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ABSTRACT OF THE THESIS

NeuroFlow: Deciphering Boiling Patterns from Neuromorphic Events

By

Srikar Arani

Master of Science in Electrical and Computer Engineering

University of California, Irvine, 2024

Associate Professor Aparna Chandramowlishwaran, Chair

Efficient thermal system design is pivotal in cooling applications. The complex nature of

boiling phenomena combined with the emergence of diverse flow patterns or regimes pose

challenges. Despite advances in classification methods, machine learning (ML) models strug-

gle to discern flow regimes from optical data obtained via high-speed cameras.

This thesis presents a compelling case for learning from neuromorphic event representations

of flow boiling, which offers insights into hidden properties of flow patterns. We delve

into the application of diverse ML algorithms on event data for the task of flow regime

classification. Through an analysis of convolutional neural networks, long short-term memory

models, and event-based spiking neural networks, we highlight the superior accuracy and

performance achieved by event data classification, as well as the unique insights provided by

a novel Fourier-based classification approach. We evaluate the different ML algorithms on

two event datasets — a video-to-event emulated dataset covering five flow boiling regimes,

as well as a dataset combining the emulated data with a neuromorphic event camera dataset

encompassing two regimes, for a total of seven flow boiling regimes. This research not only

advances our understanding of flow boiling, but also showcases the potential of leveraging

new data representations.
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Chapter 1

Introduction

The design of efficient thermal management systems represent a crucial aspect to many

industrial processes. Core to these structures are flow boiling systems — systems in which

fluid is circulated over a heating surface in an effort to dissipate heat, as well as regulate

the temperature of a system [1]. Two-Phase flow boiling systems — so-called due to their

consisting of a liquid and a vapor phase in the working fluid — are often highly complex

and subject to myriad factors. Aspects such as channel geometry, working fluid density,

flow rates, and surface tension, all can contribute to experimentation and analysis becoming

highly variable [2, 3]. Regardless, as these systems operate, the working fluid absorbs heat

from the heating surface, continuously saturating with heat energy, while simultaneously

exhibiting various distinct flow patterns or flow regimes. These flow regimes serve as markers

for unique heat transfer and dissipation mechanics, making them critical for understanding,

designing, and optimizing efficient heat sinks and thermal management systems [4].

Advancements in machine learning (ML) are revolutionizing the identification of these flow

regimes; what were once subjective verbal descriptions of visual scenes can now become more

objective and data-driven, promising greater consistency and deeper local insight. Efforts
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to do flow regime classification traditionally have involved analyzing signals from pressure

and temperature sensors, to train ML models capable of recognizing regimes based on the

unique signatures each one presents. However, a potential limitation of relying on sensor data

lies in its limited capacity for capturing local details within the predicted data, potentially

overlooking critical local phenomena that influence effective heat transfer [5, 6]. To bridge

this gap, researchers have proposed using image-based models that capitalize on the rich,

localized information provided by high-speed optical cameras, all while being less subject to

the aforementioned experimental variability [7, 8].

Despite the advantages that conventional image-based models offer in categorizing flow

regimes, they are accompanied by several limitations that affect their practicality and ef-

ficiency [9]. The operation of high-speed cameras, for instance, requires significant power,

which may render them less suitable for applications where energy conservation is crucial or

for monitoring over extended periods. Additionally, the visual distinctions between various

flow regimes may be hard to discern, even by a trained observer. A traditional image-based

model may require both highly detailed and manicured information, as well as a deep or com-

putationally expensive network for accurate classification — luxuries that may be harder to

come by in industrial settings where accurate, low-cost, or real-time information may be

vital.

Transitioning from the constraints posed by conventional high-speed cameras, neuromor-

phic event cameras present a novel way of collecting spiking event data from neuromorphic

hardware, possibly presenting new techniques for regime classification, as well as providing

low-power, low-latency networks. Distinguished by their motion sensitivity, selective data

capture that reduces irrelevant background noise, and markedly lower power consumption

and memory requirements, they provide a solution for many issues in traditional high-speed

cameras [10]. Neuromorphic cameras excel in capturing changes in a scene with unparalleled

temporal resolution, focusing solely on pixel-level brightness variations. This approach not
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only filters out static information, enhancing the relevance of captured data but also signifi-

cantly diminishes power usage — from watts down to milliwatts, offering a drastic reduction

compared to traditional methods [11]. Moreover, the sparse, event-driven data generated by

these cameras necessitates substantially less memory, often just a fraction of what is required

for storing high-speed camera footage. This efficiency in both power and storage, combined

with their exceptional sensitivity to dynamic changes, makes neuromorphic event cameras a

compelling choice for the classification and analysis of flow regimes, promising a leap forward

in thermal management research and applications with their high-resolution, energy-efficient

capabilities.

In this study, we hypothesize that neuromorphic event data provides a better input for

flow regime classification, as opposed to traditional high-speed cameras. In this thesis, we

will refer to the neuromorphic event data as Event Data, and the high-speed camera data

as Optical Data. In determining the efficacy of event data representations for flow boiling

classification, it makes sense to highlight, not just accuracy, but performance via latency and

power consumption and even model size. Given the sparse nature of event data, leveraging

these metrics paints a more complete picture of its strengths and weaknesses. To do so, we

compare various networks, each with their own strengths and weaknesses. Convolutional

Neural Networks (CNNs) are more traditional machine learning methods, but they may not

best take advantage of the event representation for power, latency, or model size. Long

Short-Term Memory (LSTM) networks can make use of temporal trends, however, they

struggle in highlighting spatial information. Meanwhile Spiking Neural Networks (SNNs) are

purpose built for event data, designed to be very low power, but may not be able to replicate

advanced or complicated models. Finally, we propose a novel Fourier-based approach that

maximizes the unique signal properties of event data to create a fast and efficient approach

to classification.

We evaluate the different ML models on two event datasets, one created via emulation to
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leverage existing experiments, and the other derived from real world experimentation as

captured by an event camera. Traditionally, the primary mechanism by which the majority

of event datasets are generated makes use of emulators or recording existing datasets with

event cameras. While emulated datasets are very useful, they may not be as representative of

real world conditions, as opposed to true event camera captures of experiments, due primarily

to preexisting frame rate of the optical data, as opposed to the high temporal resolution of

true event cameras [12]. Regardless, we find that event data representations provide a new

and powerful way of approaching the crucial problem of flow regime classification.
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Chapter 2

Related Work

The area of neuromorphic event data and event-based computing is relatively new. Even

still the field is rife with innovation. Additionally, flow boiling classification is another field

that similarly provides many existing frameworks to build from.

2.1 Flow Regime Classification

Flow Regime Classification has a long history, and there exist many approaches for this

problem. Many older methods made use of sensor arrays to gather physical information about

the inside of a channel, though this technique has slowly been phased out for optical data.

Huo et. al. present a classification method for determining heat transfer coefficients using

the physical characteristics of the vapor in seven regimes [13]. This presents an interesting

approach to extracting physical characteristics of different flow regimes, however, this paper

does not present a machine learning approach for real time classification. Additionally, the

lack of optical data may make this style of classification too specific to the environment in

which it was trained.
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Hernández et. al. [14] provides an interesting look into more traditional and older methods

for regime classification. These methods make use of large arrays of sensors, and highly

susceptible to the varying conditions of the experiment. Additionally, their paper works on

a much smaller subset of flow regimes, failing to reach Annular regimes, a major regime in

working with high pressure systems near Critical Heat Flux (CHF). The paper additionally

reports unremarkable accuracy, combined with the smaller experimental matrix, and more

convoluted measuring systems make this an interesting look into traditional classification

methods, and an area in which we can greatly improve.

In their paper, Ooi et. al. present a machine learning approach to flow regime classification

[15]. They present multiple methods that require large sensor arrays in the same vein as

the paper by Hernandez et. al. They identify three regimes with this data, and achieve

an accuracy of 88.4%. Additionally, as other authors highlight, unique experimental design

or channel environments make a sensor approach too specific to a single rig. Using optical

data, and classifying more regimes, at a higher accuracy, are all areas that can be improved

to better understand flow boiling patterns.

Hobold and Silva present a newer technique in tackling this problem [16]. They utilize

Principal Component Analysis (PCA) for a huge dimensionality reduction and are able to

achieve accuracies above 90% in their classification. However, they also classify only 3

regimes, and, while they also utilize optical data, their accuracy has room for improvement.

However, their heuristic approach with PCA might prove to be an interesting addition to

further work in refining heuristic event data approaches such as our Fourier-based classifier.
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2.2 Event Data Models

With regards to event data models, Bi et. al. [12] provides an interesting approach to

designing a graph based CNN for for object classification using event data. This work is

very similar to our own in that it presents a unique network to build around event data. This

model and their accompanying dataset, however, is designed for American Sign Language

(ASL) sign classification. Additionally, it fails to compare the event data representations to

more traditional optical networks to showcase if and how a traditional network may fare at

the same task. While it is a motivating work in event-based models, we hope to expand on

the idea with direct comparison to current state of the art traditional models on the same

task.

Sabater, Montesano, and Murillo designed the Event Transformer [17]. This network is a

large event and multi-modal network that performed favorably against other event models

in event gesture classification. This network, while impressive, also fails to compare an event

data representation to an equivalent optical data representation. Further, like many event

datasets, these models are not designed for observing and classifying physical processes. The

unique issues in physical data are further expanded upon in this thesis.

Further, Gamage et. al. propose using event data for detecting defects in civil infrastructure

[18]. They compare traditional CNNs against event-based SNNs, and highlight the increased

accuracy and speed of event-based models for classification. However, they only compare

optical CNN’s against event SNNs, and fail to interrogate the best architectures for event

data. Additionally, they do not compare state of the art CNNs against SNNs. We expand

on this work by both comparing various event-based architectures, as well as providing

traditional optical CNNs state of the art networks.

On the other hand, Liu et. al. have used event-based data to design a fast and efficient data

representation and associated network for event-data classification [19]. This work compares
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their methods against many other event-based networks and highlights the superior accuracy

of their own. However, like most other event data research, it is evaluated on large benchmark

datasets, many of which are emulated versions of existing datasets. Additionally, while their

work provides accurate, power and time efficient classification, it is a large network designed

to compete against other state of the art networks, and is poorly suited to work on edge

devices in labs or experimental setups. Xie et. at. also design a large network to leverage

event data, and much like Liu et. al, they compare their event network against multiple

other event representations [20]. However, they also design a network designed to compete

against state of the art networks. These networks also are not compared to equivalent optical

networks. Thus, while these networks are highly accurate, they poorly articulate why an

event representation would be preferable to an optical dataset. We expand on this work by

highlighting a unique use case in which event data provides a unique insight into the problem

domain.

2.3 Event Data Models for Flow Boiling

Finally, a paper by Lu et. al. presents a very close analogue to the problem being addressed

[9]. They present the case for an event-based approach to determining whether or not the

Critical Heat Flux condition has been reached in pool boiling experiments. Pool boiling is a

similar field to that of flow boiling and this paper provides motivating results, highlighting

the value of event data for speed, while retaining accuracy. We expand on this paper by

tackling a problem wherein traditional methods have thus far struggled much more, and

extend the problem from a binary classification to a multi-class regime classification problem.

Additionally, we present multiple machine learning models, as well as the case for a more

analytical heuristic approach to leverage and better understand the signal and physical

components that make up these regimes.

8



Chapter 3

Flow Regime Dataset

We create two event datasets for the purpose of flow boiling regime classification. The

first, consists of data captured by a Prophesee neuromorphic event camera aimed at an

experimental rig. The specifics of the experimental setup are discussed in more detail in

Appendix A. The second, is developed by processing experimental data through an emulator

in order to generate an approximate event stream. The specifics of the video to event

(V2E) conversion process are discussed further in Appendix B. The former consists of data

comprising two distinct flow regime classes, while the latter comprises of five distinct flow

regime classes — encompassing seven total classes as seen in Figure 3.1. For comparative

analysis, an optical dataset based on the latter is created to present a baseline. In this section

we describe both the observed classes, as well as the datasets created from those classes.

3.1 Flow Regime Classes

Flow regimes each exhibit unique flow properties, but there exist many different regimes and

sub-regimes, and some experiments may better highlight some regimes as opposed to others.
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In this thesis, we restrict our focus to seven regimes — Annular, Slug, Stratified Wavy,

Stratified Smooth, Bubbly, Elongated Bubbly, and Unstable. These regimes serve to highlight

the full range of a flow boiling system, from the beginning of boiling, until approaching

Critical Heat Flux — the point in which the heat dissipation process fails. The different

regimes, and their representation in both optical data and event data, are highlighted in

Figure 3.1.

Figure 3.1: Visualization of the Optical and Event datasets. Both columns represent
the same point in time. Cutouts highlight the similarity in Stratified Smooth, Stratified
Wavy, and Annular regimes with respect to high-speed optical images. The differences in
these regimes are better highlighted in the neuromorphic event data representation.

3.1.1 The Annular Stratified Problem

One factor that makes effective classification particularly difficult is the similarity in the

flow patterns of the stratified wavy, stratified smooth, and annular regimes. This similarity

contributes to the difficulty in using optical data from high-speed cameras, however, as can
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be seen in Figure 3.1, event representations better highlight the fine-grained differences in

the regimes. Note the narrow event bands in the Stratified Smooth regime, which, are due

to laminar flow with well defined vapor regions in this regime. However, as the pressure

changes, the boundary between the vapor and liquid becomes more turbulent. This results

in more clustering of events around the boundary in the Stratified Wavy Regime. By the

time the system reaches the Annular regime, the liquid becomes akin to a thin film around

a large vapor region. The thin boundary between the liquid and vapor leads to an increase

in the frequency of events and more smaller clusters of events around this boundary. These

differences are highlighted above in Figure 3.1.

3.2 Emulated Data

In the realm of event based networks, many datasets have been created from the existing

datasets. Event datasets such as MNIST-DVS [21], CIFAR10-DVS [22], N-Caltech101 [23],

and N-MNIST [23] were converted from the datasets MNIST, CIFAR10 and Caltech101

by displaying the original datasets on a monitor, one image at a time. In the case of N-

MNIST and N-Caltech101, an event camera is then moved slightly back and forth, and in

the case of MNIST-DVS and CIFAR10-DVS, an event camera is fixed and the displayed

image is moved slightly. While this method works fairly well, emulators that can recreate

this effect in software have started to present another approach to this issue of creating data

for event-based models.

We create a dataset, comprising of five regimes, Annular, Slug, Stratified Wavy, Stratified

Smooth, and Unstable. While emulated data is not without problems, it allows for leveraging

existing experiments in new models. This data is converted from existing experimental data

captured by a high-speed camera. Fifteen experiments, each defined by a separate heat

and mass flux, are passed through an emulator to generate approximate event streams,
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before being sorted for regime classification (Appendix B). These event streams are then

reconstructed into Event Frames by accumulating 50,000 events, and creating an image,

taking the x and y coordinates of each of the events, and marking a pixel at that point

(Figure 3.1). This data is compiled in Table 3.1. The specific breakdown of experiments and

their emulated frames is compiled in Appendix C.

Dataset Class Breakdown

Class Optical Frames Event Frames Resolution

Stratified Wavy 1,555 10,203

1024× 768
Stratified Smooth 688 3,721

Annular 2,402 18,032
Slug 878 6,081

Unstable 750 2,471

Bubbly N/A 8,759
1280× 720

Elongated Bubbly N/A 1,235

Table 3.1: Class breakdown for both Optical and Event Data. The classes are highly
unbalanced, contributing to the challenge in accurate flow pattern classification.

3.3 Event Data

We additionally create a second dataset, provided by a real event camera. This dataset

comprises two regimes, Bubbly, and Elongated Bubbly. These regimes are more common

very early in the boiling process, as opposed to the aforementioned emulated regimes. These

datasets differ both in their data acquisition techniques, but also in their experimental setup

and goals. While both datasets highlight unique flow boiling regimes, they observe slightly

different dynamics. The higher temporal resolution of the real event camera allows for

better observation of the bubble nucleation process, observed in the earlier flow patterns

such as Bubble and Elongated Bubbly. The goal of using both emulated data, as well

as real event data, is the design of a model that can accurately capture the full range of

boiling experiments, as well as be generalizable in a variety of conditions. The experimental

12



setup and event capturing process is further expanded upon in Appendix A, and the Event

Frame breakdown is highlighted above in Table 3.1. An important note on the data that

can be seen in the table, is the highly unbalanced nature of the dataset. This both is a

symptom of the difficulty of the problem, and a cause. Obtaining good data in each of these

classes is difficult, due in part to the somewhat transient nature of some of these regimes

— in particular Unstable flow patterns often occur in the midst of other patterns such as

Annular and Stratified Wavy regimes. This contributes to a lack of data in experiments for

classification, and is an area in which an accurate flow regime classifier may be used in. The

specific breakdown of experiments and their emulated frames is compiled in Appendix C.

Additionally, the size of the event dataset is substantially larger than the optical dataset.

The difference in dataset size may present a confounding variable for directly comparing the

accuracy of each dataset. This is explored in the Ablation Chapter.

13



Chapter 4

Classification Approaches

To gain a deeper understanding of the efficacy of event representations, we compare multiple

machine learning approaches, such as different CNN architectures, an LSTM, an event-based

architecture such as an SNN, and an analytical Fourier-based method. In comparing tradi-

tional data captured via high-speed camera and neuromorphic event data — both emulated

and real — we will refer to the former as Optical Data, and the latter as Event Data. All

hyperparameters are highlighted in Table 4.1.

4.1 Data Preprocessing

An important distinction in how both the optical and event data compare, as well as how

each of the ML approaches compare, is the preprocessing required for each model. Optical

Data consists of individual frames that are processed as images in the CNN as shown in

(a) in Figure 4.1. The Event Data, however, is reconstructed into an image in the CNN,

SNN, and Fourier-based analytical method. This whole process is outlined in Figure 4.1,

highlighting how the original data is converted into reconstructed frames for CNNs, SNNs,

14



Figure 4.1: Overarching methodology for flow regime classification approaches.
Both emulated and real event data are processed identically, but differ from optical data.
The optical data is only used in the CNN as show in (a). Event data is left as raw events
in the case of the LSTM (b). The events are reconstructed into frames for the purposes
of event CNNs, Convolutional SNNs, and the Fourier-based analytical method (c). The
Fourier-based method, further processes the data into its x and y power spectra (d) before
applying a clustering method and finally a k-nearest neighbors classifier.
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or the Fourier-based Approach (c), or can be processed as raw events for LSTMs (b). The

Fourier-based approach in particular further processes the data into its x and y power spectra

for a signal processing approach to the same issue of classification (d). Each ML approach

uses a batch size of 128 for training. Additionally, the data precision of the model is left

as a 32-bit floating point number. Future work could explore integer quantization for more

efficient deployment.

4.2 Convolutional Neural Networks

Convolutional Neural Networks can exploit the spatial structure of an image through the

use of convolutional layers, which apply filters (also known as kernels) to the input data,

scanning it in a sliding window manner. These filters learn to detect various features or

patterns, such as edges, corners, or textures, at different locations in the input. Generally

these convolutional layers are followed by non-linear activation functions such as ReLU and

downsampling layers such as max pooling. Multiple such convolutional blocks are stacked on

top of each other, allowing the network to learn increasingly complex and abstract features.

These features can then be used for several downstream tasks such as classification, seg-

mentation and object detection. While event streams are not explicitly designed for CNNs,

reconstructing an image from an event stream allows for a powerful point of comparison, as

both the optical image dataset and the event dataset can be trained on CNNs.

We experiment with different CNN architectures to determine the best fit for flow regime

classification. Two popular CNN architectures are ConvNeXt and AlexNet. These two net-

works are well established in the realm of classification, ConvNeXt in particular performs

favorably against the state of the art Transformer networks at ImageNet classification [24].

AlexNet consists of five convolutional layers, followed by a large fully connected network.

While not as popular anymore, AlexNet provides a more simple, but well established model
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for comparison. ConvNeXt, however, presents a more transformer-like architecture, com-

posed of multiple ConvNeXt blocks, each of which comprises multiple convolutional layers.

Due to the very different nature of the flow boiling classification data, both networks are

trained from scratch on the optical and event data. However, we also compare against fine

tuning the networks on both event and optical data for additional comparison. Each network

downsamples the input data to ImageNet specifications, and the layers of the network are

frozen for transfer learning with an Adam optimizer and a learning rate of 1e-3. Further

work could include comparing light-weight networks such as MobileNet or EfficientNet.

Additionally, we design a shallower network to address the sparsity of the data. Both the

optical data and the event data are downsampled before being passed through a shallow

network for classification. Due to the different aspect ratios of the original data, the event

data is downsampled to 256 × 192 px (one quarter of the original dimensions), while the

optical data is downsampled to 340 × 192 px (about one fifth of the original dimensions).

The network consists of three convolutional layers, with a maxpooling layer between the first

and second. This is followed a single fully connected layer leading to the output. This simpler

network is designed for better performance, and lower computational complexity, while also

leveraging the relatively sparse nature of the data, and few classes. These networks are also

trained with an Adam optimizer and a learning rate of 1e-3.

4.3 Long Short-Term Memory Networks

The same way CNNs can exploit the spatial structure of an image, Long Short-Term Memory

(LSTM) networks can exploit the temporal aspects of data. These recurrent networks take

into account previous data samples and excel at tasks where sequences of data are meaningful.

In boiling, these flow patterns are primarily observed over a period of time. With the

exception of unstable regimes, it is unlikely for a flow pattern to quickly transition from slug
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to stratified and then to annular, etc. in rapid succession.

We design a shallow LSTM for the event data. Due to the different architecture, the event

data is not reconstructed as in the CNN, but left as raw event information. The network input

is a vector of 5,000 events, each event composed of 3 values corresponding to the event’s x

position, y position, and polarity (x,y,p). The network consists of just three recursive layers.

This is followed a single fully connected layer leading to the output. This difference in input

size was chosen to reduce computational complexity and latency. Like the CNN, this network

is trained with the Adam optimizer and a learning rate of 1e-3.

Hyperparameter Event CNN Optical CNN Event SNN Event LSTM

Epochs 25 35 55 25
Batch Size 128 128 128 128
Optimizer Adam Adam Adam Adam

Learning Rate 1e-3 1e-3 1e-4 1e-3
SNN β N/A N/A 0.95 N/A

SNN Steps N/A N/A 15 N/A

Table 4.1: Generic Hyperparameter Settings for Models

4.4 Spiking Neural Networks

Given that event data is a focal point of this research, it makes most sense to consider a

neuromorphic neural network for a possible classifier architecture such as a Spiking Neural

Network. It can be thought of as analogous to some simple ML techniques, however, each of

the neurons only represents a binary on or off. This is an extremely power efficient approach,

and it may even be highly time efficient. On the other hand, it may be hard to synthesize

for real-time embedded systems.

In designing an SNN model for flow-boiling classification, we developed a Convolutional SNN,

built with the SNN-Torch framework [25]. Convolutional Spiking Neural Networks have
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shown promise as more accurate models than traditional Convolutional Neural Networks at

classification tasks [26]. This framework allows for the implementation of a similarly shallow

network as the one outlined in Section 4.2, however, leaky integrate and fire neurons are

added between layers to create spiking activation. This network provides a possible way to

increase accuracy, while reducing computational complexity or power consumption, though

this is harder to observe on traditional hardware, than it is on neuromorphic hardware.

The SNN model is trained on the event data, preprocessed and downsampled in the same

manner as the CNN. The leaky integrate and fire neurons receive inputs over time and decay

until they receive another sufficiently high impulse. The flow boiling regime classification

SNN had a decay rate of 0.95. The network is trained with the Adam optimizer and a

learning rate of 1e-4. The model consisted of two convolutional layers, each followed by a

maxpooling layer. After each of these layers, the signal is passed to a spiking neuron layer.

Finally the model consists of a single fully connected layer, followed by a spiking neuron

layer, eventually leading to the output.

(a) Across x dimension (b) Across y dimension

Figure 4.2: Power Spectra for five emulated regimes. These power spectra highlight
representative examples of the x and y power spectra

19



4.5 Fourier-based Analytical Method

In this section, we propose a novel method for dealing with event data, highlighting the

unique signal properties of event data. Given the difficulty of regime classification in the

optical representation, especially with regards to the Annular-Stratified problem, an efficient

event-based classification model should build around the unique benefits of event data. As

highlighted earlier, there are unique noise properties in the signals that can be built on —

the increased noise in the Annular regime, or the much reduced noise in the Stratified Wavy

Regime — for example. Additionally, while some regimes consist of primarily horizontal data

such as the three aforementioned problem regimes, others such as Unstable Flow consist of

large amount of noise in both the horizontal and vertical dimensions (as can be seen in the

power amplitude in Figure 4.2a), or Slug Flow which consists of much less noise and power

in the vertical dimension (as can be seen in the power amplitude in Figure 4.2b). These

unique properties make event data a great fit for a signal processing approach that can more

easily highlight this information. Additionally, given the importance of fast and efficient

classification, using a Fourier Transform based approach may be significantly faster than

traditional machine learning techniques.

Like the CNN, this method requires reconstructing the event stream into a series of event

frames. We then perform a Fast Fourier Transform (FFT) along both the x and y dimensions

of the frame, and finally compute the power spectra for the data in its x and y dimensions.

The resulting spectra are both highly consistent among their regimes, and slightly different

between different regimes. An example of this can be seen in Figure 4.2, comparing the power

spectra in the x dimension for each of the five emulated regimes. These signals present an

opportunity for exposing more of the unique signal properties of event data. The combination

of factors such as signal-to-noise ratio, average power, peak power, and many others, across

both the x and y dimensions, lend themselves to clustering algorithms for a more heuristic

approach for flow classification. The signal-to-noise ratio, as one example, is particularly
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Figure 4.3: Example of clustering across the x and y signal-to-noise ratios. The
Slug regime, depicted in red, shows dense clustering in this particular example. These are
two of many factors that create the clustering necessary for the Fourier-based analytical
method.

good at highlighting slug regimes, as opposed to the other regimes as can be seen in Figure

4.3. The combination of these factors across the entire training dataset are then compiled.

A k-nearest neighbors algorithm is then applied to this multi-dimensional dataset using 7

nearest neighbors. This additionally exposes some of the more opaque physics aspects of the

problem, for example, highlighting the signal-to-noise ratios between regimes exposes the

high frequency vapor components of the various regimes.
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Chapter 5

Results

Model Accuracy Inference Time Model Size
Model

Parameters

Event CNN 99.04% 0.15ms 1.90MB 497,413
Optical CNN 92.24% 2.55ms 2.51MB 658,837

SNN 98.92% 0.76ms 0.94MB 247,013
Fourier 84.68% 6.44µs 5.88MB N/A

Event LSTM 92.54% 1.03ms 1.27MB 332,933

Table 5.1: Final results comparing 4 different methods for flow regime classifica-
tion. Bold terms represent best performing metrics.

In determining the real-time and practical viability of each of these models for flow regime

classification, it is important to consider different metrics such as inference time and model

size. This is also important for comparing event data representations to traditional high-

speed camera representations, as the trade offs inherent in each may provide different choices

for different applications and use cases. Given that flow boiling experimentation and obser-

vation happen in labs and industrial systems, it is important to not just highlight accuracy,

but compare each model’s ability to run on any edge device, and in real-time critical condi-

tions. The results discussed here are for the emulated dataset for a direct comparison with

the optical dataset. All models were trained and evaluated on an Nvidia A30 GPU.
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The event CNN and SNN performed almost identically, to each other in terms of accuracy

(≈ 99%), and both are more accurate than the optical CNN (≈ 92.2%). Where they differ,

however, is in their inference time and model size. The event CNN is a larger model as seen

in Table 5.1, but performs inference in a much shorter time. In systems where latency is an

important issue, an event CNN might prove to be a more fitting model. However, in systems

where space is a more pressing concern, the SNN provides for a much smaller model (about

half the size as the event CNN).

On the other hand, the event LSTM performed on par with the Optical CNN with regards to

accuracy (≈ 92.5%). While it is less accurate than the event CNN and SNN, it is a smaller

model than the CNN, with fewer model parameters as seen in Table 5.1. Furthermore, it

performs less favorably than both the event CNN and SNN in terms of inference time.

The Fourier-based method, is by far the most time efficient, but struggled much more than

the optical CNN in accuracy. This is likely due to the fewer features compared to the other

models. This is expanded upon in Section 5.4. Due to the need to access the full size

of training data for clustering, it also is the largest model, where the model size scales in

proportion to the training data.

The confusion matrices for each of the models is shown in Figure 5.1, and the results are

highlighted in Table 5.1. What follows is a more thorough examination of each technique

and how they perform in flow regime classification. Additionally, further discussion of the

results and how each model performs with regards to precision, recall, and F-1 score, are

included in Appendix D.
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Figure 5.1: Confusion Matrices across 5 classes. Confusion Matrix for (a) Optical CNN,
(b) Event CNN, (c) Fourier-based, (d) SNN, and (e) Event LSTM on test data. A represents
Annular, S for Slug, SS for Stratified Smooth, SW for Stratified Wavy, and U for Unstable.

5.1 CNN

The Convolutional Neural Network is chosen because of both its ubiquity in classification

tasks, but also their speed. In designing a model that would best tackle this difficult prob-
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Model Optical
Dataset

Event
Dataset

Event Model
Latency

Event Model
Size

Event Model
Parameters

ConvNeXt
(Scratch)

81.46% 72.26% 0.23ms 334.06MB 88.6M

ConvNeXt
(Pretrained)

87.64% 88.73% 0.23ms 334.06MB 88.6M

AlexNet
(Scratch)

87.01% 96.99% 0.17ms 217.53MB 61.1M

AlexNet
(Pretrained)

84.79% 85.08% 0.17ms 217.53MB 61.1M

Custom 92.24% 99.04% 0.15ms 1.90MB 0.5M

Table 5.2: Results comparing the custom Event and Optical CNN with ConvNeXt
and AlexNet. The pretrained models used weights trained on ImageNet data.

lem, multiple experiments are run to contrast different architectures. The results of these

experiments are highlighted in Table 5.2. ConvNeXt, the current state of the art in image

classification, is trained on both the optical and event data from scratch by loading the

model from Pytorch with untrained weights. Another experiment is fine-tuning ConvNeXt

on both the event and optical data. Training the model from scratch proved to be highly

inaccurate, achieving an accuracy of around 81%. This is likely due to the relatively smaller

size of the input data compared to the size of the model (Table 5.2). While ConvNeXt has

shown to be very successful for highly detailed images, flow boiling images are not as varied

or detailed. This likely contributes to the model not learning well. This is made apparent

with the event dataset achieving an even lower accuracy of around 72%. The difference in

accuracy is reflective of the event dataset being even more sparse than the already sparse

optical dataset. However, fine-tuning the model with its existing ImageNet weights proves

to increase the accuracy for both the optical and event data (≈ 88% and 89% respectively).

Though, now, the event data proves to be the more accurate model. This increase for both

datasets is likely due to more of the neurons being active for classification and having sub-

stantive weights to them from ImageNet training. Another experiment, fine-tuning AlexNet

in a similar way to ConvNeXt, performs slightly worse in accuracy at around 85%. However,
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the model is smaller and has a better inference time as can be seen in Table 5.2. Finally, the

shallow custom network performs far better than even ConvNeXt for this particular problem.

A shallower network seems to better fit the low detail and sparse data when compared to the

large networks. However, despite being a smaller model, the event CNN provides an almost

7% improvement in accuracy as compared to the optical CNN.

The Optical CNN is represented by the confusion matrix (a) in Figure 5.1, while the Event

CNN is represented by the confusion matrix (b). While the accuracy may still be high for

the optical CNN, the confusion matrix exposes both, that the stratified regimes remain to be

a problem point for this network, but also the difficulties in categorizing unstable flow. This

is a major concern, as these unstable regimes are both very uniquely interesting physically,

but also a major area of concern for industrial systems. Flow instability can be a marker for

a breakdown in a system’s ability to properly perform heat management, as well as indicate

pressure or temperature changes. Additionally, experiments into understanding the physics

of unstable flow are hampered by the inability to extract unstable data from other regimes.

The event CNN is able to better distinguish unstable flow than the optical CNN (Figure 5.1

(a) and (b)). This is likely due to the density of data in the event representation. The event

data is binary, and instability results in a large clustering of data exclusively in the unstable

region. The optical data meanwhile, captures both the unstable region as well as the rest of

the channel (Figure 3.1). Unstable data is drawn from both Annular and Stratified regimes,

and this confusion leads to the unstable data often being classified as being one of the regimes

it came from. This is made obvious in the confusion matrix for optical data (Figure 5.1 (a)),

highlighting that unstable regimes are classed as either Annular or Stratified Wavy around

30% of the time. While the optical CNN is only able to classify around 70% of unstable

regime samples correctly, the event CNN performs at around 98%.
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5.2 LSTM

The Event LSTM is represented by the confusion matrix (e) in Figure 5.1. It performs less

accurate prediction in a longer time than the event CNN, but it does so with a smaller

model. Interestingly, it performs best when tackling the annular-stratified problem, as seen

in the high accuracy in both the annular and stratified wavy regimes. This is due to the

tight and predictable clustering of events in these regimes. The slug and unstable regimes,

while well predicted in other networks (see 5.1), are less accurately predicted in the LSTM.

This network makes use of a series of x,y,p components of the event data, and thus a flowing

series of events in these two regimes, can be mistaken for annular and stratified regimes.

This is made apparent in the confusion matrix for the LSTM (Figure 5.1 (e)), wherein the

slug and unstable regimes are confused for the annular and stratified regimes.

5.3 SNN

The Event Spiking Neural Network, as mentioned above, performs very similarly to the

optical CNN. This makes sense, as the event SNN is a very similar architecture, although

as mentioned in Section 4.4, the SNN consists of one less convolutional layer. One would

expect a similar architecture to give similar results, though the SNN really shines in it’s

much smaller size for its accuracy, as seen in Table 5.1. The main draw to these networks

are their speed, power consumption, and size. While the SNN did not perform as well as the

event CNN in terms of it’s latency, it did prove to be much faster than the optical CNN. Part

of the latency issue for the SNN may be due to the fact that it is not run on neuromorphic

hardware, to best utilize its sparsity. Additionally, SNN inference time is highly dependant

on the number of spiking neurons per sample. Given the large number of accumulated events

(50,000) per sample, a convolutional spiking neural network may produce a large number of
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spiking events, thus increasing its latency. Regardless of hardware, shallow networks, such

as the event SNN, have been shown to perform similarly to CNNs with regards to inference

time. As networks get more complex, however, SNNs perform more favorably than CNNs

with regards to latency [27]. The Convolutional SNN in particular has a large number of

initial computations and thus would benefit from neuromorphic hardware [28].

Additionally, like the event CNN, it performed almost 7% better in terms of it’s overall ac-

curacy, but struggled similarly to the event CNN in the unstable regime. The SNN correctly

classified 95% of the unstable regime as unstable, as opposed to the event CNNs 98% but

the event SNN does a better job at distinguishing the extremely sparse stratified smooth

regime as seen in the confusion matrix (d) of Figure 5.1.

5.4 Fourier Analytical Method

The Fourier-based approach is less accurate than the machine learning approaches. This

analytical heuristic is able to achieve an almost 85% accuracy, however, further work, and

better leveraging of signal processing techniques may help increase accuracy. It, expectedly,

performed the best when accounting for inference time, but the poor accuracy may prove to

render the latency gains less than useful. As seen in confusion matrix (c) of Figure 5.1, it does

a good job of highlighting the slug regimes and annular regimes, but like the optical CNN,

struggles with regards to the unstable regime. This is likely due to the physical properties

of annular and slug regimes. In the annular regime, the thin layer of liquid around the vapor

leads to lots of high frequency noise in both the x and y dimensions. This boundary region

is subject to lots of small clusters of events moving through the channel. On the other hand,

the slug regime consists of very little noise in the x and y direction due to the bubbles being

clearly distinct from the surrounding liquid in the channel. The clear separation leads to

much less noise as can be seen in the red cluster in Figure 4.3. This method takes these
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frequency components into account, and thus these two regimes are made clear. On the

other hand, the annular-stratified problem is readily apparent with this method. The three

regimes are hard to distinguish between each other. The unstable regime likewise performs

poorly when compared with the CNN and SNN models. This is possibly a result of unstable

regimes containing signal characteristics similar to those of the regimes they originate in.

For example, an annular flow that becomes unstable likely has a similar power spectrum

or signal-to-noise ratio as a pure annular data point. This is reflected in many unstable

flows being classified as either annular or stratified wavy, two regimes from which unstable

flow originates. Additionally, this Fourier-based method processes the data and performs

its heuristic on the entire frame. The CNN models, however, can take into account local

dynamics of the data, and thus highlight the differences in spatial density of events or the

lack of data in certain areas of the channel. Interestingly, despite having a higher recall

score (0.67), the stratified smooth regime has a lower precision (0.54) than the unstable

regime (0.53 and 0.81) respectively. This implies that this method is unlikely to classify a

flow pattern as unstable, and more likely to consider it stratified smooth. The specifics of

these metrics are further expanded on in Appendix D, but this suggests that this method

struggles to create clusters for unstable flow patterns. While future work may elucidate

better techniques, this model currently provides the lowest accuracy and largest size, two

things that make it less useful for flow regime classification, than some of the previous models.

5.5 Seven Class Classification

Applying the same methods to the 7-class classification yields very similar results to the

earlier 5-class classification. Like above, the CNN and SNN perform the best with respect

to accuracy (each around 99%), however the SNN is half the size with half the parameters.

The CNN, however, is slightly faster (Table 5.3). Additionally, the Fourier-based method
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Model Accuracy Inference Time Model Size
Model

Parameters

Event CNN 99.051% 0.424ms 2.647MB 694,023
Event SNN 99.090% 0.875ms 1.317MB 345,319
Fourier 87.035% 47.7µs 7.338MB N/A

Table 5.3: Final results for 7 class flow regime classification. Bold terms represent
best performing metrics.

continues to perform the fastest.

In each case, the new regimes, Bubbly and Elongated Bubbly, are consistently classified

with high accuracy and with very little confusion between them as seen in Figure 5.2. The

misclassification among the stratified wavy, stratified smooth, and unstable regimes, however,

continues to be a problem for the Fourier-based classifier. Regimes that occur early in the

boiling process (Bubbly, Elongated Bubbly, and Slug) have very high recall, rarely being

misclassified. However, in the middle regimes (Stratified Smooth, Stratified Wavy, and

Unstable), the recall is lower, and the network struggles to accurately classify the data

(Figure 5.2 (c)). Additional metrics such as precision, recall, and F-1 score are discussed in

Appendix D.
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Figure 5.2: Confusion Matrices across 7 classes. Confusion Matrix for (a) Event CNN,
(b) Event SNN, and (c) Fourier-based on test data. A represents Annular, B for Bubbly, EB
for Elongated Bubbly, S for Slug, SS for Stratified Smooth, SW for Stratified Wavy, and U
for Unstable.

5.6 Ablation

One confounding variable in comparing the size of the datasets. As noted in Table 3.1, there

are significantly fewer optical frames than event frames. Some of the disparity between the

accuracy of the optical and event CNNs may be due to the difference in the size of each

dataset. In addressing this issue, an experiment is run on a reduced version of the event

dataset to match the same exact class breakdown of the optical dataset. A random selection

of each class in the event dataset was picked to match the number in the associated optical

dataset. The event CNN was then run on this new, smaller dataset. The final accuracy

for this new event CNN was 97.463%. This is still a more accurate performance than the
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optical CNN at 92.235%. The resulting confusion matrices are shown in Figure 5.3. As

shown in this figure, the event CNN continues to perform significantly better on discerning

the unstable regime.

Figure 5.3: Confusion Matrices for Reduced Event CNN as opposed to the Optical
CNN
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Chapter 6

Conclusion

The significant accuracy and inference time benefits of event data in both CNNs and SNNs,

as opposed to traditional optical CNNs, for flow regime classification present interesting

implications for future experimentation and practical monitoring of industrial cooling sys-

tems. We present the case for event data models as a faster, more space efficient, and more

accurate method for discerning flow patterns. Through an exploration of various machine

learning techniques and heuristics, the goal of developing real-time regime classification mod-

els becomes more realistic. Further testing and exploration of the signal properties inherent

in event data representations may additionally lead to a more unified definition on what

constitutes a specific flow regime. Additionally, current classification problems dealing with

unclear class distinctions may benefit from observing their classes with a new representa-

tion through event data. While the generalizeability of this approach may require future

experimentation and work, the framework demonstrated here serves as a starting point for

developing neuromorphic event models for other similar physics problems.

Links to download the code, as well as NeuroFlow optical and event datasets are available

on the GitHub page, hosted at https://github.com/HPCForge/NeuroFlow.
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Appendix A

Neuromorphic Event Data

The development of a circulating loop system for flow boiling has been accomplished, incor-

porating a milled polycarbonate rectangular internal channel and a copper-based resistive

heater, as illustrated in Figure A.1. The rectangular flow channel is characterized by a cross-

section of 2.5 by 5 mm, a hydraulic diameter of 3.33 mm, and a total length of 380 mm,

allowing for single-sided heating on the bottom wall. The transparent channel wall, with a

thickness of 13.75 mm, facilitates clear visualization of flow bubbles. To enable a wider range

of boiling operations, dielectric working fluid (PP1) with lower saturation temperatures has

been selected. The 100 mm heated section of the channel is powered by six thick film resis-

tors, each possessing a resistance value of 200 ohms. These resistors are affixed to the plate

and wired in parallel, resulting in a cumulative resistance of 33.33 ohms. A controllable

power source facilitates precise modulation of the heat flux applied to the system.

Ensuring optimal operational conditions, a liquid reservoir equipped with a circulation heater

preheats the working fluid to near-saturation temperatures before entering the main channel.

Subsequently, the preheated fluid is pumped to a flow meter, allowing for meticulous control

of the flow rate before entering the experimental channel. The data acquisition apparatus
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Figure A.1: Visualization for flow boiling. (a) The flow boiling module consists of a
closed-loop system. (b) The flow diagram of the flow boiling experimental set-up.

collects pressure and temperature data at the channel’s inlet and outlet. Upon exiting the

flow channel, the working fluid enters a condenser, thereby completing the flow loop, as

depicted in Figure A.1.

To capture diverse visual aspects of the flow boiling scenario, we leverage an event-based

neuromorphic camera. Traditional high-speed cameras store densely packed data with com-

prehensive information, offering precise representations of visual scenes at high resolutions.

However, a substantial portion of this information may be redundant, leading high-speed

imaging methods to have constrained run times. In contrast, event cameras utilize innova-

tive sensors that report asynchronous, per-pixel brightness changes termed as ”events” with

unparalleled low latency.

By exclusively recording brightness changes, event cameras efficiently eliminate redundant

information, such as background details, between time intervals without the need for pre- or

post-processing steps. When a pixel detects a change in light intensity, it autonomously trig-

gers and records the event as depicted in Figure A.2. Furthermore, modern event cameras
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Figure A.2: Comparison between conventional image data and neuromorphic
event data. Event data prioritizes scene changes, disregarding static backgrounds, offering
a more efficient and responsive method for capturing visual information than conventional
cameras.

exhibit microsecond temporal resolution, minimal under/overexposure, and motion blur, en-

hancing their capability to rapidly capture dynamic motions. Given that high-speed camera

runtimes are often restricted by high power consumption, the significant increase in power

efficiency with neuromorphic cameras suggests prolonged continuous streaming of data is

feasible.
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Appendix B

V2E Conversion

V2E, or Video to Events, is an advanced Python software tool meticulously crafted for the

conversion of conventional video frames into authentic Dynamic Vision Sensor (DVS) event

streams. It deftly generates DVS event camera data, capturing nuances in scene brightness,

from both standard and synthetic frame-based videos. This process relies on a precise DVS

pixel model, accounting for the inherent non-idealities of the camera. Additionally, V2E has

the capability to employ Super-SloMo synthetic slow motion for enhancing the quality of

videos from standard frame cameras through up-sampling. The tool finds its primary appli-

cation in the realms of computer vision and neuromorphic engineering research, where the

high temporal resolution and low power consumption of DVS data hold significant value. No-

tably, V2E plays a pivotal role in creating transfer-learning training and evaluation datasets

specifically tailored for event cameras, derived from conventional frame-based datasets [29].

This capability enables us to extract meaningful insights, promoting a proactive understand-

ing and response to dynamic visual content. The integration of V2E enhances the utilization

of video data, aligning with the evolving demands of modern technological landscapes for a

more refined and sophisticated approach. We integrate this tool into the transfer-learning
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process, using it to prepare training and evaluation datasets for event cameras by adapting

them from conventional frame-based datasets. A total of 15 videos, recorded using high-

speed cameras, have been transformed into event streams for in-depth analysis.
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Appendix C

Experimental Data Tables

Prophesee Experiments

Voltage Total Events Event Frames Main Regime

25 1.63× 108 3,266 Bubbly
30 6.83× 107 1,367 Bubbly
35 7.39× 107 1,479 Bubbly
40 6.03× 107 1,206 Bubbly
45 7.20× 107 1,441 Bubbly
55 6.17× 107 1,235 Elongated Bubble

Table C.1: Six experiments from which the Prophesee camera data is created. In
each of these experiments, only one regime was noted.
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Emulated Data

Mass Flux Heat Flux Total Events Event Frames Regimes

140

9.4 3.70× 107 740 Strat. Smooth

18 8.63× 107 1,726
Strat. Wavy
Strat. Smooth

30.3 9.30× 107 1,860
Annular
Unstable

43 8.79× 107 1,757 Annular

200

6.8 1.15× 108 2,308 Slug

13 1.28× 108 2,557
Strat. Wavy
Strat. Smooth

Unstable

22 1.98× 108 3,950
Strat. Wavy
Strat. Smooth

Unstable

36.3 1.74× 108 3,474
Annular
Unstable

53 1.51× 108 3,029
Annular
Unstable

70 1.30× 108 2,606
Annular
Unstable

255

8 1.89× 108 3,773 Slug

15.4 1.38× 108 2,767
Strat. Wavy
Strat. Smooth

Unstable

28 1.80× 108 3,609
Strat. Wavy
Strat. Smooth

Unstable

48 1.70× 108 3,408
Annular
Unstable

69.5 1.47× 108 2,944
Annular
Unstable

Table C.2: Fifteen experiments from which the emulated event data is created. In
each of these experiments, different regimes are observed, the dominant regime of which, is
in bold.
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Appendix D

Precision, Recall, and F-1 Metrics

While traditional accuracy is a good measure for understanding a model’s performance, it is

incomplete. Accuracy is simply a measure of how many total samples are predicted correctly

out of a total number of test samples. However, this does nothing to explore the ways in

which a model may provide false positives or false negatives. Exploring these topics further

leads to the metrics of precision, recall, and F-1 score.

D.1 Precision

Precision is a measure of how many correctly classified samples there are, relative to the

total number of samples classified as such. Essentially, precision measures the ability of a

model to accurately identify an instance of a class. A low precision score indicates that a

model has a hard time distinguishing between various classes, and predicts a particular class

regardless. This is an especially important problem when the datasets are rather unbalanced

as they are in this problem. The formula for precision is given below.
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Precisionclass A =
True Positive

True Positive + False Positive

D.2 Recall

Recall is a measure of how many samples of a particular class are correctly identified as being

in that class. This is identical to the diagonal of the confusion matrix. Essentially, Recall

provides the models ability to distinguish all samples of a particular class from other classes.

A low precision score may indicate that a model is struggling to identify a particular class

in general. The formula for recall is given below.

Recallclass A =
True Positive

True Positive + False Negative

D.3 F-1 Score

The F-1 score is a compromise between the two metrics of precision and recall. It takes both

the false positives and false negatives into account, and is a good measure for the accuracy

of an unbalanced dataset like the one worked with here. The formula for F-1 Score is given

below.

F1class A = 2× Precision× Recall

Precision + Recall
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Figure D.1: Precision, Recall, and F-1 Scores for the five compared methods,
SNN, Optical CNN, Event CNN, Event LSTM, and Fourier-based Method.
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Figure D.2: Precision, Recall, and F-1 Scores for the seven regimes on SNN, Event
CNN, and Fourier-based Method.
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