In systematically 
conducting a set of hypotheses regarding the presence of anthropogenic 
influence on extreme weather, to conclude a significant overall (global) 
influence we would need to reject a null hypothesis of no anthropogenic 
influence for some nonzero proportion of the globe, for example, we might 
want to see rejections for 5% of the globe. In other words, from a practical 
perspective, we might be willing to make 10 false rejections (about 5% of the
237 regions) because if we find fewer than 10 rejections then there is likely 
not a scientifically meaningful anthropogenic effect for the entire globe. 
Furthermore, in making an absolute (instead of a relative) statement about 
the number of false discoveries, the total number of discoveries relate to 
overall confidence: rejecting only a few hypotheses indicates low confidence 
that there is any overall anthropogenic effect, while rejecting many 
hypotheses indicates high confidence that there is indeed some overall 
anthropogenic effect.



However, upon further investigation, it became obvious that the R3 criteria is 
too liberal. Returning to (5), note that this procedure will always reject at 
least ⌊γ⌋ tests: in the most extreme case, where π(i) = 1 for all i (meaning the 
null hypothesis receives all of the posterior probability), we will still have ∑⌊γ⌋

i 

= 1π(i) ⩽ γ, so that in this case r3 = ⌊γ⌋. In other words, a set of tests will be 
rejected, even though the posterior probability that each null hypothesis is 
true is 1; clearly, it is quite awkward to always reject a set of hypotheses 
despite the evidence. Therefore, if we use the R3 criteria, after flagging a set 
of null hypotheses to reject we must then determine if the results are 
believable. For example, if γ = 10 and we only reject 10 hypotheses, then we
must conclude that almost all of these are false discoveries; alternatively, if 
we reject 100 hypotheses, then we can be confident that most of these are 
true rejections. However, what if we reject 15 hypotheses? Or 20? In these 
“in-between” cases, we must decide when enough tests have been rejected 
to conclude that at least some of the rejections are true.

The R1 criteria, on the other hand, falls more in line with traditional multiple 
testing procedures, in that the conclusions drawn for a set of hypotheses are 
more appropriately adjusted for the fact that multiple tests are being 
conducted. Regardless of how many tests are rejected under this criteria, we
can always be sure that (in expectation) only a small proportion of these are 
being falsely rejected. Furthermore, while the R3 criteria might flag some 
hypotheses for rejection in spite of the large posterior probability that the 
null is true (see the previous paragraph), the R1 criteria will only begin 
flagging hypotheses for rejection if the smallest posterior probabilities of the 
null being true (i.e., π(1), π(2), etc.) are close to zero. A final benefit of using 
the R1 criteria is that the conclusions for nested hypotheses (see Section 
5.2.2) will be consistent (e.g., the procedure will only reject

 if  is also rejected), which is not the 
case for R3.

5.2. Case Study Methods

Having opted to use the R1 criteria, we set α = 0.1 (as is done in Section 4). 
Practitioners often choose an FDR threshold based on common significance 
levels; here, we do the same, although there is no reason why this should be 
done (other than the fact that we want the FDR to be small but not too small 
such that we have no power). We then applied our robust nonparametric 
Bayesian model with the generalized double Pareto prior for the EOF 
coefficients with the R1 criteria to the WRAF for two case studies: (1) hot 
events in January 2015 and (2) wet events in March 2015. For hot events, we
use a more stringent cutoff for the null hypotheses, chot=5 (i.e., testing for

 this is due to the stronger anthropogenic signal for 
temperature), while for wet events we use cwet=1.



The data for estimating the pki (k ∈ {F, C}) consist of output from large 
ensembles of simulations of version 5.1 of the Community Atmospheric 
Model (CAM5.1) global atmosphere/land climate model, run in its 
conventional ∼ 1° longitude/latitude configuration (Neale et al. 2010; Stone 
et al. 2018). Simulations have been run under the experiment protocols of 
the C20C+ Detection and Attribution Project (D. Stone and P. Pall, “A 
benchmark estimate of the effect of anthropogenic emissions on the ocean 
surface,” submitted), following two historical scenarios (Angélil et al. 2017) 
and will be regularly updated through time as a contribution to both the 
C20C+ D&A project and the WRAF. The first set of simulations (for the 
factual scenario) is driven by observed boundary conditions of atmospheric 
chemistry (greenhouse gases, tropospheric and stratospheric aerosols, 
ozone), solar luminosity, land use/cover, and the ocean surface (temperature
and ice coverage). The second set of simulations (for the counterfactual 
scenario) is driven by what observed boundary conditions might have been 
in the absence of historical anthropogenic emissions: the anthropogenic 
component of atmospheric chemistry is set to year-1855 values, ocean 
temperatures are cooled by a seasonally and spatially varying estimate of 
the warming attributable to anthropogenic emissions, and sea ice 
concentrations are adjusted for consistency with the ocean temperatures 
(Stone and Pall, submitted). Simulations within a scenario differ only in the 
starting conditions. The data and further details on the simulations are 
available at http://portal.nersc.gov/c20c. The simulations for both scenarios 
cover 01/1959 to 06/2015; the (time-varying) ensemble sizes are given in 
Table 3Figure 4.

The event of interest for both case studies (used to define the region-specific
probabilities pki) is the occurrence of a month that is more extreme than the 
third most extreme event expected over the preceding 30 year period. In 
other words, for a forecast in 2015, the event definition is the 1-in-10 year 
event which, for hot and wet months, corresponds to the 0.9 quantile of 
average monthly temperature or precipitation for each region in the factual 
simulations over 1985–2014 (specifically using the monthly measurements 
from the 50-member ensemble that covers this entire period). Using a 
moving time period of fixed length (30 years) ensures that we have 
accounted for climate change and that the events we consider are extreme 



in the “current” climate. All of the historical CAM simulations (both the 
factual and counterfactual) from the entire 1959–2014 period are used to 
calculate the EOFs following the procedure outlined in Section 3; the 
simulations from 2015 are used to fit the statistical model and classify the 
hypotheses. Otherwise, all prior specifications and computation via MCMC 
are the same as described in the simulation study. Note that an implicit 
assumption of this application is that the CAM5.1 simulations are suitable for 
evaluating changes in the probability of extremes (Angélil et al. 2016, 2017).

5.2.1. Results for a Single Set of Hypotheses

The results for each case study are shown in Figure 4. Even with a larger 
cutoff for hot Januarys (testing for a five-fold increase as opposed to simply 
an increase), an overwhelming majority of the regions (194 of 237) have 
experienced a large degree of anthropogenic warming in 2015, with only a 
few regions in North America, Southeast Asia, central Russia, and southeast 
Australia failing to provide conclusive evidence of a five-fold increase in 
occurrence probability of a hot January 2015 (every region has conclusive 
evidence against the null hypothesis when the cutoff is relaxed to chot=1). 
The results are more varied for wet events in March of 2015, as there are 
many regions with and without conclusive evidence against the null 
hypothesis. Many regions in the northern extratropics (mid to high latitudes) 
have an increased probability of a wet event in March 2015 as a result of 
anthropogenic emissions. An increased probability is the general tendency 
along an equatorial band as well (although not in Southeast Asia), while the 
subtropics (arid regions in the tropics) generally lack conclusive evidence; a 
notable exception is over the northern Sahel, which may indicate an earlier 
advance of the West African monsoon in this climate model due to 
anthropogenic emissions (Lawal et al. 2016).
Figure 4. Results of testing a collection of hypotheses Hi:RRi(hot)≤5 (top, i.e., determining if there is 
conclusive evidence for a five-fold increase in the probability that January 2015 will have an average 
temperature that exceeds the third hottest expected January over 1985–2014) and Hi:RRi(wet)≤1 
(bottom, i.e., determining if there is conclusive evidence for an increase in the probability that the total
precipitation in March 2015 will exceed the third wettest expected March over 1985–2014). The white 
areas (e.g., New Zealand, Zimbabwe) do not satisfy criteria for fitting into political regions of the target
400,000–900,000 km2 range as described in Stone (2018) and are not analyzed here.



For comparison to standard (frequentist) FDR methods, we show maps for 
the corresponding forecast using the traditional Benjamini and Hochberg 
(1995) procedure based on likelihood ratio test p-values; see Figure 5. The 
BH procedure is again much more conservative than the corresponding 
results using our Bayesian approach (shown in Figure 4), identifying 
conclusive evidence of changes in extreme probabilities for a greatly 
reduced subset of the WRAF regions. As an aside, we note that maps like 
Figure 4 produced using the Bayesian framework with other fitted models 
(i.e., M2-M9; not shown) yield only mild differences from the map based on 
our new modeling approach. In this case, where there is no way to assess 
which fitted model yields the “correct” results, we prefer our new approach 
based on the results of the simulation study in Section 4.
Figure 5. As in Figure 4, but using the Benjamini and Hochberg (1995) procedure based on likelihood 
ratio test p-values. The white areas (e.g., New Zealand, Zimbabwe) do not satisfy criteria for fitting into
political regions of the target 400,000–900,000 km2 range as described in Stone (2018) and are not 
analyzed here.



5.2.2. Capturing the Existence and Magnitude of Anthropogenic Influence

Both the current and planned upcoming versions of the WRAF actually 
conduct more than one set of hypothesis tests for each forecast: several 
different thresholds are used (e.g., cwet=1 vs. cwet=2) in conjunction with 
several different types of null hypotheses (e.g., Hi:RRi(wet)≤cwet vs. 
Hi:RRi(wet)≥cwet). The purpose of these categories is to make statements 
that combine confidence in the change in probability as well as the 
magnitude of this change. As such, the forecast actually involves “multiple–
multiple testing,” in that we now have multiple sets of M hypotheses to test. 
This can be accomplished in our framework by simply conducting the 
classification procedure several times; recall from Section 5.1 that using R1 
yields consistent results for nested hypotheses (unlike R3). The testing 
adjustment is done separately for each category, and therefore the existence
of any possible false discoveries can be interpreted within each category.

As an example of what the attribution forecast looks like for multiple 
categories, see Figure 6. A benefit of the Bayesian framework is that we can 



first test for the absence of an anthropogenic effect using a null hypothesis 
like Hi(1):RRi(wet)≤labsence∪RRi(wet)≥uabsence, where uabsenceand 
labsence are upper and lower limits, respectively, for an interval including 1 
that defines “no anthropogenic influence.” Regions where we can reject 
H(1)

idisplay strong evidence that anthropogenic forcings have not changed 
the probability of extreme precipitation. Otherwise, the other null hypotheses
of interest are

being able to reject these hypotheses indicates conclusive evidence that the 
probability of extreme precipitation is decreased by a factor of two, 
decreased, increased, or increased by a factor of two (respectively). There is 
clearly some overlap between H(1)

i and both H(3)
i and H(4)

i; to reflect this, we 
create two additional categories to indicate regions that reject both H(1)

i and 
H(3)

i (orange, indicating that while there is most likely no change in the 
probability there is some evidence for a decrease) as well as both H(1)

i and 
H(4)

i (green, indicating that while there is most likely no change in the 
probability there is some evidence for an increase). A final category (shown 
in gray) identifies regions that fail to reject any of the hypotheses and are 
thus classified as inconclusive.
Figure 6. Results of testing multiple hypotheses per region, to capture the magnitude and direction of 
the effect of anthropogenic influence. Top: 1/2 ⩽ RRi ⩽ 2 defines the “Conclusive for no change” 
category; bottom: 2/3 ⩽ RRi ⩽ 3/2 defines the “Conclusive for no change” category.



Maps of these multi-category results are shown in Figure 6, where we use 
both a wide interval labsence=1/2 and uabsence=2 as well as narrower 
limits labsence=2/3 and uabsence=3/2. Angélil et al. (2017Angélil, O., Stone,
D., Wehner, M., Paciorek, C. J., Krishnan, H., and Collins, W. (2017), “An 
Independent Assessment of Anthropogenic Attribution Statements for Recent
Extreme Temperature and Rainfall Events,” Journal of Climate, 30, 5–16.
[Crossref], [Web of Science ®], [Google Scholar]) provided justification for 
using the narrower interval (2/3, 3/2) as the definition of “no anthropogenic 
influence;” however, the somewhat limited ensemble sizes (≈ 100) in this 
case study prevent us from conclusively finding no change (except in one 
region) for the narrower interval (bottom, Figure 6). The wider interval used 
for the top panel of Figure 6, on the other hand, concludes that a fairly large 
proportion of the map experiences no change. Clearly, being able to 
conclude that extreme probabilities are unchanged between the two climate 
scenarios depends heavily upon both the ensemble size and width of the 
interval that defines “no change,” and this tradeoff can result in significant 



qualitative differences. Given that the geometric range spanned by (2/3, 3/2)
is about half that spanned by (1/2, 2), a quadrupling of the ensemble size 
(i.e., increased to 400 members) would be expected to result in the 
identification of a substantial number of regions in the “no change” 
categories, in contrast to when only 100 members are available (as also 
noted in analysis of 2013 events when the ensemble sizes are larger; not 
shown).

6. Conclusions

In this article, we have developed a hierarchical Bayesian modeling 
framework for estimating the probability of extreme events and the risk ratio
over a large collection of land-regions, as well as a decision-theoretical 
procedure that allows us to flexibly control the number of false discoveries 
while maximizing the number of true discoveries. The Bayesian hierarchical 
model robustly uses historical climate model simulations to estimate 
irregular (nonstationary) dependence patterns among the hypotheses, can 
account for non-Gaussian behavior in the region-specific effects, and uses an
appropriate shrinkage prior that does not require choosing an EOF truncation
point. Furthermore, we show that the modeling framework maintains false 
discovery control even when the true data-generating mechanism arises 
from a completely different class of statistical models. Finally, we apply our 
robust statistical model to a real dataset used for making seasonal forecasts 
for the Weather Risk Attribution Forecast. Moving forward, we plan to 
operationalize our procedure as described in Section 5.2 to replace the 
current ad hoc presentation of the forecast.

We have demonstrated the application of our procedure across regions and 
with multiple hypotheses for each region. However, we have not applied it 
across event types (e.g., hot, cold, wet, and dry events for a single region) or
across multiple months. Application across regions makes sense for several 
reasons. First, events are presented in global maps of these regions (as in 
Figure 6) and thus are not only providing information on each region 
individually but also on the aggregate of all of the regions. Second, even with
some correlation across the regions, there remains a large “effective sample 
size” of tests, whereas testing across event types would yield a small 
number of tests (such that a multiple testing adjustment has less value). 
While testing across multiple months (e.g., all months or only the same 
calendar month from a given period of years) may provide a moderate 
number of tests, it would be hard to fit into the monthly operational design of
the WRAF. Continual updating of past calculations, as further months 
become available, would pose a presentation and communication challenge. 
However, in a more retrospective research framework, studying events over 
a decade for instance, testing across months as well as, or instead of, 
regions could make sense.

Finally, while the final version of the forecast will use the M = 237 regions 
shown in Figure 4 (where each region is approximately 0.5 million km2; these



are the WRAF05 regions), the WRAF will also provide a forecast for 
aggregates of these regions: 68 regions comprising 2 million km2 each 
(WRAF2); 30 regions comprising 5 million km2 each (WRAF5); and 12 regions 
comprising 10 million km2 each (WRAF10). As a demonstration of how our 
procedure will perform for a smaller number of regions, we conducted a 
simulation study similar to the one in Section 4using the larger WRAF2 
regions (M = 68; these regions are slightly modified from the current version 
of the WRAF, which has 58 regions); these results are shown in Appendix A.2 
(see supplemental materials). Results for the WRAF2 regions are 
approximately consistent with the simulation study results for the smaller, 
WRAF05 regions.
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