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Abstract

Essays on Environmental and Resource Economics

by

Dilek Uz

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor David Sunding, Chair

In this dissertation, I present three essays that empirically study water and energy
economics issues in California.

The objective of the first chapter is to investigate whether and to what extent
farmers’ crop choice decision is affected by the irrigation water salinity. Using a
highly granular land use data and random coefficients logit method, the effect of
irrigation water salinity on crop choice is studied in the context of Sacramento-
San Joaquin River Delta— California’s major water source and home to prime
agricultural farmlands. The results show that though the effect of salinity was
statistically significant during the past decade, highest and most significant co-
efficients were those of crop class indicators and weather. This finding suggests
that it is essential to reach out to the farmer community to ensure that they are
fully capable of coping with expected salinity increases in medium to long run.
Additionally, there is evidence for heterogeneity in farmers’ response to salinity
even though the area studied is relatively small. Ignoring the heterogeneity can
result in misleading coefficient estimates especially for those researchers who wish
to study farmer behavior in larger regions. Finally, revenue losses are simulated
under baseline salinity and potential future salinity scenarios due to building a
water conveying facility around the Delta, which suggests an expected revenue
loss of about 19%.

In the second chapter, together with Steven Buck, I question the wisdom of
selecting a forecast model based on a within-sample goodness-of-fit criterion in the
context of commercial and industrial (C&I) water demand in the Southern Cali-
fornia. Initially, a set of about 350 thousand regression models are estimated using
retailer level panel data featuring water consumption, price, employment, weather
variables, and GDP. Out-of-sample forecasting performances of those models that
rank within the top 1 % based on various in and out-of-sample goodness-of-fit cri-
teria were compared. We found that the models that provide the best in-sample
fit are not necessarily the most favorable ones when it comes to forecasting water
demand. The results indicate that on average, these models have a significantly
higher absolute forecast error and a larger gap between the highest and lowest
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forecasts that they generate compared to the models that rank high based on
out-of-sample fit criteria we defined.

Finally, the third chpater investigates the effect of the 2000 California energy
crisis on the take up of an engineering audit program funded by the Department
of Energy, aiming operational improvements in various domains, including energy
efficiency, at small and medium sized firms. Using a detailed data set containing
information on both firm characteristics and the specifics of the recommendations
made, a linear probability model is estimated using difference-in-difference strat-
egy. In order to keep the treatment and the control groups as comparable as
possible to ensure credible identification, the firms that applied to be audited and
made the take up decision before the crisis are compared to those that applied
right before the crisis and had to decide after the crisis started. The results show
that the 2000 California energy crisis was associated with a 16% increase in the
take up of the IAC energy efficiency recommendations. The coefficient estimate is
statistically significant and robust to different model specifications.
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Chapter 1: Water Quality and Farming Revenues:

The Case of California Bay Delta

1.1 Introduction

Excessive salinity induced by irrigation is one of the biggest and oldest envi-
ronmental challenges faced by the farmers from all around the world. Naturally
occurring salts are dissolved in and carried through surface and ground flows.
When used in irrigation, the water itself evaporates but the salts accumulate in
the plants’ root, gradually impeding its ability to grow. Salinity causes billion
dollar losses in farming revenues, renders millions of acres of agricultural land un-
productive, and poses a significant threat to food security (Pitman and Läuchli
(2002)). How the farmers will adapt in the face of this environmental problem
and how their revenues and the crops grown will be affected as a result is crucial
especially in a world where drought is expected to become more prevalent due to
changing climate.

The objective of this chapter is to investigate whether and to what extent
farmer’s crop choice decision is affected by the irrigation water salinity. In other
words, do the farmers switch to more salt tolerant crops when they face increases
in salinity and how does the importance of the role played by salinity compare to
other factors?

Using a highly granular panel data on Sacramento-San Joaquin River Delta
(the Delta, hereafter) agricultural activity, together with ownership information,
weather, and crop revenues per acre, a discrete choice model for agricultural crops
is estimated in order to investigate the effect of irrigation water salinity changes
on agricultural land use. Subsequently, expected land acreages and corresponding
farming revenues are simulated using the parameter estimates and salinity scenar-
ios obtained from DSM II –“a [computerized] river, estuary and land modeling
system” used by the California Department of Water Resources.

The Delta is a main water source of California (see Figure 1), providing drink-
ing water for millions of Californians and irrigation water for millions of acres of
land. During the past 150 years, it has been altered via draining the marsh areas
into agricultural islands that are protected with an extensive levee system. Two
major projects, State Water Project (SWP) and Central Valley Project (CVP)
that export water to arid regions of California further contributed to the alteration
of natural water flowing patterns in the Delta. Though the diverted water brought
wealth and prosperity to its destination, aggressive diversions have caused gradual
degradation in the ecosystem leading to court decisions that limit the amount of
export water to protect the Delta ecosystem.

To meet the “coequal goals” of ensuring the reliability of water supply as well
as restoring the damaged ecosystem, the Bay Delta Conservation Plan (BDCP)
was formulated. In addition to many habitat conservation measures, the plan also
includes construction of an isolated water conveying facility to carry water from
the northern part of the Sacramento River directly to the pumping facilities in
the southern Delta. The plan raises concerns regarding the quality of the water
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flowing through the Delta which is used, among other things, for irrigation by the
Delta farmers.

There is an extensive literature that studies farmer decision making. An im-
portant portion of these studies involve areas such as land use and technology
adoption as a function of factors like input prices and environmental factors. This
chapter contributes to the current body of knowledge by studying farmers’ decision
making process as a function of salinity, a factor that is not studied from a behav-
ioral point of view. Additionally, this study expands the existing literature in the
following ways: First, instead of cross sectional data, a highly disaggregated panel
dataset of crop choice featuring corresponding field and weather characteristics is
utilized in the estimation. Having observations from multiple years both makes it
possible to control for aggregate year to year changes in crop preferences and to
account for path dependence in the crop choice decision. Second, farm level own-
ership data is incorporated into the analysis which allows utilizing mixed (random
coefficients) logit. Mixed logit offers advantages over standard multinomial logit
in various ways. In addition to freedom from the “independence from irrelevant
alternatives” (IIA) property that imposes restrictive substitution patterns across
the alternatives, mixed logit also allows testing whether there is heterogeneity in
preferences inflicted by unobserved factors. A variety of forces might bear upon
farmers’ responses to water salinity changes such as capability to mitigate salinity
effectively through other means, whether they need to deliver a certain type of
crop under binding contracts, or the way in which they interpret past observations
while making current decisions. Hence, a rigorous analysis of farmer behavior calls
for accounting for these unobserved sources of heterogeneity and random coeffi-
cients logit method provides the necessary econometric machinery for that. To
my knowledge, this is the first study that utilizes micro panel data and features
mixed logit analysis to estimate farmers’ land use decisions.

Estimation results show that although its effect is statistically significant, salin-
ity has not been the primary factor that drove Delta farmers’ crop decision in the
previous decade. The highest and most significant coefficients are those of crop
class indicators and the maximum temperature. From the policy standpoint, it
is important to understand the nature of the relative indifference to water salin-
ity among farmers before implementing a major construction that will likely have
large and permanent effects on the irrigation water quality. If the reason for
farmer’s reluctance to react to salinity is due to being fully capable of mitigating
the effects, then the damage from impending salinity surges will be more manage-
able. However, if it is due to suboptimal decision making, they are likely to incur
losses and a successful policy implementation should involve effective outreach to
the farmer community in order to facilitate optimal decision making.

Second, there is evidence for heterogeneity in farmers’ response to salinity
even though the area studied is relatively small. Therefore, researchers who wish
to study farmer behavior in larger regions, should be aware of potential errors
ignoring heterogeneity in behavior may cause.

The results are robust to a different measure of salinity (average of previous
3 consecutive years instead of only previous year’s salinity). Additionally, three
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different measures of goodness-of-fit are provided.
Finally, revenue losses are simulated under baseline and policy salinity scenar-

ios considering possible yield declines. The simulation exercise predicted about a
19% decline in the farming revenues compared to the base case salinity scenario.
The losses will vary depending on the farmers’ actual crop preferences and their
willingness to switch to more salt tolerant species due to high water salinity within
an estimated interval of 10 to 30%.

This chapter proceeds as follows: Section 1.2 gives an overview of the salinity
problem and an institutional background; section 1.3 provides a review of the
related literature; section 1.4 explains the empirical model; section 1.5 provides
the details of the data set used; section 1.6 presents and discusses the results of
the estimation; and section 1.7 concludes. All the tables and figures are provided
in section 1.8.

1.2 Background

Irrigation has been the major driving force of agricultural development, transform-
ing the economies all around the world by providing food security and supporting
many industries. The benefits of irrigation are accompanied by major costs such
as salinity, water logging, soil erosion, and spread of diseases. Salinity is the most
severe environmental challenge faced by the farmers all around the world causing
billion-dollar losses in farming revenues and agricultural land (Pitman and Läuchli
(2002)). Irrigation water taken from streams carry tons of naturally occurring di-
luted salts and minerals. Salts remain in the root zone while the majority of the
water evaporates either through heat or biological process (evapotranspiration).
The effects of this physical process on civilizations can be traced back to ancient
Mesopotamia (Jacobsen and Adams (1958)).Unless there is proper drainage to
leach these salts away from the root zone, they may accumulate to a point where
the salinity starts to impede the growth of the plant. Sometimes, the saline wa-
ter does leach below the root zone down to the ground water causing the ground
water to get gradually saltier and the water table to rise. Rising salty water table
eventually hits the root zone and drowns the crops in salty water, a problem called
water logging (Oosterbaan (1988)). Even with the existence of drainage facilities,
the issue persists as the saline water drained out of the farmland still will need to
be properly disposed.

Farmers from all over the world are challenged by salinity induced by irrigation.
30% of the agricultural land in the western side of Andes along the Pacific Ocean in
Peru is threatened by water logging and salinity (De La Torre (1987)). In Pakistan,
despite millions of rupees were spent to reclaim over 4.5 million acres of land under
the threat of serious salinity, the goals could only be partially met (Bhatti (1987)).
Massive irrigation following the construction of Assuan Dam forced the Egyptians
to install drainage facilities over millions of hectares of agricultural land (Abdel-
Dayem (1987)). In Australia, most of the wetland, damp land, forests, and at least
450 species are under serious threat and without a massive amount of intervention,
they are destined to extinction (Pannell (2001)).

20 to 25% of irrigated land in US faces yield reduction due to salinity (El-
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Ashry, van Schilfgaarde, and Schiffman (1985)). Imperial Valley located in the
south east of California has been irrigated since 1901. Accumulated salts and
rising water table reached threatening levels within 20 years. In 1922, a $2.5
million bill was passed to build the drainage system that will channel the saline
agricultural drainage waters to the Salton Lake.

In 1961, water quality became a major issue in the Colorado River due to in-
creased usage of river water within US and highly saline drainage water from the
Wellton-Mohawk Irrigation and Drainage District. Salinity of the water crossing
from the Mexican border went up from 800ppm to 1500ppm causing an interna-
tional crisis between the US and Mexico (Brownell and Eaton (1975)).

The geographical context of this study is the California Bay Delta. The Delta
is the most important water resource in California.1 The construction of the
State Water Project and the (federal) Central Valley Project made the Delta the
water hub of California. It supplies drinking water for 25 million Californians and
irrigation water to 4.5 million acres of agricultural land. Reduced water quality
and quantity due to aggressive fresh water exports together with altered flowing
patterns significantly degraded the Delta ecosystem. Several fish species including
the Smelt, a key species in the Delta ecosystem, came under the risk of going
extinct. In 2007, a Federal Court order mandated certain water levels in order to
protect the fish.2 The order limited the amount of water that can be exported
from the Delta, especially in dry years.

With water reliability and ecosystem concerns in mind, Governor Jerry Brown
recently revived the peripheral canal idea the California voters defeated in 1982.
His proposal of constructing a $16B water conveyance facility, also known as the
Bay Delta Conservation Plan (BDCP), to divert Sacramento River water under-
neath the Delta is recently incorporated into the Delta Plan. The facility will
divert the fresh water before entering the Delta and will ensure the reliability the
water exports to the Bay Area and Southern California. Since it will be “iso-
lated”, it will also protect the conveyed water from risks such as levee collapse
and sea water intrusion. Additionally, because the natural water flow pattern will
no longer be disturbed by the strong pumping facilities, it will allegedly allow the
fish population to restore.3

1For an excellent introduction to California water issues visit Water Education Foundation
at http://www.watereducation.org/topic-delta-issues. “Managing California’s Water:
From Conflict to Reconciliation” by Hanak et.al. is an invaluable resource providing a detailed
institutional history and reviewing California’s water (Hanak (2011)).

2“Court Finalizes Order to Protect Bay-Delta, Smelt and Water Supply for Millions of Cali-
fornians” http://www.nrdc.org/media/2007/071214.asp

3The plan has aspects other than solely changing the the way water is exported from the
Delta. Overall, it is a Habitat Conservation Plan (HCT) and a Natural Community Conser-
vation Plan (NCCP) aiming to restore the habitats. It reportedly aims a holistic approach to
mitigate the degradation in Delta ecosystem which is threatened by multiple stressors (Snow
(2010)). It is developed by the California Department of Water Resources and with assistance
from several other agencies including California Natural Resources Agency, California Depart-
ment of Fish and Game, US Fish and Wildlife Service, national Marine Fisheries Service, US
Army Corps of Engineers, State Water Resources Control Board, and the US Environmental Pro-
tection Agency (US EPA). $216 million has been spent to develop the draft plan, conduct the
environmental review, host numerous public outreach activities, and complete preliminary engi-
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However, there are still major objections to the plan. First of all, the financing
of the project is critical. The actual costs will likely to be larger than the budget
amount when the costs to the stakeholders are factored in. Even if there are
no environmental lawsuits, some of the funding depends on the passage of water
bonds by the voters. Also, there is a concern that too much water will be taken
out of the rivers and will cause drying up of downstream habitats especially in
low precipitation years though the authorities assert that the total quantity of the
water exported will be within 10% of the average annual amount.

While the construction of isolated conveyance facilities will insure the quality
and the reliability of the exported water, taking away the fresh water before enter-
ing the Delta is expected to increase the salinity within the Delta. Compromised
water quality will likely have ramifications from agricultural, ecological, and mu-
nicipal aspects. This study focuses on the agricultural implications from the point
of view of the Delta farmers.

Delta is composed of many fertile agricultural islands that were originally
drained from marshland and are protected from flood via an extensive 1000 mile
long levee system. According to California Farmland Mapping and Monitoring
Program (FMMP) 80% of the Delta’s 500 thousand acre farmland are top tier
“Prime Farmland”. High salinity has already been issue for the Delta farmers due
to combination of San Joaquin River’s high salinity combined with rising sea level.
Carrying Sacramento River’s fresh water before it enters the Delta, raises serious
concerns regarding further degradation in water quality in the area.

1.3 Literature Review

Salinity is a well documented subject in the agricultural economics literature. Ear-
lier studies estimated production functions using the data gathered from agricul-
tural experiments. Dinar, Rhoades, Nash, and Waggoner (1991) uses data from
experiments to estimate production functions relating yield to water quantity,
quality, and salinity for wheat, sorghum and tall wheatgrass. Then, the estimated
parameters are used to simulate crop yields in San Joaquin and Imperial Valleys
under different salinity conditions. Datta, Sharma, and Sharma (1998) estimates
the production function for wheat under different water quality and quantities
holding other inputs constant using experimental data from India.

Another set of studies aim to shed light to the prescription of optimal decision
making. Dinar, Letey, and Knapp (1985) use the production function parameters
for corn and cotton (representative sensitive and tolerant crops, respectively),
to compute optimal applied water and associated profits. Using a short run,
single-crop optimization model Yaron and Bresler (1970) determines the least cost
combinations of water quality-quantity given climate, soil and land use conditions.
Yaron, Bresler, Bielorai, and Harpinist (1980) uses a dynamic model for optimal
pre-plant leaching and irrigation schedule under hypothetical water supplies with
varying salinity levels. Their findings suggest that frequent applications of small

neering and design of the proposed conveyance facilities (http://baydeltaconservationplan.
com/AboutBDCP/YourQuestionsAnswered.aspx#CostFinancing).
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quantities of water is a better method than applying larger quantities at a time
with lower frequency. Francois (1982) conducted a field experiment to investigate
the possibility of increasing the density of cotton growing on saline soils. Since the
plants tend to be smaller under high salinity his idea was that more can be planted
per acre of land and he derived optimal water quality, quantity and crop densities
given the biological yield relationship. Knapp, Stevens, Letey, and Oster (1990)
uses a dynamic optimization model to prescribe the optimal irrigation systems and
derives the conditions under which it is optimal to pay for the drainage system.

Agricultural land use in discrete choice setting is studied under climate adap-
tation context. The idea is to estimate the changes in crop choices as a response
to changes in climate variables to be able to quantify the effects of global cli-
mate change in the various regions of the world. Using a multinomial logit model
Seo and Mendelsohn (2008) studies a cross section of 7000 farmers from 7 coun-
tries in South America to estimate which crops are more likely to be chosen by
the farmers. Sanghi and Mendelsohn (2008) focuses on India and Brazil while
Kurukulasuriya, Mendelsohn, et al. (2007) looks at Africa in a similar fashion.
Surprisingly, however, very little is done so far to study irrigation water salinity
as one of the environmental decision variables.

In this chapter, farmers’ land use decision making as a function of salinity is
studied. There is a positive correlation between the crop salinity sensitivity and
revenue per acre (see Fig. 2). In other words, the crops that are more sensitive to
salinity tend to yield more revenue per acre harvested. This raises the question of
whether the increases in the irrigation water salinity will result in a shift in the
crop mix towards more salt tolerant hence (usually) less valuable crops.

Farmers who face excessive water salinity can take actions in order to mitigate
the negative effect on the yield. The methods include applying excess water in or-
der to induce leaching, switching to micro irrigation, drainage, adjusting fertilizer,
crop rotation, and fallowing. The extent to which the farmers will benefit from
each of these options will depend on a number of conditions such as the costs of
the alternatives, soil quality, and expected prices of different crops. Therefore, the
link between yield (or revenue) and irrigation water salinity may not always be
given by the relationships that are estimated under experimental conditions and
will ultimately depend on what the farmers choose to plant. For this reason, it is
more appropriate to study this subject from a behavioral perspective.

To my knowledge, the conference manuscript by MacEwan and Howitt (2012)
is the only academic study that looks at farmers’ land use decision making as a
function of salinity using a behavioral approach. Using a cross sectional data set on
California’s Kern County, they first estimate a standard multinomial logit model
where the salinity coefficients are statistically meaningful. Then under the profit
maximization assumption, they find that there is a significant difference between
the “behavioral” patterns and the “experimental” patterns of yield changes as a
response to salinity. This finding implies that farmer’s switching behavior needs
to be taken into account when estimating yield changes rather than relying solely
on the physiological relationship, in order to get more accurate results.

The methodology in this study differs from MacEwan and Howitt (2012). It
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features a panel dataset of crop choice and salinity as well as control variables
such as maximum temperature, owner size indicators, and information of what
was planted the year before on the same land. Additionally, this chapter uses a
random coefficient logit (mixed logit) method and the results are contextualized
with simulation.

1.4 Empirical Analysis

A major empirical challenge in estimating the effect of salinity on agricultural
crop choice is that hard to observe farm characteristics that play into crop choice
may correlate with salinity levels. If we can assume that farm characteristics
tend to stay relatively stable over time, and irrigation water salinity varies from
year to year, in order to be able to credibly identify salinity response parameters,
we need to allow salinity level to vary within a farm and observe the decision
making under different conditions. Observing the farms for multiple years will
also allow accounting for year to year aggregate changes in farmers preferences via
year indicators and the path dependence in farmers’ decision making.

Another potential challenge is that farmers might differ in their response to
changing environmental conditions. In this study, ownership information is in-
corporated into the analysis4 in order to control for owner specific unobservable
factors that could be potentially correlated with the variable of interest (water
salinity) and the outcome (crop choice).5

As a preliminary analysis, two sets of regressions are run prior to the mixed
logit estimation. The first one involves regressing the salinity sensitivity of the
chosen crop (proxied by the slope of the salinity-crop yield curve) on the previous
year’s water salinity. The yield of a crop that is more sensitive to salinity will
decline faster as the water salinity goes up and hence will have a steeper slope
(larger in absolute value). For most crops, the salinity-yield relationship is es-
tablished by agricultural scientists. The studies from which this information is
obtained are Hanson, Grattan, and Fulton (1999), Hoffman (2010), and Maas and
Hoffman (1977) (See the appendix for the crops and the salinity tolerances).The
regression results can be found in Table 2. We see that the salinity sensitivity
of the chosen crop tends to decline as the previous year’s irrigation water salinity
goes up. In other words the farmers tend to choose more salt tolerant crops as they
observe increases in the irrigation water salinity. All three models include owner
indicators. As we sequentially add the year and the conservation zone indicators,
we see that both the magnitude and the significance of the salinity coefficient go
up while the magnitude and the significance of other variables remain somewhat
stable.

A similar analysis is presented in Table 3, where the revenue per acre is the
dependent variable. Here we do not observe a clear pattern in the sign, magnitude,
and the significance of the salinity coefficient. These findings suggest that the

4It is assumed that farmlands owned by the same entity/person are managed by the same
decision maker.

5When estimating random coefficient logit, this is done by setting the coefficient for the
variable of interest same for same decision makers in the optimization algorithm.
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farmers respond to irrigation water salinity by switching to more salt tolerant
crops but it is hard to claim with any reasonable of confidence that the crops they
switch to are necessarily low value. In other words, data suggests that farmers
watch out for water salinity in crop choice while at the same time protecting their
revenues.

The regressions are followed by a discrete choice model estimation. Crop choice
is conceptualized with a simple decision framework. The farmer first observes
salinity, weather, and crop prices before she makes a decision. Then, she chooses
the crop class that maximizes the benefits given the physical characteristics of the
land and her observations.

Let Uijknt denote ith farmer’s net benefits from choosing crop class j, for farm-
land n, in conservation zone k at time t.

The researcher does not observe the farmers’ individual preferences but farm
level physical characteristics, weather, revenue per acre, and salinity are observed.
The total value of the crop to the farmer is partitioned into observed (Vijknt) and
unobserved (εijknt) components such that Uijknt = Vijknt + εijknt.

The unobservable portion is assumed to be independently and identically dis-
tributed Type I extreme value (Gumbel) the density of which is given by

f(εijknt) = eεijkntee
−εijknt

.

The difference of two extreme value variables is a logistic variable and the proba-
bility of alternative j being chosen by decision maker i is given by6:

Pijknt = eVijknt∑
l∈J e

Vilknt
,

where J represents the choice set (Train (2009)). This is also known as the “logit
probability”.

The observed component of the total benefit of farmer i is modeled as

Vijknt = β1jFn + β2jOi + β3jWn(t−1) + β4ijSn(t−1) + β5Cjn(t−1) + Tjt + Kjk

for each crop class j in the choice set where,
Fn is the vector of farm characteristics such as soil quality, size, elevation, and
slope;
Oi is the vector of owner size categories;
Wn(t−1) is the previous year’s weather measurement;
Sn(t−1) is the previous year’s salinity measurement;
Cjn(t−1) is the vector of time varying crop choice characteristics such as revenue
per acre and path dependence. Path dependence here is an indicator variable that
is equal to 1 if option j was picked by the farmer in the previous period and zero

6The reason why we take the difference is straightforward. When making a voice, only
the differences in the utilities matter. Therefore, in order to simplify the analysis, one of the
alternatives’ (which constitutes the baseline) utility is set to zero by subtracting it’s utility form
each of the alternative including itself. As a result, instead of N (number of alternatives) errors
we are left with N-1 error differences.
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otherwise.
Tjt is the year specific constant;
Kjk is the conservation zone specific constant. Conservation zones are regions in
the Delta with similar ecological characteristics.7

This model is estimated both using a random coefficients logit (mixed logit)
and the standard (fixed coefficients) multinomial logit model. The latter is a
widely used method to estimate discrete choice decision parameters in the eco-
nomics literature. Studies that utilized this method to analyze agricultural crop
choice include Sanghi and Mendelsohn (2008), Seo and Mendelsohn (2008), Ku-
rukulasuriya, Mendelsohn, et al. (2007), and MacEwan and Howitt (2012). The
properties are well understood and the implementation is straightforward. How-
ever, mixed logit offers major advantages relative to standard multinomial logit
making it a worthwhile modeling option. First of all it provides freedom from
rather restricted substitution patterns also known as the independence from ir-
relevant alternatives (IIA) property caused by the ratio of probabilities of two
alternatives being only dependent on their own attributes (Train (2009)).

Second, logit model forces the parameters in the value function to be same for
every decision maker. Therefore, a change in a certain attribute will necessarily
affect every decision maker’s valuation of the alternative in the same direction
and by the same amount. With mixed logit on the other hand, the parameter is
treated as a random variable with a certain distribution and the mean and the
standard deviation of this distribution are estimated in the maximum simulated
likelihood procedure.

In this study, the salinity parameters are modeled to be normally distributed
across the farmers. In other words, β4ij = β̄4j + ξij and ξij ∼ N(0, σj). It should
be interpreted as follows: the contribution of salinity to the value that farmer i
gets from alternative j is a normally distributed random variable with mean β̄4j
and standard deviation σj.

The estimation procedure can be summarized as follows: Asume, for simplic-
ity, that we only have one parameter, β. The logit probability formula is valid
for a given value of β. Now suppose, β itself is a random variable, then the logit
probability will be a function of this random variable. Hence, the “unconditional”
probability of a certain alternative will be given by

∫
L(β)fθ(β)dβ where L(β)

is the logit probability and fθ(β) is the density of β given the parameter vector
θ. We can think of the mixed logit probability as the weighted average of the
logit probabilities, where weights are determined by the probability density func-
tion of β evaluated at each point. In other words, we are mixing different logit

7Notice that in order for the coefficients of the variables that do not vary across alternatives
to be identified, they need to be specified as alternative specific. For example, a farm specific
attribute will contribute to the benefit of each option differently.
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distributions via a normal distribution.8

By the same token, conditional on β, an individual’s decision sequence will
have the probability S(β) =

∏
t Lt(β). The integral of this probability over the

density of β,
∫
S(β)fθ(β)dβ, will give the unconditional probability. Since the

integral of normal distribution does not have a closed form, this quantity needs
to be simulated. The simulated probability is SPθ = (1/R)

∑
r S(βr; θ), where

R is the number of draws taken from the underlying distribution. This clearly is
an unbiased estimate of the actual unconditional probability. It is smooth which
paves the way for maximum (simulated) likelihood estimation. Under regularity
conditions, maximum simulated likelihood is consistent and asymptotically normal
(Hajivassiliou and Ruud (1994)) when the number of draws increases faster than
the square root of the sample size. Also it is asymptotically equivalent to maximum
likelihood estimator.

In the estimation procedure, the simulated log-likelihood function is constructed
by adding up the natural logarithms of the individual simulated sequence proba-
bilities and population parameters are estimated by maximizing this log-likelihood
over θ.9 Since this is a non-linear transformation, the expectation the log of simu-
lated probabilities does not equal the log of actual probabilities. The bias vanishes
as the number of repetitions increases (Revelt and Train (1998)). The standard
errors are calculated using the BHHH methodology (named after the authors of
Berndt, Hall, Hall, and Hausman (1974)) by taking the square root of the diag-
onals of the “Hessian” matrix calculated by the outer product of the gradients
of the log-likelihood function with respect to the parameters. This method offers
a significant advantage as it does not require additional computing besides the
(already computed) gradients (Greene (2008)).

Allowing the coefficients to come from a random distribution incorporates the
heterogeneity across the farmers. Note, however, that the researcher stays ag-
nostic to the source of this heterogeneity. It could be caused by a number of
factors such as differences in farming approaches, management practices, binding
contracts, and the way the expectations are formed based on past observations.
Therefore, it is worthwhile to use an econometric method which is capable of
handling heterogeneity inflicted by these hard to observe characteristics.10

The salinity measures taken during the previous year’s irrigation season is the
variable of interest here. The identifying assumption is that after controlling for
year, conservation zone, farmer size, weather and the farm attributes like elevation,
soil quality, and size, the previous year’s average irrigation season salinity level

8Note that the random coefficients do not necessarily have to be normally distributed. For
example, if the researcher does not desire negative (positive) values for the parameter, she can
truncate the support or perhaps pick a distribution with a strictly positive (negative) support.
Ben-Akiva and Bolduc (1996) prefers the term “Multinomial Probit with Logit Kernel” to express
specifically that the preferences are normally distributed but the idiosyncratic errors are extreme
value.

9Programming codes written in MATLAB by Prof. Kenneth Train are modified to this
project.

10The virtue of including ownership information also becomes evident in this context as the es-
timation machinery uses the same coefficient for the same owners in the sample when calculating
the likelihood function, the maximand of the maximum likelihood.
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is as good as random. Table 4 summarizes how the salinity varies across and
within conservation zones. The sizes of the within conservation zone standard
deviations of the salinity relative to the means imply a significant amount of
variation in salinity levels within each conservation zone. Table 5 shows the results
of regressing salinity on the controls. We can see that after regressing the irrigation
water salinity on all the controls previously mentioned, about 20% of the variation
in the salinity remains unexplained. In figures 5 and 6 we see the histogram of the
size of the absolute residuals from the regressions presented in Table 5 relative to
the mean salinity levels at farm and conservation zone level, respectively. These
figures suggest that the size of the identifying variation in salinity across farms
is greater than 20% of the mean values observed both at farm and conservation
zone levels. In other words, we have a sizable variation in salinity with which the
salinity parameters are identified.

Note that panel data allows observing the same farm over different years and
varying salinity levels. However, farm fixed effects are not being utilized here as
the number of parameters to be estimated increases rather fast with the number
of right hand side variables. The issue is resolved by including time invariant farm
level characteristics such as slope, soil quality, elevation, and size which will allow
accounting for fixed farm characteristics that are expected to effect crop choice.

1.5 Data

This study features a unique and rich data set that is compiled from a variety
of different sources. The farmland level crop choice data came from the county
agricultural commission offices. California Department of Pesticide Regulation
requires farmers to report any pesticide use to the county offices. The counties
digitally map the farm lands to form a mosaic of agricultural fields which gives
the coordinates of the centroids and the size of the farmland. This data provides
information on agricultural activity at the highest possible granularity for the vast
majority of the Delta. For the small percentage of the fields where pesticide were
not used, the crop choice was estimated using satellite remote sensing data from
National Agricultural Statistics Service (NASS).

The study is confined to those cases where there is actually change in the crop
species. In the cases where the crop is repeated it is assumed that no active choice
had been made. For example, if the farmer has an almond orchard, she will keep
them for a long time and clearly no crop decision takes place for many years. Also
if a farmer has a binding contract that forces her to grow a certain kind of crops,
once again it is safe to assume that the no active crop choice is taking place at the
time of planting. Those cases where the farmer actively decides to keep planting
the same crop are hard to isolate so all the repeated crop cases removed from the
data sample. With this elimination, the total number of choice situations went
from 24,639 (285 thousand unique acres) down to 7,650 (166 thousand unique
acres).

The choice set is defined based on the agronomic classes which are deciduous,
field, grain, pasture, truck, and vineyard. The classification is taken from the
Economic Sustainability Plan (Delta Protection Commission, 2012). Though it is
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not strict, the crops in the same agronomic class could be considered to require
similar management approaches and technologies.11 The list of the crops, their
agronomic classes, salt tolerance classes (obtained using Hanson, Grattan, and
Fulton (1999), Hoffman (2010), and Maas and Hoffman (1977)) can be found in
the appendix.

While the correspondence between salinity tolerance classes and the agronomic
crop classes is not one-to-one, the breakdown of the agronomic classes into salinity
tolerance classes by their acreages show that the deciduous crops in this study are
mostly sensitive; field, truck, and vineyard crops are medium sensitive; grains are
mostly medium tolerant; and pasture crops are mostly tolerant (see Figure 4).

Parcel level land ownership data is available through the UC Berkeley Earth
Sciences and Map Library in GIS format. The data is collected from the counties
and commercialized by Boundary Solutions Inc. In this dataset, for the majority
of the records the assessment year was indicated as 2004. Ownership is assumed
to be fixed throughout the entire time period that this chapter studies (2003-
2010). In order to verify the validity of this assumption the land transaction data
compiled by Dataquick is used for a cross-check. According to the data, total
amount of farmland that changed hands between 2001-2008 in the San Joaquin
county, which constitutes the biggest chunk of land in this study, was about 10
thousand acres. The total size of farmland from the San Joaquin county in this
study is about 210 thousand acres. So less than 5% of the agricultural land in San
Joaquin county was sold within about a decade.

Ownership size is a categorical variable constructed by adding up the acres by
owners and dividing the owners into three bins based on their total size. Using the
33rd and the 66th percentile, owners with less than a total of 48 acres, between
48 and 156 acres, and greater than 156 acres were classified as ‘small’, ‘medium’,
and ‘large’, respectively. 90% of the farmers included in this study own less than
520 acres.

Salinity (measured in electro-connectivity, micro Siemens/cm) data comes from
40 water-monitoring stations that are maintained by different organizations like
Interagency Ecological Program (IEP), California Department of Water Resources,
the US Bureau of Reclamation, and US Geological Survey. The average value of
the observed salinity between the months of May and August is used, as this is
the period when the crops are most sensitive to the changes in salinity. Then,
the salinity values are mapped to individual crop fields by averaging the salinity
values measured from the stations that are within 3-mile radius of the center of
the field. If a field does not have a monitoring station within 3 miles then the
salinity from the nearest station was used.

The soil Storie index is created by the National Resources Conservation Service
(NRCS). It varies from 1 to 100, where a score of 100 represents the highest
quality. The measure includes factors such as permeability—the measure of the
soil’s ability to hold water— and its acidity (pH).

Weather data comes from the PRISM Climate Group at the Oregon State

11Personal communication with Michelle Leinfelder-Miles, PhD, farm advisor at University of
California Division of Agricultural and Natural Resources.
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University. The numbers are provided in a continuous grid estimated from point
measurements. Annual data at 800 meter resolution was used. Slope and elevation
data comes from US Geological Survey extracted based on the coordinates of the
centroids of the farm lands.

Revenue per acre values are the weighted averages calculated using county
crop reports where the weights are determined by the acreages or each crop in
a given category. All the values are converted to 2010 dollars using the PPI for
farm products from the Bureau of Labor Statistics. Acres and salinity are scaled
by 1/100, and revenue per acre is scaled by 1/1000.

Farms that were less than 10 acres and those that were in remote conservation
zones were excluded from this study. (Conservation zones are areas with similar
ecological characteristics.) These areas correspond to about 10 percent of the
total choice situations but in terms of acreage, they account for less than 1% of
the farmlands.

As of 2010, a total of about 278 thousand acres were planted. There are 49
different different crops in the mix (not counting the subtypes of the crops). Field
crops had the largest acreage with 156 thousand acres followed by truck crops
with 43 thousand acres. Top 5 crops were corn (88 thousand acres), alfalfa (59
thousand acres), vineyards (24 thousand acres), tomatoes (21 thousand acres),
and wheat (20 thousand acres).

The total size of the farm land included in the study is about 166 thousand
acres (down from a total of 284 thousand acres after the elimination of the cases
where the crop choice is repeated). Overall, the data comes from 3 counties (San
Joaquin, Yolo, Sacramento)12 that are made of 7 conservation zones, from a total
of 3,245 farmlands, owned by 772 distinct farmers, spanned from 2003 to 2010. A
total of 99 parameters are estimated using 7650 choice situations.

1.6 Results

The model is estimated using a maximum simulated likelihood method in MAT-
LAB.13 Afterwards, the expected acreages of each crop class under different salinity
scenarios (baseline vs. policy) provided by the Delta Simulation Model II (DSM
II) are simulated.

The mixed logit results are presented in Table 6. Most variables studied here
do not vary over alternatives, therefore the estimation had to be done with the
interaction of the variable and the alternative indicator. Hence, for each vari-
able there are 5 different parameter estimates i.e. the coefficients are alternative
specific.14

These numbers are the estimates of the parameters of the value function of
each crop class, pasture being the outside option. In other words, they show how

12San Joaquin County: 2002-2010, Sacramento: 2010, and Yolo: 2007-2010.
13For a rigorous treatment of maximum simulated likelihood see chapters 6 and 10 of Train

(2009).
14Although path dependence does vary over the alternatives, the coefficients are also esti-

mated to be alternative specific because doing so significantly improved the maximum likelihood
estimation.
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each factor’s effect on farmers’ benefit from each option relative to pasture class.
The salinity parameter is assumed to be randomly distributed across the Delta
farmers. This means that for a given alternative, the contribution of salinity to
the value function follows a normal distribution over the farmers. The mean and
the standard deviation of this distribution are the parameters of interest which
are estimated in the maximum simulated likelihood algorithm. The statistically
significant standard deviation estimates show that the data supports this view of
heterogeneity.

Previous year’s salinity was a statistically significant factor in Delta farmers’
crop decision during the previous decade. The relative magnitude of the parame-
ters indicate, however, that salinity has not been the most influential factor. Fac-
tors such as farm size (for deciduous crops), weather (maximum temperature), and
most importantly, unobserved crop characteristics which are captured by alterna-
tive constants were more important determinants. Estimation procedure yielded
very large negative coefficients for the alternative constants. These numbers likely
represent the effect of the cost of planting each crop category. Larger coefficients
for deciduous and vineyard are consistent with the sizable upfront costs of planting
and maintaining these valuable crops.

Revenue per acre varies over the alternatives which obviates the need for the
estimation to be done in an alternative specific way. It is positive and highly sig-
nificant, and for most crops, it is a more important factor relative to salinity. The
relatively small magnitude can likely be attributed to the presence of alternative
specific constants.

Path dependence is an important factor determining the farmers’ crop choice.
We see that for farmers who already planted a deciduous crop are slightly more
likely to plant another deciduous crop when they switch crops. For field, grain, and
truck crops, that they are less likely to pick a crop in the same category. This could
be due to deciduous crops requiring different and very valuable expertise while for
the latter group a crop rotation regimen might be preferred. The estimation of
this parameter for the vineyard class was not possible due to lack of observations
pertaining to staying in the same category.

Table 7 presents the estimates of the standard multinomial logit (MNL) version
of the same model. In this version, all coefficients, including salinity, are modeled
to be fixed across the farmers. The coefficients estimates for salinity here are very
different than the ones we see in the mixed logit table. For example, for field crops
and grains, the standard MNL estimates the salinity parameter to be statistically
indistinguishable from zero for all farmers while in the mixed logit results suggest
that this coefficient is positive for some farmers while it is negative for others.
Furthermore, the magnitude of the of these coefficient estimates turned out to be
very different.

The results point to an important amount of heterogeneity regarding the ef-
fect of water salinity on farmers’ choice in a relatively small area with relatively
homogenous physical characteristics. This suggests that studies focusing on larger
areas with diverse physical and climatic properties should take this into consider-
ation to ensure the reliability of their results. This issue is particularly relevant as
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we expect to see more research being done studying farmer behavior in the verge
of impending dramatic environmental changes.

Next, the expected acreages are simulated under the two scenarios generated
by DSM II. For this simulation exercise, only choice situations from 2010 are used.
Additionally, those farms that have a high likelihood of being lost to urbanization
according to UC Berkeley Resilient and Sustainable Infrastructure (RESIN) data
are excluded from the simulation. Figure 3 depicts the average salinity figures
that are observed in each cross sectional unit and the salinity scenarios that are
estimated by the hydrological model. The salinity projections are within the realm
of the already observed figures for the farms that are included in this study.15

Columns 2 and 3 of Table 9 show the expected acreages under two scenarios.
We see that they are virtually identical due to estimated salinity coefficients being
very small in size. In this simulation exercise, in order to also construct simulated
confidence intervals16, taking draws are done in two steps. First, 1000 draws are
taken from the variance-covariance matrix generated in the maximum simulated
likelihood estimation process. I call these the “outer” draws. Each time, we get
a draw from a multivariate normal distribution with mean and variance given
by the vector of the parameter estimates and their variance covariance matrix,
respectively.17 These include draws for the means and the standard deviations
of the coefficients that are modeled to be random. Afterwards, for the random
coefficients 500 “inner” draws are taken from the distribution implied by each
outer draw. Each one of these draws will give an expected acreage and revenue for
each choice situation through the logit probabilities. For revenue per acre, 2010
county crop reports are used18. The revenues are averaged over these inner draws
so that we are back to one set of numbers (acreages, revenues etc.) for each outer
draw. The acreages shown at columns 2 and 3 and the revenue at column 5 of
Table 9 are the averages. The 95% confidence interval is constructed by taking
the 2.5th and 97.5th percentiles of these 1000 figures corresponding to each outer
draw. The bottom row of Table 9 gives these simulated confidence intervals.

In an effort to take into consideration the yield declines associated with the
salinity increases I used the average percentage yield decline for crop classes after
a threshold salinity is passed. In general, sensitive crops have low thresholds—a
point of salinity level beyond which there will be yield declines— and high slopes,
percentage decline in the yield associated with each unit increase in salinity. The

15There are locations in the Delta with really high expected increases in the water salinity
due to the water canal. They stayed within the group of data excluded due to no change in the
crop choice.

16Constructing the confidence intervals analytically, using the Delta method is not preferred
as it is an immediate application of first order Taylor series expansion. The method would be
plausible for a linear model but at a highly nonlinear setting such as this, computer simulation
emerged as a more viable option.

17Such draws can be obtained from β + Γe, where β is the vector of parameter estimates, Γ
is the Choleski factor of the variance covariance matrix, and e is a vector of draws from the
standard normal distribution.

18The possible price impacts of change in the crop mix due to salinity changes is ignored as
the area that is covered in this study is relatively small portion of California’s agriculture market
for each of the crop classes.
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slopes are interacted with the change in the salinity level from baseline to policy
scenario for each choice situation in the following fashion.

% Declinej =


(sp − sb)Slj if sp, sb > Tj

(sp − Tj)Slj if sp > Tj & sb < Tj

−(sb − Tj)Slj if sp < Tj & sb > Tj

0 if sp < Tj & sb < Tj

for each choice situation, where, sp is the salinity for the “policy” case, sb is the
salinity for the base case, Slj is the slope of the yield decline curve for crop class j,
Tj is the threshold level of salinity beyond which the yield starts to decline. The
threshold and slopes can be found in the appendix.

These decline figures can be considered as the upper bound of the revenue
declines as it is assumed that the farmers are not going to take any action besides
switching crops.19

We see that the confidence intervals are fairly large. The higher revenue and
loss figures correspond to the states of the world where most farmers have high
preferences for sensitive (i.e. higher value crops) and low willingness to switch in
the face of salinity. By the same token, low revenue-yield loss cases are likely to
happen if most farmers choose highly tolerant species and likely to switch more
with salinity. Note that revenue per acre, the salinity levels and weather conditions
are treated as if they are certain across the scenarios. The only sources of uncer-
tainty accounted for here are the farmer’s preferences for the sake of isolating the
effect of salinity associated with the policy as well as the fact the the estimations
are done based on a finite sample of farms and periods. The simulation exercise
shows that if the farmers choose to plant sensitive species and do not mitigate the
salinity the expected revenue loss is about 19% of the expected revenue under the
baseline salinity scenario.

In order to check the robustness of the results, instead of using the previous
period’s salinity, the average of previous 3 years salinity was used as an alternative
measure for water quality. The idea is that it may not be very realistic to conclude
that the farmers are insensitive to changes in salinity when the measure is taken
on an annual basis. The results with this alternative measure turned out to be
qualitatively and quantitatively very similar. Table 8 has the results.

There are several points one needs to keep in mind when interpreting these
numbers. First of all, the analysis here only includes possible revenue changes
from switching crops due to salinity changes. It does not take into account possible
adaptation strategies by farmers in terms of adoption of new irrigation technologies
or switching to some other form of land use. Second, any loss of farmland to the
construction of the new facility is ignored. Third, these numbers only reflect the
revenues from crop sales. Overall values of different crop classes are different as
some crops generate extra revenue and jobs if they are further processed in the

19The yield loss due to increased salinity is limited to 50% while the yield gain due to reduced
salinity is limited by 20%.
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local facilities. Therefore, a full evaluation of a policy such as this one requires a
broader consideration of the impacts on various stakeholders.

Finally, note that the annual revenue losses simulated here should be considered
as short run changes in the revenues as the parameters are estimated on based on
annual variation in salinity rather than long term changes. Additionally, by time
the project is built, the farmer profile may change and the preferences and the
management approaches of the future farmers may differ from their contemporary
counterparts.

1.6.1 Goodness of Fit

For the logit model, a prominent way to study the goodness of fit is via the
likelihood ratio method. Likelihood ratio index is given by the following formula
(Train (2009)) :

ρ = 1− LL(β̂)
LL(0)

where, LL(β̂) represents the log likelihood function evaluated at the estimated
parameters, while LL(0) the log likelihood evaluated with all parameters are set
to zero. The log likelihood at the estimated parameters is -8217 and the function
evaluates to -13,706 when all parameters are zero. This gives a likelihood ratio
index of 0.40.20

The t-test results obtained from the parameter estimation procedure suggest
that the salinity parameters are significant (with the exception for the field crops).
To further investigate the importance of these parameters, likelihood ratio test is
conducted on them. In order to test the hypothesis that “the salinity parameters
are zero”, the model is estimated once again without the salinity parameters. The
test statistic is given by −2(LL(β̂H0 )−LL(β̂)) which is distributed χ2 with degrees
of freedom equal to the number of parameters that the null hypothesis suggests
to equal zero (which is 10 in this case, i.e. the means plus the standard deviations
of the salinity parameters). The log likelihood from the estimation of the model
after excluding the parameters was -8254. The test statistic is 74.5. The cut off
point for 10 degrees of freedom at 1 percent significance is 23.21 which suggests
an overwhelming statistical evidence for the importance for these parameters.

The final metric is the percent correctly guessed. In this exercise we calculate
the logit probability of each option in the choice set for every single choice situation
and see if the option with the highest probability is in fact the selected option.
The model estimated here correctly guessed the option 49% of the time. Since
we have 6 alternatives, randomly guessing the correct crop class would five an
expected correct guess of 1/6 (about 16%).

20Likelihood ratio is an index varies between 0 and 1 and represent the extent to which
estimated parameters improve our estimate of each option’s probability. With no parameter
estimation our best guess would be assigning each option an equal chance which is what we
would precisely get by setting all the parameters to zero at the logit probabilities formula. If
the model is no better, we would get a likelihood ratio index of zero and if the model perfectly
estimates each option’s probability by assigning 1 to the chosen option and 0 to everything else
we would get a 1.
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1.7 Conclusion

California’s history in the past couple of centuries is the history of subduing nature
and Sacramento-San Joaquin River Delta is no exception. The beneficiaries of the
exports, enjoyed abundant fresh water thanks to which the population and the
economy in the arid regions of California flourished over the past half century
against all odds. After 150 years of alterations with an extensive levee system and
massive water diversion facilities, the Delta, California’s most important water
resource, host to a unique ecosystem of wide variety of plants and animals, and
a big hub for agricultural activity providing food, water, and jobs for millions of
people, has reached a point of collapse. Drought, failing levees, court decisions
limiting water export to protect endangered and threatened species limits the
amount and the reliability of the water conveyed from the Delta. About 30 years
after being defeated by the Californians, the peripheral canal idea is brought back
by Gov. Brown in an effort to meet the “coequal’ goals of water supply and habitat
restoration as status quo is no longer sustainable.

The government authorities formulated various measures including the con-
struction of an isolated water conveyance facility. This, however, raises the con-
cerns about increased salinity in the irrigation water and hence the future of
agricultural activities in the Delta.

Using a unique and rich panel dataset on Delta agriculture, a discrete choice
model for agricultural crops is estimated using random coefficients logit method.
The parameter estimates, then, are used to simulate expected acreages and as-
sociated farming revenues under two salinity scenarios generated by a hydrology
model used by the California Department of Water Resources. Utilization of panel
data structure together with the land ownership information is what differentiates
this study from other studies, allowing a more credible identification of the salin-
ity parameters, accounting for time varying aggregate changes in preferences, path
dependence, and heterogeneity in response to salinity across the farmers.

The results indicate that salinity was a statistically significant factor but
weather and alternative specific factors which are captured by alternative dummies
have been more important than irrigation water salinity during the last decade for
the Delta farmers. This has important policy implications for farmers’ welfare. If
the farmers are capable of mitigating salinity and protecting their yields without
having to switch to salt tolerant species then they are likely to be able to keep
their high value crops in the future when the canal is built. However if the rela-
tive reluctance to respond to changing salinity levels is due to suboptimal decision
making by the farmers, then it is important to understand the source and address
any problems accordingly. It is especially important in a case where substantial
amount of public funding is about to be channeled to a project that is likely to
affect their farming practices.

The simulation results point to a 19% revenue losses relative to the baseline
scenario where the simulated confidence interval of losses ranges from 30% to 10%.
This is the expected value of the loss in the short run if the farmers do not take
any mitigating action besides switching crops and let the salts burn their crops,
which is highly unlikely given that the Delta farmers have already been facing
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salinity. The high losses are associated with the states of the world where the
farmers have high preferences for high value sensitive crops and low willingness to
switch to salt tolerant species in the face of salinity.

Another important take-away form this study is that it is important to take
farmer heterogeneity into consideration especially for those researchers who want
to study land use and climate adaptation in larger regions. Even in a region as
small as studied here, the heterogeneity turned out to be statistically meaningful,
and the salinity coefficient estimates of the standard MNL where the heterogeneity
component was shut off were quite different. Ignoring this part of the equation
can lead to misleading coefficient estimates.

Future work should include engaging with the Delta farmers and see what
salinity mitigation options they have and costs of utilizing them. A more compre-
hensive consideration of Delta water quality from ecological and municipal points
of view is also in order to get the full picture of the likely impacts.
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1.8 Figures and Tables

Figure 1: Sacramento San Joaquin River Delta Map.21

21Source: http://users.humboldt.edu/ogayle/hist383/SacramentoDeltaMap.png

20

http://users.humboldt.edu/ogayle/hist383/SacramentoDeltaMap.png


Figure 2: Salinity vs. Revenue/acre22

22In this figure, we see the positive correlation between the crop revenue per acre and crop
sensitivity. Namely, the crops that are more sensitive to salinity are also the ones that yield
higher revenue per acre, in general. Here, crop sensitivity is measured in terms of how fast the
crop yield declines in percentage terms as a result of a unit increase in salinity.
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Figure 3: Comparing the Actual Average and Scenario Salinity Levels23

23Figure 3 shows the actual salinity levels and the salinity levels used in the simulations which
are generated by DSM II —a river, estuary, and land modeling program used by California
Department of Water Resources. We see that the scenario salinity levels are all within the
already observed ranges across the farms.
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Figure 4: Breakdown of the Salinity Tolerance Among the Crop Classes by Acreage24

73.95%

Pasture: 73% Salt Tolerant

Pasture

95.97%

Deciduous: 95% Sensitive

Deciduous

96.06%

Field: 96% Medium Sensitive 

Field

89.16%

Grains: 89% Medium Tolerant

Grains

75.64%

Truck Crops: 75% Medium Sensitive 

Truck Crops

100%

Vineyard: 100% Medium Sensitive 

Vineyard

24Figure 4 presents that even though there is not a one to one correspondence between the salinity classes and the agronomic crop classes, in terms of
acreages, we see that most deciduous crops planted in the Delta in 2010 were sensitive, field, truck, and vineyard crops were medium sensitive, grains
were medium tolerant, and the pasture crops were tolerant. The salinity tolerance information were gathered from Hanson, Grattan, and Fulton (1999),
Hoffman (2010), and Maas and Hoffman (1977).
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Figure 5: Relative Size of the Residuals from Regressing Salinity on
Controls (Within Farms)25

Figure 6: Relative Size of the Residuals from Regressing Salinity on
Controls (Within Conservation Zones)

25Figures 5 and 6 present the histograms of the size of the absolute value of the residuals from
the regressions presented in Table 5 relative to the mean salinity levels at farm and conservation
zone level, respectively. These pictures suggest that the size of the identifying variation in
salinity across farms is greater than 20% of the mean values of the observed salinity levels both
at farm and conservation zone level. In other words, we have quite sizable variation in salinity
with which the salinity parameters are identified.
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Table 1: Summary Statistics of the Variables

Variable Mean Std. Dev. N
Farm Size (100 Acres) 0.05 0.05 7650
Soil Quality (0-100 Index) 47.85 14.98 7650
Elevation (Feet) 2.62 6.72 7650
Max. Temp (Celcius) 24.14 0.31 7650
Field Slope (Decimal Degrees) 0.13 0.55 7650
Medium Farmer 0.12 0.33 7650
Large Farmer 0.83 0.38 7650
Salinity (100 mS/cm) 3.63 1.84 7650
Deciduous Rev/Acre (1000 USD) 4.63 0.84 7650
Field Rev/Acre (1000 USD) 1.13 0.16 7650
Grain Rev/Acre (1000 USD) 0.51 0.12 7650
Truck Rev/Acre (1000 USD) 2.91 0.64 7650
Vineyard Rev/Acre (1000 USD) 3.25 0.71 7650
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Table 2: Regressing Sensitivity to Salinity on Water Salinity and Con-
trols26

Yield Decline Yield Decline Yield Decline
Salinity (100 mS/cm) -0.0663 -0.156∗ -0.188∗∗

(0.047) (0.061) (0.067)

Farm Size (100 Acres) -1.352 -1.439 -2.102
(1.148) (1.144) (1.155)

Elevation (Feet) 0.0165 0.0126 -0.00154
(0.025) (0.025) (0.025)

Soil Quality (0-100 Index) -0.00438 -0.00415 -0.00505
(0.004) (0.004) (0.004)

Precipitation -0.0138∗ -0.0708∗ -0.0757∗

(0.007) (0.029) (0.031)

Constant 10.19∗∗∗ 12.90∗∗∗ 11.85∗∗∗

(0.331) (1.121) (1.180)
R2 0.266 0.275 0.278
Owner FE Yes Yes Yes
Year FE No Yes Yes
Con. Zone FE No No Yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

26Table 2 provides the results of regressing salinity sensitivity of the selected crop on previous
year’s salinity level and other covariates used in the mixed logit. The estimations suggest that
the salinity sensitivity of the chosen crop tends to decline as the previous year’s irrigation water
salinity goes up. We infer that the farmers tend to choose more salt tolerant crops as they
observe increases in the irrigation water salinity. Sensitivity here refers to how fast the crop
yield declines per unit increase in salinity. All three models include owner dummies. As we
sequentially add the year and the conservation zone indicators, we see that both the magnitude
and the significance of the salinity coefficient goes up while the magnitude and the significance
of other variables remain somewhat stable.
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Table 3: Crop Revenue Per Acre on Water Salinity and Controls27

Revenue/acre Revenue/acre Revenue/acre
Salinity (100 mS/cm) 127.0∗∗∗ 5.460 -26.22

(29.592) (37.738) (41.136)

Farm Size (100 Acres) 476.6 -24.08 -562.9
(703.031) (695.395) (702.770)

Elevation (Feet) -6.892 -11.77 -22.31
(16.564) (16.517) (16.796)

Soil Quality (0-100 Index) -2.089 -1.569 -2.282
(2.547) (2.522) (2.566)

Precipitation -4.948 -6.774 -18.14
(4.225) (18.269) (19.567)

Constant 1784.7∗∗∗ 1955.9∗∗ 1465.0∗

(206.610) (713.438) (744.135)
R2 0.294 0.312 0.317
Owner FE Yes Yes Yes
Year FE No Yes Yes
Con. Zone FE No No Yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

27Table 3 shows the results of regressions similar to the ones in Table 2 but this time, revenue
per acre appears as the dependent variable instead. Unlike the previous case, we do not observe
a clear pattern in the sign, magnitude, and the significance of the salinity coefficient. These
findings suggest that the farmers seem to respond to irrigation water salinity by switching to
more salt tolerant crops but it is hard to make a claim with any degree of confidence that the
crops they switch to are necessarily low value. Hence, farmers seem to pay attention to for water
salinity while protecting their revenues.
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Table 4: Information by Conservation Zones 28

Zone Years County Number
of obs.

Number
of farms

Mean
Salinity
(100mS/cm)

St. Dev.

2 2007-2010 Yolo 184 85 1.84 0.97
3 2007-2010 Sacr., Yolo 688 379 1.70 0.45
4 2003-2004, 2006-2010 Sacr., San Joaquin 559 261 1.63 0.53
5 2003-2004, 2006-2010 Sacr., San Joaquin 988 407 1.74 0.58
6 2003-2004, 2006-2010 San Joaquin 2,287 819 3.67 1.24
7 2003-2004, 2006-2010 San Joaquin 2,491 1,115 5.16 1.11
8 2003-2004, 2006-2010 San Joaquin 453 179 3.63 0.99

28Table 4 presents a summary of how the salinity varies within and across the conservation zones. Conservation zones refer to the regions in the Delta
with similar ecological characteristics. This is useful for seeing the nature of salinity variation, because in the analysis uses conservation zone dummies
to account for the time invariant factors that effect crop choice.
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Table 5: Regressing Salinity on Controls29

Salinity Salinity Salinity Salinity Salinity
Soil Quality 0.0199∗∗∗ 0.0197∗∗∗ 0.000233 0.0000142 0.000237

(0.001) (0.001) (0.001) (0.001) (0.001)

Elevation 0.103∗∗∗ 0.109∗∗∗ 0.00567∗∗ 0.00358 0.00388∗

(0.002) (0.002) (0.002) (0.002) (0.002)

Farm Size -1.341∗∗∗ -1.043∗∗∗ -0.998∗∗∗ -0.911∗∗∗ -0.985∗∗∗

(0.339) (0.312) (0.209) (0.210) (0.210)

Max. Temp. 3.378∗∗∗ 4.106∗∗∗ 1.062∗∗∗ 1.073∗∗∗ 1.074∗∗∗

(0.051) (0.061) (0.059) (0.059) (0.059)

Constant -79.09∗∗∗ -95.79∗∗∗ -22.94∗∗∗ -23.17∗∗∗ -23.05∗∗∗

(1.243) (1.459) (1.414) (1.410) (1.408)
Observations 7650 7650 7650 7650 7650
R2 0.450 0.536 0.795 0.797 0.798
Year FE No Yes Yes Yes Yes
Conzone FE No No Yes Yes Yes
Owner-size FE No No No Yes Yes
Salinity Rating FE No No No No Yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

29In order to further deliberate on the identifying variation in salinity, Table 5 presents the
results of regressing the salinity on the control variables used in the study. We can see that after
regressing the irrigation water salinity on all the controls, still a sizable portion (about 20%) of
the variation in the salinity remains unexplained.
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Table 6: Random Coefficients Logit Estimation Results Using Previous
Year’s Salinity 30

Fixed Coefficients

Crop Choice Deciduous Field Grains Truck Vineyard
Acres −16.83∗∗ 0.91 −0.13 −0.34 3.18

(7.77) (2.41) (2.45) (2.47) (5.42)

Soil 0.01 0.02∗∗∗ 0.02∗∗ 0.02∗∗∗ 0.05∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

Elevation 0.14∗∗∗ 0.03 0.01 0.02 −0.35∗∗∗

(0.04) (0.02) (0.02) (0.02) (0.13)

Max. Temp. 6.16∗∗∗ 4.40∗∗∗ 3.20∗∗∗ 3.55∗∗∗ 8.88∗∗∗

(1.36) (0.63) (0.64) (0.65) (1.96)

Slope −0.16 0.09 0.10 −0.03 0.38
(0.46) (0.18) (0.18) (0.18) (0.31)

Medium Farmer −2.21∗∗ 0.09 −0.57 0.28 −1.03
(1.03) (0.52) (0.52) (0.56) (1.11)

Large Farmer −0.89 −0.09 −0.93∗ 0.36 0.01
(0.79) (0.48) (0.48) (0.51) (0.97)

Same as last year 0.67 −1.30∗∗∗ −0.85∗∗∗ −0.92∗∗∗ −
(1.03) (0.07) (0.09) (0.08) −

Alternative Constant −147.27∗∗∗ −103.88∗∗∗ −73.54∗∗∗ −84.26∗∗∗ −213.69∗∗∗

(32.14) (14.78) (15.01) (15.31) (46.69)

Revenue/Acre 0.50∗∗∗ 0.50∗∗∗ 0.50∗∗∗ 0.50∗∗∗ 0.50∗∗∗

(0.11) (0.11) (0.11) (0.11) (0.11)

Random Coefficients

Salinity −1.84∗∗∗ −0.01 −0.14 −0.29∗∗ −3.38∗∗∗

(0.34) (0.13) (0.13) (0.13) (0.59)

Salinity Standard Dev. −0.63∗∗∗ 0.24∗∗∗ 0.27∗∗∗ 0.44∗∗∗ −1.55∗∗∗

(0.13) (0.01) (0.02) (0.02) (0.25)

30Table 6 presents the random coefficients logit estimation results. Each column represents
the alternative specific coefficient estimate and its standard error relative to the outside option
which is pasture crops. Significance stars next to the standard deviation estimates at the bottom
suggest the existence of heterogeneity in the corresponding salinity parameters across the decision
makers.
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Table 7: Standard Multinomial Logit Results

Crop Choice Deciduous Field Grains Truck Vineyard
Acres −17.842∗ 1.568 0.371 −2.529 4.098

(7.042) (2.328) (2.363) (2.352) (3.767)

Soil 0.017 0.013∗∗ 0.015∗∗ 0.017∗∗∗ 0.035∗∗∗

(0.011) (0.006) (0.006) (0.006) (0.010)

Elevation 0.102∗∗∗ 0.034∗ 0.018 0.013 −0.284∗∗∗

(0.027) (0.019) (0.020) (0.020) (0.084)

Max. Temp. 5.541∗∗∗ 3.476∗∗∗ 3.449∗∗∗ 2.870∗∗∗ 4.452∗∗∗

(1.029) (0.580) (0.585) (0.582) (1.191)

Slope −0.138 0.067 0.110 −0.015 0.230
(0.352) (0.175) (0.176) (0.177) (0.269)

Medium Farmer −1.440∗ −0.102 −0.409 0.061 −0.921
(0.733) (0.494) (0.494) (0.502) (0.775)

Large Farmer −0.764 −0.278 −0.685 0.417 −0.750
(0.625) (0.457) (0.457) (0.464) (0.689)

Same as last year 2.002∗∗∗ −1.059∗∗∗ −0.465∗∗∗ 0.088 −
(0.586) (0.059) (0.076) (0.057) −

Alternative Constant −133.637∗∗∗ −81.821∗∗∗ −80.169∗∗∗ −68.427∗∗∗ −109.676∗∗∗

(24.421) (13.682) (13.821) (13.722) (28.135)

Revenue/Acre 0.484∗∗∗ 0.484∗∗∗ 0.484∗∗∗ 0.484∗∗∗ 0.484∗∗∗

(0.094) (0.094) (0.094) (0.094) (0.094)

Salinity −1.052∗∗∗ −0.105 −0.056 −0.245∗ −0.524∗

(0.196) (0.114) (0.115) (0.115) (0.214)

30Table 7 presents the results of estimating same parameters on Table 6 with standard multi-
nomial logit instead of random coefficients logit. The difference here is that unlike the mixed
logit, the salinity parameters are set to be fixed across all decision makers by setting the stan-
dard deviation of the salinity parameters to zero. We see that salinity parameters differ to a
great extent. This means that ignoring the presence of heterogeneity will result in misleading
parameter estimates.
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Table 8: Random Coefficients Logit Estimation Results Using Previous
3 Year’s Salinity 31

Fixed Coefficients

Crop Choice Deciduous Field Grains Truck Vineyard
Acres −17.50∗∗ 0.84 −0.13 −0.83 3.76

(7.93) (2.38) (2.45) (2.44) (4.93)

Soil 0.02 0.02∗∗∗ 0.02∗∗ 0.02∗∗∗ 0.05∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.02)

Elevation 0.10∗∗∗ 0.02 0.01 0.01 −0.37∗∗∗

(0.03) (0.02) (0.02) (0.02) (0.13)

Max. Temp. 4.05∗∗∗ 3.85∗∗∗ 3.20∗∗∗ 2.71∗∗∗ 6.56∗∗∗

(1.09) (0.63) (0.64) (0.65) (1.77)

Slope −0.15 0.09 0.10 −0.01 0.32
(0.43) (0.18) (0.18) (0.18) (0.31)

Medium Farmer −1.90∗ 0.11 −0.57 0.41 −0.93
(0.97) (0.52) (0.52) (0.55) (1.05)

Large Farmer −0.78 0.06 −0.93∗ 0.40 0.05
(0.76) (0.49) (0.48) (0.51) (0.97)

Same as last year 1.01 −1.31∗∗∗ −0.85∗∗∗ −0.87∗∗∗ −
(0.93) (0.07) (0.09) (0.08) −

Alternative Constant −97.58∗∗∗ −91.12∗∗∗ −73.54∗∗∗ −64.45∗∗∗ −159.38∗∗∗

(25.76) (14.77) (15.01) (15.25) (42.05)

Revenue/Acre 0.54∗∗∗ 0.54∗∗∗ 0.54∗∗∗ 0.54∗∗∗ 0.54∗∗∗

(0.11) (0.11) (0.11) (0.11) (0.11)

Random Coefficients

Salinity −1.57∗∗∗ −0.01 −0.15 −0.32∗∗∗ −2.76∗∗∗

(0.33) (0.13) (0.13) (0.13) (0.57)

Salinity Standard Dev. −0.56∗∗∗ 0.26∗∗∗ 0.29∗∗∗ 0.41∗∗∗ −1.43∗∗∗

(0.12) (0.02) (0.02) (0.02) (0.26)

31Table 8 shows the results of the random coefficients logit estimates with the average of the
previous three years’ salinity as the salinity measure instead of previous year’s salinity. We see
that the results are robust to such a change in salinity measure.
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Table 9: Results of the Simulation Exercise32

Gross Net Net
Crop Baseline Scenario Scenario Baseline Scenario
Classes Acreage Acreage Acreage Rev./Acre Revenues Revenues %Change

Pasture 414 414 414 $116 47,966 48,003 0.1%
Deciduous 6,027 6,027 4,367 $4,612 27,795,681 20,139,665 -27.5%
Field 67,137 67,138 50,009 $780 52,366,928 39,007,336 -25.5%
Grain 61,092 61,091 54,837 $426 26,025,065 23,360,381 -10.2%
Truck 66,492 66,492 55,122 $3,903 259,516,975 215,142,113 -17.1%
Vineyard 5,591 5,591 4,182 $3,566 19,938,905 14,913,477 -25.2%

Total Rev. $385,691,521 $312,610,975 -19%

95% C.I. ($92,560,000 - $929,770,000) ($82,380,000 - $680,150,000) (-30% to -10%)

32Table 9 shows the results of the simulation exercise. The first and the second columns of numbers are the expected values of the total acreages of
each alternative while the third column presents the acreages after taking into consideration possible yield declines due to salinity changes. The declines
are calculated based on the average threshold and yield decline slope of the crops in each class taken from the agricultural experiments studies (see the
appendix). Column 4 is the revenue per acre measures. Columns 5 and 6 show the expected revenues under baseline and the policy scenario, respectively.
Latter is after the yield declines are accounted for. The last column shows the percentage change in the expected revenues due to the policy. The overall
expected decline in revenues is about 19%. At the bottom of the table are the confidence intervals of the revenues under the two scenarios and the
associated percentage of revenue losses.
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Chapter 2: Forecasting Commercial, Institutional

and Industrial Water Demand in the Southern

California (with Steven Buck)

2.9 Introduction

The main purpose of this study is to compare the out-of-sample forecasting per-
formances of different regression models that perform the best with respect to
various in and out-of-sample goodness-of-fit criteria in the context of commercial
and industrial33 (C&I) water demand in the Southern California. The majority
of the water demand forecast studies focus on the residential sector as it accounts
for the largest portion of the publicly supplied water demand.34 Water use data
published by the US Geological Survey (Kenny, Barber, Hutson, Linsey, Lovelace,
and Maupin (2014)) indicates that public supply made up about 17% of all water
withdrawals in California in 2010. According to the annual survey conducted by
the Bay Area Water Supply Conservation Agency, residential demand accounts for
about 60% of the publicly supplied water while commercial and industrial makes
up about 20%.35

The C&I water demand forecast still requires rigorous scrutiny. This sec-
tor makes up a considerable portion of water consumption in other parts of the
world. For example, in Europe industrial sector accounts for 23% of total water
demand and even within the EU countries we see a significant variability in wa-
ter consumption patterns (de Bono, Del Pietro, Giuliani, Harayama, Le Sourd,
and Diana (2004)). Furthermore, changing trends in the economic landscape of
both developed and developing countries (a shift towards commercial activities
in developed countries while industrial activities gaining pace in the developing
nations) is likely to increase the relative importance of the C&I water demand.
The majority of the water used in industrial activities in California for example,
is self supplied while commercial water is supplied by the public utilities. So if we
see a shift from industrial towards commercial activities in the economic mix, it is
reasonable to expect that the C&I sector will take up a greater share within that
publicly supplied water. Most importantly, it has been gradually more evident
that the commercial sector can be an important avenue to save water through
various rebate programs. Potential quests to evaluate such programs will call for
accurate water demand forecasts in the C&I sector which will also improve the

33By the US Geological Survey definition, commercial water use includes consumption by “mo-
tels, hotels, restaurants, office buildings, other commercial facilities, military and non-military
institutions, and (for 1990-1995) off stream fish hatcheries”. Industrial water demand captures
the water used “for fabrication , processing, washing, and cooling. Includes industries such as
chemical and allied products, food mining, paper and allied products, petroleum refining, and
steel.”(http://water.usgs.gov/watuse/wuglossary.html#CO)

34Public supply refers to water withdrawn by public and private water suppliers that provide
water to at least 25 people or have a minimum of 15 connections (Kenny, Barber, Hutson, Linsey,
Lovelace, and Maupin (2014))

35http://www.bawsca.org/docs/BAWSCAFY2012-13AnnualSurvey_Water%20Consumption%

20by%20Class.pdf
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effectiveness of water plans and budgets. Water related issues are likely to be more
pressing as the water is becoming progressively scarce in the face of global warm-
ing, rising population as well as the surge of per capita demand due to globally
increasing life standards.

When choosing a model for forecasting, it is often perceived as customary
to select a model that provides the best in-sample fit (usually high coefficient
of determination i.e. R-squared). Forecasting by definition requires stretching
the estimation out-of-sample. Therefore, an investigation into how the out-of-
sample forecast performances of models selected solely based on a high R-squared
is warranted. How do these models compare to the models that would get selected
under different criteria? Using models that are chosen based on in-sample fit can
be suboptimal when forecasting out-of-sample (McCracken and West (2002)). In
this study, we undertake a discussion of this problem in the C&I water demand
context.

Using a model space of 352,112 models, we look at how the models that yield
the best results based on R-squared and/or other popular in-sample-fit criteria
(Adj. R-Squared, AIC, BIC) perform when forecasting out-of-sample. We then
compare them to those models that would be selected under three different out-
of-sample criteria we define. While, by construction, the models that are selected
based on out-of-sample forecasting performance should do better than those based
on any other criterion in forecasting out-of-sample, the main goal is to demonstrate
by how much.

The out-of-sample fit criteria are defined following Auffhammer and Stein-
hauser (2012) which are also used commonly used in evaluating models in the
field of machine learning. Models are generated mostly through inclusion and
exclusion of different key covariates and the actual versus logged values of the
dependent variable. The dependent variable is the water retailer (utility) level
total annual C&I demand. Covariates include median tier price; manufacturing
and service sector employment in the service area of the retailer; and weather
variables (maximum temperature, cooling degree days, and precipitation). In or-
der to account for the fact that C&I water demand is a derived demand together
with other factors of production, we also included real US GDP as a proxy for the
overall purchasing power in the economy.

The results indicate that selecting models solely based on in-sample fit will
yield a poor performance when it comes to forecasting out-of-sample. This is a
well known fact in the machine learning discipline and in a way, this study brings
it to the attention of water planners. We also demonstrate that the predictions
that are generated by the highest R-squared models are highly dispersed around
the actual value relative to those that the lowest absolute aggregate error models
generate.

These findings suggest that the policy makers and planners should make sure
that the models to forecast demand are selected taking out of sample prediction
performance into account.

This chapter proceeds as follows: a review of the related literature in section
2.10 is followed by the summary of the data in section 2.11. Section 2.12 describes
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the model selection procedure and presents the results and section 2.13 concludes.
All figures are tables are provided in section 2.14

2.10 Literature Review

Though not as numerous as residential water demand studies, C&I studies have
been conducted both in academia as well as by government organizations.

Academic studies are usually centered around estimating the price and/or out-
put elasticity of the water demand in the industrial sector using a sample of disag-
gregated (plant or building level building) panel data which include observations
on price of water, quantity consumed, and the output. Studying the water use
from 30 large plants, De Rooy (1974) find that a 1% increase in water price is
associated with a 0.89 % decline in the quantity. Ziegler and Bell (1984) and Ren-
zetti (1992) use instrumental methods for price to avoid the canonical simultaneity
problem in their estimations. Using a system of simultaneous equations method,
Babin, Willis, and Allen (1982) and Renzetti (1992) examine the relationship of
water intake and the utilization of other outputs (the degree of substitutability).
Using data from 51 industrial plants in France and seemingly unrelated regression
and feasible generalized least squared methodology, Reynaud (2003) finds that the
elasticity of water demand varies across the water sources. As an alternative to
econometric method, Calloway, Schwartz, and Thompson (1974) develops a linear
programing model on order to analyze the effects water quality policy, on the use
of water in ammonia production and on the cost of ammonia.

Commercial water demand in the forecasting context has not been as widely
studied as residential water demand in academia. This is most likely due to lack
of data, and the complexity of C&I demand because of the diversity in the nature
of water use in this sector. The result of the studies done suggest that although
the demand in commercial sector is somewhat sensitive to water price, it is not as
sensitive as the residential and industrial consumption (Schneider and Whitlatch
(1991)).

The studies that are conducted by the government organizations are more
geared towards forecasting for planning purposes. Water Resources Municipal
and Industrial Needs model (IWR-MAIN) has been used historically to forecast
the water demand.The size of each C&I sector is estimated using total employment
and C&I water use is estimated based on the Standard Industrial Classification
(SIC) sectors. The method used regression analysis to determine water intensity
of each sector where the explanatory variables were number of employees, the price
of the water and sewer services, and whether or not there was a water conserva-
tion program (Boland (1997)). Later on a nationwide survey of over 3 thousand
establishments and surveys from manufacturers from the US Census Bureau and
the California Department of Water Resources were utilized to improve the model
(Dziegielewski and Boland (1989)). The main intuition of this approach is to
estimate a “water use coefficient” for each sector and multiply that with the fore-
casted size of the sector and sum up over all the sectors. A nice treatment of the
historical progression of the IWR-MAIN model can be found in Morales, Mar-
tin, and Heaney (2009). Even though IWR-MAIN itself is no longer in use, the
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forecast methods that are currently utilized for planning use similar methodol-
ogy. The approach inspired some other government studies as well. For example,
using the establishment level water billing and employment data Cook, Urban,
Maupin, Pratt, and Church (2001) calculate the standard industrial classification
(SIC) level water demand employment coefficients, which is basically the weighted
average of the per employee water consumption for the SICs. Then, under various
growth scenarios and employment forecasts, they project the water consumption
into the future periods. As a major improvement to these models, Morales, Mar-
tin, and Heaney (2009) presents a C&I water demand estimation methodology
explaining the availability of a rich database of parcel level consumer attributes
and water use billing from Florida.

The path followed in this study is similar to the one used in Auffhammer and
Steinhauser (2012) for forecasting CO2 emissions. They use 41 years of state
level data to test about 27,000 models and compare the out-of-sample forecasting
performances of benchmark models from the related literature and the ones that
they find to be best under the aggregate error criterion. They find that benchmark
models which are calibrated against in-sample performance criterion are likely to
overestimate the CO2 emissions which might be consequential in climate policy
and international agreements.

We do not really have any “benchmark” models in the field of aggregate C&I
water demand. What we do in this study is to compare the out of sample perfor-
mances of the models that would be selected under various in and out-of-sample
criteria given the available dataset. Our findings are in tune with Auffhammer
and Steinhauser (2012) in the sense that the model selection criterion matters for
the forecasting performance.

2.11 Data

The geographical scope of this study is the boundaries of Metropolitan Water
District of Southern California (MWDSC) (see Figure 7). The dataset used here is
a subset of a larger dataset collected for an ongoing study about forecasting single
family residential (SFR) sector water demand. Data collection effort, therefore,
was focused on the retailers that reported more than 3,000 single-family residential
accounts as it is estimated that these retailers account for about the 99% of this
sector. 153 retailers were contacted within the realm of the study. C&I data was
obtained from 75 retailers and has 709 observations from 25 of the 26 member
agencies that are under MWDSC. The only unrepresented member agency is San
Marino which likely has one of the lowest C&I sectors of all member agencies.
Table B2 in the appendix lists the agencies and the associated retailers. The
water retailers in the study are located in Los Angeles, Orange, Riverside, San
Bernardino, San Diego, and Ventura counties.

The rate schedules were received directly from retailers while the consumption
figures are mostly based on monthly data reported to the Public Water System
Statistics (PWSS) augmented with data received from retailers and is aggregated
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to the calendar year.36 For the price measure, we use the median tier of the rate
schedule. Rates are reported in year 2000 real dollars.37

Data on average precipitation were obtained through the use of the geographi-
cal information and mapping software system, ArcGIS. Spatially referenced bound-
aries of state and private water districts were obtained from the Cal-Atlas geospa-
tial clearinghouse.38 These boundaries allowed visualization of each water district
polygon using ArcGIS. The points at the centroid of each water system polygon
were then geo-referenced. Based on the resulting set of points the local precipita-
tion data were extracted from rasters provided by the PRISM Climate Group.

In those cases where the retailer level district boundaries were not available, zip
codes were used as a geographical proxy. Retailers were assigned to representative
zip codes on a case by case basis. The centroid of each zip code polygon were geo-
referenced, and based on the resulting set of points local precipitation data were
extracted. The precipitation variable in our dataset is in millimeters of rainfall
per year.

Data on temperature were obtained in the same manner as the precipitation
data, described above. Rasters for the temperature data (in degrees Celsius) were
obtained from PRISM Climate Group.39 The year round maximum and minimum
temperatures are used to calculate retailer specific cooling degree days.

Total employees within a retailer are computed based on two data sources. His-
torical annual employment is provided by the metropolitan water district (MWD)
at the member agency level from 1990 to 2010. To calculate employment at the
retailer level we use the Census Zip Code Business Statistics (ZCBS), which re-
ports historical employment estimates at the zip code level from 2004 to 2010.
The ZCBS only provides employment numbers based on the majority of sectors
(largely excludes non-service oriented government positions) so total employment
is not complete. Therefore, we only use the ZCBS to calculate the share of em-
ployment within a member agency due to a particular retailer. We calculate the
relevant share using a crosswalk between zip codes and retailer level boundaries,
and zip codes and member agency level boundaries again, we are able calculate the
share of each member agency’s employment due to a particular retailer. Finally, to
compute a historically based retailer level total employment measure, we multiply
the share of employment within a member agency estimated from the ZCBS by

36PWSS is a database kept by the Department of Water Resources (DWR), containing the
annual voluntary surveys of a subset of California utilities. The data contains numbers of
connections, water deliveries for consumer classes such as single family residential, multifamily
residential, commercial/institutional, industrial, landscape irrigation and other at a monthly
level.

37We do not use instrumental variables to address the simultaneity bias in the price coefficient.
However, note that the purpose of this study is to compare the forecasting performances of
models that rank high under different goodness-of-fit criteria given the data available rather
than credibly identifying a price parameter.

38Cal-Atlas Geospatial Clearing House, accessible: http://atlas.ca.gov/download.html#

/casil/boundaries
39PRISM Climate Group, “Near-Real-Time High-Resolution Monthly Average Maxi-

mum/Minimum Temperature for the Conterminous United States”, raster digital data, accessi-
ble: http://www.prism.oregonstate.edu/
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the total employment in the member agency obtained from MWD (based on Em-
ployment Development Department data). For years prior to 2004 when ZCBS is
unavailable, we assume the retailer level average employment shares from 2004 to
2006. That is, for each retailer we assume their share of total employment within
a member agency is constant between 1994 and 2003.

GDP is also included in the regressions. Unlike the residential sector, water
demand in the C&I sector is derived, together with other inputs, as a part of the
production process. In other words, water demand in C&I is indirectly caused
by the demand for the goods and services that these sectors offer to consumers.
Therefore, the water demand should not only depend on its own price but also to
the total demand in the economy which ultimately depends on income. National,
rather than regional GDP figure is utilized as these the C&I water customers are
likely to supply to a larger region than the state they are physically located. The
real GDP data here is obtained from the publicly available international macroe-
conomical data series provided at the USDA website.40 41 Figures are converted
to 2000 dollars. Tables 10 and 11 give the summary statistics of the variables both
in the training and the forecasting subsamples, respectively. Training sample is
composed of data from years 2000-2005, while the forecast sample is the data from
years 2006-2010.

2.12 Model Selection and Comparison

In the regression models, we follow a similar approach to studies that forecast the
residential sector water demand with the following general regression template:

qtar = β ·pricetar+µ ·man.emptar+σ ·serv.emptar+τ · tmaxtar+π ·preciptar+
γ · cooltar + αa + ηt + εtar
where, qtar is the annual water demand in the C&I sector in year t served by the
retailer r that is under agency a;
pricetar is the median tier price charged;
man.emptar is the number of manufacturing employees;
serv.emptar is the the total number of service employees;
tmaxtar is the average maximum temperature;
preciptar is the average annual precipitation;
cooltar is the cooling degree days;
αa is the agency fixed effects;
and ηt represent one of the time indicators.42

The model space was created using different permutations of dependent and
independent variables (and their actual and logged values). There are three main
avenues through which new models are added to the model space. First is the
inclusion versus exclusion of the main variables: price, number of employees in

40http://www.ers.usda.gov/data-products/international-macroeconomic-data-set.

aspx
41Note that to avoid perfect collinearity only one of year fixed effects and annual GDP covari-

ates could be used at a time in a regression equation.
42Year dummies or GDP. Note that the year dummies and GDP can not be used at the same

time due to perfect collinearity.
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the manufacturing and service sectors in the retailers’ boundaries, maximum tem-
perature, cooling degree days, precipitation, GDP as well as lagged dependent
variables (up to two lags). Second variation source pertains to the inclusion of the
variables needed in order to account for the heterogeneity with respect to the time
and the institutions that govern the water of different locations. These include
agency indicators, the permutations of time trend (up to cubic time trend), and
year indicators. Finally, further variations are generated using logged vs. level
dependent variables as well as total quantity versus per employee quantity as the
dependent variable. Table 12 summarizes the details. All these permutations ini-
tially resulted in a total of 497,724 models. In the forecasting procedure it was
observed that some of these models yielded negative forecast values. This hap-
pened when the coefficient of trend, trend squared, or trend cubed variable turned
out to be negative. When extrapolated out of sample the negative trend lead
to negative forecasts. After these models are omitted from the model space, we
ended up with 352,112 models.

For the regressions, the data set is divided into two subsets: training and
forecast samples. Data from the years 2000-2005 are used to train (estimate) the
models and the years 2006-2010 are used as the forecast sample to measure the
out-of sample performances.43

For every single model, both popular in-sample (R-squared, adjusted R-squared,
Akaike information criterion (AIC), Bayesian information criterion (BIC) ) and
three out of sample performance measures (explained below) are calculated.

Afterwards, the models are sorted based on their performances with respect
to each these criteria, and the out-sample performances of the top 1% in each
category are compared.

Many different performance criteria can be chosen based on the forecasting
and planning goals such as aggregating absolute or squared errors across different
geographical or institutional boundaries. Here we studied three different out-of-
sample performance measures: mean squared forecasting error at retail and agency
levels, and the overall absolute aggregate error. Table 13 provides the formulations
for the in and out-of-sample performance criteria.

First out-of-sample criterion is the retail level mean squared forecast error
(third one from the bottom of Table 13). Here, qtar the annual C&I water demand
in year t of retailer r that belongs to agency a in the forecasting sample. q̂tar is
the forecasted quantity for the same data point. Rta is the number of retailers for
which the data was available in agency a in year t, At is the number of agencies in
the sample in year t, and N is the total number of the data points in the forecast
sample (N= 310).

The second criterion is the counterpart of the first one at the agency level. We
first aggregate the differences between the actual numbers and forecasted numbers
at agency level for each forecast year. Afterwards, we take the mean of the squared
forecasted error over this collapsed sample (M=101).

43The data was available starting from year 1994 however these years were omitted from the
dataset for a healthier analysis as prior to 2000 the number of available observations per year
are less then 20.
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Final out-of-sample performance criterion is the absolute aggregate forecasting
error. All the quantities (both forecasted and actual) are aggregated over the
forecast sample for each year, the aggregate of the forecasts are subtracted from
the aggregate of the actual numbers and the the average of the absolute value of
the aggregate error is taken over the years.

One important detail to note is the comparability of the performance criteria
across the models with different dependent variables (i.e. level vs. logged). It is
important to establish this comparability of the goodness-of-fit measures across
the models to be able to make meaningful statements about their relative perfor-
mances. In order to do that, the performance measures for the models with logged
dependent variable had to be transformed in the following manner.

After the models with logged dependent variable are estimated, the fitted
values are exponentiated. Then, the actual quantities are regressed (without a
constant term) on these exponentiated values. Once again the fitted values are
calculated from this second regression. These fitted values (Wooldridge (2002))44

are used to calculate the prediction errors. The square of the correlation coefficient
between the actual and the ffitted within the training sample is our comparable R
squared. The adjusted R squared is calculated from this R squared by using the
usual formula : 1− n−1

n−k (1−R2).
Another layer of adjustment is done due to the existence of models both with

total quantity and quantity per employee as dependent variable. AIC and BIC
scores are calculated using the sum or squared errors (see Table 13 for the formula).
Therefore, unlike R-squared and adjusted R-squared the magnitude will depend on
the scale of the variables. For this reason the scale of the error needs to be adjusted
for a fair comparison of different models. All AIC and BIC scores are calculated
using the deviance from the actual total quantity and the implied total quantity
by the model. In other words if the model is logged, the AIC and BIC scores
are calculated from the squared errors obtained from the fitted values described
above. On the other hand if the dependent variable is per employee water quantity,
predicted total quantity is obtained by multiplying the fitted value by the total
employee number.

Next, the models are ranked based on each one of the criteria in our list. Tables
14 and15summarize and compare the performances the top 1% of the models in
each criterion. Every column (except for the first column) refers to a certain subset
of all the models in our model universe. Each row gives the mean and the standard
deviation of the top 1% based on the criteria listed in that row within the subset
given by the column. For example, the numbers in the first row of the second
column give the mean and the standard deviation of the “Retail Level MSFE” of
the models that rank in the top 1% in terms of “Retail Level MSFE” category
among the models that only use levels of the dependent variable (rather than the
logs). This categorization gives an association between the inclusion of certain

44Another popular method to recover the forecasted value for y when logy is the dependent

variable is using the ŷ = exp( σ̂
2

2 )exp( ˆlogy) formula. But this transformation relies on the
assumption that the errors are normally distributed. Since we are running a large number of
regressions in this study, we chose a method that is robust to the error distributions.
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variables in the models and the performance as a result. We see in Table 14)
that within the models where the dependent variable is total quantity (as opposed
to per employee quantity) log models (3rd versus 1st and 2nd columns) showed
better out of sample performance on average while in sample performances were
almost the same for the models in all categories.

One notable result is models without any lagged variables did much worse than
overall (comparing columns 1 versus 5) in almost all criteria. This perhaps is not
surprising given the serially correlated nature of water consumption. Additionally
we see that though it may reduce the noise, adding agency fixed effects did not
improve the forecasting performance.

Since the data is annual, we had to pick between year dummies and the (lagged)
per capita GDP as including more than one of these covariates at the same time
would result in perfect collinearity. In the models that use year fixed effects the
projection needs special consideration as we do not have a clear way to forecast
the year fixed effects for the future years. For simplicity, we treated all years in the
forecast sample as the end year of the training sample. Comparing the final two
columns we see that in fact, instead of using some kind of a proxy for the year fixed
effects for the future years, we could use the GDP forecast as the performance of
the models with year fixed effects and per capita GDP are fairly comparable for
both in and out-of-sample criteria. So in addition to providing a proxy for the
size of the economy in forecasting this indirect demand for water, this is another
motivation for including the GDP in the forecast models.45 The results are very
similar for quantity per employee models (Table 15).

Tables 16 and 17 compare the absolute aggregate error of the models ranked
within the top 1% of our criteria. For example, the number on the second row
and the first column of Table 16 is the mean of the absolute aggregate error (in
thousand acre feet) of the models that are in the top 1% based on the “Retailer
Level MSFE” criteria. We see that the the models that score high based on in-
sample-criteria did poorly compared to the models that get picked based on the
out-of -sample criteria in aggregate forecast. This result is expected given the
way we choose the models and constructed the criteria. The key point here is the
difference between the mean of the aggregate error under different categories. The
models that score high in the out-of-sample performance criteria yielded much
lower absolute errors (10.09 for the absolute aggregate error (in 1000-Acre feet)),
and a narrower width (standard deviation of 1.37) whereas the models that were
among the highest R-squared, for example, on average relatively did very poorly
(mean absolute aggregate error: 405.51 (in 1000-Acre feet) and the dispersion
of the performance was much larger (standard deviation of 539.27). The results
are similar for the comparison of the models where the dependent variable was
quantity per employee (Table 17 ). Here we see that models with highest R-
squared and adjusted R-squared was more comparable, although still worse, while
lowest AIC and BIC models performed really poorly.

The panels in Figures 8 and 9 help visualize to the point made in Tables 16 and

45It is important, however, to note that the GDP figures here are the actual numbers. When
forecasting in reality, the forecasted GDP not the actual figures will have to be utilized instead.
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17. In these graphs we see the actual aggregate, “best”,“lowest”, and the“highest”
of the models that ranked among the top 1% of the criteria studied here. In this
context the “best” model means the model with the lowest absolute aggregate
forecast error among the top 5% of the given criterion. The “highest’ and the
“lowest” models are the ones with the smallest and the largest mean aggregate
forecast error, respectively. A large error means that the model underestimated
the actual quantity whereas a small error (which would be a large negative num-
ber) means there is an over estimation. Notice the wide gap between the lowest
and the highest model in the graph for the top R-squared and AIC models (panels
(a) and (b) of Figures 8) and 9. We see clearly in these figures that the forecasts
generated by the models that are selected based on in-sample criteria are much
widely dispersed compared to those that are selected based on out-of-sample fore-
cast criteria. The models selected using the out-of-sample criteria, on the other
hand, (panels (c) and (b) of Figure 8) generate a much narrower spectrum of
forecasts.

To provide a further visual insight, each panel in Figures 10 and 11 shows
the actual aggregate (represented with the black spikes) and the histogram of
the aggregate of the forecasts for the models that are within the top 1% of the
R-squared and the absolute aggregate error criteria by the year. We see that in
every single year the forecasts that are generated by the models that are in the
top 1% of the latter criterion are more closely gathered around the actual value.
This implies again that selecting a model based on the out-of-sample prediction
performance will make it more likely to have a close forecast.

Finally, the panels in Figures 12 and the future projections of aggregate C&I
demand using the top models under the select criteria and the projections of
the covariates. Note that the models with lagged dependent variables as well as
squared and cubed time trend had to be eliminated. The projected employment
numbers were available at the agency level and disaggregated to the retailer level
using some assumptions. For the employment shares of each retailer in the future
years, the employment figure in the most recent year in which the data was avail-
able were used. For the future GDP numbers, a 1% annual growth was assumed.
For the weather variables at the retailer level, the agency level averages were used.
The red lines are the average quantities of the top 50 models in each category.
We see that for the models where total quantity were used. For both category
of models (total quantity as well as per employee quantity) the forecasts are still
somewhat more disperse for the top R-squared models. More importantly models
selected by different criteria provide different views of the future. We see that
according to top R-squared models both total quantity and per employee quantity
demanded in the C&I sector will continue growing. On the other hand, lowest
aggregate forecast error models suggest that the boom in the total quantity will
be more with a more stable per employee quantity.

2.13 Conclusion

Even though the commercial and industrial water demand is a relatively small
portion of the publicly supplied water demand in the US, the share is larger in
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some other countries and it is likely to get larger in the US as the composition
of the economic activity shifts. The emergence of the commercial sector as a
potential source of water conservation further increased its relative importance.
Especially in the existence of dramatic droughts driven by the changing climate,
the accuracy of the forecasts becomes increasingly important for the ability to
plan ahead more effectively by the institutions that govern water.

Using over 352,000 models, out-of-sample forecasting performances of different
models are compared in the context of C&I water demand in the Metropolitan
Water District of Southern California. Additionally the water demand trajectories
implied by models picked based on different criteria are depicted side by side.

We found that selecting models based on high in-sample goodness-of-fit (usu-
ally R-squared) value may not result in the best forecasts out of sample. Further-
more, we saw a much higher variance in the forecasts among these models relative
to the top (smallest) aggregate forecast error models.

The water policy makers and planners who rely on water demand forecasts,
therefore, should pay attention to the out-of-sample performance of the models
that are being utilized in their analyses. Commonly, water demand forecasting
done for planning purposes are performed by “black box” models and it is hard to
see the underlying modeling methodology and standard errors of the parameter
estimates. If a water governing body, instead, chooses to use econometric methods
using the data available from the local region, they should avoid selecting models
based on in-sample-fit as this may result in suboptimal results in the quality of
the forecasts.

Future work should use instrumental variables method for water price for a
credible parameter identification as questionable parameters may compromise the
overall forecasting ability of the model. Precipitation in the area where the water
of Southern California comes from (Sierra Nevada or California Bay Delta for
example) could be used as an instrument for the price as it plausibly affects the
supply but should have little or no effect on the water demand in the Southern
California.

Furthermore, sophisticated machine learning algorithms such as artificial neu-
ral networks as well as data at different granularity could also be used for prediction
as well. Current computing and monitoring technologies make it easier than it has
ever been to collect and process large amounts of data. A recent study done on the
municipal water demand in Cyprus showed that, neural networks yielded superior
results to multiple regression models (Adamowski and Karapataki (2010)). Water
planners who seek to improve their forecasting precision will certainly benefit from
these techniques.
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2.14 Tables and Figures

Table 10: Summary Statistics of the Training Sample46

Mean Std. Min. Max.
Water Quantity (1000 Acre-feet) 7.73 23.62 0.07 182.24
Real GDP(in Year 2000 $ Bil.) 16992.49 764.27 16102.66 18249.53
Price (in Year 2000 $) 1.33 0.42 0.44 2.48
Manufacturing Employment 9472.27 27108.52 31.56 225540.53
Service Employment 29425.89 93287.30 206.14 682037.75
Max Temp. (C) 24.19 1.73 19.90 28.85
Cooling Degree Days 1.17 0.41 1.00 3.27
Precip. (mm Per Year) 373.92 157.34 102.81 900.13
Observations 326

Table 11: Summary Statistics of the Forecast Sample47

Mean Std. Min. Max.
Water Quantity (1000 Acre-feet) 7.21 22.30 0.05 181.84
Real GDP(in Year 2000 $ Bil.) 18857.88 214.49 18486.07 19069.42
Price (in Year 2000 $) 1.47 0.51 0.47 3.73
Manufacturing Employment 8078.80 21815.74 28.53 171248.09
Service Employment 31226.67 94688.02 216.71 719254.69
Max Temp. (C) 24.44 1.68 20.46 28.24
Cooling Degree Days 1.44 0.62 1.00 3.44
Precip. (mm Per Year) 339.76 182.32 102.15 909.27
Observations 310

46Region: Metropolitan Water District of Southern California, Years: 2000-2005
47Region: Metropolitan Water District of Southern California, Years: 2006-2010
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Table 12: Variables Used to Define the Model Universe

Main variables
Price
Number of employees in the manufacturing sector (both linear and squared form)
Number of employees in the service sector (both linear and squared form)
Average maximum temperature
Cooling degree days
Precipitation
GDP
Lagged dependent variable (up to two lags)

Temporal and insitutional heterogeneity
Agency fixed effects
Time trend (up to cubic)
Year fixed effects

Additional
Levels vs. logs of both dependent and independent variables
Total quantity vs. quantity per employee as the dependent variable
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Table 13: Summary of the In-Sample and Out-of-sample Criteria Used
for Model Selection

In sample performance criteria
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Table 14: Summary Statistics of the Results from Top 1% of the Models - Dependent Variable: Total Quantity48

All Models Levels Only Logs Only No Agency FE No Lags Year FE Lagged GDP
Retail Level MSFE 1.512 2.880 1.473 1.517 9.165 1.578 1.593

(0.121) (0.314) (0.115) (0.106) (1.181) (0.0750) (0.187)

Agency Level MFSE 5.117 15.91 4.970 5.046 31.84 5.342 5.842
(0.432) (4.543) (0.401) (0.437) (4.072) (0.290) (0.616)

Absolute Aggregate Error 10.09 26.25 9.673 10.93 15.30 10.87 10.63
(1.367) (3.324) (1.336) (1.073) (3.659) (0.939) (2.192)

R Squared 0.988 0.988 0.985 0.985 0.988 0.988 0.988
(0.000311) (0.000473) (0.00105) (0.000484) (0.0000367) (0.000407) (0.0000751)

Adj. R Squared 0.987 0.987 0.983 0.984 0.987 0.987 0.987
(0.000327) (0.000524) (0.00115) (0.000468) (0.0000344) (0.000454) (0.0000507)

AIC 15.90 15.88 16.34 16.02 15.91 15.90 15.91
(0.0241) (0.0380) (0.0390) (0.0274) (0.00454) (0.0347) (0.00368)

BIC 16.17 16.12 16.46 16.14 16.24 16.19 16.18
(0.0332) (0.0198) (0.0223) (0.0276) (0.0110) (0.0310) (0.0358)

48Each row in Tables 15 and 14 corresponds to the mean and the standard deviation of the subset of models described in the column based on the
criteria on the row. For example, the numbers in the first row and the forth column from left give the mean and the standard deviation of the retail level
MSFE of the top 1% of the models that used logged dependent variable.
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Table 15: Summary Statistics of the Results from Top 1% of the Models - Dependent Variable: Quantity Per
Employee

All Models Levels Only Logs Only No Agency FE No Lags Year FE Lagged GDP
Retail Level MSFE 1.523 1.540 1.518 1.510 10.36 1.542 1.751

(0.106) (0.127) (0.0989) (0.112) (0.891) (0.0855) (0.186)

Agency Level MFSE 5.242 5.843 5.084 5.242 38.67 5.469 7.518
(0.501) (0.596) (0.468) (0.534) (5.280) (0.330) (0.619)

Absolute Aggregate Error 10.02 10.37 9.863 10.09 13.94 10.20 15.37
(1.406) (1.296) (1.455) (1.256) (3.747) (1.248) (2.656)

R Squared 0.884 0.880 0.885 0.877 0.470 0.881 0.885
(0.000983) (0.000251) (0.000777) (0.000421) (0.00246) (0.000660) (0.000846)

Adj. R Squared 0.874 0.871 0.875 0.874 0.415 0.871 0.874
(0.000690) (0.000165) (0.000600) (0.000603) (0.00168) (0.000232) (0.000617)

AIC 15.99 15.91 16.08 16.12 16.38 15.89 16.14
(0.0831) (0.0806) (0.0834) (0.0301) (0.0722) (0.0658) (0.0587)

BIC 16.26 16.22 16.41 16.25 16.63 16.22 16.34
(0.0381) (0.0377) (0.0467) (0.0204) (0.0530) (0.0382) (0.0346)
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Table 16: Aggregate Forecast Error (in 1000-Acre-Feet) of the Top 1%
of the Models49

Mean Std. Min. Max.
Absolute Aggregate Error 10.09 1.37 4.32 11.54
Retailer Level Average MSFE 13.17 2.21 7.38 21.81
Agency Level MFSE 12.60 1.84 7.38 19.08
R Squared 405.51 539.27 71.84 2613.93
Adjusted R Squared 240.23 351.31 71.84 2613.93
AIC 163.27 140.02 66.73 1253.92
BIC 114.41 91.02 34.82 773.57

Table 17: Aggregate Forecast Error (in 1000-Acre-Feet) of the Top 1%
of the Models. Dependent Variable: Quantity Per Employee

Mean Std. Min. Max.
Absolute Aggregate Error 10.02 1.406 3.44 11.80
Retailer Level Average MSFE 13.23 4.320 6.74 30.40
Agency Level MFSE 11.75 2.126 6.24 19.55
R Squared 47.57 50.886 6.74 372.72
Adjusted R Squared 28.25 13.176 6.74 97.89
AIC 555.05 845.184 22.57 3425.30
BIC 760.53 1049.162 11.43 3539.80

49Each row in Tables 16 and 17 represents the summary statistics for the top 1% of the models
in the criteria that is labeled by the row. For example the first row gives the mean, standard
deviation, minimum, and the maximum of the aggregate forecasting error of the models that
ranked in the top 1% in terms of their absolute aggregate error. We see that the models that
rank high in terms of in-sample criteria yielded a relatively high aggregate forecasting error
compared to the ones that rank in out-of-sample criteria.
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Figure 7: Map of Metropolitan Water District of Southern California
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Figure 8: Highest, Lowest, and the Best Projections. Dependent Vari-
able: Total Quantity50

50The panels of Figures 8 and 9, show the actual quantity consumed as well as the best, highest,
and lowest forecasts generated for the models that rank within the top 1% of R-Squared, AIC,
mean squared forecast error (MSFE) and absolute aggregate error criteria, respectively. We see
in panel (a) that the models that ranked high based on the R-squared criterion, the highest
forecast turned out to be extremely high compared to the actual numbers. And the pattern is
very similar with panel (b) which represents the top AIC score models. Contrasting panels (c)
and (d), we see that using out of-sample-fit as a selection criterion yields a much narrower range
of forecasts. The results look similar in Figure 9.
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Figure 9: Highest, Lowest, and the Best Projections. Dependent Vari-
able: Quantity Per Employee
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Figure 10: Distribution of the Forecasts Around the Actual Value Cri-
teria: R-Squared vs. Aggregate Absolute Error Criteria. Dependent
Variable: Total Quantity51

51Figures 10 and 11 show the distribution of the aggregate forecasts around the actual values
for years 2006-2010 for the models that ranked in the top 1% of the R-squared (displayed on the
left) and the absolute aggregate error (displayed on the right), respectively (for total quantity
and quantity per employee models). Each graph shows the actual aggregate value (represented
by the black spikes) and a histogram of the forecasts generated by each model picked under
different criteria for the given year. We see that for all years, the forecasts generated by the
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Figure 11: Distribution of the Forecasts Around the Actual Value Cri-
teria: R-Squared vs. Aggregate Absolute Error Criteria. Dependent
Variable: Quantity Per Employee

models that are picked based on the absolute aggregate error are more densely distributed close
to the actual value compared to the top R-squared models for all years.
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Figure 12: Future Projections Generated by the Top Models of Differ-
ent Criteria. Dependent Variable: Total Quantity52
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Figure 13: Future Projections Generated by the Top Models of Differ-
ent Criteria. Dependent Variable: Quantity Per Employee

52Figures 12 and 13 present the future projections by the models selected under different
criteria. We see the similar pattern of dispersion as before.
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Chapter 3: Did The California Energy Crisis In-

crease The Take Up Of The Industrial Assessment

Centers (IAC) Program?

3.15 Introduction

Industrial Assessment Centers (IAC) is an energy audit program funded by
the Department of Energy targeting small and medium sized firms. It involves
engineering teams from partnering institutions across the US conducting on-site
visits to participating firms and providing them with tailored recommendations
regarding a variety of operational improvements including energy efficiency.

Using a detailed data set containing information on both firm characteristics
and the specifics of the recommendations made, this study investigates whether the
2000 California energy crisis had an effect on the take up of the recommendations
pertaining to energy efficiency.

After decades of chronic high retail prices, California’s electricity market went
through a major restructuring starting 1998. With this deregulation attempt, the
retail electricity prices were fixed while the wholesale prices were allowed to be
determined freely by the market forces expecting that the wholesale price would
remain below the retail price. Within less than two years into the restructuring,
however, the wholesale prices skyrocketed due to reasons including limitations in
hydro generation caused by unfavorable weather conditions, disappearing extra
generation capacity associated with a fast growing economy, increased pollution
permit prices, and most importantly, supply disruptions that are schemed by
corrupt wholesalers who sought to manipulate the prices and exercise market
power. The crisis resulted in rolling blackouts, rate hikes, bankruptcies, and law
suits costing the Californians billions of dollars.

During the crisis, even though it was initially set to be fixed, the electricity
price and the volatility thereof were higher than usual. Price and its volatility are
opposing forces that act on an investment project’s value. Higher energy prices
imply higher savings associated with energy efficiency investments and, therefore,
will provide an incentive to invest in efficiency. On the other hand, theory suggests
that higher volatility in the prices will increase the uncertainty on the returns of
the energy efficiency investments. Higher uncertainty in any investment project
will reduce its appeal. While it is impossible to tease apart the magnitude of the
individual factors without observing the managers’ expectations on the price and
its volatility, this study focuses on the net effect of such movements in market
signals occurred in the context of an energy crisis. The main goal is to contribute
to the knowledge of firm behavior regarding energy efficiency adoptions.

A graphical illustration of how the project take up rates moved over time
both in and outside of California can be found in Figures 14 and 15. We see an
increase in the three-month moving average of the implementation rates of those
recommendations that are evaluated by the firms during crisis in California while
it stays somewhat stable everywhere else in the US. Although this may suggest
that the take up increase was due to the crisis, the exceedingly variable nature of
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the monthly take up rate calls for more rigorous analyses.
According to linear probability model estimation results estimated with difference-

in-difference method, the crisis was associated with about a 16% increase in the
probability that a project is implemented. In order to keep the treatment and
the control groups as comparable as possible to ensure credible identification, the
firms that applied to be audited and made the decision before the crisis are com-
pared to those that applied right before the crisis and had to decide after the crisis
started in and out of California (see Table 21). The coefficient estimate is robust
to a variety of different specifications including the incorporation of numerous
fixed effects. The results can be found in Table 25. Further robustness checks are
provided subsequently.

The organization of the chapter is as follows: next section provides a back-
ground on the California energy crisis. A review of the related literature is pro-
vided in section 3.17, followed by a description of the data that has been used
and the construction of the treatment and control groups in section 3.18. Section
3.19 lays out the model, the estimation framework, and the results. A robustness
exercise is presented in section 3.20, and section 3.21 concludes. The table and
figures can be found in section 3.22.

3.16 Background: California Energy Crisis

California’s electricity sector suffered chronic above-national-average electricity
prices for decades. The building of nuclear power plants that eventually turned
out to be far more expensive than expected and long term binding contracts that
forced the utilities to purchase power at higher-than-market prices were the root
cause. Deeming the market as “fragmented, outdated, arcane and unjustifiably
complex”, the Public Utilities Commission (PUC) voted to restructure the market
by opening it up to competition in December of 1995 (Vogel (2000)).

During the restructuring, the investor owned utilities were offered incentives to
divest out of electricity generation. The electricity retail price was fixed at 6 cents
per kilowatt hour (kwh) while the wholesale price was allowed to be determined
in the market. The expectation was that the latter would remain below the fixed
retail level, while the difference would help finance the recovery of the stranded
costs from the previous decades.53 In 1998 the deregulation legislation started to
take effect.

Electricity industry has unique properties that played a major role in the un-
folding of the events. First, it is prohibitively costly to store electricity at large
quantities. This means that the electricity consumed at any given moment needs
to be generated at the same time. Additionally, the demand for electricity is highly
inelastic. Coupled with the inherently rigid consumption patterns, the inelastic
demand is further reinforced by the lack of price signals that would reflect the dif-
ferences in costs of generation throughout different hours of the day, despite the
technological feasibility (i.e. the smart meters). Finally, the electricity supply is

53After the recovery or March of 2002, whichever comes first, the utilities would just pass
through the wholesale electricity prices.
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also highly inelastic both in the short run and the long run. In the short run, it is
virtually impossible to generate beyond the already established capacity without
inflicting irreversible damage on the transmission system. In the long run, supply
is tight due to high capital costs.

In addition to these, California itself had special conditions contributed to the
severity of the crisis. First of all, excess generation capacity that would buffer
the sharp increases in the demand disappeared quickly due to a fast booming
economy. Additionally, because of hotter and dryer than average weather condi-
tions, the hydro generation plummeted. Also, the cost of nitrogen oxide emission
permits increased by more than an order of magnitude. Last but not least, the sup-
ply became increasingly short due to more-often-than-usual power outages which
turned out to be a scheme implemented by some of the whole-sellers who wanted
to manipulate prices by cutting supply and exercise market power.

With all these factors playing their parts, a major market dysfunction was
inevitable. On May 22nd of year 2000, California Independent System Operator
(CAISO) declared the first Stage 2 power alert when heavy usage contributed to
power reserves dropping to 5 percent. Rolling blackouts started to take effect in
June in the San Francisco Bay Area affecting about 97,000 customers of Pacific
Gas & Electricity (PG&E), one of the three major utilities in California. The
average wholesale prices skyrocketed to more than twice the level the year before.
Since San Diego Gas & Electric (SDG&E) had already completed the recovery of
the stranded costs, it was free to pass through the increased wholesale prices to
the retail customers whose bills tripled during that summer. However the rate
hikes were not welcome by the consumer groups and soon enough, the legislature
passed AB 265 which froze the rates for SDG&E (Weare (2003)).

The crisis lasted for about a year resulting in rolling blackouts, increase in elec-
tricity prices, bankruptcies, and law suits leaving the Californians with billions of
dollars in losses. The turmoil subsided a year later thanks to mild weather condi-
tions, federally mandated price caps on the wholesale prices, and price declines in
the natural gas market (Borenstein (2002)).

3.17 Literature Review

The energy efficiency gap which refers to the underinvestment in energy efficiency
capital, is a widely studied topic in the energy economics literature. It is a mul-
tifaceted economical problem not only because it involves inefficient allocation of
resources, but also the environmental externality implications of energy produc-
tion. As climate change receives unprecedented amount of media coverage and
public attention, energy efficiency takes place in the middle of many public policy
debates.

Jaffe and Stavins (1994) provide an extensive list of possible explanations for
slow diffusion of energy efficiency investments despite high rates of return. Listed
among the potential non-market-failure explanations are: possible value of de-
laying due to uncertainty of the returns combined with the irreversibility of the
investment, different qualitative attributes of the technologies, costs associated
with learning in addition to the monetary cost, and inertia. Underprovision of
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information due to its public good nature, incentives to wait in order to learn
from new adopters’ experience, and possible principle-agent problems are articu-
lated as the issues which the markets potentially might be failing to address. On
uncertainty and irreversibility, Hassett and Metcalf (1992) show that if the prices
and the cost of the investment follow a random walk, then the optimal timing of
the investment (provided that the investor can choose a time) is when the annual
savings is greater than a certain multiple of the cost where the multiplier is de-
termined by the discount rate, volatility, and the drift parameters of the random
walks. However, testing this theory empirically, Sanstad, Blumstein, and Stoft
(1995) find that the magnitude of this option value effect is relatively small.

There are studies investigating the possible systematic patterns of energy effi-
ciency investments at the firm level. For example, DeCanio and Watkins (1998)
show a positive significant relationship between certain firm characteristics includ-
ing financial performance of both the firms and the industry group they belong
to and their likelihood of joining the EPA’s Green Lights program. Analyzing the
Department of Energy funded Industrial Assessment Center (IAC) Program, Tonn
and Martin (2000) indicate how this program triggers the firms’ gradual evolution
from being completely new to the idea to a point where they develop an active
energy efficiency agenda by staying in touch with the alumni that took part in this
study (mostly through employment), and/or receiving further information from
IAC websites. Another study that analyzed the IAC program was done by An-
derson and Newell (2004). They find that while firms are responsive to economic
attributes of the projects, certain technologies are more likely to be adopted than
others. Furthermore, the firms are more responsive to costs than savings and this
difference is exacerbated with increasing costs.

Another aspect worth examining is how the decision makers adjust their energy
consumption as a response to exogenous shocks. Reiss and White (2008) showed
that after the unprecedented price increase during the California energy crisis, San
Diego households dropped their electricity consumption by 13% within 2 months.
Even after the price cap imposed in September 2000, they kept conserving energy
which is attributed to media coverage implying possible opportunities for effective
non tax interventions to reduce energy consumption.

This study contributes to the knowledge of energy efficiency investments by
studying the behavior of small and medium sized manufacturing firms in the con-
text of an energy crisis. Even though the prices did end up increasing, the majority
of the burden of the increased prices were carried by the utilities which eventually
had to file for bankruptcy. Instead of attempting to quantify the magnitude of the
individual forces such as price and volatility increase as well as loss of reliability,
this study provides an insight into the net effect of a large energy crisis on energy
efficiency investment behavior.
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3.18 Data

The IAC provides a publicly available data set on energy audits of small and
medium sized manufacturing firms.54 The audits are performed by 26 IAC centers
from 31 universities with engineering programs. The teams normally pay a one-
day on-site visit to an industrial plant. During these visits, the plant is toured
and various operational parameters are measured. The visits are followed by a
written report by the team regarding energy utilization, waste handling and other
manufacturing procedures along with a list of recommendations. After giving the
firms between six to nine months, the centers call the firms to follow up on the
recommendations to find out if the recommendations were implemented. All this
data gathered from assessment and the recommendations are formatted into a
spreadsheet boilerplate. The database includes firm specific information on sales,
sector (SIC code), plant size, and number of employees, as well as information
pertaining to each recommendation such as implementation cost, energy savings,
and whether or not the project was implemented. The dollar values represent the
best estimates of the engineering teams of current costs or projected costs for the
coming year.55 The result is a database with more than 12,000 assessments and
87,000 recommendations.56

This study utilizes the data from all audits that took place between January
1998 and June 2000 pertaining to electricity consumption. A total of 2094 such
recommendations were made to 610 unique firms from 24 different states by 13
participating institutions.57 The number of energy recommendations for a given
firm range from 1 to 15. 391 of these recommendations were made by 2 Califor-
nia centers (SDSU and SFSU) to 110 unique California firms. Table 18 has the
summary statistics.

The variable of interest is the “implementation status”— a binary variable
that equals 1 if the project was implemented within 6 to 9 months of the visit,
zero otherwise. The database provides information about both firms and recom-
mendations. During the criteria check prior to conducting site visits, IAC teams
access firm level data including annual sales, number of employees, plant size, and
annual energy expenditure. Variables specific to the projects include estimated
implementation costs58, annual savings and payback. Payback is calculated by

54The criteria to qualify for this service are very specific. The firms must have gross annual
sales of $100 million or less, consume energy at a cost greater than $100,000 and less than $ 2.5
million per year, have no more than 500 employees, and do not employ a technical staff whose
primary duty is energy analysis.

55Dr. Michael Muller IAC Field Manager, personal communication
56The data documentation could be reached at http://iac.rutgers.edu/manual_database.

php.
57This number does not include the recommendations where there was a rebate issued. The

cost data on these recommendations were reported net of the rebate, however the dataset does
not contain information on how much the rebate was or when and how it was issued. Because the
existence of rebate can be interpreted differently across the decision makers and the data does
not grant a good grasp of the nature of these rebates, the recommendations with rebate were
omitted. Additionally, observations with missing values on key variables like implementation
cost and savings were not included as well as the ones with negative payback ratios.

58Firms are provided with an estimate of capital and non-capital costs. Firms do their own
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dividing the cost by the annual savings to calculate roughly how many years it
takes the project to pay itself back.

Table 19 summarizes the estimated annual savings and the implementation
costs of the projects. The mean is larger than even the 75th percentile for both
variables implying highly skewed distributions. About 90% of the projects costed
under $20K while 9 projects had implementation costs of over a million dollars.
As with the savings, more than 90% of the projects had savings less than $15K
while 4 projects had estimated savings of over a million dollars. A scatter plot of
the savings against the cost can be seen in Figure 16 which suggests a high positive
correlation. This might be an artifact of the characteristics of the firms interested
in energy audits. In other words, these firms might have already implemented
possible projects with low costs and high savings.

One important figure, which is exemplary of the energy efficiency gap discussed
in the literature, is the low implementation rates despite the low payback figures.
Only about 47% of those recommendations were implemented. The implementa-
tion costs and estimated annual savings59 of the projects have wide ranges and
so do the firm characteristics such as sales, number of employees, floor area, and
annual energy expenditures.

Table 20 gives a further break down of the details with respect to the types of
projects. The majority of the observations are “Motor systems” (e.g. operation,
maintenance and repair of motor systems) and “Building and grounds” (e.g. light-
ing, heating, ventilation and air conditioning (HVAC), and infiltration) followed
by “Thermal systems” (e.g. operation and maintenance of heat treating, recovery,
and containment systems; and cooling), “Electrical power” (e.g. scheduling and
generation of power), “Operations” (e.g. process and material specific efficiency
improvements), and “Combustion systems” (e.g. operation and maintenance of
furnaces, ovens, and boilers or possible fuel switching). The positive correlation
between the costs and the savings of the projects is evident from the table.

California firms that decided whether to implement during the crisis were de-
fined as the treatment group. Selection bias is a potential empirical challenge, as
the firms voluntarily participate in these programs. The firms that are interested
in such a program under different circumstances (i.e. crisis vs. not) could differ in
their project valuation which can potentially be a confounding factor. In order to
keep the treatment and control groups as comparable as possible, it is necessary
to look at the firms that chose to be audited under similar conditions, but faced
an exogenous change in circumstances while deciding whether or not to implement
the recommendations. With this idea in mind, the treatment group is determined
in the following manner. First, starting point of the crisis was marked as June
2000 as this is when the blackouts and the extensive media coverage started. The
firms are contacted 6-9 months after the audit for follow up. This means that the
California firms that are visited between January 2000 and June 2000 (inclusive)
signed up for the audits without any expectation of the crisis and were contacted

estimation of the cost before implementing. This study only uses firms’ own estimates of the
cost because of many missing values in the cost numbers produced by the IAC teams

59All the dollar values reported here are inflation adjusted for 2000 dollars using the producer
price index (finished goods, series WPUSOP3000) from the US Bureau of Labor Statistics (2010).
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for follow up sometime during the crisis.60 Therefore the final decision recorded in
the database for these recommendations must be made sometime during the crisis.
On the other hand, firms that signed up and are audited before August 1999 were
clearly not affected (control) by the shock during their decision making period
and were not contacted for follow up sometime during the crisis. The firms that
are audited between September and December 1999 may or may not have been
contacted during the crisis. These observations are dropped because the follow up
date is not certain.

Hence, to summarize, time period between January 1998 and August 1999
is labeled as “pre-crisis”, the period between September to December of 1999 is
dropped, and the the period of January to June 2000 is labeled as “crisis”. The ob-
servations before January 1998 are not included to prevent any other unobservable
factors from convoluting the sample.

Table 22 compares the covariates of the California firms that were in the crisis
group to those of the firms that were either pre-crisis group (both in an outside
of California) and the firms in the crisis group but outside of California. P-values
of the t-test results of their differences are given at the last column. Despite the
fact that these factors are controlled for in the ensuing regressions, the overlap in
the observables across the groups provides an advantage for the reliability of these
regressions.

Tables 23 and 24 compares the breakdown of the project types and standard
industrial classification (SIC) across the groups, respectively. We see that the
share of the projects recommended and the industries represented by the groups
are similar. This provides further reassurance for the comparability of the firms
in the “treatment” group (California firms visited during the “crisis” period) with
the other firms in the sample.

3.19 Modeling and Estimation Results

In the field of energy economics, there is a considerable amount of concern over
the inadequacy of the energy efficiency investments despite the seemingly high
potential savings. By what is referred to as the “energy paradox”, it is suggested
that the decision makers apply surprisingly high implicit discount rates to the
future savings of the energy conserving projects. Previous studies have estimated
discount rates as high as 20-50% (Hausman (1979) and Train (1985)).

Hassett and Metcalf (1992) suggest that the irreversible nature of energy effi-
ciency investments together with the uncertainty associated with the energy price
and the cost of the investment will deter such decisions and could offer a plausible
explanation for what puzzled the energy economists.

To briefly summarize their model and its implications, suppose a firm con-
stantly utilizes 1 unit of energy and has an opportunity to invest in equipment
that will save a fraction, δ, of energy consumption. Once implemented, the capi-
tal invested in this project is completely sunk. Also let the energy price and the

60The month of June is included because based on personal communication with Prof. Asfaw
Beyene of San Diego IAC engineering team, it takes engineers more or less a month to get to
the firms’ plants once it is established that the firm is interested.
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cost of the energy conserving equipment follow geometric Brownian motion, i.e.
continuos time random walk. The motion processes are specified by the following
equations:

dPit = µpPitdt+ σpPitdzp
dKit = µkKitdt+ σkKitdzk

where i is the index for the decision maker and t for time; z is the standard
Brownian motion process for the corresponding variable which has a change of dz
with zero mean and unit variance. The change in Pit over time t has mean µpt and
variance σ2

pt. They show that the optimal time to invest in the energy efficiency
project is when:

δiPit >
b
b−1

(γi − µp)Kit

where:

b =
0.5σ2

0−α+
√

(0.5σ2
0−α)2+2(γi−µc)σ2

0

σ2
0

;

γi is the discount rate;

σ2
0 and α are, respectively, the variance and the drift of the geometric Brown-

ian motion process given by Pit

Kit
.

Note that the term b
b−1

will approach 1 as σ2
0 goes to zero.61 In other words,

without uncertainty, the investment happens exactly when the net present value
(NPV) of the savings equals the cost of investment. We see from the equation
that the higher energy price will increase while higher uncertainty will decrease
the incentive for the manager to implement the project. For positive values of σ2

0,
optimal investment timing occurs not only when the project is “in the money”,
but when it is “deep in the money”. When the returns on the investment are
uncertain, a rational investor will require a larger present value for compensation
to give up the “option to invest”, and terminate the ability to wait and see the
realization of future costs and prices to make a more informed decision in the
future. Put differently when there is uncertainty, the project’s net present value
needs to be large enough to cover both the investment cost and the opportunity
cost of forgoing the option to wait.

In the case of the IAC recommendations, arguably every project is an irre-
versible investment with a risky return. A manager will implement the project if
the following condition holds:

Savingsij >
b
b−1

(γi − µp)Costij

In order to be able to make meaningful statements regarding the discount rates

61This is true as long as α + µc < γ In other words if the growth of Pit

Kit
is slower than the

discount rate. Otherwise it is never optimal to undertake the investment.
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with which the firms evaluate the energy savings, we need to observe the indi-
vidual project lifetimes, the exact time that the project was implemented, and
the managers’ estimate for the mean and the variance the price and investment
cost movements. Due to lack of data on these variables, no such estimations can
be made at this time. However, we do observe visit dates, estimated costs and
savings as well as whether or not the project was implemented within 6-9 months
of the visit. Therefore we are able to do analysis on the effect of the energy crisis
using a reduced form approach.

The effect of the California energy crisis on the implementation rates of the
IAC recommendations is estimated using the following linear probability model:

Impij = β0 + β1Sij + β2Cij + β3Xi + β4Cai + β5Crisisij + β7Cai × Crisisj + εij

where:
Impij is a binary variable equals 1 if the project is j is implemented by firm i;
Sij is the logarithm of expected annual savings;
Cij is the logarithm of expected total implementation cost;
Xi is the vector of firm characteristics such as firm’s size and energy intensity;
Cai is a binary variable equals 1 if firm i is located in California;
Crisisij is an indicator of whether or not the California energy crisis was going
on during firm i’s implementation decision of project j;
Ca× Crisisij is the interaction of Cai and Crisisij;
and εij represents the unobserved factors that affected the implementation.

Plant area, logarithm of the annual sales, and number of employees are used to
proxy for firm size. Energy intensity is calculated by dividing the annual energy
expenditure by total sales which is then standardized by dividing by the indus-
try average by state. This could be thought of as the share of energy input in
the total output of the firm. Although the theory implicitly assumes that these
characteristics should not matter, in practice firm characteristics may play a role
in their project evaluation. εij which includes firm’s overall value of the energy
efficiency projects, opportunity cost of not waiting until some of the uncertainty
settles etc.

In an empirical setting where the dependent variable is binary, logit could have
been chosen to model the decision making process. An important advantage of
logit is, unlike linear probability model, it insures that the probability estimate is
between zero and one. Yet in this study, linear probability model was chosen to
be the method of estimation for an important reason. Logit model hinges on the
assumption that the utility function can be broken into observed and unobserved
components. The unobserved component is modeled as a random variable that is
independently and identically distributed with type I extreme value distribution
(Train (2009)). Note that in the representation of the utility function, the scale
of the utility does not matter. In other words, the utility of all the options could
be divided by the same number and this would not change the option with the
highest utility. Traditionally, with the standard logit model, the utility is scaled
in a way that the error variance is π2/6. So the parameters are identified up to the
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scale parameter. The coefficient that we obtain is the ratio of the actual utility
coefficient to the scale parameter, neither of which can individually be identified.
While this does not pose a problem when the errors are homoscedastic, a different
model needs to be estimated for all the groups if the unobserved portion of the
utility is heteroskedastic.62

In this study, the data comes from a wide variety of geographic locations and
industries from across the US. Since assuming homogeneity in the unobserved
factors would be rather unrealistic, dividing the data into more homogenous sub-
groups and estimating a separate model each one of them would be required. This,
however, would obviate the tractability of esimation process and the interpretabil-
ity of the results. Linear probability model emerges as a simpler yet a more feasible
approach. It allows including all the data from the period to be included in the
same model which paves the way for the utilization of the difference-in-difference
strategy.

The models are estimated using ordinary least squares regression method with
robust standard errors. Table 25 has the results. The parameter of interest is
on the third row. The analysis started with a simple model with only group
indicators. Since the crisis is exogenous, this specification by itself should be
enough to identify the parameter of interest. However in order to reduce the noise,
various factors are gradually controlled for the progression of which can be found
in the table. We see that the parameter estimate and its significance stays stable
as the state indicators, project characteristics (payback time, cost, savings), firm
characteristics (energy intensity, plant area, and number of employees), time trend,
quarter indicators, and industry indicators are gradually added to the model.
The models unanimously estimate that the crisis is associated with about a 16%
increase in the probability of adoption. Results also indicate that California on
average had a lower rate of adoption during the time of the study. The project cost,
as expected, has a negative significant coefficient. For every percent increase in the
project cost, the model predicts about 5% decrease in implementation rate. Once
the cost is accounted for the payback period loses it’s significance which implies
that the size of the cost itself is the biggest determinant without much regard to
the savings opportunities, a finding that is consistent with that of Anderson and
Newell (2004). This result may suggest a potential liquidity or credit constraint
faced by the small and medium sized firms.

3.20 Robustness

In addition to estimating the model with different variables, the robustness is
checked in the time dimension as well with what I call “placebos”. The records
of California recommendations in the IAC dataset used for this study date from
April 1991 and to September 2009. Starting from the beginning of this time period,
the regression estimation procedure was repeated with 1 month increments in the
following fashion: The original regressions are run using data that spreads over a
30-month period (see Table 21 for details) which is divided into 3 portions: pre-

62For further details with an example see: Train (2009) pp26.
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crisis, drop-out, and crisis, respectively. Starting April 1991, 30-month horizon is
set aside and divided into 3 segments that are of same length as in the original
regressions using which the final regression equation on Table 25 is estimated.
The same procedure is repeated in one-month increments, in other words, the
beginning and the ending of the regression period was moved up by one month
at a time until the end of the data availability was reached. After each regression
estimation, the t-score of the coefficient of the hypothetical treatment coefficient is
recorded. This procedure yielded a total of 192 regression estimations, and only 19
(about 10%) of which had the t-score greater then or equal to that of the original
equation. In other words the probability of getting a t-score that is as big as the
one that we got in the original regression by chance is 1 out of 10. The histogram
of the t-scores can be found in Figure 17.

3.21 Conclusion

IAC is a Department of Energy funded industry audit program that targets
small and medium sized firms to provide them with engineering recommendations
in an effort to improve their operations in a variety of domains including energy
efficiency. Using s detailed data set containing information on both firm char-
acteristics and the specifics of the recommendations made, the effect of the 2000
California energy crisis on the take up of the recommendations pertaining to energy
efficiency is measured. California energy crisis refers to the a sequence of devel-
opments in California’s energy sector originating from the attempt to restructure
the industry which resulted in highly publicized rolling blackouts, skyrocketing
electricity prices, utility bankruptcies, and lawsuits. The time series graphs of
implementation rates in and outside of California can be seen in Figures 14 and
15. The effect of the crisis is estimated using linear probability model with a
difference-in-difference strategy. The results suggest that the crisis was associated
with about a 16% increase in the implementation rate and are robust to a variety
of different specifications including the incorporation of different time, state, and
industry fixed effects. The robustness of the estimation is checked in the time
dimension as well with the reestimaton of the regression for other time periods
and studying the t-scores of the hypothetical treatment coefficients.

Future research projects that seek to improve the take up of the this audit pro-
gram could potentially deploy experimental methods to measure the effectiveness
of loan availability. Also, further studies are needed to understand the sources
and the nature of differences across different states and industries.
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3.22 Figures and Tables
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Figure 14: Implementation Rates in California Over Time
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Figure 15: Implementation Rates out of California Over Time
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63Figures 14 and 15 show how the 3-month moving average implementation rate of the IAC
recommendations behaved over time in and out of California between January 1998 and Decem-
ber 2002. The dashed vertical black line represents the date of the recommendations for which
the follow up calls are made when the crisis started. We see an increase in the implementation
rates right after the crisis while it was somewhat stable out of California. However, the sig-
nificant variability in the implementations rates over time calls for more rigorous quantitative
analyses which can be found in the subsequent sections.
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Figure 16: Scatterplot of Estimated Annual Savings and Implementa-
tion Costs
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Figure 17: T-scores of the Placebo Regressions
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64Figure 16 shows the scatterplot of estimated annual savings and the implementation costs
of the projects.

65In order to test the robustness of the regression results in the time dimension, the regres-
sions were reestimated using different time segments within the data where the time segment
is incremented by one month at a time. Figure 17 shows the histogram of the t-scores of the
hypothetical treatment coefficients of these regressions. Only 1 out of 10 regressions yielded a
t-score that is as big as the ones that is obtained in the original regression.
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Table 18: Summary Statistics66

Mean StD Min Max
Imp. Status 0.47 0.50 0.00 1.00

Payback Time (Years) 1.37 1.78 0.00 42.63

Log Imp. Cost 7.33 1.95 2.36 15.36

Log Ann. Savings 7.70 1.49 2.69 14.72

Log Ann. Sales 16.77 0.94 13.85 20.03

Energy Intensity 0.90 0.90 0.02 7.84

Plant Size (Mil. Sqf.) 0.91 9.95 0.00 224.25

Log Ann. Energy Exp. 12.58 1.03 9.21 16.27

No of Employees 164.66 148.34 1.00 1500.00

Crisis 0.24 0.43 0.00 1.00

California 0.19 0.39 0.00 1.00
Observations 2094

Table 19: Summary of Annual Savings and Implementation Costs of
the Projects67

25th Perc. Median 75th Perc. Mean StD
Annual Savings (1000 $) 0.77 2.11 5.58 11.08 79.05

Implementation Cost (1000 $) 0.42 1.29 5.64 20.32 178.02
Observations 2094

66Table 18 has the summary statistics. In total, data from 2094 recommendations made to
611 unique firms are used. 388 of these recommendations were made to 110 unique California
firms. The dates vary from January 1998 to June 2000. The “crisis” is a binary variable equal to
one if a firm got the audit right before the crisis started but had to decide during the crisis (for
more information on the dates and treatment assignment, see Table 21). “California” represents
whether the firm is located in California.

67Table 19 summarizes the estimated annual savings and the implementation costs of the
projects. We see that these figures are highly skewed. About 90% of the projects costed under
$20K while 9 projects had an implementation cost of over a million dollars. As with the savings
more than 90% of the projects had savings less than $15K while 4 projects had estimated savings
of over a million dollars.

70



Table 20: Implementation Rates, Payback, Cost, and Savings by Project Type68

No of Proj. Imp. Rate Payback Cost (1000 USD) Savings (1000 USD)
Ancillary costs 2 1.00 3.81 21175.54 5608.24

Building and grounds 759 0.40 1.58 5706.11 3956.73

Combustion systems 90 0.17 1.35 34046.59 27019.20

Electric power 94 0.34 1.65 259997.57 110878.79

Industrial design 3 0.67 2.10 159815.04 77236.19

Motor systems 977 0.57 1.17 6682.25 5341.68

Operations 53 0.47 0.69 1667.74 3766.64

Thermal systems 116 0.34 1.78 30806.22 14538.44

Total 2094 0.47 1.37 20318.61 11081.82

68Table 20 breaks down the important characteristics (implementations rate, cost, savings, and payback period) of the recommendations with respect to
the types of operations being targeted. The majority of the recommendations are pertaining to “Motor systems” (e.g. operation, maintenance, and repair
of motor systems) and “Building and grounds” (e.g. lighting, HVAC, and infiltration) followed by “Thermal systems” (e.g. operation and maintenance of
heat treating, recovery, and containment systems; and cooling), “Electrical power” (e.g. scheduling and generation of power), “Operations” (e.g. process
and material specific efficiency improvements), and “Combustion systems” (e.g. operation and maintenance of furnaces, ovens, and boilers or possible
fuel switching). The positive correlation between the costs and the savings of the projects is evident from the table.
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Table 21: Summary of the Treatment Assignment69

Audit Range Follow-up Crisis In Cal. Out of Cal. Total
Jan 1998 - Aug 1999 Jul 1998 - May 2000 0 284 1314 1598

Sep 1999 - Dec 1999 Mar 2000 - Sep 2000 NA 29 179 208

Jan 2000 - Jun 2000 Jul 2000 - Mar 2001 1 107 389 496

Total 420 1882 2302

69Table 21 summarizes how the “treatment” status is defined. In order to keep the treatment
and control groups as comparable as possible, it is necessary to look at the firms that chose
to be audited under similar conditions, but faced an exogenous change in circumstances while
deciding whether or not to implement the recommendations. The starting point of the crises
was marked as June 2000. Given that the firms are contacted 6-9 months after the audit we
can conclude that the California firms that are visited between January 2000 and June 2000
(inclusive) signed up for the audits without any expectation of the crisis and were contacted
for follow up sometime during the crisis. Hence, the decision they made that is recorded in the
database must be made sometime during the crisis. On the other hand, firms that signed up
and are audited before August 1999 were clearly not affected by the shock during their decision
making period and were not contacted for follow up sometime during the crisis. The firms that
are audited between September and December 1999 might or might not be contacted during
the crisis. These observations are dropped because the follow up date is not certain. So to
summarize, the firms that were audited between January 1998 and August 1999 are in the “pre-
crisis” group, the firms that are audited between September and December 1999 are dropped,
and the firms that got audited between January and June 2000 are the “crisis” group. Firms that
were audited before January 1998 are not included to prevent any other unobservable factors
from convoluting the sample.
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Table 22: Comparison of the Covariates Accross the Groups70

Non-Treatment Group Treatment Group Difference P-Value
Payback Time (Years) 1.37 1.37 0.00 0.489

Imp. Cost (1000 ) 20.79 11.54 9.25 0.300

Ann. Savings (1000 ) 11.17 9.37 1.81 0.409

Log Ann. Sales 16.77 16.72 0.05 0.311

Energy Intensity 0.90 0.86 0.03 0.350

Plant Size (Mil. Sqf.) 0.95 0.30 0.65 0.257

Log Ann. Energy Exp. 12.58 12.58 -0.00 0.501

No of Employees 165.44 150.32 15.12 0.152
Observations 2094

70Table 22 compares the covariates of the California firms that were in the crisis group to those
of the firms that were either pre-crisis group (both in an outside of California) and the firms in
the crisis group but outside of California. P-values of the t-test results of their differences are
given at the last column. Despite the fact that these factors are controlled for in the ensuing
regressions, the overlap in the observables across the groups provides an advantage for their
reliability.
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Table 23: Groups by Project Types71

Project Type Non-Treatment Group Treatment Group Total
Obs. % Obs. % Obs. %

Motor sys. 933 46.9 44 41.1 977 46.7

Building and grnds 726 36.5 33 30.8 759 36.2

Therm. sys. 106 5.3 10 9.3 116 5.5

Combust. sys. 75 3.7 15 14.0 90 4.3

Operations 48 2.4 5 4.7 53 2.5

Elec. power 94 4.7 0 0.0 94 4.5

Indust. design 3 0.2 0 0.0 3 0.1

Ancill. costs 2 0.1 0 0.0 2 0.0
Total 1,987 100 107 100.0 2,094

71Tables 23 and 24 compare the breakdown of the project types and standard industrial
classification (SIC) across the groups, respectively. Here the “treatment group” refers to the
California firms that made the decision while facing the crisis. We see that the share of the
projects recommended and the industries represented by the groups are similar. In the regressions
the indicator variables for project types and the SIC codes are utilized to control for the time
invariant aggregate effect of each project type and industry group. However, the fact that they
are well represented across the groups provides further reassurance into the comparability of
the firms in the “treatment” group (California firms visited during the “crisis” period) with the
other firms in the sample.
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Table 24: Treatment and Control Groups by SIC Codes

Non-Treatment Group Treatment Group Total
SIC Code Industry No of Obs. Pctg. No of Obs. Pctg. No of Obs. Pctg.
34 Fabricated Metal Products 320 16.10 25 23.36 345 16.48
30 Rubber & Miscellaneous Plastics Products 295 14.85 10 9.35 305 14.57
35 Industrial Machinery & Equipment 178 8.96 3 2.80 181 8.64
20 Food & Kindred Products 153 7.70 7 6.54 160 7.64
37 Transportation Equipment 146 7.35 11 10.28 157 7.50
33 Primary Metal Industries 135 6.79 21 19.63 156 7.45
36 Electronic & Other Electric Equipment 126 6.34 6 5.61 132 6.30
32 Stone, Clay, & Glass Products 126 6.34 4 3.74 130 6.21
28 Chemical & Allied Products 87 4.38 6 5.61 93 4.44
26 Paper & Allied Products 83 4.18 8 7.48 91 4.35
27 Printing & Publishing 80 4.03 0 0.00 80 3.82
24 Lumber & Wood Products 79 3.98 0 0.00 79 3.77
38 Instruments & Related Products 52 2.62 0 0.00 52 2.48
25 Furniture & Fixtures 31 1.56 0 0.00 31 1.48
39 Miscellaneous Manufacturing Industries 29 1.46 0 0.00 29 1.38
22 Textile Mill Products 28 1.41 0 0.00 28 1.34
23 Apparel & Other Textile Products 21 1.06 5 4.67 26 1.24
29 Petroleum & Coal Products 12 0.60 1 0.93 13 0.62
31 Leather & Leather Products 6 0.30 0 0.00 6 0.29
Total 1,987 100.00 107 100.00 2,094 100.00
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Table 25: Regression Results72

Imp. Status Imp. Status Imp. Status Imp. Status Imp. Status Imp. Status Imp. Status
California -0.121∗∗∗ -0.237 -0.246 -0.327∗∗ -0.355∗∗∗ -0.366∗∗∗ -0.388∗∗∗

(0.032) (0.130) (0.129) (0.121) (0.122) (0.124) (0.129)

Crisis -0.00844 -0.0280 -0.0296 -0.0355 0.0242 0.0123 0.0317
(0.029) (0.029) (0.029) (0.029) (0.046) (0.050) (0.051)

California x Crisis 0.150∗∗ 0.170∗∗ 0.169∗∗ 0.163∗∗ 0.163∗∗ 0.165∗∗ 0.159∗∗

(0.063) (0.064) (0.064) (0.062) (0.062) (0.062) (0.064)

Payback Time (Years) -0.0165 0.00785 0.00780 0.00781 0.00807
(0.009) (0.007) (0.007) (0.007) (0.006)

Log Imp. Cost -0.0546∗∗∗ -0.0545∗∗∗ -0.0543∗∗∗ -0.0548∗∗∗

(0.010) (0.010) (0.010) (0.010)

Log Ann. Savings 0.000407 0.00186 0.00177 0.00379
(0.012) (0.012) (0.012) (0.013)

Montly Trend -0.00350 -0.00309 -0.00460∗

(0.002) (0.002) (0.002)

Constant 0.484∗∗∗ 0.600∗∗∗ 0.634∗∗∗ 0.479 0.559 0.560 0.611∗

(0.014) (0.127) (0.127) (0.282) (0.286) (0.286) (0.295)
Observations 2094 2094 2094 2094 2094 2094 2094
R2 0.007 0.047 0.050 0.081 0.082 0.082 0.097
Quarter Indicators No No No No No Yes Yes
SIC Indicators No No No No No No Yes
State Indicators No Yes Yes Yes Yes Yes Yes
Firm Characteristics No No No Yes Yes Yes Yes

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.025, ∗∗∗ p < 0.005
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Appendices

A

Table A1: Salinity Tolerance Information of the Crops

Crop Class Threshold Decline Rating Source

Alfalfa F 2 7.3 MS 2

Almond D 1.5 19 S 2

Apple D 1.33 19.08 S 4

Apricot D 1.6 24 S 2

Asparagus T 4.09 2 T 2

Barley G 8 5.5 T 2

Bean T 1 19 S 2

Beet T 4 9 MT 1

Berry T 1.5 22 S 3

Bok Choy T 1.8 9.69 MS 7

Broccoli T 2.8 9.19 MS 1

Cabbage T 1.8 9.69 MS 1

Carrot T 1 14 S 1

Celery T 1.8 6.2 MS 1

Cherry D 1.5 19 S 5

Clover B 1.5 12 MS 1

Collard T 1.8 9.69 MS 7

Corn F 1.7 12 MS 2

Cotton T 7.7 5.2 T 1

Cucumber T 2.5 13 MS 1

Dry Bean F 1 19 S 2

Fig D 4.52 7.56 MT 4

Forage B 4.5 2.6 MT 1

Grape V 1.5 9.6 MS 1

Grass Seed T 4.59 7.6 MT 1

Herb, Spice T - - - 9

Kale T 1.8 9.69 MS 7

Kiwi D 1.5 22 S 6

Lettuce Leaf T 1.3 13 MS 1

Melon T 1 8.4 MS 1
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Table A1: continued

Crop Class Threshold Decline Rating Source

Mustard F 1.8 9.69 MS 7

Oat G 7.46 5.48 T 1

Olive D 4 12 MT 1

Onion T 1.2 16 S 1

Ot-Flower Seed T - - - 9

Parsley T 1 14 S 8

Pastureland B 7.5 6.9 T 1

Peach D 1.7 21 S 1

Pear D 1.33 19.08 S 4

Peas T 3.4 10.6 MS 1

Pecan D 1.84 10.17 MS 4

Pepper T 1.5 14 MS 1

Pistachio D 1.84 10.17 MS 4

Potato T 1.7 12 MS 1

Pumpkin T 1 8.4 MS 8

Rice F 1.9 9.1 MS 1

Rye G 11.4 10.8 T 1

Ryegrass B 5.6 7.6 MT 1

Safflower G 4.52 7.56 MT 4

Sorghum G 6.8 16 MT 1

Spinach T 2 7.6 MS 1

Squash T 3.2 16 MS 1

Sudangrass F 2.9 4.3 MT 3

Sunflower F 4.8 5 MT 1

Sweet Basil T - - - 9

Tomato T 2.5 9.9 MS 1

Triticale G 6.1 2.5 T 1

Turf T 4.52 7.56 MT 4

Turnip T 0.9 9 MS 1

Vegetable T - - - 9

Walnut D 1.5 20 S 1

Watermelon T 1 8.4 MS 8

Wheat G 3.5 4 MT 1
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B

Table B2: Agencies and retailers included in the study

Member Agency Retailer Years Available

Anaheim Anaheim 2001-2003, 2007-2008

Beverly Hills Beverly Hills 2000 - 2003

Burbank Burbank 1994, 1996-1998,

2000-2008

Calleguas MWD Westlake 1996-1998, 2000-2010

Camarillo 1998, 2000-2010

Camrosa WD 1994-1995, 2000-2008

Oxnard 2003-2008

Simi Valley 2003-2004, 2007-2010

Thousand Oaks 2000-2002, 2004-2007

Central Basin MWD East Los Angeles 1996-1998, 2000-2010

Cerritos 1996-1998, 2000-2004,

2006-2010

Downey 2006-2010

Lakewood 2000-2003, 2005-2010

Orchards Dale WD 1996-1997, 2000-2010

Paramount 2005-2010

Pico Riviera 2001, 2008-2010

Pico WD 1994, 1996-1998,

2000-2003, 2005-2007

Whittier/La Mirada 1995-1998, 2000-2010

Vernon 2002-2010

Compton Compton 2008-2010

Eastern MWD Eastern MWD 2004-2010

Rancho California WD 1997-1998, 2000-2010

Foothill MWD La Canada ID 2002-2010

Fullerton Fullerton 1994, 1996-1997,

2000-2010

72Sources: 1: Hanson, Grattan, and Fulton (1999). 2: Hoffman (2010). 3: Maas and Hoffman
(1977). 4: Hoffman (2010). Only tolerance group information was available. Average value for
the threshold and slope of the corresponding tolerance group was used. 5: Value for almond was
used. 6: Value for berry was used. 7: Value for cabbage was used. 8: Value for carrot was used.
9: No information was available.
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Table B2: continued

Member Agency Retailer Years Available

Glendale Glendale 1998, 2004-2010

IEUA Ontario 1997-1998, 2000-2003,

2005-2009

Upland 2000, 2002-2008, 2010

Las Virgenes MWD Las Virgenes MWD 1994, 1996-1997,

2000-2010

Long Beach Long Beach 1996-1998, 2000-2010

Los Angeles Los Angeles 1996-1998, 2000-2010

MWDOC Buena Park 1994, 1996-1997,

2000-2010

Fountain Valley 1994, 1996-1997,

2000-2010

Garden Grove 2006-2010

Huntington Beach 2001-2010

Mesa Consolidated WD 1996, 1998, 2000, 2006,

2008-2010

Westminster 1996-1997, 2000-2010

Yorba Linda WD 1994, 1996-1998,

2000-2010

Pasadena Pasadena 2007-2010

San Diego CWA Carlsbad MWD 2001-2003, 2005-2010

City San Diego 2001-2004, 2006-2010

Escondido 1998, 2000-2010

Fallbrook PUD 2000-2001, 2003-2010

Helix 2001-2010

Oceanside 2000-2010

Olivenhain MWD 2000-2010

Otay, Padre Dam MWD

Eastern

1998, 2000-2003, 2007

Poway 2000-2001, 2005-2010

Rainbow MWD 2003-2005, 2008, 2010

Ramona MWD 1998, 2000, 2001-2010

Rincon del Diablo MWD 2001-2004, 2006-2010

San Dieguito WD 2004-2005
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Table B2: continued

Member Agency Retailer Years Available

Santa Fe ID 1997, 2000-2010

Sweetwater Authority 2000-2010

Vallecitos WD 2000-2010

Valley Center MWD 2001-2007

Vista ID 2000-2010

San Fernando San Fernando 2000-2001, 2003-2005,

2007, 2009-2010

Santa Ana Santa Ana 2001-2003, 2009-2010

Santa Monica Santa Monica 1994, 1996-1997,

2000-2010

Three Valleys MWD Covina 2001-2009

Pomona 2000-2010

Walnut Valley WD 2000-2010

Torrance Torrance 1994-1995, 2000-2001

Upper San Gabriel Val-

ley MWD

Alhambra 2000-2007, 2009-2010

Arcadia 2008-2010

Azusa 2001-2010

Monrovia 2006-2010

West Basin MWD Hermosa Redango 1996-1998, 2000-2003,

2005-2010

El Segundo 2004-2005, 2007-2008

Western MWD Corona, Elsinore Valley

MWD

1996-1998, 2001-2003,

2005-2006, 2008-2010

Jurupa CSD 2000-2003, 2007-2010

Norco 2001-2010

Western MWD 2000-2010
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