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In-vivo neuronal dysfunction by 
Aβ and tau overlaps with 
brain-wide inflammatory 
mechanisms in Alzheimer’s 
disease
Lazaro M. Sanchez-Rodriguez 1,2,3, Ahmed F. Khan 1,2,3, 
Quadri Adewale 1,2,3, Gleb Bezgin 1,2,3,4, Joseph Therriault 1,2,4, 
Jaime Fernandez-Arias 1,2,4, Stijn Servaes 1,2,4, 
Nesrine Rahmouni 1,2,4, Cécile Tissot 1,2,4,5, Jenna Stevenson 1,2,4, 
Hongxiu Jiang 1,2, Xiaoqian Chai 1,2, Felix Carbonell 6, 
Pedro Rosa-Neto 1,2,4 and Yasser Iturria-Medina 1,2,3*
1 Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada, 2 McConnell 
Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada, 3 Ludmer Centre for 
Neuroinformatics and Mental Health, Montreal, QC, Canada, 4 McGill University Research Centre for 
Studies in Aging, Douglas Research Centre, Montreal, QC, Canada, 5 Lawrence Berkeley National 
Laboratory, Berkeley, CA, United States, 6 Biospective Inc., Montreal, QC, Canada

The molecular mechanisms underlying neuronal dysfunction in Alzheimer’s 
disease (AD) remain uncharacterized. Here, we  identify genes, molecular 
pathways and cellular components associated with whole-brain dysregulation 
caused by amyloid-beta (Aβ) and tau deposits in the living human brain. 
We  obtained in-vivo resting-state functional MRI (rs-fMRI), Aβ- and tau-PET 
for 47 cognitively unimpaired and 16  AD participants from the Translational 
Biomarkers in Aging and Dementia cohort. Adverse neuronal activity impacts 
by Aβ and tau were quantified with personalized dynamical models by fitting 
pathology-mediated computational signals to the participant’s real rs-fMRIs. 
Then, we detected robust brain-wide associations between the spatial profiles 
of Aβ-tau impacts and gene expression in the neurotypical transcriptome (Allen 
Human Brain Atlas). Within the obtained distinctive signature of in-vivo neuronal 
dysfunction, several genes have prominent roles in microglial activation and 
in interactions with Aβ and tau. Moreover, cellular vulnerability estimations 
revealed strong association of microglial expression patterns with Aβ and tau’s 
synergistic impact on neuronal activity (q <  0.001). These results further support 
the central role of the immune system and neuroinflammatory pathways in AD 
pathogenesis. Neuronal dysregulation by AD pathologies also associated with 
neurotypical synaptic and developmental processes. In addition, we identified 
drug candidates from the vast LINCS library to halt or reduce the observed 
Aβ-tau effects on neuronal activity. Top-ranked pharmacological interventions 
target inflammatory, cancer and cardiovascular pathways, including specific 
medications undergoing clinical evaluation in AD. Our findings, based on the 
examination of molecular-pathological-functional interactions in humans, may 
accelerate the process of bringing effective therapies into clinical practice.

OPEN ACCESS

EDITED BY

Rodrigo Morales,  
University of Texas Health Science Center at 
Houston, United States

REVIEWED BY

Wei Cao,  
University of Texas Health Science Center at 
Houston, United States
Claudia Duran-Aniotz,  
Adolfo Ibáñez University, Chile

*CORRESPONDENCE

Yasser Iturria-Medina  
 yasser.iturriamedina@mcgill.ca

RECEIVED 07 February 2024
ACCEPTED 09 May 2024
PUBLISHED 19 June 2024

CITATION

Sanchez-Rodriguez LM, Khan AF, Adewale Q, 
Bezgin G, Therriault J, Fernandez-Arias J, 
Servaes S, Rahmouni N, Tissot C, Stevenson J, 
Jiang H, Chai X, Carbonell F, Rosa-Neto P and 
Iturria-Medina Y (2024) In-vivo neuronal 
dysfunction by Aβ and tau overlaps with 
brain-wide inflammatory mechanisms in 
Alzheimer’s disease.
Front. Aging Neurosci. 16:1383163.
doi: 10.3389/fnagi.2024.1383163

COPYRIGHT

© 2024 Sanchez-Rodriguez, Khan, Adewale, 
Bezgin, Therriault, Fernandez-Arias, Servaes, 
Rahmouni, Tissot, Stevenson, Jiang, Chai, 
Carbonell, Rosa-Neto and Iturria-Medina. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE Original Research
PUBLISHED 19 June 2024
DOI 10.3389/fnagi.2024.1383163

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2024.1383163&domain=pdf&date_stamp=2024-06-19
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1383163/full
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1383163/full
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1383163/full
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1383163/full
https://www.frontiersin.org/articles/10.3389/fnagi.2024.1383163/full
mailto:yasser.iturriamedina@mcgill.ca
https://doi.org/10.3389/fnagi.2024.1383163
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2024.1383163


Sanchez-Rodriguez et al. 10.3389/fnagi.2024.1383163

Frontiers in Aging Neuroscience 02 frontiersin.org

KEYWORDS

Alzheimer’s disease, neuronal dysfunctions and alterations, whole-brain modeling, 
transcriptomics, amyloid – beta, tau and phospho-tau protein, inflammation, 
computational drug repurposing

Introduction

Neuronal dysfunction in Alzheimer’s disease (AD) is associated 
with toxic protein accumulation, including amyloid beta (Aβ) plaques 
and tau neurofibrillary tangles (NFTs) (Jack et al., 2018; Maestú et al., 
2021). In-vivo animal experiments and modeling approaches support 
that Aβ and tau synergistically interact to impair brain function 
(Maestú et al., 2021; Targa Dias Anastacio et al., 2022; van Nifterick 
et al., 2022), inducing network hyperactivity as the disease progresses 
(Vossel et  al., 2017; Busche and Hyman, 2020; Tok et  al., 2022). 
However, when studying the disease and its biological basis in the 
living human brain, we  continue to have critical limitations to 
concurrently measure neuronal activity, pathological severity, and 
molecular profiles. This issue represents a major obstacle to 
understanding the complex biological mechanisms underlying 
neuronal dysfunction in AD (Calabrò et al., 2021; Maestú et al., 2021; 
Iturria-Medina et al., 2022; Morgan et al., 2022; Nandi et al., 2022; 
Gabitto et al., 2023) and may have directly contributed to the limited 
efficacy of some proposed therapeutics (Iturria-Medina et al., 2018; 
Cummings et al., 2021).

Groundbreaking integrative computational modeling of in-vivo 
human pathophysiological processes offers a powerful alternative to 
overcome experimental shortcomings in AD research (Sotero and 
Trujillo-Barreto, 2008; Carbonell et  al., 2018; Deco et  al., 2018; 
Sanchez-Rodriguez et al., 2018; Stefanovski et al., 2019; Adewale et al., 
2021; Iturria-Medina et al., 2021, 2022; Khan et al., 2022; Lenglos 
et al., 2022). Specifically, the scarcity of in-vivo recordings capturing 
the profound functional impacts of the disease’s neuropathological 
factors may be  solved through data-informed mechanistic 
investigations. We  recently proposed personalized computational 
models to estimate synergistic Aβ and tau effects on neuronal 
excitability in AD progression (Sanchez-Rodriguez et al., 2024). This 
method allowed us to robustly infer in-vivo patient-specific values of 
neuronal excitability and describe their associations with pathological 
severity, disease biomarkers (e.g., p-tau217, p-tau231) (Zetterberg and 
Blennow, 2021) and altered electroencephalographic indexes (Babiloni 
et al., 2013; Sanchez-Rodriguez et al., 2018). The obtained Aβ and tau 
functional weights effectively predicted cognitive decline in the 
AD-related cohort. Additionally, we demonstrated that Aβ and tau 
neurofunctional effects are spatially heterogeneous and significant at 
specific brain regions with consistent grey matter alterations in AD 
(Wang et al., 2015). On the other hand, and despite recent progress in 
characterizing post-mortem molecular profiles across multiple brain 
areas in AD cohorts (Gabitto et al., 2023; Ng et al., 2023), complete 
genetic spatial mapping of AD is lacking. As an alternative, 
computational approaches (Mullins and Kapogiannis, 2022; Ye et al., 
2022; Tang et  al., 2024) test for spatial correspondence between 
neuroimaging-derived indicators and the available genetic maps, 
notably the adult human brain transcriptome obtained by the Allen 
Brain Institute (Hawrylycz et al., 2012). Thus, in this study we sought 

to identify the genes, pathways, and cellular mechanisms underlying 
the effects of AD pathologies on human in-vivo neuronal activity 
throughout the entire brain.

We extend previous in-vivo AD pathophysiological studies in four 
fundamental ways. First, we utilize generative brain models to estimate 
the combined spatiotemporal influence of Aβ and tau (measured via 
PET) on neuronal activity (measured through fMRI biomarkers) for 
cognitively unimpaired and AD participants. Second, we use whole-
brain transcriptomics to identify genes with spatial expressions that 
overlap with the regional neuronal activity effects of Aβ, tau, and their 
synergistic interaction. This analysis results in a clear and consistent 
Aβ + tau → neuronal-activity molecular signature, with both 
distinctive mechanisms and processes shared with diseases such as 
infection, cancer and retinal conditions. Major associations with the 
immune system, cell communication and developmental mechanisms 
exist, driven by the synergistic interaction of Aβ and tau. Third, 
we detect the cell types that are most likely related to neuronal activity 
alterations by the combined causal roles of Aβ and tau pathologies, 
observing a predominant role of microglia. Fourth, focusing on 
targeting functional pathways impaired by AD pathologies, 
we discover potential pharmacological interventions (from a small 
molecules library) modifying these diseased biological processes. This 
pioneering study, proposing a comprehensive examination of in-vivo 
neuronal dysregulation induced by AD pathology in humans, 
uncovers a multifaceted interplay between molecular signatures and 
functional mechanics associated with AD progression. It also supports 
the extended value of holistic computational approaches considering 
the critical tripartite relationship (molecular-pathological-functional) 
–rather than isolated disease components– thus offering new avenues 
for identifying effective therapeutic targets in neurodegeneration.

Materials and methods

Participants

Data was collected under the Translational Biomarkers in Aging 
and Dementia (TRIAD) cohort (https://triad.tnl-mcgill.com/). The 
study was approved by the McGill University PET Working 
Committee and the Douglas Mental Institute Research Ethics Boards 
and all participants gave written consent. We  selected baseline 
assessments for 47 “cognitively unimpaired” and 16 “Alzheimer’s 
disease” subjects (Supplementary Table 1) according to clinical and 
pathophysiological diagnoses. All subjects underwent T1-weighted 
structural MRI, resting-state fMRI, Aβ (18F-NAV4694)- and tau (18F-
MK-6240)- PET scans –see below and the provided references for 
processing details. The selected CU individuals were both Aβ and 
tau-negative while the AD subjects presented positive Aβ status (as 
determined visually by consensus of two neurologists blinded to the 
diagnosis) and cortical tau involvement (Braak et al., 1995).
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Image processing

MRI: Brain structural T1-weighted 3D images were acquired in 
sagittal plane for all subjects on a 3 T Siemens Magnetom scanner 
using a standard head coil with 1 mm isotropic resolution, 
TE = 2.96 ms, TR = 2,300 ms, slice thickness = 1 mm, flip angle = 9 deg., 
FOV = 256 mm, 192 slices per slab. The images were processed 
following a standard pipeline (Iturria-Medina et al., 2018) including: 
non-uniformity correction using the N3 algorithm, segmentation into 
grey matter, white matter and cerebrospinal fluid (CSF) probabilistic 
maps (SPM12, www.fil.ion.ucl.ac.uk/spm) and standardization of grey 
matter segmentations to the MNI space (Evans et al., 1994) using the 
DARTEL tool (Ashburner, 2007). The images were mapped to the 
Desikian-Killiany-Touriner (DKT) (Klein and Tourville, 2012) atlas 
for grey matter segmentation. We  selected 66 (bilateral) cortical 
regions that do not present PET off-target binding (Vogel et al., 2020; 
Sanchez-Rodriguez et al., 2024).

fMRI: The resting-state fMRI acquisition parameters were: 
Siemens Magnetom Prisma, echo planar imaging, 860 time points, 
TR = 681 ms, TE = 32.0 ms, flip angle = 50 deg., number of slices = 54, 
slice thickness = 2.5 mm, spatial resolution = 2.5 × 2.5 × 2.5 mm3, EPI 
factor = 88. We applied a minimal processing pipeline (Iturria-Medina 
et al., 2018) including motion correction, spatial normalization to the 
MNI space (Evans et al., 1994) and detrending. We then transformed 
the signals for each voxel to the frequency domain and computed the 
ratio of the power in the low-frequency range (0.01–0.08 Hz) to that 
of the entire blood-oxygen-level-dependent (BOLD) frequency range 
(0–0.25 Hz), i.e., the fractional amplitude of low-frequency 
fluctuations (fALFF) (Yang et  al., 2018; Jia et  al., 2019) – a proxy 
indicator for spontaneous neuronal activity with high sensibility to 
disease progression (Yang et al., 2018, 2020). The fALFF values were 
averaged over all voxels belonging to a brain region to yield a single 
value per region.

Diffusion Weighted MRI (DW-MRI): Additionally, high angular 
resolution diffusion imaging (HARDI) data was acquired for N = 128 
cognitively unimpaired subjects in the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). The authors 
obtained approval from the ADNI Data Sharing and Publications 
Committee for data use and publication, see documents http://adni.
loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Data_Use_
Agreement.pdf and http://adni.loni.usc.edu/wp-content/uploads/
how_to_apply/ADNI_Manuscript_Citations.pdf, respectively 
(Iturria-Medina et  al., 2018). For each diffusion scan, 46 separate 
images were acquired, with 5 b0 images (no diffusion sensitization) 
and 41 diffusion-weighted images (b = 1,000 s/mm2). ADNI aligned 
all raw volumes to the average b0 image, corrected head motion and 
eddy current distortions. By using a fully automated fiber tractography 
algorithm (Iturria-Medina et  al., 2007) and intravoxel fiber 
distribution reconstruction (Tournier et al., 2008), we built region-to-
region anatomical connection density matrices where each entry, Clk
, reflects the fraction of the region’s surface involved in the axonal 
connection with respect to the total surface of both regions, l and k. 
Finally, we obtained a representative anatomical network by averaging 
all the subject-specific connectivity matrices (Sanchez-Rodriguez 
et al., 2021). Additional details are available in a previous publication 
where the data was processed and utilized (Iturria-Medina et al., 2018).

PET: Study participants had Aβ (18F-NAV4694) and tau (18F-MK-
6240) PET imaging in a Siemens high-resolution research tomograph. 

18F-NAV4694 images were acquired approximately 40-70 min after the 
intravenous bolus injection of the radiotracer and reconstructed using 
an ordered subset expectation maximization (OSEM) algorithm on a 
4D volume with three frames (3 × 600 s)(Therriault et al., 2021). 18F-
MK-6240 PET scans of 20 min (4 × 300 s) were acquired at 90-110 min 
post-injection (Pascoal et  al., 2020). Images were corrected for 
attenuation, motion, decay, dead time and random and scattered 
coincidences and, consequently, spatially normalized to the MNI 
space using the linear and nonlinear registration parameters obtained 
for the participants’ structural T1 images. 18F-MK-6240 images were 
meninges-striped in native space before performing any 
transformations to minimize the influence of meningeal spillover. 
Standardized Uptake Value Ratios (SUVR) for the DKT grey matter 
regions were calculated using the cerebellar grey matter as the 
reference region (Iturria-Medina et al., 2018).

Estimating Aβ and tau-induced neuronal 
activity alterations

The subject-specific pathophysiological brain activity was 
computationally generated through coupled Wilson-Cowan (WC) 
modules (Wilson and Cowan, 1972; Daffertshofer and van Wijk, 2011; 
Meijer et al., 2015; Gjorgjieva et al., 2016; van Nifterick et al., 2022) 
with regional firings mediated by Aβ plaques, tau tangles and the 
interaction of Aβ and tau (modeled as the product of their across-
brain deposition levels) (Sanchez-Rodriguez et al., 2024). Each brain 
region was dynamically represented through coupled excitatory and 
inhibitory neural masses (Wilson and Cowan, 1972; Daffertshofer and 
van Wijk, 2011; Meijer et al., 2015; Gjorgjieva et al., 2016; van Nifterick 
et al., 2022). Unspecific local inputs and cortico-cortical connections 
additionally stimulated the excitatory populations. The integration of 
all inputs was achieved by means of a sigmoidal activation function. 
In our model, the region-specific excitatory firing thresholds in these 
sigmoid functions depend on the regions’ accumulation of each 
pathological factor, an assumption based on findings suggesting 
neuronal excitability changes due to Aβ and/or tau deposition and the 
much larger excitatory prevalence in the cortex (Vossel et al., 2017; 
Busche and Hyman, 2020; Maestú et al., 2021; Targa Dias Anastacio 
et al., 2022; Tok et al., 2022; van Nifterick et al., 2022). Simplistically, 
we wrote the effective excitatory firing parameter of participant j at 
brain region k as linear fluctuations from the normal baseline value 
(θ0) due to the considered pathophysiological factors Equation 1:

 , 0 , , , ,
A A TauTau

j k j k j k j k j kj j jA Tau A Tau= + + + 

   

β βθ θ θ β θ θ β
 (1)

Where A j kβ , and Tau j k,  denote the SUVRs normalized to the 
[0,1] interval –to preserve the dynamical properties of the desired 
solution–, � �

j
A , θ jTau and A Tau

j
βθ  are the brain-wide 

pathophysiological factor’s influences and each term ( ,
A

j kj Aβθ β , 
,

Tau
j j kTauθ , , ,

A Tau
j k j kj A Tau

 

βθ β ) represents the overall factor’s 
contribution to neuronal activity in subject j’s region k.

To estimate these pathophysiological contributions, we simulated 
BOLD signals. The total action potential arriving to the neuronal 
populations from other local and external populations (Logothetis 
et al., 2001) underwent metabolic and hemodynamic transformations 
following (Sotero and Trujillo-Barreto, 2007, 2008; 
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Valdes-Sosa et al., 2009) to generate the BOLD signal. The full set of 
differential equations describing these biophysical transformations 
and operations is provided in Supplementary file. The equations were 
solved with an explicit Runge–Kutta (4,5) method, ode45, and a 
timestep of 0.001 s. Then, the parameters � �

j
A , θ jTau and A Tau

j
βθ  were 

obtained via surrogate optimization in MATLAB 2021b (MathWorks, 
2021) by maximizing the similarity (i.e., minimizing the correlation 
distance) between the real and simulated individual BOLD signals’ 
fALFF indicators (Sanchez-Rodriguez et  al., 2024) (see 
Supplementary file for additional details).

Having obtained the likely individual brain-wide influences due 
to each of the pathological factors (Aβ, tau and Aβ∙tau), across-brain 
mechanistic group differences (AD vs. CU) were quantified via the 
(non-parametric) rank sum test statistics. First, for each subject j and 
brain region, k, each pathological factor’s perturbation to neuronal 

activity in subject j’s region k was normalized as 
,

, 0

factor
j kj

j k

factor

−

θ

θ θ . 
Then, the across-regions vectors resulting from the statistical tests 
(AD vs. CU) quantified the Aβ, tau and Aβ∙tau spatial influences on 
neuronal activity due to AD.

Neurotypical gene expression profiles

Microarray mRNA expression data from six neurotypical adult 
brains was downloaded from the Allen Institute (RRID:SCR_007416) 
website (http://www.brain-map.org). The data was preprocessed by 
the Allen Institute to reduce the effects of bias due to batch effects 
(Hawrylycz et al., 2012; Allen Human Brain Atlas, 2013). For each 
brain, there were 58,692 probes representing 20,267 unique genes. For 
genes with multiple probes, Gaussian kernel regression (Gryglewski 
et al., 2018) was applied to predict the mRNA intensity in each of the 
3,702 samples in MNI space (Evans et al., 1994) using leave-one-out 
cross-validation. The probe with the highest prediction accuracy was 
chosen as the representative probe for that gene. Gaussian kernel 
regression using mRNA values of proximal regions also served to 
predict the gene expression for grey matter voxels without mRNA 
expression intensity. Thus, the whole-brain gene expression data was 
obtained for the selected 20,267 probes/genes. Probes/genes described 
as “uncharacterized,” “similar to hypothetical protein,” “pseudogene” 
were dropped, leaving 19,469. Finally, we calculated average gene 
expression values for each region in the brain parcellation (Adewale 
et al., 2021).

Molecular associates of the Aβ, tau and 
Aβ∙tau spatial alterations to neuronal 
activity

We aimed to determine the genes with whole-brain expressions 
predicting the Aβ, tau and Aβ∙tau effects on neuronal activity. For 
each pathological factor, we  evaluated monotonic relationships 
between the corresponding neuronal activity spatial alterations 
patterns and the regional gene expression values by computing 
Spearman correlations. We estimated 99% Spearman’s rho confidence 
intervals with 100,000 bootstrapping resamples and retained the genes 
which confidence limits did not include zero (significant correlation). 

The resulting sets of genes were termed Aβ, tau and Aβ∙tau molecular 
associates, respectively.

Statistical analyses

We performed functional pathways enrichment analyses on 
Metascape (Zhou et  al., 2019), a web-based portal that integrates 
various independent biological databases (KEGG Pathway, GO 
Biological Processes, Reactome Gene Sets, Canonical Pathways, 
CORUM, WikiPathways, PANTHER Pathway, DisGeNET), using 
default specifications. Metascape identifies ontology terms that are 
significantly over-represented in the input gene lists through 
hypergeometric tests and the Benjamini-Hochberg p-value correction 
algorithm (q < 0.05). To avoid redundancy from the reporting of 
multiple ontologies, Kappa similarities among all pairs of enriched 
terms are computed. Then, the similarity matrix is hierarchically 
clustered, and a 0.3 threshold is applied. The most significant (lowest 
p-value) term within each cluster is chosen to represent the cluster 
(Zhou et al., 2019). Cell type enrichment was performed with the 
Expression Weighted Celltype Enrichment toolbox (Skene and Grant, 
2016). The probability of enrichment is determined as the percentage 
of 100,000 random gene lists in a background set with lower average 
expression in each cell type than in our gene lists. The background 
gene set is comprised of all genes with orthologs between human and 
mice and its single-cell transcriptome data were sampled from the 
mice somatosensory cortex and hippocampus CA1 (Skene and Grant, 
2016). Drug repurposing alternatives were investigated on the 
webserver SigCom LINCS (Evangelista et al., 2022; Xie et al., 2022). 
This search engine uses a database of ranked gene lists for drug-
induced gene expression changes. Similarity and statistical measures 
(p-values, Benjamini-Hochberg corrected, q < 0.05) are computed 
using the Mann–Whitney U test: the average rank of the user-
provided gene set in each chemical perturbation’s gene list is compared 
to the average rank of a randomly selected gene set (Evangelista et al., 
2022; Xie et al., 2022).

Results

Brain-wide neuronal dysfunction in AD 
associate with spatially distinctive 
molecular signatures

In our investigation into the molecular processes predicting 
pathophysiological alterations in the AD brain, we  divided our 
research into two main components. First, we  quantified in-vivo 
AD-characteristic neuronal activity alterations using data from the 
TRIAD database (Figure  1A). We  employed personalized 
computational models (Wilson and Cowan, 1972; Sotero and Trujillo-
Barreto, 2007; Valdes-Sosa et al., 2009) informed by the participants’ 
neuroimaging (fMRI, Aβ- and tau-PET) (Sanchez-Rodriguez et al., 
2024). For each AD and CU subject (Supplementary Table S1), 
we assumed that neuronal excitability across the brain’s gray matter 
regions (DKT parcellation (Klein and Tourville, 2012)) was potentially 
influenced by the local Aβ and tau accumulations. Functional 
alterations by Aβ and tau spatiotemporally transmit through 
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intra-regional and cortico-cortical connections derived from diffusion 
MRI (Iturria-Medina et al., 2018). Through individualized modeling, 
we generated in-silico pathophysiological excitatory and inhibitory 
activities (Wilson and Cowan, 1972) which were transformed into 
blood-oxygen-level-dependent (BOLD) signals (Sotero and Trujillo-
Barreto, 2007; Valdes-Sosa et al., 2009). Subject-specific contributions 
by each factor Aβ, tau and Aβ∙tau (their synergistic interaction) were 
derived by fitting the in-silico BOLD signals to the subject’s real 
regional resting-state fMRI content within the physiologically-relevant 
neuronal activity range (0.01–0.08 Hz) (Yang et al., 2018; Sanchez-
Rodriguez et al., 2024). This approach enabled us to identify distinctive 
spatial Aβ, tau, and Aβ∙tau neuronal activity alteration patterns via 
statistical evaluation of the neuronal excitability perturbations in the 
AD vs. CU groups. Second, we investigated statistical relationships 
with spatial gene expression profiles in the human transcriptome 

(Figure  1B). Average expression values of all genes in the Allen 
Human Brain Atlas (AHBA) were calculated for each region in the 
parcellation, using post-mortem data from six adult neurotypical 
brains (Hawrylycz et  al., 2012; Allen Human Brain Atlas, 2013; 
Adewale et  al., 2021). By computing 99% bootstrap confidence 
intervals for the brain-wide correlations between the Aβ, tau and 
Aβ∙tau spatial patterns and the expression of each gene, we identified 
the genes from the post-mortem human transcriptome whose spatial 
expressions predict the in-vivo neuronal activity effects that are 
induced by each pathophysiological component (Aβ, tau and Aβ∙tau).

We found 756, 650 and 1987 genes, respectively, in the Aβ, tau and 
Aβ∙tau-associated gene sets. The detected genes 
(Supplementary Table S2) include several previously associated with 
AD risk (Calabrò et  al., 2021). Notably, SNCA (synuclein Α) is 
essential for presynaptic signaling and membrane transport and 

FIGURE 1

Approach for determining molecular mechanisms spatially associated with Aβ and tau-induced neuronal dysfunction in AD. (A) For each participant in 
the TRIAD cohort, neuronal excitability within a brain region depends on the combined Aβ and tau accumulations. The generated excitatory and 
inhibitory activities are transformed into fMRI signals. The most-likely in-vivo subject-specific Aβ and tau effects are obtained through maximizing the 
similarity of the generated fMRI signals with the participant’s real resting-state fMRI across all regions. Statistical comparison of the obtained regional 
Aβ, tau and Aβ∙tau contributions to pathophysiological neuronal activity between the AD and the Aβ- and tau-negative CU groups yields spatial 
alterations patterns by each of these disease factors in AD (the higher the statistic, the more different the groups are). (B) Next, we investigated spatial 
correlations with neurotypical whole-brain transcriptomics (99% bootstrap confidence intervals) and obtained the genes which expressions predict the 
regional neuronal activity effects by Aβ, tau and Aβ∙tau. (C) The sets of Aβ, tau and Aβ∙tau associates serve to identify enriched biological processes 
(molecular pathways from multiple gene ontologies that are overrepresented) (Zhou et al., 2019), brain cell-types (the Aβ, tau and Aβ∙tau gene sets 
having higher expression for a particular cell type than what is expected by chance) (Skene and Grant, 2016) and prospective pharmacological agents 
to halt or reduce AD-affected processes (by comparing the gene sets to databases of drug-induced gene expression changes) (Evangelista et al., 
2022).
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participates in NFT formation and Aβ deposits (Calabrò et al., 2021). 
The protein encoded by the gene CLU (clusterin) inhibits Aβ fibrils 
formation (Calabrò et al., 2021). Gene ADAM10 (α disintegrin and 
metalloproteinase domain-containing protein 10) plays a critical role 
in cleavage of the amyloid precursor protein (APP) (Calabrò et al., 
2021). Finally, the microglial activation modulator CD33 (Sialic Acid-
Binding Ig-Like Lectin 3) is one of the top-ranked genetic factors 
identified in AD genome-wide association studies (Zhao, 2019). As 
reported in the next subsections, the Aβ, tau and Aβ∙tau molecular 
associates of AD pathogenesis were further investigated in terms of 
overrepresented biological mechanisms, cellular types associated with 
brain-wide functional affectations and pharmacological agents with 
potential therapeutic benefit (Figure 1C).

Immune and cell communication patterns 
relate to AD pathology-induced neuronal 
dysfunction

We proceeded to functionally interrogate the three neuronal 
dysfunction gene sets (specific to Aβ, tau and Aβ∙tau effects) with 
ontology terms from various sources in Metascape (Zhou et al., 2019), 
detecting the associated molecular pathways (Supplementary Table S3). 
Figure 2 summarizes the identified molecular mechanisms associated 

with the causal combined roles of Aβ and tau pathologies on AD’s 
neuronal activity alterations. The top 20 enriched functional clusters 
that were detected, together with the gene lists where the pathways 
were found statistically significant (hypergeometric tests, 
FDR-corrected, q < 0.05) are shown in Figure 2A. In addition, all the 
Aβ + tau → neuronal-activity genes that are consistently involved (95% 
percentile) within the top statistically significant biological pathways 
are reported in Supplementary Table S4. Top genetic mediators, e.g., 
RIPK2, SYK, ANXA1 and SNCA, have documented roles in the 
formation/response to Aβ and tau deposits and in microglial 
activation (Natarajan et al., 2013; Twohig and Nielsen, 2019; You et al., 
2021; Ennerfelt et al., 2022).

Pathway-pathway similarities based on genetic overlap (Zhou 
et al., 2019) are visualized in the network space (Figure 2B). Notably, 
we  observed strong clustering of various neuroinflammation and 
immune system pathways. For instance, inflammatory response 
connects with the positive regulation of immune effector process, 
positive regulation of response to external stimulus and leukocyte 
activation. This unsupervised result is aligned with the fact that 
persistent chronic inflammation, due to genetic and lifestyle factors, 
plays a key role at the onset and later progression of neurodegeneration 
(Newcombe et al., 2018; Calabrò et al., 2021). It has been hypothesized 
that Aβ and tau accumulation can both trigger and be triggered by 
disbalanced inflammatory signals (Newcombe et al., 2018). Another 

FIGURE 2

Neuroinflammation pathways emerge as major processes associated with Aβ-tau interactions. (A) Top 20 pathways clusters from multiple gene 
ontologies that are enriched in the combined Aβ-, tau- and Aβ∙tau-associated gene sets (hypergeometric tests, q <  0.05, Benjamini-Hochberg 
corrected). The representative biological processes (term with the lowest p-value within a cluster) are used as labels. Additionally, the specific 
pathological factors for which the pathways are statistically significant have been indicated next to the bar graph. (B) Intra- and inter-cluster similarities 
among the obtained molecular processes. Each node represents an enriched pathway. The network is colored by the cluster labels, which are written 
next to each cluster. Note that major clusters include neuroinflammation and immune system processes (C1), developmental pathways (C2) and cell 
communication mechanisms (C3).
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identified functional cluster includes critical developmental processes 
(sensory organ development, tissue morphogenesis, pattern specification 
process). Cell communication/transport mechanisms, fundamental to 
proper synaptic function and implicated in AD pathogenesis 
according to several reports (Gadhave et al., 2021) were also found 
among the top enriched molecular processes in a major cluster 
(regulation of secretion, regulation of vesicle-mediated transport, export 
from cell, signaling by GPCR; Figure 2B).

Additionally, we examined biological processes separately related 
to the Aβ, tau and Aβ∙tau gene sets (Supplementary Table  S3). 
Immune system pathways were once again overrepresented in the 
Aβ∙tau set, while developmental and synaptic processes were enriched 
for Aβ’s molecular associates. Notably, some pathways that ranked 
lower in the integrative analysis in Figure 2, had strong associations 
with the tau-associated gene list (with less elements than the Aβ and 
Aβ∙tau molecular signatures). Amongst the enriched terms, several 
supposedly tau-related processes (Mandelkow and Mandelkow, 2011; 
Bennett et  al., 2018) including cortical cytoskeleton organization, 
regulation of actin filament organization, blood vessel development and 
post-translational protein phosphorylation appeared.

Next, we explored molecular overlap with other diseases according 
to the genes predicting the spatial neuronal activity combined Aβ and 
tau effects. We  determined which disease pathways, curated in 
DisGeNET (Piñero et al., 2017; Zhou et al., 2019), were enriched in 
our gene sets (Supplementary Figure S1). Notably, the obtained 
enriched terms include several infection and immunological 
conditions (e.g., immunosuppression, Behcet syndrome and lupus), 
certain cancers, and eye diseases, for the three considered sets of 
molecular associates. Likewise, we  retrieved characteristic AD 
phenotypical symptoms (Ghiso and Frangione, 2002; Bennett et al., 
2013) such as memory impairment (enriched in both Aβ and tau 
signatures) and amyloidosis (Aβ). Together, these results substantiate 
the idea that our approach unifying whole-brain transcriptomics, 
functional neuroimaging, and personalized computer-simulated 
neuronal activity can reproduce and identify major disease 
mechanisms and manifestations.

Microglia, pyramidal cells and interneurons 
at the core of AD dysfunction

Next, we hypothesized that the gene sets associated with each of 
the pathophysiological neuronal activity patterns would be particularly 
enriched in distinct cell types. We performed a bootstrapping-based 
cell type enrichment analysis on the Expression Weighted Celltype 
Enrichment toolbox (Skene and Grant, 2016) and determined the 
statistical likelihood of brain cell types being enriched compared to 
the background gene set (Figure 3).

Microglia presented strong enrichment for the Aβ∙tau signature 
gene set (q < 0.001 and δ = 10.425, number of standard deviations 
from the bootstrapped mean). To our knowledge, neuronal 
dysfunction due to Aβ and tau interactions have never been studied 
in the context of genetic cell enrichment although analyses of the 
disease’s polygenic post-mortem expression have also found damage 
to microglia (Galatro et  al., 2017; Newcombe et  al., 2018). 
Additionally, we  observed evidence supporting pyramidal cells 
(q = 0.002 and δ = 3.804) and endothelial-mural cells (q = 0.008 and 
δ = 2.950) as the most enriched cell types amongst the Aβ molecular 
associates. Pyramidal neurons, the most abundant neural cells in the 

cortex, are known to be a preferential target for Aβ toxic deposits 
(Maestú et al., 2021). Previous studies (Koizumi et al., 2016) also 
showed impairment to cerebral blood vessels –composed of 
endothelial and mural cells– by extracellular buildup of Aβ, while 
vascular dysfunction may promote Aβ accumulation in a detrimental 
feedback loop. On the other hand, the tau susceptibility genes had 
significant interneuron expression according to the bootstrapping 
analysis (q = 0.021 and δ = 2.834). Phosphorylated tau accumulates 
early in hippocampal interneurons of AD patients, impairing adult 
neurogenesis and circuital function (Xu et al., 2020; Zheng et al., 
2020). Overall, these results support that different cellular 
vulnerability patterns relate to spatial neuronal activity alterations 
induced by Aβ, tau and Aβ∙tau pathophysiological mechanisms.

Immunologic compounds may halt or 
reduce AD neuronal dysfunction

Finally, we examined whether existing pharmacological agents 
could be  utilized to target AD’s identified Aβ and tau effects on 
neuronal activity. We compared the identified Aβ-, tau-, and Aβ∙tau-
associated gene sets to databases of drug-induced gene expression 
changes using SigCom LINCS (Evangelista et al., 2022) and detected 
chemical compounds that maximally upregulate or downregulate 
these gene lists. Table  1 presents the top statistically significant 
(q < 0.05) candidate drugs that have also been FDA-approved (for a 
full list of all identified compounds, see Supplementary Table S5). 
Drug indications (accessed through https://pubchem.ncbi.nlm.nih.
gov/ on May 10th, 2023) and blood–brain barrier (BBB) permeabilities 
(Meng et al., 2021) of the top prospective repurposed medications are 
also provided (see also Supplementary Figure S2). In separate analyses, 
we additionally queried drug-molecular targets interactions of the 
independent Aβ, tau and Aβ∙tau-associated gene sets 
(Supplementary Table S5).

The identified chemical compounds with the capacity to target 
neuronal-activity dysfunction due to Aβ and tau are, mostly, drugs 
already used for the treatment of immune system-related disorders 
and cancer. Among the top immunological drug candidates, the 
immunosuppressant medication mycophenolic acid, indicated for 
prophylaxis of organ rejection, has been reported to attenuate 
neuronal cell death (Ebrahimi et al., 2012); diclofenac could potentially 
associate with reduced AD risk and slower cognitive deterioration 
(Rivers-Auty et al., 2020), while antiherpetic medication as famciclovir 
may also prevent AD incidence (Calabrò et al., 2021; Linard et al., 
2022). Likewise, anti-inflammatory multiple sclerosis medication has 
shown promise in AD mouse models for reversing all Aβ, tau and 
microglia pathologies, and synaptic and cognitive dysfunction 
(Dionisio-Santos et al., 2021; Leßmann et al., 2023). However, it is 
worth noticing that drugs with anti-inflammatories properties have 
not slowed cognitive and/or functional decline in clinical trials 
(Howard et al., 2020; Melchiorri et al., 2023). One possible explanation 
is that the thus-far tested agents interfere with microglia’s supportive 
function instead of modulating its detrimental chronic activation 
effects (Shen et al., 2018; Howard et al., 2020; Rivers-Auty et al., 2020; 
Melchiorri et al., 2023). At least 18 investigational drugs targeting 
neuroinflammation currently undergo clinical assessment, including 
phase III trials (Reading et al., 2021; Melchiorri et al., 2023).

Common indications among the identified cancer medications 
include leukemia, lymphoma and breast cancer. In clinical research, 
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prospective disease-modifying AD drugs commonly target cancer 
pathways (Morgan et  al., 2022). Other computational drug 
repurposing studies have similarly suggested the potential benefits of 
anti-cancer drugs. For example, a multi-omics study identified 
interactions of afatinib, dasatinib, gefitinib and ponatinib with 
AD-affected genes (e.g., APP, SNCA) (Advani and Kumar, 2021). 
Within the remaining identified prospective candidates, 
cardiovascular drugs may lower the incidence of dementia –apixaban 
(Bezabhe et al., 2022)– and delay progression in a mouse model of 
AD –verapamil (Ahmed et al., 2021). Additionally, docosahexaenoic 
acid (omega-3) supplementation has been linked to reduced AD risks 
(Quinn et al., 2010; Arellanes et al., 2020). Randomized trials finding 
interactions with APOE4 suggest that such AD carriers could also 
potentially present favorable imaging and cognitive outcomes with 
high dose docosahexaenoic acid supplementation treatments 
(Arellanes et al., 2020). On the other hand, retinopathy, glaucoma 
and age-related macular degeneration are deemed prominent signs 
of AD pathology (Mirzaei et al., 2020), functionally sharing affected 
molecular pathways (Supplementary Figure S1), which explains the 
appearance of visual impairments medication among the top 
prospective drugs. These data-driven results suggest therapeutic 
alternatives to be tested in randomized controlled trials (RCTs) for 
the treatment and prevention of AD, bypassing the early stages of 
drug design for compounds with known pharmacokinetic/
pharmacodynamic properties.

Discussion

AD research has proposed a myriad of interacting mechanisms 
with potential central contributions by Aβ and tau (Iturria-
Medina et al., 2018; Newcombe et al., 2018; Maestú et al., 2021; 
Therriault et al., 2022; Sanchez-Rodriguez et al., 2024). However, 
molecular and cellular mediators of their impact on neuronal 

activity remain elusive and little is known about disease 
mechanisms in the living human AD brain. Using an integrative 
computational approach informed by in-vivo neuroimaging of AD 
patients and cognitively unimpaired (CU) subjects negative for 
both Aβ and tau, along with ex-vivo neurotypical whole-brain 
transcriptomics, we  investigated neuronal activity alterations 
induced by both Aβ and tau pathologies in AD and mapped their 
spatial overlap with neurotypical gene expression. The study’s 
main contributions are as follows: (1) identifying molecular and 
cellular patterns that spatially overlap with dysregulations in 
neuronal activity caused by Aβ and tau, (2) exploring the 
combined impact of Aβ and tau on various biological processes, 
rather than focusing solely on isolated disease mechanisms, and 
(3) taking a bottom-up translational approach, starting from the 
discovery of spatial disease molecular signatures and progressing 
to potential disease-modifying interventions targeting functional-
neuropathological pathways.

Several of the identified spatial molecular correlates from the 
human brain transcriptome have been linked to AD in the past 
(Calabrò et al., 2021). For example, the SNCA gene translates into the 
presynaptic protein α-synuclein, which presents high concentration 
in the cerebrospinal fluid of mild cognitive impairment and AD 
patients and forms deposits that have been found in the majority of 
autopsied AD brains (Twohig and Nielsen, 2019). Gene RIPK2 is a 
mediator of mitochondrial dysfunction in oligodendrocytes and 
demyelination (Natarajan et  al., 2013), SYK coordinates 
neuroprotective microglial response to Aβ pathology (Ennerfelt et al., 
2022) and ANXA1 plays an important role in controlling neuronal 
damage by immune responses (You et al., 2021). All these molecules 
appear in most of the top overrepresented biological processes 
(Supplementary Table  S4) and are central to the overall 
pathophysiological-molecular signature.

The pathways enriched within AD’s Aβ + tau → neuronal-activity 
molecular signature likely represent key biological processes 

FIGURE 3

Transcriptomic associates of neuronal activity alterations induced by Aβ and tau converge to neuro-vascular cellular compartments. Results of 
bootstrapping tests to evaluate the probability of the Aβ-, tau- and Aβ∙tau-associated gene sets having higher expression for a particular brain cell type 
than what is expected by chance. (A) Number of standard deviations from the bootstrapped mean for every gene set and cell type. Non-white boxes 
indicate that the given molecular associates’ expression in the specific cell type is, on average, higher than that of the bootstrapped sets. (B) Statistically 
significant enrichment (q <  0.05, Benjamini-Hochberg corrected).
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TABLE 1 Top identified drug repurposing candidates to target adverse Aβ- and tau-induced neuronal-activity effects.

Pharmacological 
agent

Drug use 
indications

Regulatory 
response

Z-scores BBB permeability Isolated set 
targets

Cancer

Doxorubicin 7.326 BBB+ Aβ∙tau

Daunorubicin 7.302 BBB+ Aβ∙tau

Ponatinib 7.134 BBB- –

Vorinostat 6.942 n.a. Aβ, tau

Epirubicin 6.985 BBB- Aβ∙tau

Cytarabine 6.445 BBB+ –

Dasatinib 6.433 BBB+ –

Dinaciclib Up ↑ 6.403 n.a. –

Afatinib Down ↓ -7.410 n.a. –

Azacitidine -7.093 BBB- Aβ∙tau

Thioguanine -6.883 BBB- –

Duvelisib -6.809 n.a. –

Bosutinib -6.745 BBB- –

Gefitinib -6.472 BBB+ Aβ∙tau

Rucaparib -6.268 n.a. Aβ∙tau

Selumetinib -6.248 n.a. Aβ, Aβ∙tau

Immune

Triptolide 7.731 n.a. tau, Aβ∙tau

Auranofin 6.475 n.a. Aβ∙tau

Mycophenolic acid Up ↑ 6.427 BBB- Aβ∙tau

Diclofenac Down ↓ -6.634 BBB+ –

Niclosamide -6.596 BBB+ Aβ∙tau

Ritonavir -6.347 BBB- –

Isotretinoin -6.283 BBB+ –

Famciclovir -6.265 BBB+ Aβ∙tau

Filgotinib -6.233 n.a. –

Eye

Levocabastine 7.049 BBB+ Aβ∙tau

Varenicline Up ↑ 6.899 BBB+ Aβ∙tau

Nicergoline Down ↓ -6.723 BBB+ Aβ∙tau

Docosahexaenoic acid -6.423 n.a. –

Cardiac

Verapamil Up ↑ 6.419 BBB+ Aβ∙tau

Apixaban Down ↓ -6.370 BBB- –

Sclerosis

Mitoxantrone 8.425 BBB- Aβ∙tau

Riluzole Up ↑ 6.428 BBB+ Aβ∙tau

Others

Amisulpride Down ↓ -6.585 BBB+ Aβ∙tau

Estradiol -6.572 BBB- –

Ramelteon -6.326 BBB+ –

Reported are existing drugs which molecular interactions would induce gene expression changes in the set of all Aβ-, tau- and Aβ∙tau-associated genes (Mann–Whitney U test, q < 0.05, 
Benjamini-Hochberg corrected). The predicted chemical compounds have been organized in major groups according to their drug use indications. All medications are FDA-cleared for either 
treatment of cancer, various immune system/infection/inflammatory processes (“immune”), eye diseases, cardiovascular conditions, multiple or amyotrophic lateral sclerosis or “other” 
disorders. The groups are further divided by whether the candidate drug up- or down-regulates the genes linked to the neuronal activity alterations by AD. Additionally, blood–brain barrier 
permeability, is specified (BBB+: permeable to the blood–brain barrier; BBB-: not permeable to the blood–brain barrier; n.a.: information not available). Drugs that could also target the 
separate Aβ, tau or Aβ∙tau molecular associates are identified in the last column, e.g., the chemical selumetinib may be used to modify Aβ- and Aβ∙tau- associated gene sets.
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associated with brain dysfunction in AD. Our analyses utilized 
comprehensive and robust resources (Skene and Grant, 2016; Zhou 
et al., 2019; Evangelista et al., 2022) –e.g., Metascape integrates major 
current biological databases including KEGG Pathway, GO Biological 
Processes, WikiPathways and PANTHER Pathway. Our findings are 
consistent with the existing literature. For instance, we  detected 
leukocyte activation (and its regulation) among the top molecular 
pathways, which aligns with genetic associations linking specific types 
of blood leukocytes to the risk of Alzheimer’s disease (Luo et al., 2022). 
Other immune-related biological processes such as positive regulation 
of response to external stimuli and positive regulation of cytokine 
production (as depicted in Figure 2 and Supplementary Table S3) have 
recently been identified through analyzing differentially expressed 
genes between Alzheimer’s disease and control groups (Zhao et al., 
2022). Moreover, we  found sensory organ development pathways 
related to the eye and retina, considered early markers of the disease 
(Mirzaei et al., 2020; Koronyo et al., 2023). Retinal changes, including 
an overabundance of Aβ42, correlate with Braak cortical tau 
involvement and cognitive decline in AD patients. Among the 
identified cell communication/transport mechanisms, the regulation 
of protein secretion and transport may be crucial for controlling tau 
and Aβ levels (Annadurai et  al., 2021; Calabrò et  al., 2021). 
Additionally, G protein-coupled receptors (GPCRs) are affected by Aβ 
peptides, leading to synaptic loss and impaired neurotransmission in 
AD (Gadhave et al., 2021). Memory impairment and other hallmark 
signs of AD, including amyloidosis and phosphorylation (Ghiso and 
Frangione, 2002; Mandelkow and Mandelkow, 2011; Bennett et al., 
2013), were also overrepresented in Aβ and tau’s molecular associates 
of pathophysiological neuronal activity. We have confirmed existing 
hypotheses from cell culture, animal and post-mortem research 
regarding AD as a virtually generalized condition –see for example the 
recent review by Calabrò et al. (2021) and text-mining of the AD 
literature by Morgan et al. (2022).

Nevertheless, our integrative estimations indicate that neuronal 
activity alterations by Aβ, tau and their synergistic interaction are 
consistently related to inflammation processes, further demonstrating 
their fundamental role in AD’s in-vivo human pathophysiology. 
Peripheral immune cells, through disruptions to the central nervous 
system borders (e.g., BBB leakage) have potential major contributions 
to AD pathogenesis (Jorfi et al., 2023). In addition, pro-inflammatory 
microglial activation/neuroinflammation may trigger (or interact in) 
different pathological processes (Shen et al., 2018; Kwon and Koh, 
2020; Calabrò et al., 2021; Jorfi et al., 2023). We found that the spatial 
molecular associates of the interaction between Aβ and tau 
pathologies were more enriched for microglial expression than 
expected by chance. Previous studies have suggested that prolonged, 
uncontrolled immune responses cascade to modify physiological 
properties and the neuronal activity balance through interactions 
with Aβ and tau (Newcombe et al., 2018; Shen et al., 2018; Kwon and 
Koh, 2020; Calabrò et  al., 2021). Our findings indicate that 
neuroinflammation also interplays with Aβ and tau synergistic 
effects, which seems to be  a key factor in AD’s pathophysiology 
(Busche and Hyman, 2020; Sanchez-Rodriguez et  al., 2024). The 
identification of a major cluster of immunological pathways within 
AD’s neuronal activity molecular signatures warrants further 
investigation. In our previous work (Sanchez-Rodriguez et al., 2024), 
we  sought to decode possible neuroinflammatory influences 
(interacting with Aβ and tau effects) to neuronal activity through 

personalized computational models. However, only slight significant 
differences in the translocator protein microglial activation -PET data 
existed between AD and CU subjects, underscoring broadly discussed 
limitations of PET tracers being unspecific to inflammatory variants  
(Shen et al., 2018; Nutma et al., 2023).

Further improvements and clinical validation are necessary for 
implementing treatment strategies suggested by computational 
modeling of neuropathological mechanisms (Iturria-Medina et al., 
2018; Maestú et al., 2021), as this study presents several limitations. 
The TRIAD dataset utilized in the study was collected at a specialist 
memory clinic that receives relatively young dementia patients. This 
highly specialized setting may pose a limitation in terms of 
generalizability, although subjects diagnosed as “early-onset” and/or 
“familial” AD were excluded from the current analysis. Additionally, 
the percentage of female subjects within the CU (AD) group was 
slightly higher (lower) than AD’s prevalence among women, i.e., 
nearly two-thirds of the total number of cases (World Alzheimer 
Report, 2022). Likewise, the sub-cohort was not balanced and small 
(47 CU vs. 16 AD individuals). Several factors contributed to these 
disproportions including the availability of volunteers and whether the 
necessary imaging modalities had been collected at the time of sample 
curation (i.e., we selected all existing AD subjects and contrasted them 
to CU participants who were negative for both Aβ and tau, 
Supplementary Table S1). More advanced implementations of our 
approach would also consider disease heterogeneity, detecting 
sub-trajectories (Iturria-Medina et  al., 2020, 2021) over the AD 
spectrum and obtaining molecular affectation signatures for each of 
those phenotypes, which was not statistically viable in the present 
study due to the relatively small sample size. Regarding the biophysical 
model for neuronal activity alterations due to AD’s pathology, 
we  considered perturbations to pyramidal neurons only. Albeit a 
sound approximation given the pyramidal preponderance in the 
cortex (Maestú et al., 2021) –and with local connections propagating 
alterations to inhibitory populations as well (Wilson and Cowan, 
1972)– this assumption could be relaxed by considering an inhibitory 
influence model and re-estimating the relevant pathophysiological 
parameters. By doing so, we may test hypotheses for inhibitory circuit 
impairment in AD (Zheng et al., 2020; Maestú et al., 2021; Targa Dias 
Anastacio et  al., 2022). Our observations also necessitate further 
validation to fully comprehend the causal synergistic effects of Aβ and 
tau across different brain areas. A main issue is that we combined 
neuronal activity indicators derived from in-vivo neuroimaging 
assessments in the TRIAD cohort with the neurotypical AHBA gene 
expressions profiles. This fusion is necessitated due to the current 
absence of brain-wide genomic AD measurements (Gabitto et al., 
2023; Ng et al., 2023). While this methodology is common in the 
literature (Mullins and Kapogiannis, 2022; Ye et al., 2022; Tang et al., 
2024), it overlooks individual variations and disease-specific 
transcriptomic dysregulations. In future research, we  intend to 
overcome these limitations by extending our analyses to large-scale 
cohorts that include both ante-mortem neuroimaging and post-
mortem gene expression data. As tissue coverage expands in post-
mortem AD brains (Gabitto et al., 2023; Ng et al., 2023), we aim to 
utilize these resources for more comprehensive explorations of 
overrepresented signaling pathways and cell types.

Importantly, we focused the scope of this investigation into AD 
neuronal dysfunction by Aβ and tau only. The identified subject-
specific Aβ and tau neuronal activity alterations should be interpreted 
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as their causal pathophysiological effects disregarding other possible 
contributors (e.g., vascular, immune). It is known that additional 
factors as glial cell activity affects neuronal firing, even in healthy 
states (Targa Dias Anastacio et al., 2022). In effect, our personalized 
models are readily modifiable (Sanchez-Rodriguez et al., 2024) to 
consider other pathological factors, provided that the corresponding 
brain maps are available. Advanced causal computational models 
unifying neuroimaging and omics exist (Adewale et al., 2021; Iturria-
Medina et al., 2021, 2022; Khan et al., 2022; Lenglos et al., 2022), 
although they have yet to tackle the generation of (pathophysiological) 
neuronal activity. In future work, we  intend to expand the high-
dimensionality, multimodal approaches compiled within the in-house 
open-access NeuroPM-box software (Iturria-Medina et al., 2021) with 
quantification tools for unveiling molecular mechanics of pathological 
influences on neuronal activity. It is imperative to improve our 
understanding of the causal role that all possible neuropathological 
players have as this will also allow their early modification through 
healthy lifestyle choices and clinical monitoring, boosting disease 
prevention (Silva et al., 2019; World Alzheimer Report, 2022).

The disease-oriented computational drug repurposing strategy 
that we present constitutes an accelerated alternative to costly drug 
development for AD, as preliminary safety and bioavailability criteria 
are already established for existing drugs (Corbett et al., 2012; Mullen 
et  al., 2016; Petralia et  al., 2022). In 2021, approximately 40% of 
Alzheimer’s trials registered on ClinicalTrials.gov used repurposed 
medication (Cummings et al., 2021). Here, we have delved into the 
molecular mechanisms linked to the synergistic, across-brain 
pathological impact on in-vivo neuronal activity and searched for 
disease-modifying agents in the Library of Integrated Network-Based 
Cellular Signatures (LINCS) (thousands of perturbagens characterized 
at a variety of time points, doses, and cell lines) (Evangelista et al., 
2022; Xie et al., 2022). Potential pharmaceutical interventions were 
statistically identified and ranked based on the similarity between 
their documented mechanisms of action and the gene sets of neuronal 
dysfunctions by AD. Previous studies (Ebrahimi et al., 2012; Arellanes 
et al., 2020; Rivers-Auty et al., 2020; Advani and Kumar, 2021; Ahmed 
et al., 2021; Dionisio-Santos et al., 2021; Bezabhe et al., 2022; Linard 
et al., 2022; Leßmann et al., 2023) have assessed the usefulness of 
several of our discovered candidate pharmacological agents targeting 
affected AD pathways (Table 1). Most of these compounds are blood 
cancers and rheumatoid arthritis drugs with anti-inflammatory 
properties, which were also pinpointed as viable candidates to halt or 
reduce AD affectations in a whole-brain transcriptomics machine 
learning approach (from a pool of 80 FDA-approved and clinically 
tested drugs) (Rodriguez et al., 2021). Converging evidence indicates 
that cancer treatment may be related to a decreased risk of AD due to 
a pathophysiological overlap between both diseases, albeit a worsened 
cognition being in some studies linked to oncology drugs (Plun-
Favreau et  al., 2010; Frain et  al., 2017; Chen et  al., 2021). The 
FDA-approved compound dasatinib, for the treatment of chronic 
myeloid leukemia, and one of the top up-regulators identified in our 
search, has reduced tau pathology in mice (Roberts et al., 2021) and is 
the subject of an ongoing clinical study evaluating its feasibility and 
efficacy modulating AD’s progression in combination with the 
naturally derived anti-inflammatory quercetin (Advani and Kumar, 
2021; Gonzales et al., 2022). Although the emphasis of our discussion 
was on repurposed drugs, other unapproved small molecules 
(Supplementary Table S5) could also modify the detected AD targets. 

The identified chemical compounds could be considered for clinical 
investigation in AD based on several factors, including their specific 
genetic targets (e.g., Aβ∙tau molecular associates), desired therapeutic 
response, blood–brain barrier permeability, potential adverse effects, 
etc. Relevant information is available in our results (see Table 1 and 
Supplementary Table S5) and the consulted databases (Meng et al., 
2021; Evangelista et al., 2022; Xie et al., 2022; https://pubchem.ncbi.
nlm.nih.gov/). Mechanistic characterizations, such as those provided 
in our study, play a crucial role in facilitating the discovery and 
development of therapeutics, which could potentially increase the 
effectiveness of randomized controlled trials (Corbett et al., 2012; 
Mullen et  al., 2016; Iturria-Medina et  al., 2018; Jack et  al., 2018; 
Cummings et al., 2021; Rodriguez et al., 2021; Petralia et al., 2022). In 
the future, clinicians may tailor treatment approaches to target the 
patient’s unique pathological biomarkers using combination therapies 
and pleiotropic drugs, aiming for universal and more effective disease-
modifying outcomes.
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