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ABSTRACT OF THE DISSERTATION 

 
 

Integrative Analysis of 5-Hydroxymethylcytosine Signal in the Context of Gene Regulation 
 
 
 

by 
 
 
 

Edahi Gonzalez Avalos 
 
 

Doctor of Philosophy in Bioinformatics and Systems Biology 
 
 

University of California San Diego, 2022 
 
 

Professor Anjana Rao, Chair 
Professor Ferhat Ay, Co-Chair 

Professor Eran Mukamel, Co-Chair 
 
 

Many histone marks, obtained through chromatin immunoprecipitation (ChIP) followed by 

massively parallel DNA sequencing (ChIP-seq) are used as the input features of complex machine 

learning frameworks in the gene expression prediction task. However, a ChIP-seq assay requires 

access to a large number of viable cells whose nuclei are intact, a limitation if viable cells are not 



 

 
 xviii 

available and the only source of cellular material is DNA, or if cells are subjected to processes that 

compromise their viability, such as formalin fixed paraffin embedding. 5-hydroxymethylcytosine 

(5hmC) is a stable covalent DNA modification deposited through the Ten-Eleven Translocation 

(TET) proteins, that is extensively associated to highly expressed genes and lineage-specific 

enhancers. Thus, as long as some DNA is present in a sample, 5hmC can be assessed and quantified. 

Through the integration of multi-omic data, we report a close correspondence between 5hmC-

marked regions, chromatin accessibility and enhancer activity in B cells. We then produced 

generalizable machine learning methods to predict gene expression in multiple cell types using 

5hmC as a standalone epigenetic feature. Finally, through the integration of 3D genomic structure 

data, 5hmC signal and complex machine learning frameworks, we predicted gene expression and 

enhancer-promoter linkages that are cell-type specific. We revealed regions that were orthogonally 

validated as enhancers in the literature, or had epigenetic characteristics seen in TET-responsive 

regulatory elements. The analyzes we conducted here highlight the potential of 5hmC signal to 

predict gene expression and link enhancers to their target genes, and suggest additional approaches 

for the study of gene regulatory networks.
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Introduction 

Since the discovery of Ten-Eleven Translocation (TET) proteins by our lab in 2009 

(Tahiliani et al. 2009), functional studies have focused on TETs ability to facilitate DNA 

demethylation and modulate gene expression through oxidation of the methyl group of 5-

methylcytosine (5mC). More recently, studies have highlighted the roles of TET proteins and 

5hmC in heterochromatin integrity, which if compromised would be deleterious for genome 

stability and lead cells to oncogenic transformation. Although the mechanism by which TETs 

influence genome stability are still unclear, a great swath of studies has been done to explore their 

role in cell differentiation and the effects of their first oxidation product, 5-hydroxymethylcytosine 

(5hmC). Either single TET knock out (KO) or double or triple KOs (DKO and TKO respectively) 

generally result in impaired development or halted or incomplete differentiation. An exemplar 

study involved mouse models developed in our lab, bearing a TET2/3 DKO in developing T cells 

that resulted in the oligoclonal expansion of iNKT cells (Tsagaratou et al. 2017), followed by the 

aggressive development of T cell lymphomas (showing DNA damage among other hallmarks of 

cancer) transmissible in 100% of mice, that succumb in less than 9 weeks (Lopez-Moyado et al. 

2019). Another example is the fully-penetrant B cell lymphoma that arises from a TET2/3 DKO 

in B cells, resulting in a fatal phenotype (most mice died within 5 months; Lio et al. 2016). In both 

TET2/3 T or B cell cases, individual TET2 or TET3 KO resulted in a less dramatic phenotype, 

proved in a different model system with a Tet2 gene germline mutation with Tet3 inducibly deleted 

(Tet2-/- Tet3fl/fl; An et al. 2015). In this system, tamoxifen-treated mice (resulting on TET2/3 DKO) 

showed myeloid expansion, concomitant loss of T, B and erythroid cells, and an aggressive acute 

myeloid leukemia (mice succumbed within 4–5 weeks of injection). Overall, these studies shown 

the profound effects TET DKOs have in differentiation and cancer development. 
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Another characteristic of TET proteins is the genomic distribution of their 5mC-derived 

enzymatically oxidized products. TET deposition of 5hmC has been found to be strongly enriched 

in the gene bodies of the most highly expressed genes and in the most active enhancers as defined 

by the highest enrichment levels of both histone 3 lysine 4 monomethylation (H3K4me1) and 

lysine 27 acetylation (H3K27Ac) signals (Tsagaratou et al. 2014). This general genomic 

enrichment is found in euchromatic genomic regions as defined by Hi-C A compartment (principal 

component (PC) analysis of the Hi-C interaction matrix partitions the genome into A and B 

compartments; Lieberman-Aiden et al. 2009), and this observation is seen in haematopoietic 

stem/precursor cells, embryonic stem cells, pro-B cells and natural-killer-T/NKT cells, unlike 5mC 

that is present in both euchromatin and heterochromatin (Lopez-Moyado et al. 2019). 

However, besides multiple associations of 5hmC with genomic activity and correlations of 

levels of gene expression, to the best of our knowledge no evaluation of 5hmC as an actual 

predictor of gene expression has been reported in the literature. Before exploring the use of 5hmC 

as a predictor of gene expression, here we detail the 5hmC genomic deposition dynamics during 

naïve B cell differentiation (when activated with lipopolysaccharide (LPS) and Interleukin-4 (IL-

4)), that led us to observe a strong and gradual 5hmC signal enrichment on enhancers that are 

components of a superenhancer key for Aicda gene expression, required for efficient Class Switch 

Recombination (CSR) (Lio & Shukla et al. 2019). This observation further supported the idea of 

linking enhancers (as defined by 5hmC signal) with their target genes.  

In this work, we studied 5hmC deposition dynamics throughout the entire B cell 

differentiation process (5hmC signal enrichment surveyed at 24, 48 and 72 hours after stimulation) 

that allowed us to pinpoint regions where 5hmC was sharply increased. These “TET-regulated” 

enhancers tended to bind BATF as an upstream TF required for TET recruitment to these enhancers 
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and subsequent 5hmC deposition. This published study is followed by a description of our 

unpublished studies on the analysis of how 5hmC enrichment signal predicts gene expression; first, 

by the sole use of 5hmC enrichment in and around the genes; and second by the integration of 3D 

genome structure. 

In our study of the differences between activation of wildtype (WT) and TET2/3 DKO B 

cells, we found that CSR is affected as a result of a reduced expression of the gene Aicda, required 

for proper CSR, through a failed hydroxymethylation of two enhancers (here named TetE1 and 

TetE2) upstream of the Aicda’s TSS. We also found that BATF was required for proper 5hmC 

deposition at TetE2. In our study of the use of 5hmC enrichment to predict gene expression, we 

found that this stable DNA modification can be used to generate models that perform as well as, 

or even better than, state-of-the-art models using multiple histone marks. Finally, we employed 

Graph Convolution Networks (GCNs) where the graph’s nodes are 10 kb windows and edges 

represent an interaction among the 10 kb windows. Using these GCNs, we integrated the 3D 

genome organization with 5hmC signal enrichment when solving the gene expression prediction 

task. Using the GNNExpainer tool in key gene-containing nodes, we gave a relative score to all 

their interacting windows, where the higher the ranking the more important the connection was in 

making the gene expression prediction.  
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CHAPTER 1: Epigenomics analysis during murine B cell activation. 

 

1.1 Abstract 

 

TET enzymes are dioxygenases that promote DNA demethylation by oxidizing the methyl 

group of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). Here we report a close 

correspondence between 5hmC-marked regions, chromatin accessibility and enhancer activity in 

B cells, and a strong enrichment for consensus binding motifs for basic region-leucine zipper (bZIP) 

transcription factors at TET-responsive genomic regions. Functionally, Tet2 and Tet3 regulate 

class switch recombination (CSR) in murine B cells by enhancing expression of Aicda, encoding 

the cytidine deaminase AID essential for CSR. TET enzymes deposit 5hmC, demethylate and 

maintain chromatin accessibility at two TET-responsive elements, TetE1 and TetE2, located 

within a superenhancer in the Aicda locus. Transcriptional profiling identified BATF as the bZIP 

transcription factor involved in TET-dependent Aicda expression. 5hmC is not deposited at TetE1 

in activated Batf-deficient B cells, indicating that BATF recruits TET proteins to the Aicda 

enhancer. Our data emphasize the importance of TET enzymes for bolstering AID expression, and 

highlight 5hmC as an epigenetic mark that captures enhancer dynamics during cell activation. 
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1.2 Introduction 

TET proteins (Ten-Eleven-Translocation; TET1, TET2, TET3) are Fe(II)- and α-

ketoglutarate-dependent dioxygenases that catalyze the step-wise oxidation of 5-methylcytosine 

(5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine 

(5caC) (Wu et al. 2017; Tsagaratou et al. 2017). Together these oxidized methylcytosine (oxi-mC) 

bases are intermediates in DNA demethylation, and may also function as stable epigenetic marks. 

5hmC, the most stable and abundant product of TET enzymatic activity, is highly enriched at the 

most active enhancers and in the gene bodies of the most highly expressed genes, and its presence 

at enhancers correlates with chromatin accessibility (Tsagaratou et al. 2017; Lio et al. 2016). TET 

proteins regulate several fundamental biological processes including lineage commitment, and 

play important roles in embryonic, neuronal and haematopoietic development (Lio et al. 2016). 

TET proteins, particularly TET2 and TET3, have critical roles in B cell differentiation and 

malignancy (Tsagaratou et al. 2017). We and others have previously shown that deletion of the 

Tet2 and Tet3 with Mb1-Cre at early stages of mouse B cell development resulted in impaired light 

chain rearrangement and developmental blockade, and eventually developed an acute precursor-

B-cell-derived leukemia with 100% penetrance (Scott-Browne et al. 2017; Orlanski et al. 2016). 

Inducible deletion of Tet1 and Tet2 using Mx1-Cre promoted the development of acute 

lymphoblastic leukemia derived from precursor B cells, and global loss of Tet1 caused B cell 

lymphomas with an extended latency (Quivoron et al. 2011). In humans, TET2 mutations are 

frequently observed in Diffuse Large B Cell Lymphoma (DLBCL), a malignancy derived from 

germinal center (GC) B cells (Schmitz et al. 2018; Reddy et al. 2017), suggesting that TET proteins 

may regulate mature B cell function. However, due to the pleiotropic functions of TET proteins, 
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studies of TET-mediated gene regulation are best performed in systems where TET genes are 

deleted acutely rather than during development. 

After their development in the bone marrow, mature B cells migrate to peripheral lymphoid 

tissues where they encounter antigen and follicular T helper cells in GC, and participate in the 

generation of functional immune responses (De Silva et al. 2015). In GC, B cells diversify the 

variable regions of immunoglobulin (Ig) chains in a process known as somatic hypermutation 

(SHM) and also undergo Class Switch Recombination (CSR) to replace the constant region of 

immunoglobulin M (IgM) to other isotypes (IgG1, IgA, etc.). Both CSR and SHM are both 

orchestrated by the enzyme AID (Activation-induced cytidine deaminase, encoded by Aicda) 

(Chandra et al. 2015; Vaidynathan et al. 2015; Muramatsu et al. 2000). AID promotes CSR and 

SHM by generating DNA double-strand breaks at Ig switch regions and point mutations at Ig 

variable regions, respectively (Alt et al. 2013). Due to its high mutagenic potential (Casellas et al. 

2016; Robbiani et al. 2013), AID expression is normally restricted to activated B cells and is tightly 

regulated. 

Here we investigated the role of TET proteins during mouse B cell activation by mapping 

5hmC distribution genome-wide and integrating the data with previous studies of transcriptional 

and epigenetic changes during B cell activation (Kieffer-Kwon et al. 2017; Kieffer-Kwon et al. 

2013).   We deleted the Tet2 and Tet3 genes acutely using CreERT2 to avoid secondary effects 

caused by prolonged TET deficiency during differentiation. We show that TET2 and TET3 

regulate CSR by controlling the activation-induced up-regulation of AID mRNA and protein and 

that they act downstream of the basic region/leucine zipper (bZIP) transcription factor BATF 

(basic leucine zipper transcription factor, ATF-like), which is induced during B cell activation with 

more rapid kinetics than Aicda and binds concomitantly with TET proteins to two TET-responsive 
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elements in the Aicda locus, TetE1 and TetE2. Our study demonstrates the role of TET proteins in 

CSR in activated B cells and provides a detailed description of the general mechanism whereby 

TET proteins influence cell activation and differentiation.  
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1.3 Results 

B cell activation promotes genome-wide deposition of 5hmC. We immunoprecipitated 

genomic DNA with antibodies to cytosine-5-methylenesulfonate (CMS-IP) (Huang, et al. 2012; 

Pastor et al. 2011) to analyze the kinetics of genome-wide 5hmC distribution in murine B cells 

activated with lipopolysaccharide (LPS) and interleukin-4 (IL-4), a well-characterized in vitro 

system for studying CSR (Fig. 1.1A). The vast majority of 5hmC-marked regions (~160,000) were 

shared between pre- and post-activated B cells (Fig. 1.1B and Fig. S1.1A); of the ~9,500 

differentially hydroxymethylated regions (DhmRs) in 72h-activated versus naïve B cells, the 

majority (8,454) showed increased 5hmC (DhmR72h-up) whereas a much smaller fraction showed 

a decrease (DhmRdown) (Fig. 1.1B,C). DhmRs were typically located more than 10 kb from the 

closest transcription start site (TSS) (Fig. S1.1B), and their 5hmC levels progressively changed 

with time after activation (DhmR72h-up; Fig. 1.1D; DhmR72h-down; Fig. S1.1C).  

The oxidized methylcytosines produced by TET proteins are known intermediates in DNA 

demethylation (Tsagaratou et al. 2017; Pastor et al. 2013). To relate 5hmC to changes in DNA 

methylation, we compared 5hmC distribution in naïve and 72h-activated B cells with published 

whole-genome bisulfite sequencing (WGBS) data on B cells activated for 48h under similar 

conditions (Kieffer-Kwon et al. 2013). Although WGBS cannot distinguish 5mC and 5hmC 

(Huang et al. 2010), 5hmC is typically a small fraction (1-10%) of 5mC (Yue et al. 2016), thus we 

refer to the WGBS signal as “DNA methylation” here. Most (1097 of 1168, 94%) differentially 

methylated regions (DMRs) were demethylated at 48 hours and marked by 5hmC (Fig. S1.1D,E). 

Regions that showed increased 5hmC at 24, 48, and 72 hours (DhmR24h-up, DhmR48h-up, and DhmR72h-

up) also showed decreased DNA methylation (Fig. 1.1E and Fig. S1.1F). Overall, regions of 5hmC 

deposition correspond to regions of DNA hypomethylation during B cell activation, as expected 
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from the well-established role of 5hmC as an intermediate in DNA demethylation. Motif 

enrichment analysis of the 8454 DhmR72h-up and 1097 DMR48h-down regions showed that both were 

enriched in consensus binding sequences for transcription factors of the nuclear factor kB (NF-kB) 

(Rel homology domain) and bZIP families, as well as for “composite” IRF:bZIP motifs (Fig. 1.1F 

and Fig. S1.1G) (Li et al. 2012; Glasmacher et al. 2012; Murphy et al. 2013). 

To discern the relationship between 5hmC and enhancers, naïve and activated B cell 

enhancers, defined by H3K4 monomethylation (H3K4me1), were stratified based on the level of 

H3K27 acetylation (H3K27Ac), a modification that tracks with enhancer activity (Calo et al. 2013). 

In both sets of enhancers, 5hmC was most highly enriched at active (H3K4me1+ H3K27Ac+) 

relative to poised (H3K4me1+ H3K27Ac–) enhancers (Fig. 1.1G). Moreover, more than 75% of 

previously identified superenhancers in activated B cells, defined by H3K27Ac, overlapped with 

at least one DhmR72h-up region (Fig. 1.1H) (Meng et al. 2014). As an example, a 3’ distal element 

at the Ccr4 locus showed activation-dependent gain of 5hmC and H3K27Ac, associated with 

concomitant loss of methylation at specific CpGs and increased mRNA expression (Fig. S1.1I,J). 

5hmC was also associated with accessible chromatin defined by ATAC-seq (assay for transposase-

accesible chromatin using sequencing) (Scott-Browne et al. 2017; Orlanski et al. 2016; Tsagaratou 

et al. 2017), and kinetic analysis of active enhancers, defined as differentially active between naïve 

and 48h-activated B cells by high accessibility and high H3K27Ac, showed that 5hmC level 

positively correlated with enhancer activity (Fig. S1.1H). Together our data show that 5hmC 

modification and DNA demethylation correlates with enhancer activity during B cell activation. 

Comparison of WT and Tet2/3 DKO B cells identifies TET-responsive regulatory 

elements. Tet2 and Tet3 are the two major TET proteins expressed in B cells (Fig. 1.2A). To 

evaluate the role of TET proteins in regulating B cell function, we generated mice conditionally 
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deficient in Tet2 and Tet3, using CreERT2 and further introduced a Rosa26-LSL-YFP cassette to 

monitor Cre recombinase activity after tamoxifen treatment (LSL: LoxP-STOP-LoxP cassette in 

which a strong transcriptional stop is flanked by LoxP sites). CreERT2 Tet2fl/fl Tet3fl/fl Rosa26-LSL-

YFP (DKO) and control Tet2fl/fl Tet3fl/fl Rosa26-LSL-YFP (WT) mice were treated for 5 days with 

tamoxifen, after which WT and Tet2/3 DKO B cells were isolated and activated with LPS and IL-

4 (Fig. 1.2B). Both Tet2 and Tet3 were efficiently deleted in B cells (Fig. 1.2C), and the YFP+ 

cells showed similar frequencies of mature splenic follicular B cells (Fig. S1.2A,B). 

Global 5hmC levels assessed by DNA dot blot were similar in WT and Tet2/3 DKO B cells 

prior to activation but showed a perceptible decrease by 48h after activation, this may partially be 

explained due to 5hmC being passively lost as a function of cell division (Tsagaratou et al. 2017; 

Pastor et al. 2013) (Fig. S1.2C). Starting at 48h, 5hmC levels were substantially lower in Tet2/3 

DKO compared to WT B cells, indicating that Tet2 and Tet3 actively oxidize 5mC to 5hmC during 

B cell activation (Fig. S1.2C). Around 2,300 5hmC-enriched regions were significantly different 

between WT and DKO at 72h of activation, with substantially more regions gaining 5hmC in 

control compared to Tet2/3 DKO B cells at each time point examined (Fig. 1.2D,E); most were 

located > 10kb from the nearest TSS (Fig. S1.2D). Of 2,139 “TET-regulated” DhmRs with higher 

5hmC in WT compared to Tet2/3 DKO B cells (“WT>DKO DhmR”), 2020 (94.4%) significantly 

overlapped with DhmR72-up regions; with decreased DNA methylation at their centers (Fig. S1.2E), 

and were enriched for RHD, bZIP and composite IRF:bZIP motifs (Fig. 1.2F). 

Tet2 and Tet3 regulate Ig CSR. To assess the effect of Tet2/3 deletion on the antibody 

response in vivo, we treated Tet2 fl/fl Tet3fl/fl Rosa26-LSL-YFP CreERT2 and control Tet2 fl/fl Tet3fl/fl 

Rosa26-LSL-YFP mice for 5 days with tamoxifen, followed by immunization with NP-OVA in the 

footpads two days later (Fig. 1.3A). Acute deletion of Tet2/3 resulted in increased numbers of total 
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cells and B cells in draining popliteal lymph nodes by day 7 after immunization (Fig. S1.3A), 

consistent with our previous observations that Tet2/3 deficiency results in increased cell survival 

and/or proliferation (Tsagaratou et al. 2017). The overall percentage of germinal center (GC) B 

cells (CD19+ GL7+ Fas+) was similar between WT and DKO (Fig. 1.3B,C), but there was a 

significant increase in the frequency of NP-specific B cells (Fig. 1.3D). There was also a moderate 

(~25%) decrease in GL7 MFI in Tet2/3 DKO B cells compared with WT control GC B cells (Fig. 

S1.3B), indicating that although TET proteins are, in general, important for cell differentiation, 

acute deletion of Tet2/3 in B cells had only a limited effect on GC B cell differentiation. Because 

acute Tet2/3 deletion using the CreERT2 system affects multiple cell types, we did not investigate 

the in vivo B cell phenotype further in Tet2fl /f l Tet3f l /fl CreERT2 Rosa26 YFPLSL mice. The 

most notable phenotype in these mice, however, was the consistent decrease in CSR from IgM to 

IgG1 (Fig. 1.3E,F), demonstrating a role for TET proteins in regulating antibody responses in vivo, 

particularly the CSR. 

To determine if the CSR phenotype was B-cell-intrinsic, B cells from tamoxifen-treated 

mice were labeled with proliferation dye (Cell-trace Violet) and activated with LPS and IL-4 for 

4 days (Fig. 1.3G). Consistent with the CSR defect in vivo, we noticed a consistent decrease in 

IgG1 switching in Tet2/3 DKO B cells activated in vitro relative to WT B cells (Fig. 1.3H,I). The 

impaired CSR in Tet2/3 DKO is not due to Cre activity, as similar result was observed when 

CreERT2 Tet2+/+ Tet3+/+ Rosa26-LSL-YFP was used as control (Fig. S1.3C). The defect in CSR 

was cell-intrinsic, since it was also apparent when congenically-marked WT (CD45.1) and Tet2/3 

DKO (CD45.2) B cells were mixed and co-cultured (Fig. S1.3D). The difference was not due to 

altered proliferation, which was comparable between WT and Tet2/3 DKO B cells (Fig. 1.3H and 

Fig. S1.3E). Correlating with the decrease in CSR from IgM to IgG1, the expression of circular 
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γ1 transcript was decreased in Tet2/3 DKO B cells (Fig. 1.3J). Further, CSR to IgA was also 

decreased in Tet2/3 DKO relative to WT B cells activated with anti-CD40, IL-4, IL-5, and TGFβ 

(Fig. 1.3K-N). The loss of Tet2/3 also resulted in a decrease in the differentiation of CD138+ 

plasma blasts/cells after in vitro activation (Fig. S1.3F). Reconstitution of Tet2/3 DKO B cells 

with the enzymatically active catalytic domain of TET2 (Tet2CD) (Ko et al. 2013) restored CSR 

almost to control levels (Fig. S1.3, H-I), whereas an enzymatically inactive mutant of Tet2CD 

(Tet2CDHxD) was ineffective (Fig. S1.3G-I) (Zhang et al. 2015). Together, these results indicate 

that Tet2 and Tet3 are required for optimal CSR both in vitro and in vivo.  

Because the CSR defect in Tet2/3 DKO B cells was ~50% of control, we asked whether 

deletion of all three TET proteins might have a more striking effect. Consistent with the very low 

expression of Tet1 in mature B cells (Fig. 1.2A), the CSR in Tet1/2/3 TKO was comparable to that 

observed in Tet2/3 DKO mice (Fig. S1.3J,K). These results indicate that Tet2 and Tet3 are the 

major TET proteins that regulate CSR in B cells. 

Tet2 and Tet3 regulate expression of the cytidine deaminase AID. CSR is a highly 

regulated process and involves multiple pathways, including cytokine signaling and DNA repair 

(Methot et al. 2017). RNA-seq analysis identified a relatively small number of genes differentially 

expressed between WT and Tet2/3 DKO B cells under resting conditions and at different time 

points after activation (Fig. S1.4A,B); among these was Aicda, which encodes AID, the activation-

induced cytidine deaminase essential for CSR. qRT-PCR analysis confirmed a >50% decrease in 

Aicda mRNA expression in Tet2/3 DKO relative to WT B cells at each time point from 48 to 96 

hours post-activation (Fig. 1.4A-D, Fig. S1.4C,D), a phenotype reminiscent to the dampened CSR 

in the case of AID haploinsufficiency (Sernandez et al. 2008; Takizawa et al. 2008) (Fig. S1.4E-

J). Although Tet2 mRNA expression showed only minor changes in unstimulated versus 



 

 
 14

stimulated B cells (Fig. 1.2A), Tet2 protein expression was low in unstimulated and 24-hour-

stimulated B cells, with increased expression observed at 48 hours after stimulation (Fig. S1.4D). 

The late TET2 induction parallels the late kinetics of increase in 5hmC (Fig. 1.1C). 

To determine whether the decrease in AID expression was fully responsible for the CSR 

defect, we expressed WT and catalytically inactive AID (AIDH56R/E58Q) (Papavasiliou et al. 2002) 

in WT and Tet2/3 DKO B cells via retroviral transduction. Retroviral expression of catalytically 

active AID (AIDWT), but not inactive AIDH56R/E58Q, largely rescued the CSR defect in Tet2/3 

DKO B cells (Fig. 1.4C,D, bottom panels). Similar to previous observations (Muramatsu et al. 

2000), expression of AID in WT cells also increased the frequency of IgG1+ cells (Fig. 1.4C,D, 

top left and middle panels). Because Tet2/3 were not required for expression of the germline 

transcripts essential for CSR (Fig. S1.4K), the bulk of the CSR defect in Tet2/3 DKO B cells can 

be attributed to the decrease in expression of Aicda mRNA and AID protein, leading us to test the 

hypothesis that TET proteins control Aicda expression through distal regulatory element(s) of the 

Aicda gene cells (Fig. 1.4C,D, top left and middle panels). Despite their importance in Aicda 

expression, Tet2/3 were not required for the expression of μ and γ1 germline transcripts that are 

essential for CSR (Fig. S1.4J). These data suggest that the bulk of the CSR defect in Tet2/3 DKO 

B cells can be attributed to the decrease in expression of Aicda mRNA and AID protein, leading 

us to test the hypothesis that TET proteins control Aicda expression through distal regulatory 

element(s) of the Aicda gene.  

Genome-wide analyses identify TET-responsive regulatory elements in the Aicda 

locus. Multiple conserved regulatory elements influence Aicda expression (Fig. S1.5A), and their 

deletion markedly decreased Aicda expression in activated B cells (Kieffer-Kwon et al. 2013; 

Crouch et al. 2007; Huong Ie et al. 2013; Tran et al. 2010). Of these, the Aicda 5′ enhancer at −26 
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kb in the Mfap5 gene, the intergenic 5′ enhancers, and the intron 1 enhancer noticeably gain 

H3K27Ac and lose 5mC upon activation and have been collectively termed the Aicda 

“superenhancer” (Fig. 1.5A, middle and bottom tracks) (Kieffer-Kwon et al. 2013; Meng et al. 

2014). 

Chromatin immunoprecipitation sequencing (ChIP-seq) for TET2 showed that each of 

these regulatory elements was occupied by TET2 in 72-hour activated B cells (Fig. 1.5A, top two 

tracks). Among these, the −26-kb Mfap5 intronic region and the −8-kb 5′ intergenic region (here 

termed TetE2 and TetE1, respectively) were TET-regulated: B cell activation induced a TET-

dependent increase in 5hmC (Fig. 1.5B), placing them in the category of WT > DKO DhmRs (Fig. 

1.2D,E). TetE1 appears to be the prime target for TET2/3 due to its larger gain of 5hmC after 

activation (Fig. 1.5B). In contrast, regions such as the Aicda promoter were marked by 5hmC even 

before activation, indicating that the 5hmC at these regions was likely generated during a previous 

stage of B cell differentiation and then maintained until the emergence of naïve peripheral B cells. 

To confirm the importance of TetE1 in Aicda regulation, we deleted the enhancer using 

CRISPR in CH12F3 cells, a B cell line that can class-switch from IgM to IgA upon activation with 

anti-CD40/IL-4/TGFβ (Fig. S1.5B,C). We tested four clones with homozygous deletions; all 

showed decreased expression of Aicda mRNA, and in three of these, there was almost no 

detectable CSR (Fig. S1.5D,E), confirming a previous report in the context of a BAC transgene 

that TetE1 was essential for Aicda expression (Huong Ie et al. 2013).  B cell activation also induced 

hydroxymethylation at the IgH locus, most notably upstream of the IgG1 promoter (Fig. S1.5F). 

Given that Tet2/3 DKO B cells expressed similar levels of IgG1 germline transcripts (Fig. S1.4K) 

and that ectopic expression of AID could rescue the impairment of IgG1 CSR, the significance of 

TET-mediated DNA modification/demethylation at the IgH locus remains to be determined. 
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B cell activation induces strong H3K27Ac and DNA demethylation at TetE1 (Fig. 1.5A). 

Because bisulfite sequencing does not distinguish 5mC from 5hmC, we used oxidative bisulfite 

sequencing (oxBS-seq) to assess the levels of 5mC, 5hmC, and unmodified C at TetE1 in WT and 

Tet2/3 DKO cells [neither BS-seq nor oxBS-seq distinguish unmodified C from 5fC and 5caC, but 

these modified bases are ~10-fold and ~100-fold less abundant than 5hmC (Tsagaratou et al. 

2017)]. CpGs in both TetE1 and the Aicda promoter displayed similar levels of 5mC and 5hmC 

before activation (Fig. 1.5C and Fig. S1.5H; compare 0-hour panels). At 72 hours after activation, 

there was a substantial decrease in 5mC in WT B cells; in contrast, both TetE1 and the Aicda 

promoter were methylated in Tet2/3 DKO B cells (Fig. 1.5C, bottom panel; compare 72-hour 

panels). These results indicate that TET2 and TET3 regulate Aicda expression by binding to and 

depositing 5hmC at TetE1 and TetE2.  

TET2 and TET3 maintain chromatin accessibility at two Aicda TET-responsive 

elements, TetE1 and TetE2. Active regulatory regions are typically found in accessible regions 

of chromatin (Kundaje et al. 2015) and are marked by 5hmC (Scott-Browne et al. 2017; Tsagaratou 

et al. 2017). To assess the dynamics of chromatin accessibility, we performed ATAC-seq in B cells 

stimulated with LPS and IL-4. Activated B cells displayed progressive chromatin remodeling (Fig. 

S1.6A). Regions with increased 5hmC after activation (DhmR72h-up) also showed increased 

chromatin accessibility after activation and vice versa (Fig. S1.7A; blue box-and-whisker plots). 

To understand the relationship between TET function and chromatin accessibility, we performed 

ATAC-seq on WT and Tet2/3 DKO B cells activated as in Fig. 1.3G. Of a total of ~28,000 

accessible regions (Fig. S1.6B,C), only a minor fraction (~1.5%; 421 of 28,137) showed 

significant changes in accessibility between WT and Tet2/3 DKO B cells, and the differences were 

observed late, at 72 hours after activation (Fig. S1.6B,D). Of the 292 potentially TET-regulated 
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differentially accessible regions (DARs), defined as showing decreased accessibility in Tet2/3 

DKO compared with WT B cells (WT > DKO DARs), the majority were located distal to the TSS 

(Fig. S1.7B) and a significant proportion of these (110 of 292, 37.7%) showed a TET2/3- 

dependent increase in 5hmC at 72 hours compared with unstimulated cells (DhmR72up) (Fig. S1.6C 

and Fig. S1.7C, top). In contrast, the 129 DKO > WT DARs that were less accessible in WT 

compared with Tet2/3 DKO B cells and the 27,716 commonly accessible DARs were present in 

both TSS-proximal and TSS-distal regions and did not show significant changes in 5hmC (Fig. 

S1.6C, middle and bottom panels, and Fig. S1.7B,C). Analysis of DNA methylation at 48 hours 

after activation showed that WT > DKO DARs were further demethylated after activation, whereas 

DKO > WT DARs were already substantially demethylated in naïve B cells and showed no further 

changes after activation (Fig. S1.7D). Moreover, the WT > DKO DARs were enriched in bZIP 

and BATF:IRF motifs (Fig. S1.7E), similarly to those in DhmR72h-up (Fig. 1.1F) and WT > DKO 

DhmRs (Fig. 1.2F). Together, these data support our previously observed correlation of 5hmC 

modification with changes in chromatin accessibility.  

Focusing on the Aicda locus, we found that activation was associated with increased 

accessibility at the Aicda enhancers TetE1 and TetE2 (Fig. S1.6D). The 5hmC modification 

continuously increased at these two elements until 72h, with a higher level of deposition at TetE1 

(see Fig. 1.5B). In contrast, the time course of increase in chromatin accessibility was quite 

different at the two enhancers (Fig. S1.6D): TetE2 showed a rapid increase in accessibility apparent 

in both WT and Tet2/3 DKO B cells at 24 h following activation, whereas the time course of 

increase in TetE1 accessibility was slower, matching that of 5hmC deposition (compare Fig. 1.5B 

and Fig. S1.6D).  Consistent with the increased accessibility, several chromatin remodelers and 

histone acetyl-transferases including Brg1, Chd4, p300, and to a lesser extent, Gcn5, were 
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recruited to TetE1 and TetE2 in 24h activated B cells (Fig. S1.7F). Interestingly, we noticed a 

slight decrease in chromatin accessibility at TetE1 and TetE2 in Tet2/3 DKO B cells compared 

with WT cells at 72 hours, suggesting that TET proteins are important for maintaining the 

accessibility at these enhancers (Fig. S1.6E). Loss of TET proteins had no significant effect on 

chromatin accessibility at the IgH locus (Fig. S1.5G). Together, these data point to a consistent 

link between bZIP-family transcription factors, TET catalytic activity, and chromatin accessibility. 

Batf acts upstream of TET at Aicda enhancers. Before enhancers are established during 

development, cell lineage specification, or activation, certain key transcription factors bind to 

nucleosome-associated regions and recruit chromatin remodeling complexes and histone-

modifying enzymes to create active enhancers (Calo et al. 2013). To identify potential pioneer 

transcription factors for the Aicda locus, we took advantage of our previous motif enrichment 

analyses (Fig. 1.1F, Fig. 1.2F and Fig. S1.1G). We had observed strong enrichment for consensus 

binding motifs for bZIP transcription factors, at regions that progressively gained 5hmC as a 

function of activation (Fig. 1.1F, DhmRup), regions that lost DNA methylation upon activation 

(Fig. S1.1G, DMR48h-down), regions with higher 5hmC in WT compared with Tet2/3 DKO B cells 

(Fig. 1.2.F, WT > DKO DhmRs), and regions with higher accessibility in WT versus Tet2/3 DKO 

B cells (Fig. S1.7E, DAR72h WT > DKO). 

On the basis of these data, we focused on bZIP transcription factors expressed in activated 

B cells. Consistent with previous observations (Ise et al. 2011; Betz et al. 2010), Batf mRNA and 

protein were induced after activation (Fig. 1.6A and Fig. S1.8B) and their expression preceded 

that of Aicda, as expected if BATF regulated Aicda mRNA induction (Fig. S1.8A,B, and Fig. 

S1.4D). In contrast, expression of Bach1 and AP-1 (Fos and Jun) family members was either low 

throughout (Fosl1, Fosl2, JunD, and Bach1) or moderate to high in unstimulated B cells, 
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potentially because these cells contained a minor population of memory B cells that express high 

levels of Fos and Jun (Fig. S1.8C-E; and Immgen.org) (Heng et al. 2008). Given the kinetics, we 

examined the importance of BATF in subsequent experiments. 

BATF is essential for T and B cells during humoral responses (Ise et al. 2011; Betz et al. 

2010), and Batf-KO B cells are defective in CSR (Fig. S1.8F). Genome-wide analysis of Batf 

binding by ChIP-seq in 72-houractivated WT and Tet2/3 DKO B cells showed very few overall 

differences (Fig. S1.8G), indicating that BATF functioned upstream or independently of TET 

enzymes. Nevertheless, one of two distinguishable sets of BATF ChIP-seq peaks (cluster 2 in Fig. 

1.6B) was TETregulated, because the peaks in this cluster showed a progressive TET2/3-

dependent increase in 5hmC after activation (Fig. 1.6B,C). In contrast, BATF peaks in cluster 1 

showed no significant activationdependent increase in 5hmC (Fig. 1.6B, top panel). Overall, about 

onethird of regions with activation-induced 5hmC (DhmR72-up) overlapped with BATF peaks (Fig. 

S1.8H), indicating that in addition to BATF, other transcription factors also have a role in 

facilitating TET-mediated 5hmC generation at the Aicda locus. Despite this strong functional 

interaction, we did not observe a substantial direct protein-protein interaction between BATF and 

TET2 in coimmunoprecipitation experiments in which the effects of nucleic acids were excluded 

(Fig. S1.8I), suggesting that the interaction is dependent on additional factors. 

BATF bound strongly at the TetE1 and TetE2 enhancers in the Aicda locus and, to a lesser 

extent, to the −21-kb intergenic enhancer located between TetE1 and TetE2 (Fig. 1.6D, 72-hour 

WT and DKO; second and third tracks). Consistent with the lack of BATF expression in 

unstimulated cells, there was no enrichment of BATF occupancy at the Aicda enhancers at 0 hours 

(Fig. 1.6D, 0-hour WT; top track). This binding pattern resembles that of TET2 (Fig. 1.5A), as 

well as that of E2A and PU.1 (Fig. 1.6D) (Willis et al. 2017; Wöhner et al. 2016; Gloury et al. 
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2016). Moreover, BATF and JUNB associated with TETE1 and TETE2 in a human B cell 

lymphoblast (Fig. S1.8L), suggesting that the binding of BATF to these enhancers is evolutionarily 

conserved. To determine whether BATF acted upstream of TET, we analyzed 5hmC deposition at 

the TET-responsive element TetE1 in WT and Batf-deficient B cells. We found unambiguously 

that the absence of BATF abolished activation-induced hydroxymethylation at TetE1 (Fig. 1.6E). 

Our results are consistent with the hypothesis that BATF facilitates the recruitment of TET2 and/or 

TET3 to TetE1 and TetE2 and increases Aicda expression by promoting 5hmC modification and 

DNA demethylation at these upstream Aicda enhancers. 

As mentioned above, BATF is essential for Aicda regulation. However, we cannot rule out 

the involvement of additional transcription factors, including other bZIP family members, in this 

process. Although IRF4 is required for Aicda expression and binds to TetE1 (Klein et al. 2006; 

Sciammas et al. 2006), 5hmC levels at TetE1 were unaffected in Irf4-deficient B cells after 

LPS/IL-4 stimulation (Fig. S1.8M). Thus, depending on cell type and conditions of stimulation, 

certain transcription factors preferentially function together with TET proteins, whereas others 

could be responsible for additional aspects of locus remodeling and gene expression. 
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1.4 Discussion 

TET proteins (TET1, TET2 and TET3) oxidize 5mC to 5hmC, a stable epigenetic mark 

that is the most abundant of the three oxi-mC intermediates for DNA demethylation. Due to the 

pleiotropic effects of TET proteins in cells, it has been challenging to address the specific roles of 

TET proteins in mice with prolonged TET deficiency. Here, to circumvent this issue, we used the 

inducible tamoxifen-CreERT2 system to delete Tet2 and Tet3 in mature B cells, a well-established 

system for the molecular analysis of gene regulation during cell activation. Our data show clearly 

that Tet2 and Tet3 – the major TET proteins expressed in B cells – are required for efficient class 

switch recombination (CSR) both in vivo and in cultured cells. A primary mechanism involves 

TET-mediated regulation of the expression of Aicda, the essential DNA cytosine deaminase for 

CSR. BATF, potentially with other transcription factors, helps recruit TET proteins to two major 

TET-responsive regulatory elements that we have newly defined in the Aicda locus, TetE1 and 

TetE2. TET2 and TET3 convert 5mC to 5hmC at these regulatory elements, leading to DNA 

demethylation, sustaining enhancer accessibility and augmenting Aicda expression. 

The biological consequences of TET loss-of-function are determined by several factors: 

the time course of Tet2 and Tet3 gene deletion, the stability of Tet2 and Tet3 mRNA and protein, 

and the rate of cell division which determines the rate of passive (i.e. replication-dependent) 

dilution of 5hmC. At each cell division, hemi-methylated CpGs are recognised by the maintenance 

UHRF1/DNMT1 DNA methyltransferase complex and converted back to symmetrically 

methylated CpGs, whereas hemi-hydroxymethylated CpGs are ignored and so are diluted by half 

(Wu et al. 2017; Tsagaratou et al. 2017). Consequently, 5hmC is present at comparable levels in 

quiescent (non-dividing) WT and Tet2/3 DKO B cells, thus enabling us to study the effects of 

acute TET deletion in activated, proliferating B cells. The progressive replication-dependent loss 



 

 
 22

of 5hmC and consequent dilution of both 5mC and 5hmC is likely to be required for optimal gene 

expression, explaining the long-standing observation that the induction of Aicda expression during 

B cell activation, and the induction of cytokine genes during Th2 differentiation, are both tightly 

coupled to cell division (Rush et al. 2005; Bird et al. 1998). 

An optimal level of AID is crucial to maintain the necessary balance between effective 

antibody immune responses and unintentional C > T mutations caused by AID-mediated DNA 

cytidine deamination. Although Aicda haploinsufficiency results in dampened antibody responses 

(Fig. S1.4, E to J) (Sernandez et al. 2008; Takizawa et al. 2008), uncontrolled AICDA expression 

is associated with B cell malignancies (Compagno et al. 2017). Thus, the level and activity of AID 

are meticulously controlled by diverse mechanisms including a tight transcriptional regulatory 

program (Zan et al. 2015). At the Aicda locus, at least six regulatory elements have been identified 

(Fig. S1.5A); five of them, located at distances ranging from −29 to +5 kb relative to the TSS, are 

collectively termed the Aicda superenhancer (Kieffer-Kwon et al. 2013; Meng et al. 2014). The 

enhancers at −26, −21, −8, and +13 kb are all necessary for inducing Aicda expression in activated 

B cells, on the basis of deletion of individual enhancers in mice and the CH12 B cell line (Huong 

Ie et al. 2013; Tran et al. 2010). Even in naïve B cells where Aicda is not expressed, the Aicda 

promoter is already highly enriched in 5hmC and the −21-, intronic, and +13-kb Aicda enhancers 

display 5hmC and H3K27Ac (Fig. S1.5A). The 5hmC modification at the −26-, −21-, and +13-kb 

Aicda enhancers is apparent as early as the pro–B cell stage of B cell development (Scott-Browne 

et al. 2017), suggesting that TET-mediated 5hmC modification acts to “bookmark” regulatory 

elements necessary for proper gene expression in progeny cells after activation. 

The vast majority of 5hmC-marked regions are present in common between naïve and 

activated mature B cells (this study) and between WT and TET-deficient invariant natural killer T 
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cells (iNKT) cells (Tsagaratou et al. 2017), supporting the hypothesis that most 5hmC-marked 

regions in any given cell type were laid down during previous developmental stages and thus are 

constitutively modified. In contrast, activationinduced 5hmC modification occurs at only a few 

distal elements in B cells (Fig. 1C), and 5hmC levels at these elements correlate strongly with 

activation-induced increases in enhancer activity defined by H3K27Ac (Fig. 1.1G) (Tsagaratou et 

al. 2014). Moreover, the majority of previously described B cell superenhancers (Kieffer-Kwon et 

al. 2013; Meng et al. 2014) harbor at least one activationinduced 5hmC-modified regulatory 

element (Fig. 1.1H). In the particular case of Aicda, we identified activation-induced 5hmC 

modification at two major TET-responsive elements, TetE1 and TetE2, both part of a 

superenhancer cluster located 5′ of the Aicda gene (Fig. 1.5A) (Kieffer-Kwon et al. 2013; Meng 

et al. 2014). 5hmC modification at these elements was apparent by 48 hours (Fig. 1.5B), preceding 

the marked up-regulation of Aicda mRNA at 72 hours (Fig. S1.4C). Tet2/3 deficiency almost 

eliminated the activationinduced 5hmC modification at both enhancers and resulted in diminished 

expression of both Aicda mRNA and AID protein (Fig. 1.4A,B, Fig. 1.5B and Fig. S1.4C). Thus, 

our in vitro data indicate that TET proteins and 5hmC are important for Aicda expression by 

enabling the TetE1 and TetE2 enhancers to function at full capacity. However, we cannot rule out 

that in addition to decreasing AID expression, TET deficiency affects CSR indirectly by impeding 

B cell differentiation in vivo. 

Studies from our lab and others have implicated TET proteins and 5hmC in regulating 

chromatin accessibility. For instance, TET proteins were shown to be required for demethylation 

of evolutionarily conserved enhancers during zebrafish development, and morpholino-mediated 

knockdown of Tet1/2/3 resulted in decreased enhancer accessibility (Rush et al. 2005). In 

mammals, we have shown that Tet2/3-deficiency results in lower accessibility of enhancers during 
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T and B cell development (Scott-Browne et al. 2017; Papavasiliou et al. 2004). However, these 

steady state studies provide limited mechanistic insights. Here, through systematic analyses of 

5hmC modification and chromatin accessibility kinetics during B cell activation, we show that 

5hmC displays a time-dependent increase at regions that are differentially accessible between WT 

and Tet2/3 DKO B cells during; moreover, TET proteins are important for sustaining enhancer 

accessibility (Fig. 1.6E; Fig. S1.6E). We speculate that enhancer methylation limits enhancer 

output through recruitment of repressive complexes associated with a variety of proteins that bind 

methylcytosine or methylated CpGs (Bird et al. 1998), and that TET-mediated CpG 

hydroxymethylation and subsequent DNA demethylation are required to maintain enhancer 

accessibility, perhaps through recruitment of CXXC domain proteins such as Cpf1, a component 

of the SETD1 H3K4 methyltransferase complex (Compagno et al. 2017). 

Our data strongly suggest that the bZIP transcription factor BATF is a major bZIP 

transcription factor responsible for TET recruitment to the Aicda locus, consistent with the 

identification that the bZIP motif is the singularly most enriched motif that correlated with DNA 

demethylation after B cell activation in human (Oakes et al. 2016). BATF is induced at the mRNA 

level before Aicda induction in activated B cells (Fig. 1.6A), and Batf deficiency in B cells is 

associated with a marked impairment of AID expression and CSR (Ise et al. 2011; Betz et al. 2010). 

Although loss of TET2 and TET3 had no significant effect on global BATF binding (Fig. 1.6B 

and Fig. S1.8G), BATF was required for 5hmC modification at TetE1 (Fig. 1.6E). Composite 

bZIP:IRF motifs and AP-1 motifs that support BATF:JUN:IRF and BATF:JUN cooperation, 

respectively, were enriched in our genome-wide 5hmC, ATAC, and DNA methylation datasets 

(Fig. 1.1F and Fig. 1.2F and Fig. S1.1G and Fig. S1.7E), consistent with previous findings that B 

cells lacking BATF or IRF4/IRF8 show impaired Aicda induction and CSR (Ise et al. 2011; Betz 
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et al. 2010; Klein et al. 2006; Sciammas et al. 2006; Lee et al. 2006). We propose that together 

with additional transcription factors, BATF:JunB and BATF:IRF facilitate the recruitment of TET 

proteins as well as chromatin remodeling complexes to diverse enhancers including the Aicda 

enhancers TetE1 and TetE2 in activated B cells, thereby promoting enhancer accessibility, 5hmC 

deposition, and DNA demethylation. We note, however, that the phenotype of Batf-KO mice and 

B cells is considerably more severe than that of Tet2/3 DKO mice and B cells. Thus, TET2/3 

proteins likely function as one of several modulators of BATF function in CSR. 

Our data emphasize the utility of 5hmC mapping for easy, one-step analysis of 

transcriptional and epigenetic landscapes in any cell type of interest. 5hmC is a quintessential 

epigenetic modification that marks the most highly enriched at active enhancers and the gene 

bodies of highly transcribed genes, and the relative levels of 5hmC at enhancers and gene bodies 

provide good estimates of enhancer function and the magnitude of transcription, respectively 

(Tsagaratou et al. 2014). 5hmC mapping by CMS-IP sufficed to identify all known enhancers in 

the Aicda locus, in a manner that was superior to both H3K27Ac and Tet2 ChIP-seq, and changes 

in 5hmC identified enhancers relevant to any particular process of cell activation or differentiation 

separately from all enhancers in the genome. Given its high chemical stability, the fact that its 

measurement requires only purified DNA, and the availability of methods for its sensitive and 

specific detection, 5hmC is an appealing epigenetic mark for studying gene regulation. Overall, 

5hmC distribution contains information analogous to those from ATAC-seq and ChIP-seq for 

enhancer histone marks, effectively providing a transcriptional history of any given cell type 

written in DNA. If the genome is akin to an encyclopedia, 5hmC highlights those entries most 

relevant to a particular biological process.  
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1.5 Material and Methods 

Mice. Tet2fl/fl and Tet3fl/fl mice were generated as previously described (54,55). C57BL/6J 

(000664), Ubc-CreERT2 (008085; described as CreERT2 herein), Rosa26-LSL-EYFP (006148), 

and AID-Cre (007770) were obtained form Jackson Laboratory. All mice used were 8-16 weeks 

in the C57BL/6 background and kept in specific-pathogen free animal facilitate at La Jolla Institute 

and were used according to protocols approved by the Institutional Animal Care and Use 

Committee. To induce CreERT2-mediated deletion, Cre-expressing and control mice were 

intraperitoneally injected with 2 mg tamoxifen (Sigma) dissolved in 100 uL corn oil (Sigma) daily 

for 5 days.  

B cell isolation and class switch recombination (CSR). B cells were isolated with 

EasySep Mouse B cell isolation kit (Stem Cell Technology, Canada) from splenocytes. To induce 

class switch recombination from IgM to IgG1, B cells (5x105-1x106 cells/ mL) were activated with 

25 µg/mL LPS from E. coli O55:B5 (Sigma, St. Louis, MO) and 10 ng/mL rmIL-4 at 37°C 5% 

CO2. For IgA switching, cells were activated with anti-CD40 (1 µg/mL, clone 1C10, Biolegend), 

rmIL-4 (10 ng/mL, Peprotech), rmIL-5 (10 g/mL, Peprotech), and rhTGFβ1 (1 ng/mL). Media 

were composed of RPMI1640 (Thermo Fisher, Waltham, MA) supplemented with 10% FBS, 1x 

MEM non-essential amino acids, 10 mM HEPES, 2 mM Glutamax, 1 mM sodium pyruvate, 55 

µM 2-mercaptoethanol, and 50 µg/mL gentamicin (all from Thermo Fisher, Waltham, MA). To 

enhance CreERT2-mediated deletion, cells from CreERT2 mice were cultured in the presence of 1 uM 

4-hydroxytamoxifen (Tocris). All cytokines used above were from Peprotech (Rocky Hill, NJ).  

Immunization. For 4-hydroxy-3-nitrophenylacetyl-conjugated ovalbumin (NP-OVA; 

Biosearch) immunization, the hapten-conjugated protein was diluted to 1 mg/mL in PBS was 

mixed with 1 volume of Alhydrogel (Invivogen) and injected into hind footpads (10 µg in 20 µL 
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per injection). Germinal center response was analyzed 7 days later and the two draining popliteal 

lymph nodes were pooled for analysis. Hapten-specific B cells were identified by positive staining 

with NP-phycoerythrin (BioSearch Technologies).  

Retroviral transduction and two-step CSR. Retrovirus was produced by transfecting 

PlatE cells with MSCV-based retroviral vectors and pCL-Eco. Naïve B cells were stimulated with 

5 µg/mL F(ab')₂ goat anti-mouse IgM (Jackson Immuno Research) and 10 µg/mL LPS at 1x106 

cells/mL for 24-48 hours. Retrovirus was added to the cells in the presence of 20mM HEPES and 

0.8 µg/mL Polybrene (Millipore) and centrifuged at 3,000 rpm at 32°C for 90 mins. Cells were 

transferred back to 37°C 5% CO2 incubator for another 24 hours. To induce CSR, cells were 

washed once with warm media and activated with LPS and IL-4 as above for 48 hours. Under this 

condition, CSR was inhibited and started to class switch only after LPS/IL-4 activation. 

Flow cytometry. Primary cells and in vitro cultured cells were stained in FACS buffer (1% 

bovine serum albumin, 1mM EDTA, and 0.05% sodium azide in PBS) with indicated antibodies 

for 30 mins on ice. Cells were washed and then fixed with 1% paraformaldehyde (diluted from 4% 

with PBS; Affymetrix) before FACS analysis using FACS Canto II and FACS LSR II (BD 

Biosciences). Antibodies and dye were from BioLegend, eBioscience, and BD Pharmingen. Data 

were analyzed with FlowJo (FlowJo LLC, Ashland, OR).  

Immunoblotting. Proteins isolated from B cells with RIPA buffer were resolved using 

NuPAGE 4-12% Bis-Tris gel (ThermoFisher) and transferred from gel to PVDF membrane using 

Wet/Tank Blotting Systems (Bio-Rad). Membrane was blocked with 5% non-fat milk (Bob's red 

mill) in TBSTE buffer (50 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.05% Tween-20, 1 mM EDTA), 

incubated with indicated primary antibodies, followed by secondary antibodies conjugated with 
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horseradish peroxidase (HRP) and signal was detected with enhance chemiluminescence reagents 

and X-ray film.  

Coimmunoprecipitation. Coimmunoprecipitation was performed similar to previously 

described (Scott-Browne et al. 2017). Briefly, in vitro activated B cells (48 hours) were washed 

twice with cold PBS and then resuspended in swelling buffer [5 mM tris (pH 7.5), 2 mM MgCl2, 

and 3 mM CaCl2] at 10 × 106  cells/ml. After 10 min on-ice incubation, cells were pelleted (400g, 

5 min) and resuspended in swelling buffer with 10% glycerol. An equal volume of lysis buffer 

(1% NP-40 in swelling buffer with 10% glycerol) was added to the cells with constant mixing. 

Cells were incubated on ice for 5 min, pelleted (400g, 5 min) and resuspended in buffer C [10 mM 

Hepes (pH 7.9), 400 mM NaCl, and 1 mM EDTA] supplemented with benzonase (500 U/ml; 

Sigma) at 10 × 106  cells/ml, and incubated at 4°C for 30 min with constant mixing. Debris was 

removed by centrifuge at 13,000 rpm for 10 min, and supernatant (nuclear fraction) was recovered. 

An equal volume of 2× conversion buffer [10 mM tris-HCl (pH 7.5), 280 mM NaCl, 1 mM EDTA, 

1 mM EGTA, 0.2% sodium deoxycholate, and 0.2% Triton X-100] was added to the nuclear 

proteins. For immunoprecipitation, 10 ug of rabbit anti-TET2 (Abcam) or control rabbit Ig (Santa 

Cruz Biotechnology) was added to the nuclear extract with 30 µl of protein A Dynabeads (Thermo 

Fisher Scientific) in the presence of benzonase (500 U/ml) and ethidium bromide (10 µg/µl), both 

of which inhibit the indirect binding between nuclear proteins via DNA. Reaction was carried out 

overnight at 4°C and washed three times with RIPA buffer without SDS [50 mM tris-HCl (pH 8.0), 

150 mM NaCl, 1 mM EDTA, 0.5% sodium deoxycholate, and 1% NP-40]. Proteins were eluted 

from beads by heating at 70°C for 10 min with 1× LDS (lithium dodecyl sulfate) sample buffers 

(Thermo Fisher Scientific) with 10% 2-mercaptoethanol (Sigma). Immunoprecipitated proteins 
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were analyzed as described above using immunoblotting with Rabbit TrueBlot Anti-Rabbit IgG 

HRP (Rockland) as secondary antibody. 

RNA extraction, cDNA synthesis, and quantitative RT-PCR. Total RNA was isolated 

with RNeasy plus kit (Qiagen, Germnay) or with Trizol (ThermoFisher, Waltham, MA) following 

manufactures’ instruction. cDNA was synthesized using SuperScript III reverse transcriptase 

(ThermoFisher) and quantitative RT-PCR was performed using FastStart Universal SYBR Green 

Master mix (Roche, Germany) on a StepOnePlus real-time PCR system (ThermoFisher). Gene 

expression was normalized to Gapdh. 

Bisulfite- (BS) and oxidative-bisulfite- (oxBS) sequencing. The BS and oxBS procedures 

were performed as previously described (Yue et al. 2016). Briefly, three PCR products containing 

C, mC, or hmC pertaining to different regions of ʎ phage genome were used as spike-ins at a ratio 

of 1:200 of the genomic DNA. 1.5 µg of genomic DNA mixed with spike-ins was ethanol 

precipitated of which 1 µg of the DNA was oxidized with potassium perruthenate (KRuO4; Sigma) 

prior to bisulfite (BS) treatment (for oxBS) using MethylCode bisulfite conversion kit 

(ThermoFisher) and 0.5 µg of DNA was directly used for BS treatment. The BS and oxBS treated 

DNA were amplified using respective PCR primers and as well as primers specific to the spike-in 

PCR products with KAPA Uracil+ PCR mix (Roche). The amplified products were pooled and 

libraries were prepared using the NEB Ultra II library preparation kit (NEB) according the 

manufacturer. The libraries were sequenced paired-end 250bp by 250bp using MiSeq with the 

MiSeq reagent kit v2 (500-cycles; Illumina). 

Genome-wide 5hmC mapping by cytosine-5-methylenesulfonate 

immunoprecipitation (CMS-IP). Techniques for immunoprecipitation of DNA with antibodies 

are plagued by the fact that Igs nonspecifically immunoprecipitate DNA sequences containing CA 
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and other DNA repeats (Lentini et al. 2018). However, CMS is a derivative formed only after the 

reaction of 5hmC with sodium bisulfite, and anti-CMS antibodies recognize CMS with strong 

sensitivity and selectivity (Pastor et al. 2011). Lentini and colleages (Lentini et al. 2018) showed 

that the CMS-IP method is free of the nonspecific background of immunoprecipitation of DNA 

repeats, most likely because bisulfite treatment results in C > T conversions and/or single-stranded, 

as supposed to doublestranded, DNA was used for IP (57).  

CMS-IP was performed essentially as previously described (Scott-Browne et al. 2017; 

Huang, et al. 2012; Pastor et al. 2011). Briefly, genomic DNA isolated from naïve and activated B 

cells was spiked with unmethylated lambda phage cI857 Sam7 DNA (Promega, Madison, WI, 

USA) and a PCR amplicon from a puromycinresistant gene at a ratio of 200:1 and 100,000:1, 

respectively. DNA (5 to 10 µg in 130 µl tris-EDTA buffer) was sheared with a Covaris E220 using 

microTUBE for 4 min. DNA was cleaned up with Ampure XP beads, processed with NEBNext 

End Repair and A-tail Modules (NEB, Ipswich, MA, USA), and ligated to methylated Illumina 

adaptors (NEB). DNA was then bisulfite-treated (MethylCode, Thermo Fisher Scientific), 

denatured, and immunoprecipitated with anti-CMS serum (in-house) and a mixture of protein A 

and G Dynabeads (Thermo Fisher Scientific). Because our goal for this study was to identify 

regions that undergo significant activation-induced 5hmC modification after LPS + IL-4 

stimulation, we normalized the data within each sample using total sequencing read counts for 

each individual time point, without using 5hmC-containing oligonucleotides as spike-ins to 

consider the progressive dilution of 5hmC that occurs as a function of cell division (Fig. S1.2C). 

Libraries for immunoprecipitated DNA were generated by PCR with barcoded primers (NEBNext 

Multiplex Oligos for Illumina; NEB) for 15 cycles using KAPA HiFi HotStart Uracil+ ReadyMix 
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(Roche), followed by a cleanup with Ampure XP beads (Beckman Coulter), and sequenced with a 

HiSeq 2500 (Illumina, San Diego, CA, USA) with paired-end 50-bp reads. 

Locus specific analysis of 5hmC with AbaSI-qPCR. Genomic DNA (200 ng) was treated 

with T4 beta-glucosyltransferase (ThermoFisher) in the presence of UDP-glucose to glycosylate 

5hmC at 37°C overnight. Half of the reaction was digested with AbaSI (NEB), which is 

specifically active for glycosylated 5hmC, for 4 hours at 25°C followed by 15 mins at 65°C to 

inactivate enzymes. The uncut sample was processed as above without the addition of AbaSI. 

Equal amount of DNA from the above reactions was used as template for real-time PCR as 

described for RNA qRT-PCR using primers TetE1-CMS-qF and TetE1-CMS-qR. To monitor the 

degree of digestion, samples were spiked-in 1 pg control DNA with a single 5hmC-modified CpG 

(EpiMark 5-hmC and 5-mC Analysis Kit; NEB). The relative amount of 5hmC was calculated by 

the percentage of decrease in qPCR signals in digested half relative to undigested half. As control 

to monitor non-specific digestion (not show), a genomic region containing CpG motifs but without 

5hmC modification in B cells (Foxp3 CNS2) was used as a control with Foxp3-CNS2-qF and 

Foxp3-CNS2-qR.  

DNA dot blot.  DNA dot blot was performed as previously described (Scott-Browne et al. 

2017; Yue et al. 2016). To analyze 5hmC abundance, genomic DNA was treated with sodium 

bisulfite as above. DNA was diluted two-fold serially with TE buffer, denatured in 0.4 M sodium 

hydroxide and 10 mM EDTA at 95°C for 10 mins, and then immediately chilled on ice. Equally 

volume of ice-cold 2 M ammonium acetate pH 7.0 was added and incubated on ice for 10 mins. 

Denatured DNA were spotted on a nitrocellulose membrane using a Bio-Dot apparatus (Bio-Rad), 

washed with 2x SSC buffer (300 mM NaCl and 30 mM sodium citrate), and baked in a vacuum 

oven at 80°C for 2 hours. To detect CMS, membrane was rehydrated with TBSTE buffer and 
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blocked with 5% non-fat milk (Bob's red mill) in TBSTE buffer. CMS was detected with primary 

rabbit anti-CMS antisera (in house) following the procedures above for Immunoblotting. 

Chromatin Immunoprecipitation sequencing (ChIP-seq). Chromatin 

immunoprecipitation was performed as described before (Scott-Browne et al. 2017). Briefly, cells 

were fixed with 1% formaldehyde (ThermoFisher) at room temperature for 10 mins at 1x106 

cell/mL in media, quenched with 125 mM glycine, washed twice with ice cold PBS. Cells were 

pelleted, snap-froze with liquid nitrogen, and store at -80°C until use. For Tet2-ChIP, activated 

cells were centrifugated at 250 x g for 5 mins and cell pellets were resuspended in 37°C PBS with 

2mM disuccinimidyl glutarate to crosslink proteins for 30 mins at room temperature. 

Formaldehyde was added to a final concentration of 1% and the cells were incubated at room 

temperature for 10 mins with nutation. Quenching and cell storage were performed as above. To 

isolate nuclei for sonication, cell pellets were thawed on ice and lysed with lysis buffer (50 mM 

HEPES pH 7.5, 140 mM NaCl, 1mM EDTA, 10% glycerol, 0.5% NP40, 0.25% Triton-X100) for 

10 mins at 4°C with rotation, washed once with washing buffer (10 mM Tris-HCl pH 8.0, 200 mM 

NaCl, 1 mM EDTA, 0.5 mM EGTA) and twice with shearing buffer (10 mM Tris-HCl pH 8.0, 1 

mM EDTA, 0.1% SDS). Nuclei were resuspended in 1mL shearing buffer and sonicated with 

Covaris E220 using 1 mL milliTUBE (Covaris, Woburn, MA) for 18-20 minutes (Duty Cycle 5%, 

intensity 140 Watts, cycles per burst 200). After sonication, insoluble debris was removed by 

centrifugation at 20,000 x g. Buffer for chromatin was adjusted with 1 volume of 2x conversion 

buffer (10 mM Tris-HCl pH 7.5, 280 mM NaCl, 1 mM EDTA, 1mM EGTA, 0.2% sodium 

deoxycholate, 0.2% Triton-X100, 1% Halt protease inhibitors with (for H3K27Ac) or without (for 

BATF, Tet2) 0.1% SDS. Chromatin was pre-cleared with washed protein A dynabeads 

(ThermoFisher) for 2 hours, incubated with antibodies and protein A dynabeads overnight (all 
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procedures were at 4°C with rotation). For H3K27Ac ChIP, bead-bound chromatin was washed 

twice with RIPA buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, 0.5% sodium 

deoxycholate, 1% NP-40, 0.1% SDS), once with high salt wash buffer (50 mM Tris-HCl pH 8.0, 

500 mM NaCl, 1 mM EDTA, 1% NP-40, 0.1% SDS), and once with TE (10 mM Tris-HCl pH 8.0, 

1 mM EDTA). For BATF ChIP, all wash buffers were as above but without SDS. For Tet2 ChIP, 

beads were washed three times with RIPA buffer without SDS and once with TE. Chromatin was 

eluted from beads with elution buffer (100 mM NaHCO3, 1% SDS, 1 mg/mL RNaseA; Qiagen) 

twice for 30 mins each at 37°C with constant shaking. NaCl and proteinase K (Ambion) were 

added to the eluted chromatin at concentrations of 250 mM and 0.5 mg/mL, respectively, and de-

crosslinked at 65°C overnight with constant shaking. DNA was purified with Zymo ChIP DNA 

Clean & Concentrator-Capped Column (Zymo Research, Irvine, CA). Library was prepared with 

NEB Ultra II library prep kit (NEB) following manufacture’s instruction and was sequenced on an 

Illumina Hiseq 2500 (single-end 50 bp reads).  

ATAC-seq. Procedures were as described (Scott-Browne et al. 2017). Briefly, 50,000 cells 

were collected by centrifugation and washed once with 50uL ice-cold PBS and centrifuged at 600 

xg for 5 mins at 4°C. Cell pellets were resuspended in 50 µL of cold lysis buffer (10mM Tris-HCl 

pH 7.4, 10 mM NaCl, 3 mM MgCl2, 0.1% IGEPAL CA-630) and spin down immediately at 500 

xg for 10 mins at 4°C. Supernatant was discarded and nuclei were resuspended in 50µL 

transposition reaction mix (25µL 1x TD buffer fom Illuminia, 2.5µL Tn5 transposase, 22.5µL 

H2O), incubated at 37°C for 30 mins, and DNA was purified with a Qiagen MinElute kit (Qiagen). 

Library was amplified with KAPA HiFi HotStart Real-time PCR Master Mix (Roche) using 

indexed primers and sequenced on an Illumina Hiseq 2500 (paired-end 50 bp reads). 
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RNA-sequencing with Smart-seq. Smart-seq was performed as described previously 

(Tsagaratou et al. 2017; Picelli et al. 2014). Briefly, total RNA was isolated from naïve and 

activated B cells with Trizol (ThermoFisher) and the integrity of the RNA was accessed with 

TapeStation RNA Analysis ScreenTape or Bioanalyzer RNA pico kit (Agilent). 10ng of RNA was 

reverse transcribed using oligo-dT30 VN primer in the presence of Template Switching Oligo (TSO) 

with SuperScript II reverse transcriptase. cDNA was pre-amplified with IS PCR primers and PCR 

products were cleaned up with Ampure XP beads. One ng of PCR product was used to generate 

library using NexteraXT library prep kit (Illumina) and tagmentated DNA was amplified for a 12 

cycles PCR and purified with AmpureXP beads. Libraries were sequenced on an Illumina Hiseq 

2500 with single-end 50 bp reads.  

Statistical analyses. Statistical analyses and bar plots were performed and plotted with 

Prism 7 or R (v3.3.3). The bar graph and dot plots shown indicate mean and SE. Most experiments 

were analyzed using two-tailed unpaired t test or Wilcoxon rank-sum test, as indicated in the figure 

legends unless otherwise stated. The reference genome used was mm10. Heatmaps and profile 

plots were generated using DeepTools (Ramírez et al. 2016).  

CMSIP analysis. Paired-end reads (50bp) were mapped to the mouse genome mm10 

GRCm38 (Dec. 2011) from UCSC, using BSMAP (V.2.74) (-v 4 -R -n 1 -w 2 -r 0 -q 20 -R -p 8) 

(Xi et al. 2009). Reads that mapped to the spike-in control (Lambda and Puro) were filtered out 

from the Sam file using awk. Tag directories were created with the remaining reads using 

makeTagDirectory from HOMER (Heinz & Benner et al. 2010) (-genome mm10 -tbp 1 –

checkGC). Peaks were called with findPeaks from HOMER (-style histone -o auto -i). Peaks from 

all samples were merged with mergePeaks from HOMER into a master table. Quantile 
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normalization was applied to all raw counts files and differentially enriched 5hmC regions were 

identified with edgeR (Robinson et al. 2010); a p adjusted value of ≤ 0.05 was used as a cutoff.  

H3K27Ac ChIP analysis. Single end reads (50bp) were mapped to the mouse genome 

mm10 GRCm38 (Dec. 2011) from UCSC with Bowtie (V.1.1.2). Reads were sorted and PCR 

duplicates were removed using SortSam and MarkDuplicates, respectively from Picard Tools 

(V.2.7.1). Tag directories were created with makeTagDirectory (-genome mm10 –checkGC) from 

HOMER, and peaks were called with findPeaks (-region). Peaks from all samples were merged 

with mergePeaks from HOMER into a master table. Quantile normalization was applied to all raw 

counts files and differentially enriched 5hmC regions were identified with edgeR (Robinson et al. 

2010); a p adjusted value of ≤ 0.05 was used as a cutoff.  

BATF ChIP analysis. Single end reads (50bp) were mapped to the mouse genome mm10 

GRCm38 (Dec. 2011) from UCSC with Bowtie (v1.1.2). Reads were sorted and PCR duplicates 

were removed using SortSam and MarkDuplicates, respectively from Picard Tools (V.2.7.1). Tag 

directories were created with makeTagDirectory (-genome mm10 –checkGC) from HOMER, and 

peaks were called with findPeaks (-style factor -o auto).  

Definition of preferentially active enhancers. Preferentially active enhancers (Fig. 

S1.1H) were defined as distal H3K27Ac regions (> 1kb from TSS) that had ATAC-seq and 

H3K27Ac peaks overlapping in at least 50% of either peak/region; overlapping was calculated 

with intersectBed -f 0.5 -f 0.5 –e (Bedtools v2.26.0). The differential enrichment in an enhancer 

was called if it contains a differentially enriched H3K27Ac region as well as at least one 

differentially accessible region.  
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ATAC-seq analysis. Paired-end reads (100 bp) were mapped to the mouse genome mm10 

GRCm38 (Dec. 2011) from UCSC using Bowtie 1.0.0 ("-p 8 -m 1 --best --strata -X 2000 -S --fr -

-chunkmbs 1024."). Reads that failed this alignment step were filtered for Illumina adapters and 

low quality using “Trim Galore!” ("--paired --nextera --length 37 -- stringency 3 --

three_prime_clip_R1 1 --three_prime_clip_R2 1") and re-mapped using the same parameters. 

Both mapping results were merged and processed together to remove duplicates using picard-

tools-1.94 MarkDuplicates. Mitochondrial and Chromosome Y reads were excluded. 

Subnucleosomal fragments were obtained with SAMtools and awk to identify DNA fragments that 

were less than or equal to 100 nt in length. These fragments were used to call peaks using HOMER 

(v4.9.1) findPeaks function for each replicate ("-size 500 -region -center -P .1 -LP .1 -poisson .1 -

style dnase") and all the peak sets were merged to generate a global set. Peaks overlapping with 

ENCODE blacklisted regions (ENCODE Project Consortium 2012) were removed. From each 

sample, Tn5 insertion sites were obtained by isolation of the initial 9bp of mapped reads 

(Buenrostro et al. 2013) which were used to compute the number of transposase insertions per 

peak using MEDIPS (Chavez et al. 2010). Raw reads from all samples were quantile-normalized 

prior to differential coverage analysis using edgeR without TMM (Trimmed mean of M-values) 

normalization. Only regions with more than 32 normalized reads across the samples per 

comparison. Differentially accessible regions were defined by an adjusted p value (FDR) lower 

than 0.05 and a log2 fold enrichment higher equal than 1.  

OxBS analysis. OxBS-seq reads were mapped to both the mouse genome mm10 GRCm38 

(Dec. 2011) from UCSC and the phage Lambda genome (GenBank: J02459.1) using bsmap-2.90 

(" -v 15 -w 3 -p 4 -S 1921 -q 20 -A AGATCGGAAGAGC -r 0 -R -V 2 "). The mapping results 

were separated into reads belonging to the mm10 genome and each of the three loci from lambda 
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used for oxidation and conversion efficiency calculation. Methylation calls from lambda- and 

mm10-derived reads were obtained using bsmap-2.90 function methratio.py (" -u -p -g -i "correct" 

-x CG,CHG,CHH "). Conversion efficiencies as well as posterior probabilities of methylation, 

hydroxymethylation and unmodified cytosine were calculated by luxGLM v.0.666 (prior 

probabilities used for for C, hmC and mC "998,1,1", "6,2,72" and "1,998,1" respectively) (Äijö et 

al. 2016). Following genomic positions from lambda used for oxidation and BS treatment 

efficiencies: chrLambda:22893-23053 C; chrLambda:23765-23925 hmC; chrLambda:47335-

47495 mC.  

WGBS analysis. WGBS reads were mapped to both the mouse genome mm10 GRCm38 

(Dec. 2011) from UCSC. Bisulfite conversion efficiency was estimated based on cytosine 

methylation in non-CpG context. For all the samples the bisulfite conversion efficiency was higher 

than 0.9996. Duplicated reads caused by PCR amplification were removed by BSeQC (v1.2.0) 

applying a p value cutoff Poisson distribution test in removing duplicate reads (1e5) (Lin et al. 

2013). Consequently, a maximum of three stacked reads at the same genomic location were 

allowed and kept for further analysis. In addition, BSeQC was employed for removing DNA 

methylation artifacts introduced by end repair during adaptor ligation. Overlapping segments of 

two mates of a pair were reduced to only one copy to avoid considering the same region twice 

during the subsequent DNA methylation quantification. To estimate CpG DNA methylation at 

both DNA strands, methratio.py script was executed from BSMAP (v2.90) (-u -r -z -g - i "correct" 

-x CG). To identify differentially methylated cytosines and regions (DMCs and DMRs), a naïve B 

cells dataset and was compared to a activated B cell replicate using RADmeth methpipe-3.4.2 

(adjust -bins 1:100:1 ; merge -p 0.05) (Song et al. 2013).  
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RNA-seq analysis. RNA-seq samples at four different time-points collected from WT and 

DKO conditions were first mapped to the mouse genome mm10/GRCm38 using both Hisat2 (Kim 

et al. 2015) (“--no-mixed --no-discordant --add-chrname –dta”) and Tophat2 (Kim et al. 2013) (“-

-no-novel-juncs”) alignment programs separately. Aligned bam files obtained from both the 

programs were further used to generate the Hisat2- and Tophat2-specific counts using HTseqcount 

program (Anders et al. 2015) (default parameters). Hisat2- and Tophat2-specific count files at each 

time point for WT and DKO conditions were then used to identify the differentially expressed 

genes (FDR < 0.05) between matching time points using edgeR program (Robinson et al. 2010). 

Potential batch effects were removed using svaseq program (Leek 2014). Finally, the common 

differentially expressed genes obtained from both Hisat2- and Tophat2-specific list were used to 

perform the downstream analysis.  

Genome-browser track generation for ChIP-seq. ChIP-seq results from TET2, Ig 

control, E2A, PU.1, p300, and GCN5 were processed as follow to generate the genome browser 

tracks. Fastq files were mapped to mm10 reference genome with Bowtie 2 (v2.1.0) with “- very-

sensitive”. The mapped SAM files were converted to BAM using Samtools (v1.7) view –h –F 4, 

and duplicates were removed using Picard (v2.7.1). BigWig files were made by first generating a 

BedGraph files from the filtered Bam files using Bedtools (v2.26.0) genomecov followed by 

bedGraphToBigWig (v4) with read counts normalized to 10,000,000 reads.  

Miscellaneous analyses of regions. For distance between regions to the closest TSS was 

analyzed with HOMER software with “annotatePeaks.pl –annStats”. Overlap between regions was 

analyzed by “bedtools intersect” with no requirement for the degree of overlapping. The degree of 

significance for overlap between superenhancers and test regions was estimated by Fisher exact 

test using “bedtools fisher”.  
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Time-series analysis. For a unified analysis of the RNA-seq time-course data (0hr to 96hr) 

from WT samples, TC-seq package (Wu & Gu 2018) was used on the combined RNA-seq read 

counts, obtained after applying Tophat2 (Kim et al. 2013) and Hisat2 (Kim et al. 2015) alignment 

programs (Described in the previous RNA-seq analysis part). TC-seq utilizes GLM method 

implemented in edgeR package (Robinson et al. 2010) to detect the differential events in gene 

expression. Differential analysis was performed between "0hr" to the rest of the time points, and 

the significant differential events were extracted whenever a log2FC > 2 or < -2 and FDR < 0.05 

criteria was satisfied. To detect the temporal pattern of the differential gene expressions (RPKM 

values), a soft clustering algorithm implemented in TCseq program was applied ("algo = 'cm', k = 

6, standardize = TRUE"). Finally, the differential genes were assigned to a cluster (C1- C6) 

representing a specific temporal pattern of expression, if the membership probability of the genes 

to a cluster is 0.5 or more.  

Published datasets. Naïve H3K4me1 (0h): SRR1535686, SRR1535685. Activated 

H3K4me1 (48h): SRR1014530. SRR1087900. Naive WGBS (0h): SRR1003257. Activated 

WGBS (48h): SRR1020523. Naive PU1 (0h): SRR2976278. Activated PU1 (48h): SRR1014532. 

Naïve DSG control (0h): SRR3158132. Activated E2A DSG anti-CD40/IL-4 (48h): SRR3158146. 

Naïve Brg1 (0h): SRR3619348. Naïve Chd4 (0h): SRR3619349. Naïve Gcn5 (0h): SRR3619350. 

Naïve p300 (0h): SRR3619356. Activated Brg1 (24h): SRR3619334. Activated Chd4 (24h): 

SRR3619335. Activated Gcn5 (24h): SRR3619336. Activated p300 (24h): SRR3619342. 
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1.6 Figures 

Figure 1.1 Dynamic changes in 5hmC during B cell activation. 

(A) Flow-chart of experiments. B cells were activated with LPS+IL-4 for the indicated times prior 
to genome-wide analyses. (B) Of a total of 159,305 5hmC-enriched regions in B cells activated 
for 72h, while most regions (grey, 94.1%) display similar 5hmC levels, 8,454 (blue, 5.3%) show 
increased 5hmC and 928 (red, 0.6%) show decreased 5hmC relative to naïve B cells. Note that 193 
regions represented only in naïve B cells are not shown. (C) Number of differential 
hydroxymethylated region (DhmR) showing increased and decreased 5hmC at respective time 
points after activation, of a total number of ~160,000 5hmC-marked regions present in naïve and 
activated B cells (Fig. S1.1A). (D) Heatmaps showing the kinetics of 5hmC in the 8,454 regions 
with increased 5hmC at 72h compared to naïve B cells (left panels), but no increase in the same 
number of 5hmC-marked regions common to naïve and 72h-activated B cells (middle panels). 

Right panels, only a small number of random genomic regions are marked with 5hmC.  For a 
similar analysis of the 1,121 regions that lose 5hmC after 72h of B cell activation, see Fig. S1.1C. 
5hmC enrichment is shown as normalized reads per 100 bp bin. (E) The 85 and 1,953 regions with 
increased 5hmC in 24h- and 48h- activated B cells relative to naïve B cells show decreased 
“methylation” (bisulfite-resistant cytosine, 5mC+5hmC) at their centers 48h after activation. 
Average methylation was calculated for each 200 bp bin across 6kb. (F) Significant enrichment 
for consensus RHD (NFκB), IRF:bZIP, and bZIP transcription factor binding motifs in 8,454 
regions DhmR72h-up showing increased 5hmC in 72h-activated relative to naïve B cells. Common 
5hmC-enriched regions were used as background for analysis. Y-axis indicates the fold enrichment 
versus background, circle size indicates the percentage of regions containing the respective motif, 
and the color indicates the significance (Log10 p vaule). (G) 5hmC is enriched at active (H3K4me1+ 
H3K27Achi) relative to poised (H3K4me1+ H3K27Aclo) enhancers in both activated and naïve B 
cells. Y and X axes indicate the levels (log2) of H3K4me1 and H3K27Ac relative to input, 
respectively. (H) A substantial fraction of super-enhancers (76.7%, 352 of 459) identified by high 
H3K27Ac enrichment overlap with DhmR72h-up at which 5hmC is increased in activated (72h) 
relative to naïve B cells. Fisher exact test was used to analyze the significance. ***, p<0.01 
(p=8.9203x10-266). n.s., not significant. (I) Genome browser view of the Ccr4 locus (mm10; 
chr9:114,484,000-114,501,000) as an example of a genomic region marked by increased 5hmC, 
increased H3K27Ac and decreased CpG methylation in activated compared to naïve B cells. Red 
track indicates CpGs that were included for analysis based on coverage. (J) Kinetics of increase 
in Ccr4 mRNA expression (by RNA-seq) in activated B cells. See also Fig. S1.1.  
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Figure 1.2. Comparison of 5hmC modification in WT and Tet2/3 DKO B cells. 

(A) Mean mRNA expression levels for TET family members (from RNA-seq) in WT naïve and 
activated B cells. TPM, transcript per million. (B) Description of mice and flow chart of 
experiment.  (C) Tet2 and Tet3 are efficiently deleted. Tet2 and Tet3 expression in B cells from 
tamoxifen-treated WT control and Tet2/3 DKO mice (described in Fig. 1.2D) were analyzed by 
qRT-PCR. Data were normalized to Gapdh within sample and subsequently to the value from WT. 
Representative of two independent experiments with three technical replicates is shown. ***, 

p<0.01.  (D) Number of regions differentially marked with 5hmC (DhmR) between WT and Tet2/3 

DKO B cells as a function of time after activation. (E) Heatmaps showing the kinetics of 5hmC 
enrichment signals from WT (left panels) and Tet2/3-DKO (right panels) at the differentially 
hydroxymethylated regions (DhmR72h) between WT and DKO (72h, D). Regions with decreased 
5hmC in DKO are shown on top (WT>DKO, n=2,139) and those with increased 5hmC on bottom 
(DKO>WT, n=184). 5hmC enrichment is shown in normalized reads per 100 bp bin. (F) Strong 
enrichment for consensus RHD (NFκB), IRF:bZIP (IRF:BATF) and bZIP transcription factor 
binding motifs in the “TET-dependent” regions with decreased 5hmC in 72h-activated Tet2/3 

DKO relative to WT B cells (DhmR72h-WT>DKO
, n=2,139). Common 5hmC-enriched regions were 

used as background for analysis. Y-axis indicates the fold enrichment versus background, circle 
size indicates the percentage of regions containing the respective motif, and the color indicates the 
significance (Log10 p vaule). See also Fig. S1.2.  
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Figure 1.3. TET proteins facilitate class switch recombination (CSR) in vitro and in vivo. 

(A) Flow chart of experiment to assess CSR in vivo. f.p., foot pad. (B) Upper panels, flow 
cytometry plots showing equivalent frequencies of CD19+GL7+Fas+ germinal center B (GCB) 
cells at the draining popliteal lymph nodes from WT and Tet2/3 DKO mice after treated with 
tamoxifen and immunized with NP-OVA as indicated in (A). Lower panels, flow cytometry plots 
showing decreased frequencies of IgG1-switched cells among GCB cells in Tet2/3 DKO (YFP+ 
GCB-gated) compared to WT mice (GCB-gated). (C-F) Quantifications of experiments shown in 
(B). Data shown are aggregated results from two independent experiments. Means and standard 
errors are shown. WT, n=11; DKO, n=12. (G) Flow chart of experiment to assess CSR (IgG1 
switching) in vitro. Cells were labeled with Cell-Trace violet and activated for 4 days with LPS 
(25 ug/mL) and rmIL-4 (10 ng/mL). (H-I) Flow cytometry plots (H) and quantification of 
experiments (i) show decreased frequencies of IgG1-switched B cells in Tet2/3 DKO (n=4) 
compared to WT (n=4) mice. Data were representative from at least three independent experiments. 
(J) Circular gamma 1 transcript, generated after successful IgG1 switching, was quantified by 
qRT-PCR and normalized to Gapdh and then to the level of WT. Representative of two 
independent experiment is shown with three technical replicates. (K) Flow chart of experiment to 
assess CSR (IgG1- and IgA-switching) in cell culture. Cells were activated for 5 days with anti-
CD40 (1 ug/mL), rmIL-4 (10 ng/mL), rmIL-5 (10 ng/mL), and rhTGFbeta (1 ng/mL). (L-M) Flow 
cytometry plots (L) and quantification of experiments (M, N) showing decreased frequencies of 
IgG1- (M) and IgA-switched cells (N) in Tet2/3 DKO compared to WT cells. Data shown are 
representative from three independent experiments with three technical replicates. Statistical 
significance was calculated using unpaired two-tailed t-test. n.s., not significant. ***, p<0.01. *, 
p<0.05. See also Fig. S1.3.  
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Figure 1.4. Tet2/3 facilitate CSR by regulating expression of the cytidine deaminase AID. 

(A) qRT-PCR analysis Aicda mRNA expression in WT and Tet2/3-DKO B cells activated 4 days 
with LPS and IL4. Aicda expression was normalized to Gapdh and then to the level in WT. Result 
shows ~50% decrease of Aicda mRNA expression in Tet2/3 DKO relative to WT B cells. Data 
shown are representative of two independent experiments with three technical replicates. *, p<0.05. 
(B) Immunoblotting of whole cell lysates showed a substantial decrease of AID and Tet2 protein 
expression in Tet2/3-DKO relative to WT B cells activated for 4 days. Left lane contains lysate 
from the AID-KO CH12 B cells as a control for the specificity of anti-AID antibody. Beta-Actin 
was used as loading control. Data shown are representative of two independent experiments. See 
also Fig. S1.4D. (C,D) WT and Tet2/3-DKO B cells were retrovirally transduced with empty 
vector expressing Thy1.1 (left panels), wild-type AID (AIDWT, middle panels), or catalytically 
inactive AID (AIDMUT, right panels). Cells were gated on live transduced B cells (CD19+ Thy1.1+). 
Representative flow cytometry plots (C) and quantification (D) are shown. Data shown are 
representative of three independent experiments. n.s., not significant. ***, p<0.01. See also Fig. 

S1.4.   
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Figure 1.5. Tet2 and Tet3 control Aicda expression via TET-responsive elements TetE1 and 

TetE2. 

Diagram shows two conserved TET-responsive elements TetE1 and TetE2 at the 5’ of the Aicda 
gene (labeled with green rectangles and grey shades). (A) Top two tracks. ChIP-seq analysis 
showed that Tet2 (blue track) specifically bound to multiple elements in the Aicda locus (mm10; 
chr6:122,523,500-122,576,500) after activation when compared to Ig control (grey track). Middle 

tracks (green). Increased H3K27 acetylation at the upstream and intronic regulatory elements of 
Aicda after activation. Bottom tracks. Activation induced DNA demethylation at TetE1 and TetE2. 
Whole genome bisulfite sequencing (WGBS) showing DNA methylation (5mC+5hmC) in naïve 
and 48h-activated B cells (mCG, black tracks). CpGs included in the analysis are indicated by red 
lines (red track). Bottom track indicates the conserved DNA elements among placental animals 
(“Conserve”). Previously identified super-enhancer is indicated. For Tet2 and Ig, scales indicate 
per 10 million reads; for H3K27Ac, quantile-normalized reads; for bisulfite sequencing, 
percentage of bisulfite-resistant cytosine. (B) Activation induced Tet2/3-dependent 5hmC 
deposition at Aicda distal elements. WT and Tet2/3-DKO B cells were activated as in Fig. 1.3G 
with LPS and IL-4 as a function of time. DNA was purified and 5hmC enrichment was detected 
by CMS-IP (see Materials and Methods). Significant differential 5hmC-enriched regions between 
WT and DKO after 72h-activation were indicated at the bottom (WT>DKO DhmR72h). Scales 
indicate quantile-normalized reads. (C) Tet2/3 deposit 5hmC and demethylate Aicda TET-
responsive element TetE1 and promoter. CpG modifications (5hmC, 5mC, and C) at TetE1 (top 

panels) and promoter (bottom panels) were analyzed by oxidative bisulfite sequencing (oxBS-seq; 
Materials and Methods) using DNA isolated from WT and Tet2/3-DKO B cells before and after 
activation. Although 5hmC and 5mC can be distinguished by oxBS-seq, unmodified C and 
minuscule amount of fC and caC were recognized as “C”, all of which are sensitive to deamination 
by bisulfite treatment. See also Fig. S1.5.  
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Figure 1.6. BATF facilitates TET protein-mediated hydroxymethylated at TetE1. 

(A) Mean mRNA expression level of Batf family members (Batf1-3) in B cells activated with LPS 
and IL-4 as a function of time. Data shown are from RNA-seq with two independent replicates. 
TPM, transcript per million. (B,C) BATF binding correlates with 5hmC-enrichment. WT 
BATF peaks (n=11,640) were divided into two clusters based on the pattern of 5hmC distribution. 
(B) Cluster 1 (n=2,198; top panels) showed a broad 5hmC distribution, with the 5hmC level 
remained unchanged after activation and in the absence of Tet2/3 (upper panels, compare “5hmC 

from WT” to “5hmC from DKO”). In contrast, a substantial portion of regions in cluster 2 (n=9,422) 
showed a progressive Tet-dependent 5hmC modification after activation (lower panels) and is 
further illustrated in (C) as line plots. Data shown are mean enrichment per 100 bp bin. (D) 

Recruitment of BATF and other transcription factors to Aicda enhancers. Upper three tracks, 
genome browser view of BATF-binding in unstimulated and 72h-activated WT (blue) and Tet2/3-

DKO B cells (red) at the Aicda locus. Note that the major BATF-binding sites are at TetE1 and 
TetE2, and the loss of Tet2/3 has no significant effect on BATF recruitment (compare WT and 
DKO; also see Fig. S1.8G; two independent experiments). Activation also induced E2A and PU.1 
binding to Aicda enhancers (orange and purple tracks). Coordinate for locus is chr6:122,523,500-
122,576,500 (mm10). See also Fig. S1.8. (E) BATF is required for 5hmC modification at TetE1. 
Batf-WT and Batf-KO B cells were activated with LPS and IL-4 for 4 days. 5hmC modification 
at TetE1 was quantified using AbaSI-qPCR.  
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1.7 Supplemental Figures 

Figure S1.1. TET-mediated DNA hydroxymethylation correlates with demethylation and 

enhancer activity.  

(A) Similar total numbers of 5hmC-enriched regions between naïve and activated B cells. (B) Box-
and-whisker plot showing that differentially hydroxymethylated regions (DhmRs) in activated vs 
naïve B cells (see Fig. 1.1C) are located on average more than 10 kb from the closest transcription 
start site (TSS). (C) Heatmaps showing the kinetics of 5hmC modification at the 1,121 regions 
with decreased 5hmC in 72h-activated vs naïve B cells (DhmR

72h-down
; see Fig. 1.1C). 5hmC 

enrichment is shown as normalized reads per 100 bp bin. (D) Left, the vast majority of differentially 
methylated regions (DMRs) with altered WGBS signal (5mC+5hmC) in naïve vs 48h-activated B 
cells show decreased DNA methylation. Right, plot of average DNA methylation (bisulfite-
resistant cytosine 5mC+5hmC) at the DMR

48h-down
 (n=1,097) in 48h-activated vs naïve B cells. 

Average methylation is measured per 200 bp bin. (E) Heatmaps showing the kinetics of change 
(increase) in 5hmC at the 1,097 DMR

48h-down 
with decreased methylation 48h post-activation. 

5hmC enrichment is shown in normalized reads per 100 bp bin. (F) Heatmap showing decreased 
DNA methylation at the 8454 DhmR

72h-up
 regions. (G) Strong enrichment for consensus binding 

motifs of NFκB, IRF:bZIP, bZIP, and other transcription factors in the 1,097 regions that became 
demethylated after 48h of activation (DMR

48h-down
). Random genomic regions were used as 

background for motif analysis. Y-axis indicates the fold enrichment versus background, circle size 
indicates the percentage of regions containing the respective motif, and the color indicates the 
significance (Log10 p vaule). (H) 5hmC levels track with enhancer activity. Left, MA plot showing 
differentially active enhancers between naïve and 48h-activated B cells were classified based on 
the significant difference in H3K27Ac and accessibility (ATAC-seq) into enhancers preferentially 
active in naïve B cells (green, “Naïve>48h”) and enhancers preferentially active in 48 h-activated 
B cells (orange, “48>naïve”). The remaining enhancers not meeting the above criteria were 
classified as common active enhancers (grey, “Common”). Right, mean level of 5hmC per bin (50 
bp) at the +/- 10kb interval to the center was plotted for each type of active enhancer. Note that the 
5hmC levels from the “Common” enhancers (middle) are also plotted as dotted lines for naïve-B-
active (top) and activated-B-active enhancers (bottom) as reference.  
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Figure S1.2. Phenotypic features of WT and Tet2/3 DKO B cells. 

(A) Comparable splenic mature B cell populations in Tet2/3-conditionally deleted mice. WT 
(Tet2/3-flox Rosa26-LSL-YFP) and DKO (Cre

ERT2
 Tet2/3-flox Rosa26-LSL-YFP) mice were 

treated as in Fig. 1.2B and the phenotype of splenic B cells were analyzed on day 7 after the initial 
tamoxifen injection. Plots were first gated on live single cells based on FSC/SSC (first panel) and 
total (WT) or YFP

+
 (DKO) CD19

+
 B cells were subsequently gated (second panel), followed by 

analysis of mature and immature B cells (third panel); and follicular (FO) and marginal zone (MZ) 
B cells (fourth panel).  (B) Similar percentages of YFP

+
 cells in total (CD19

+
; middle panel) and 

mature (CD19
+
 AA4.1

lo
) B cells. (C) Total 5hmC levels in WT and Tet2/3 DKO B cells assessed 

by cytosine 5-methylenesulphonate (CMS) dot blot (see Materials and Methods). Note that 5hmC 
levels decrease in Tet2/3 DKO B cells only after several rounds of cell division (>48h). (D) 
Histograms showing the distance from the TSS to the TET-regulated DhmR regions differentially 
marked with 5hmC in 72h-activated Tet2/3 DKO relative to WT B cells (see Fig. 1.2D, E). The 
2,139 and 184 DhmRs with decreased (left, DhmR

72h
 WT>DKO) and increased (right, DhmR

72h
 

DKO>WT) 5hmC after activated for 72h 72h-activated Tet2/3 DKO relative to WT B cells are 
located on average more than 10 kb from the closest TSS. (E) TET-mediated 5hmC 

modifications mark DNA demethylation. Left panels, heatmaps show DNA methylation status 
in naïve and 48h-activated WT B cells (WGBS, 5mC+5hmC) at the 2,139 and 184 DhmR regions 
with decreased (top, WT>DKO) and increased (bottom, DKO>WT) 5hmC in 72h-activated Tet2/3 

DKO vs WT B cells. Right panels, plots of the average decrease in bisulfite-resistant modifications 
(5mC+5hmC) per bin (200 bp) at these regions. The majority of the 2,139 WT>DKO DhmRs at 
72h show decreased DNA methylation in activated WT B cells (top); the 184 DKO>WT DhmR at 
72h are fully methylated and unchanged in Tet2/3 DKO vs WT (bottom).  
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Figure S1.3. TET family proteins are important for B-cell-intrinsic CSR.  

(A) Total cell number in draining lymph nodes (left), percentage of CD19
+
 cells (middle), and 

number of CD19
+
 B cells (right) from Fig. 1.3A. *, p<0.05. (B) Level of GL7 (geometric mean of 

fluorescence intensity, MFI) on WT and DKO GC B cells. *, p<0.05. (C) CSR defect is not caused 
by Cre activity. Cre

ERT2
 Rosa26-LSL-YFP (Cre

ERT2
 WT) and Cre

ERT2 
Tet2

fl/fl
 Tet3

fl/fl 
Rosa26-LSL-

YFP (Cre
ERT2

 DKO) mice were injected with tamoxifen as in Fig. 1.2.B. Isolated B cells were 
activated with LPS and IL-4 in the presence of 4-hydroxytamoxifen for 4 days and %IgG1

+
 cells 

were analyzed (gated on live CD19
+
 YFP

+
). One representative of two experiments is shown. n=2 

for each genotype. *, p<0.05. (D-E) (D) CSR defect is cell-intrinsic.  (Left) Tet2
+/+

Tet3
+/+

 WT 
CD45.1 and Tet2/3-DKO CD45.2 mice were treated as in Fig. 1.3A and isolated B cells were 
labeled with Cell-Trace violet, 1:1 mixed, and activated with LPS and IL-4 for 4 days. (Right) 

Cells were gated based on CD45.1 and CD45.2 and the percentages of IgG1-switched cells in WT 
and DKO are shown. Cells from the same well are connected with lines. (E) Co-cultured WT and 
Tet2/3-DKO B cells showed similar proliferation profiles. Data shown are representative of two 
independent experiments with four technical replicates for each genotype. (F) Percentage of 
CD138

+
 cells in the non-switched (IgG1

-
 IgA

-
) population from Fig. 1.3K-3N. (G-I)(G) Flow 

chart of experiment to assess the importance of TET catalytic activity in CSR. (H) Flow cytometry 
plots and (I) quantification of WT and Tet2/3 DKO B cells transduced with empty vector (left 

panels), TET2 wild-type catalytic domain (Tet2CD, middle panels), and Tet2 HxD mutant 
catalytic domain (Tet2CD

HxD
, right panels) shows that TET catalytic activity can partly rescue the 

CSR to IgG1. Data shown are representative of two independent experiments with two technical 
replicates. n.s., not significant. ***, p<0.01. *, p<0.05. (J-K) Deletion of all three TET proteins 
(Tet1/2/3 TKO) results in a similar decrease in CSR as deletion of Tet2 and Tet3 (Tet2/3-DKO). 
(J) Tet1/2/3-flox Cre

ERT2
 Rosa26-LSL-YFP (TKO) and control Tet1/2/3-flox Rosa26-LSL-YFP 

(WT) mice were treated with tamoxifen and immunized with NP-OVA as in Fig. 1.3A and GC 
response and CSR were analyzed on day 7. Flow cytometry plots showed the percentage of GCB 
(CD38

lo
GL7

hi
) in WT and Tet1/2/3-TKO lymph node cells gated on total (WT) and YFP

+
 (TKO) 

live CD19
+
 B cells (left panels). Antigen-specific (NP-PE) and class-switched cells (IgG1) were 

analyzed among GC B cells. (K) Quantification of the experiments showed in (I). Data shown are 
aggregated results from two independent experiments. WT, n=7; TKO, n=7. Statistical 
significance was calculated using unpaired two-tailed t-test. n.s., not significant. ***, p<0.01. *, p 

< 0.05.  
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Figure S1.4. Decreased Aicda expression in Tet2/3-DKO B cells. 

WT and Tet2/3-DKO B cells were activated as in Fig. 1.3G and the transcriptomes were analyzed 
by RNA-seq (see Materials and Methods for details). (A) Number of differentially expressed genes 
between WT and Tet2/3-DKO B cells as a function of time after activation. Relatively few genes 
show alterations in their expression. (B) List of all differentially expressed genes between WT and 
Tet2/3-DKO B cells. Aicda (indicated by red arrows) was one of the genes expressed at 
significantly lower levels in DKO B cells at all time points analyzed. Color scale indicates Log2 
fold change between WT and DKO. (C-D) TET2 and TET3 are required for potent Aicda 

expression. Aicda mRNA (C) and protein (D) expression were analyzed by qRT-PCR and western 
blot as a function of time after activation. Results show increased AID expression with time after 
activation of WT B cells, and a consistent decrease in Tet2/3 DKO relative to WT B cells. (E-J) 
Haploinsufficiency of Aicda results in decreased CSR. Mice with the indicated genotypes were 
immunized with 10 µg of NP-OVA mixed with Alum via footpad injection, and the draining lymph 
nodes were analyzed by flow cytometry at day 7 post-immunization. Heterozygous Aicda-Cre 
mice were used to model Aicda haploinsufficiency as the knocked-in Cre recombinase disrupted 
the endogenous Aicda expression. Representative flow cytometric analysis of (E) germinal center 
B cells (GCB; CD38

lo
 GL7

hi
) and (F) CSR to IgG1. (G-J) Statistical analyses of the populations 

(means and standard errors) are shown (n=4 each). Data are representative of two independent 
experiments. Unpaired two-tailed t-test was used to calculate statistical significance and the p 

values are indicated. (K) TET2 and TET3 are not required for expression of germline transcripts. 
WT and DKO B cells were activated for 4 days, and m and g1 germline transcripts were analyzed 
by qRT-PCR. Data were normalized to Gapdh and to WT level as in Fig. 1.4A. n.s., not significant. 
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Figure S1.5. The TET-responsive element TetE1 regulates CSR and Aicda mRNA expression 

in the CH12 B cell.  

(A) Diagram depicts the relative position of TET-responsive elements TetE1 and TetE2 to 
previously identified Aicda distal and intronic enhancers. “Region” IV, II, III are from Tran et al. 
2010; “CNS” V-X are from Crouch et al. 2007; “Enhancer” E1-E5 from Kieffer-Kwon et al. 2013. 
Note that the promoter-proximal element is not depicted. Coordinates for the shown locus are 
chr6:122,523,500-122,576,500 (mm10). (B-E) TetE1 is important for regulating Aicda expression 
and CSR.  (B) Scheme for TetE1 deletion in CH12 cells with CRISPR. (C) Four clones were 
identified with homozygous deletion of TetE1 as examined by PCR followed by gel 
electrophoresis. A clone with heterozygous deletion (Het) and a WT control are shown as controls. 
(D-E) WT and TetE1-deletion clones were stimulated with CIT (anti-CD40, IL-4, TGFbeta) for 
two days. (D) Aicda mRNA expression and (E) CSR to IgA were analyzed by qRT-PCR and flow 
cytometry, respectively. Results show that deletion of TetE1 decreased Aicda mRNA expression 
and abrogated CSR. (F) 5hmC modification at the IgH locus. Genome browser view of the IgH 
locus (chr12:113,211,000-113,445,000; mm10) showing H3K27Ac in unstimulated and 48h 
activated B cells (top two panels), followed by DNA methylation in unstimulated and 48h-
activated B cells (black histograms), CpG covered in analysis (red histograms), and 5hmC 
modifications in WT and DKO as indicated. Regions with increased 5hmC modification after 
activation (DhmR

72h-up
) are indicated by horizontal bars. (G) Chromatin accessibility at the IgH 

locus. Genome browser view of ATAC-seq data from activated WT and DKO B cells. There is no 
statistically significant difference in chromatin accessibility between the two genotypes. (H) DNA 
modification at the Aicda promoter. Top, CpG modifications (5hmC, 5mC, and C) Aicda promoter 
were analyzed by oxBS-seq as in Fig. 1.5C. Bottom, the overall CpG methylation probability was 
quantified. Methylation at the Aicda promoter at 72 h was significantly increased in DKO 
compared to WT. *, p < 0.05. n.s., not significant.  
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Figure S1.6. Tet proteins sustain enhancer accessibility.  

(A) B cell activation induces global changes in chromatin accessibility. WT B cells were activated 
with LPS and IL-4 and chromatin accessibility was profiled by ATAC-seq at different times. 
Numbers indicate differentially accessible regions (DARs) between activated (act.) and naïve B 
cells with FDR < 0.05 and fold change above log2(1.5) or below log2(0.67). (B) Loss of TET 
proteins results in decreased chromatin accessibility at later time points. Numbers of DARs 
between WT and Tet2/3-DKO B cells activated for different times are shown. The difference 
between WT and DKO B cells was minimal at time points earlier than 72h. DARs were selected 
based on FDR < 0.05 and fold change above log2(1.5) or below log2(0.67). (C) Tet2/3-dependent 
accessible regions are hydroxymethylated. Heatmaps show the kinetics of 5hmC modification at 
differentially accessible regions (DARs) between WT and Tet2/3-DKO B cells. Regions that are 
more accessible in WT (WT>DKO, n=292), less accessible in WT (DKO>WT, n=129), and 
commonly accessible (n=27,716) are shown in the top, middle, and bottom panels, respectively. 
WT>DKO DARs show progressive 5hmC enrichment only in WT (top left panels) but not in DKO 
(top right panels) B cells, demonstrating that 5hmC modification at these regions is Tet2/3-
dependent. The DKO>WT DARs (n=129) and common regions (n=27,716) show no apparent 
difference between naïve and activated B cells and between 5hmC from WT and DKO B cells. 
5hmC enrichment is shown as normalized reads per 100 bp bin. (D) TET2 and TET3 maintain 
chromatin accessibility at the Aicda Tet-responsive elements TetE1 and TetE2. Genome browser 
view of ATAC-seq data showing the accessibility profile at Aicda locus in WT (blue, top 4 tracks) 
and DKO (red, bottom 4 tracks) B cells. Note that TetE1 and TetE2 were among the DAR at 72 h 
(DAR

72h 
WT>DKO) as indicated at the bottom. Coordinates for the Aicda locus are 

chr6:122,523,500-122,576,500 (mm10). (E) Plot of mean chromatin accessibility at the DARs 
between WT and Tet2/3-DKO B cells after 72h of activation (as in (C) top and middle panels). 
Top panels, WT>DKO DARs (n=292); bottom panels, DKO>WT DARs (n=129). Y-axes indicate 
the mean ATAC signals (normalized ATAC-seq reads per 100 bp bin) from WT (blue line) and 
DKO (red line) B cells activated as indicated. The difference between WT and DKO is apparent 
at 72h. See also Fig. S1.7. 
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Figure S1.7. Analysis of TET-dependent accessible regions.  

(A) Correlation between 5hmC and accessibility. Comparison of mean chromatin accessibility 
(ATAC-seq) between WT and DKO B cells is shown for activation-induced 5hmC-enriched 
regions (DhmR

72h-up
, n=8454, Fig. 1.1C). Regions with increased 5hmC in WT cells after 

activation also show increased accessibility (blue, ATAC-WT). DKO cells show decreased 
accessibility, as shown for the Aicda locus in Fig. S1.6D. Statistical significance between WT and 
DKO at each time point was calculated by Kolmogorov-Smirnov test with Bonferroni correction 
using the family-wise error rate. n.s., not significant. ***, p adj. < 0.01. The exact adjusted p values 
are 0.06, 6.01e-05, 1.79e-07, 3.611e-11 for 0h, 24h, 48h, 72h, respectively. (B) TET facilitates 
Increased accessibility at distal elements. Histograms showing the distance of DARs (WT>DKO 
and DKO>WT) and commonly accessible regions (Common) from the closest TSS. Majority of 
the Tet-facilitated accessible regions (WT>DKO, n=292) are distal elements (>1000bp; 92.8%). 
(C) TET2/3-dependent accessible regions are hydroxymethylated. Line plots showing the kinetics 
of mean 5hmC modification at differentially accessible regions (DARs) between WT and Tet2/3 
DKO for the data depicted in Fig. S1.6C. Regions that are more accessible in WT (WT>DKO, 
n=292), less accessible in WT (DKO>WT, n=129), and commonly accessible (n=27,716) are 
shown in the top, middle, and bottom panels, respectively. 5hmC enrichment is shown as 
normalized reads per 100 bp bin. Note the Tet-dependent 5hmC modification at these DARs 
(compare 72h panels). (D) TET-facilitated accessible regions are further demethylated after 
activation. Left, heatmaps showing the DNA modification status (5mC+5hmC) in naïve and 48h-
stimulated WT B cells at WT>DKO DARs (i.e. Tet-facilitated accessible regions; n=292) and 
DKO>WT DARs (n=129). Right, plots summarizing the data in the heatmaps; the y-axis indicates 
the level of bisulfite-resistant cytosine (5mC+5hmC). In WT B cells, regions that lose accessibility 
in Tet2/3 DKO B cells relative to WT (WT>DKO) also show a decrease in modification (mostly 
5mC) after activation. (E) Enrichment for consensus IRF:bZIP (IRF:BATF) and bZIP transcription 
factor binding motifs in the 292 Tet-facilitated accessible regions, which show increased 
accessibility in WT relative to Tet2/3 DKO B cells at 72h. No significant motif enrichment was 
detected at DKO>WT DARs (n=129). Commonly accessible regions were used as background for 
the analysis. Y-axis indicates the fold enrichment versus background, circle size indicates the 
percentage of regions containing the respective motif, and the color indicates the significance 
(Log10 p value). (F) B cell activation induces recruitment of chromatin regulators to Aicda distal 
elements. Genome browser view of ChIP-seq data before and after B cell activation showing 
inducible binding of the chromatin remodelling complex components Brg1 and Chd4, and the 
histone acetyltransferases p300 and Gcn5, to the TET-responsive Aicda elements TetE1 and TetE2 

in naïve and activated WT B cells. Scale indicates reads per 10 million. Coordinates for locus are 
chr6:122,523,500-122,576,500 (mm10).  
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Figure S1.8. AP-1 proteins in activated B cells.  

(A) Analysis of temporal gene expression modules (TC-seq). Gene expression was analyzed in 
WT cells activated for various times and genes were clustered based on their temporal expression 
patterns. Six clusters (C1-C6), or expression patterns, were identified. Aicda and Batf are found in 
C2 and C4, respectively. Y-axis indicates the Z-score calculated using RPKM. X-axis indicates 
the time post-activation. For details, see Materials and Methods. (B-E) Expression of AP-1 
proteins. (B) Protein expression of c-JUN and BATF in unstimulated and activated B cells was 
analyzed by western blot. Mean mRNA expression of selected AP-1 proteins in naïve and activated 
B cells including Fos family (C), Jun family (D), and Bach family (E). Note that the high basal 
expression of Fos, FosB, Jun and JunB prior to stimulation might reflect the presence of a minor 
population of contaminating by memory or other B cells (red asterisks)”. TPM, transcript per 
million. (F) BATF is required for CSR. B cells were isolated from WT and Batf-KO and activated 
with LPS and IL-4 for 3 days. Class switch recombination to IgG1 was analyzed by flow cytometry 
(gated on live CD19

+
). Data shown are representative of three independent experiments (n=3 each). 

Means and standard errors are shown. Statistical significance was calculated using unpaired two-
tailed t-test. ***, p<0.01. (G) Tet proteins are not necessary for genome-wide BATF binding. Plots 
show highly similar distribution of BATF in WT and DKO 72h-activated B cells as analyzed by 
ChIP-seq with two independent replicates. Shown are the comparison of the BATF enrichment in 
WT and DKO B cells at the 26,909 regions integrated from the joined peaks from two replicates 
each of WT and DKO. Axes depict the log2 rpkm (read per kilobase per million) using quantile-
normalized reads for each region analyzed. No region was significantly different between WT and 
DKO using an adjusted p value of 0.05. (H) Overlap between BATF binding sites and regions with 
activation-induced 5hmC modification. Venn diagram showing the number of overlapping regions 
between BATF peaks and DhmR

72h-up
. (I) The interaction between BATF and TET2 was analyzed 

by co-immunoprecipitation using nuclear extracts from 48h-activated B cells. The pulldown was 
carried out in the presence of benzonase and ethidium bromide to minimize non-specific 
interactions via nucleic acids. The 25kDa band is non-specific as it also appears in Batf-KO (not 
shown). (J-K) Expression of E-box and Ets family proteins. Mean mRNA expression for E-box 
and Ets family proteins, from RNA-seq experiments with two independent replicates. TPM, 
transcripts per million. (L) JUNB and BATF bind to AICDA enhancers in human B cells. JUNB 
and BATF binding in human B cell lymphoblast GM12878 at the AICDA locus are shown (Hg38; 
chr12:8,598,356-8,655,770). The approximate locations for TETE1 and TETE2 are indicated based 
on sequence conservation. Data were originally from ENCODE project, processed by CistromeDB, 
and were viewed using WashU Epigenome Browser. (M) Irf4-deficiency has no significant effect 
on TetE1 hydroxymethylation. B cells from Cd19-Cre (WT) and Cd19-Cre Irf4-flox (KO) was 
analyzed as in Fig. 1.6E. Two biological replicates with 3 technical replicates each. *, p<0.05; 

n.s., not significant.  
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CHAPTER 2: Prediction of gene expression through the use of 5hmC 

immunoprecipitation enrichment profiles. 

 

 
2.1 Abstract 

5-hydroxymethylcytosine (5hmC) signal enrichment across the gene body positively 

correlates with the levels of gene expression, but the power of 5hmC enrichment to predict the 

expression status of a gene remains unexplored. By integrating machine learning techniques and 

5hmC inmunoprecipitation data, we show that 5hmC signal across the promoter and gene body 

can be used to classify genes with respect to their expression status. We generated models with 

high predictive ability, as measured by the area under the receiver operator curves (AUROC or 

AUC) and F1 scores. We show that our predictive models are generalizable across different 

immune cells, in other words, can be trained in one cell type and used to predict gene expression 

in another cell type, suggesting their broad applicability. Our models showed a median AUC score 

of 0.87 across all samples when trainining was done per sample and 0.86 when the model was 

trained using all samples.  We also showed a median F1 score of 0.81 and 0.8 in the same context 

as above. Finally, we found that models trained in immune cells and tested in embryonic stem cells 

have reduced predictive power (0.74 median AUC score), possibly due to the unique interplay of 

Tet1 protein and Polycomb repressive complex 2 (PRC2) in stem cells.  
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2.2 Introduction 

5-methylcytosine is a covalent DNA modification catalyzed de novo by DNA 

Methyltransferase 3A (DNMT3A) and 3B (DNMT3B) proteins, and maintained during DNA 

replication by the DNMT1/UHRF1 protein complex (Moore et al. 2012). 5-

hydroxymethylcytosine (5hmC) is a DNA epigenetic mark that is a product of 5-methylcytosine 

oxidation mediated through the family of Ten-Eleven Translocation (TET) proteins (Tahiliani et 

al. 2009; Kriaucionis et al. 2009; Pastor et al. 2013). The mammalian TET family is comprised of 

three enzymes, Tet1, Tet2, and Tet3. TET enzymes are dioxygenases that convert 5mC to 5hmC, 

5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) (Ito  et al. 2011; He et al. 2011; An et al. 

2017). These three oxidised methylcytosine derivatives are essential intermediates in all known 

mechanisms of DNA demethylation (Tsagaratou et al. 2017; Lio et al. 2020). Our lab and others 

have developed immunoprecipitation or capture assays to survey 5hmC signal genome-wide, such 

as GLIB-seq (Pastor et al. 2012), CMS-IP (Ko & Huang et al. 2010; Huang et al. 2012), hMe-Seal 

(Song et al. 2017), nano-hmC-Seal (Han et al. 2016; Gabrieli et al. 2018), and hMEDIP (Song et 

al. 2011; Taiwo et al. 2012). Independent of the method used to capture 5hmC, this epigenetic 

mark has been consistently associated with active genomic regions or “epigenetically dynamic loci” 

(Szulwach et al. 2011). 5hmC is particularly enriched in cell-specific active enhancers (Szulwach 

et al. 2011; Tsagaratou et al. 2014), accessible genomic regions (Lio et al. 2016; Lio & Shukla et 

al. 2019), as well as in euchromatin and transcribed regions (López-Moyado et al. 2019; Nestor et 

al. 2011). Additionally, we have previously shown that highly expressed genes in murine B cells, 

in double positive, CD4 and CD8 single positive thymocytes, as well as naïve T cells, Th1 and 

Th2 cells, have high 5hmC levels across the gene body and Transcription Termination Sites (TTS) 

when compared to their Transcriptional Start Sites (TSS) (Tsagaratou et al. 2014; Tsagaratou et al. 
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2017; Szulwach et al. 2011). This enrichment pattern has been also observed in multiple other cell-

types, such as in neurons (Stoyanova et al. 2021), cardiomyocytes (Greco et al. 2016), colon 

epithelia (Uribe-Lewis et al. 2020), liver (Ivanov et al. 2013), myeloid and megakaryocytic 

erythroid progenitors (Tekpli et al. 2016), and more (Han et al. 2016; Alberge et al. 2020). To the 

best of our knowledge, no further research has been done to predict gene expression patterns using 

5hmC levels across the genome. 

However, there have been several previous attempts to predict gene expression: from the 

mere use of the DNA sequence (Beer et al. 2004; Zrimec et al. 2020; Agarwal & Shendure. 2020), 

methylation information (Li et al. 2015), accessibility signals (Natarajan et al. 2012), landmark 

genes (Li et al. 2019), and by integration of multiple histone marks (Singh et al. 2016; Singh et al. 

2017). More recent methods also integrated 3D chromatin structure information improving 

accuracy of gene expression prediction  (Zeng et al. 2019; Avsec et al. 2021). Most of these studies 

made use of powerful Machine Learning (ML) techniques including Deep Learning. 

Machine learning algorithms detect patterns in data (Eraslan et. al. 2019) either with 

labeled training data (supervised learning, e.g. classification of digits from hand writing, or facial 

expressions), or without (unsupervised learning, e.g., clustering of patients, segmentation of the 

genome). A subdiscipline of machine learning is known as deep learning (LeCun et. al. 2015), or 

deep neural networks (DNN). The reason why these networks can discover complex features in 

the datasets, e.g. by using a set of labeled output in supervised training, is because they can 

integrate increasingly complex representations of the datasets and its interactions. An example of 

these networks is the fully connected deep neural network (FCDNN), composed of simple 

mathematical units, known as neurons, grouped by interconnected layers, carrying sequentially 

more complex operations as more layers are added. Singh and collaborators (2016), used five 
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histone H3 marks (H3K4me1, H3K4me3, H3K9me3, H3K27me3 & H3K36me3) to train a deep 

neural network in a binary classification task to predict gene expression (labels High and Low) of 

genes in 56 different cell-types using the REMC database, with an average diagnostic ability per 

network of 0.8. However, the results they reported varied depending on the cell analyzed, and the 

generalizability of the generated models (cross-cell-type predictions) was not tested. 

To perform ChIP-seq assays (Johnson et al. 2007) for histone marks, we require access to 

a large number of viable cells whose nuclei are intact. This could be a limitation if viable cells are 

not available and the only source of cellular material is DNA, or if cells are subjected to processes 

that compromise their viability, such as formalin-fixed paraffin embedded (FFPE) preserved 

samples. Since 5hmC is a stable, covalent DNA modification and would enable the study of 

samples where viable cells were inaccessible, we asked if it was possible to use 5hmC as an 

alternative method to predict gene expression. In this project, we explored the use of machine 

learning algorithms to predict binary classification of gene expression in multiple mouse cell types 

by using only the magnitude and distribution of the 5hmC signal.  
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2.3 Results 

Datasets. Supervised machine learning models require the existence of both inputs into the 

proposed model (here termed “features”), and the output corresponding to the value of the 

predicted target (termed “labels”). We downloaded RNA-seq datasets for gene expression 

profiling and 5hmC-immunoprecipitation sequencing datasets (using multiple techniques) for 153 

samples representing 40 different cell types from the published literature. Table S2.1 and Table 

S2.2 contain all the GEO information and relevant information of the cell-types, for which we 

acquired 5hmC enrichment and input (control) profiles. Table S2.3 summarizes all the GEO 

information and relevant information of the cell-types, for which we acquired RNA-seq gene 

expression profiles. Finally, Table S2.4 shows the triad of 5hmC enrichment, its corresponding 

5hmC input, and the matched gene expression profile for each cell type and replicate (if available) 

used for the analyzes in this study. 

For each sample, 5hmC enrichment and the 5hmC input signal were processed together to 

produce the inputs into our proposed model, whereas RNA-seq profiling was processed to obtain 

a label for gene expression as either “High” or “Low”. For each cell type, we normalized gene 

expression to RPKM and labeled a gene as “High” if its signal was above the median gene 

expression for that sample, otherwise the gene was labeled as “Low” (Fig. 2.1A). The combined 

set of 5hmC enrichment and corresponding gene expression values were divided into three datasets: 

training set comprising ~19000 genes (85% of the total), validation set comprising ~1300 of the 

genes (7.5% of the total) and the test set (also ~1300 genes, 7.5% of the total) used after the final 

network parameters were inferred, as a way to evaluate the model on unseen data. We used a total 

of 230 features per gene: 100 variable-sized bins (to account for varying gene lengths) spanning 

the entire length of the gene body defined as the base pairs (bp) between the TSS and the TTS, 15 
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100-bp bins spanning the upstream region of the TSS, 15 100-bp bins spanning the downstream 

region of the TTS (Fig. 2.1B). Separately, we used 100 bins of size 100-bp covering the +/-5kb of 

the TSS to get a detailed representation of 5hmC signal at the promoter (Fig. 2.1C). We used the 

UCSC genome annotation database for the Dec. 2011 (GRCm38/mm10) assembly of the mouse 

genome, and excluded genes with size smaller than 1000 bp. The 5hmC and input enrichment per 

bin were calculated and normalized by bin and library size to adjust for the different size of each 

gene, as well as for differences in sequencing depth. For the regions with higher signal in the 

control experiments compared to the capture assay, we set the enrichment value to 0.  

Baseline Methods. For our first approach to evaluate the performance of 5hmC as a 

predictor of gene expression in a binary manner, we trained three models for each individual 

sample: logistic regression (LRg), support vector machines (SVM) and random forest models 

(RFo), powerful, well-established, off-the-shelf machine learning methods (Fernández-Delgado et 

al. 2014; van Os et al. 2018). To evaluate the performance of the trained models on each cell type 

analyzed in an unbiased manner, we calculated the area under the curve (AUC) scores from the 

Receiver Operating Characteristic (ROC). The range of values the AUC score can take is between 

0 and 1, values closer to 1 corresponding to more successful predictions (AUC for random guessing 

in a binary classification setting with balanced classes would be 0.5). Under default parameters, 

we found that 5hmC signals displayed a promising predictive power with these three conventional 

machine learning methods (median AUC values 0.83, 0.78 and 0.76 for LRg, RFo, and SVM, 

respectively, Fig. 2.1A and Table 2.1), and that the predictive power varied from cell type to cell 

type. T cells (naïve CD4 and CD8 T cells, iNKT cells and CD8 Single Positive thymocytes) yielded 

the highest prediction accuracies, with an AUC above 0.9 for these cell-specific models. On the 

contrary, networks trained on mESC, cardiomyocytes and mouse embryonic fibroblasts (MEFs) 
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performed poorly (Table S2.5). Unexpectedly, logistic regression outperformed the two other 

more sophisticated, ensemble-based, learning algorithms (Fernández-Delgado et al. 2014; Kirasich 

et al. 2018); a possible explanation is that logistic regression performs better when there is a 

balance between the number of explanatory and noise variable (as long as explanatory variables 

dominate), whereas random forest has a higher true/false positive as the number of explanatory 

variables increases in a dataset (Kirasich et al. 2018). The relatively high amount of input features 

we are implementing in our framework (230 bins) may be a possible source of explanation why 

Logistic Regression outperformed both ensemble-based learning algorithms. 

Deep Neural Networks. Deep fully connected networks are powerful approximations 

empirically capable of learning complex functions (LeCun et al. 2015). We used fully connected 

(FC) deep neural networks (DNN) (FCDNN), in an attempt to study if these highly adaptable 

networks could enhance the ability of 5hmC to predict gene expression. After some 

hyperparameter tuning (Table 2.2 presents the minimum, mean and maximum AUC scores 

obtained in each of the 153 samples when testing the model results for tuning different parameter 

combinations of layers and neurons per layer), we trained our FCDNNs using the following 

configuration that also controls ovefitting: hidden layers (hl = {3}), neurons per layer (n = 

{200,100,50}), learning rate (lr={0.0001}), Dropout Chance (Pd = {0.85}), Decay rate 

(Dr={0.975}) Decay schedule (Ds = {20}), L2 beta regularization weight (L2 = {0.01}) and 

minibatch_size ( Mbsize = {128}). We found that our FCDNN models outperformed all SVM and 

RFo models. Additionally, FCDNN outperformed LRg in 148/153 samples tested, thus achieving 

a higher predictive ability in most conditions (Fig. 2.2A, Fig. S2.1A, Fig. S2.1B, and Table S2.5). 

The samples we analyzed included mouse embryonic stem cells (in the “ESC” category we 

are including other types of pluripotent cells, such as iPSC) as well as more differentiated cells. 
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5hmC is mostly deposited by Tet1 in ESC, unlike differentiated cells where Tet2 and Tet3 are the 

main mechanism (Neri et al. 2013). Moreover, a major difference between ESCs and other cell 

types is the correlation between 5hmC and H3K27me3 that is unique to ESCs (Hagihara et al. 

2021). Tet1 is a key element in the deposition of both 5hmC and the histone marks H3K27me3 

and H2AK119Ub at facultative and pericentromeric heterochromatin; these histone marks are both 

associated with repression of nearby genes [need a reference]. These observations, and the ESC-

specific functional interplay between Tet1 and the PRC2 complex (Cartron et al. 2013) suggest 

that the roles 5hmC plays in mESC vary from those observed in differentiated cells. 

To explore how generalizable the FCDNN models utilizing 5hmC could be in gene 

expression prediction, we first trained a network using all of the different training and validation 

datasets to obtain a “Whole” model (whole-dataset model). This model obtained an AUC score of 

0.82 and a F1 score of 0.75 (the harmonic mean of the precision and recall, where the highest value 

of 1 indicates perfect precision and recall). We then tested the trained model’s predictive ability in 

each of the samples’ unseen test dataset (Table S2.5 and S2.6 for AUC and F1 scores respectively). 

Each sample had their AUC score and we sorted these values to study if the Whole-model had a 

bias towards any particular kind of cell type. We found that the ESC samples were highly enriched 

for having lower AUC values, suggesting that the Whole model’s AUC was separating 

differentiated from the ESCs samples (Table S2.5, see the “Whole” column under the “Multi-

sample models” column group). We sorted in increasing order all of our sample’s AUC scores 

(calculated using the “whole” model’s weights), and using this order we plotted the cumulative 

frequency of finding a mESC sample (Table S2.5, sample rows labeled as ESC in the “Subgroup” 

column), calculated as the ratio of mESC samples seen from the 34 total ESCs samples (Fig. 2.1B, 

Y-axis) for any given position in the sorted scores (Fig. 2.1B, X-axis; 153 total positions, equal to 
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all our samples). Midway through the sorted scores (position 77 in the X-axis, yellow-filled 

romboid over black line for the Whole model), 82% of the ESC were being covered, meaning that 

most of the the ESC were below the median across the distribution of observed AUC scores. To 

further study the observed separation of predictive ability for ESC vs immune-related cell-types, 

like T-cells (Table S2.5, T-cell samples with an AUC score higher than 0.9 are bolded under 

column titled “Whole”), as well as to explore deeper the generalizability of the 5hmC models, we 

generated a subset compossed of immune cell samples (“Immuno” set), and another subset 

composed of all the ESC samples (“ESC” set) (see column “Subgroup” for sample membership in 

both Table S2.5 and Table S2.6 tables). We then trained two new models named “Immuno” and 

“ESC”, and obtained AUC scores of 0.89 and 0.83, and F1 scores of 0.83 and 0.74, respectively. 

Table 2.3 and Table 2.4 show the summary statistics of AUC score distribution of each group’s 

unseen test data. The relatively lower scores achieved by the ESC model could potentially be 

explained by the bivalent role 5hmC plays in ESC as discussed above. Since the model relies on 

5hmC enrichment to predict gene expression, having 5hmC also deposited in repressed genes and 

inactive regions may hamper the dissection of what genes are actually being expressed (Wu & 

D’Alessio et al. 2011). 

The test sets’ genes are comprised of the same randomly chosen genes across all the 

samples in a group, thus our models never see the 5hmC signal from those genes in any cell type 

in either the training or the validation datasets. In order to better assess the generalizability of our 

predictions to completely unseen cell types, we repeated our training by withholding a number of 

samples from the training, and used them as test sets in the final AUC calculation (Table S2.7). 

The AUC scores we obtain from this setting were similar to witholding randomly chosen gene sets 
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across all cell types suggesting that our predictive models generalize well to samples not seen by 

the model (Table S2.7, see “Withheld” row results compared to “All Samples” row results). 

Since the new two models were specialized for either ESC or Immunological cell-types, 

we suspected that the Immune model would perform worse with ESC-like samples compared to 

either the ESC or the Whole model. First, we tested the prediction ability of these two trained 

models in each of the samples’ unseen test dataset. From the distribution of AUC scores across all 

samples, we obtained an AUC mean of 0.81 (Table 2.3) for the Immuno and ESC models (F1 

mean scores of 0.72 each, Table 2.4), a result that was similar to each model’s validation dataset. 

Then, we repeated the analysis of the relative prediction rankings (AUCs ranked low to high) for 

ESC samples with respect to all other cell types using the three trained networks (Whole, Immuno, 

ESC) (Fig. 2.1B). All 34 ESC samples were among the worst performing (bottom 50%) for the 

Immuno model, unlike the ESC model, where the AUC scores of ESC samples were more evenly 

distributed across the whole ranking. These results are in line with observations that the role of the 

5hmC mark may be different between differentiated and undifferentiated cell-types (Wu & 

D’Alessio et al. 2011). 

Although the specialized models excel in the predictions associated to the cell-types they 

were trained on (Fig. 2.2C), when comparing the summary statistics on the distribution of each 

model’s AUC or F1 scores across all samples (Table 2.3 and Table 2.4 respectively; highest value 

per column across the multi-sample models are in bold), none of the two specialized models 

outperformed the whole model’s mean or median values (Fig. S2.2; see Table S2.5 and Table 

S2.6 for all the AUC and F1 scores respectively). The whole model used not only the Immuno and 

ESC subsets, but also the remainder of the samples, and this exposure may explain why it learned 

features generalizable to diverse cell-types. 
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When assigning a gene an expression label (such as “ON” and “OFF”) the median of a 

cell’s gene expression is the usual threshold to have a balanced label group (splitted the data in 

two equally sized groups). However, this threshold does not bear much biological significance; 

variation in replicates from the same cell-type may move a gene’s expression above or below the 

expression threshold. We explored the accuracy of our specialized models per gene expression 

quartiles and found that the best performing quartiles were the 1st and the 4th quartiles (bottom 

25% and top 25% expressed genes), whereas the 2nd and 3rd quartiles performed poorly, 

particularly true for the ESC model (Fig S2.3). This means that our model accurately captures the 

lowest and highest expressed gene categories whereas those with intermediate expression values, 

close to the median threshold, are more challenging to predict. 

Finally, we wanted to explore what were the most important features in performing the 

gene expression prediction task. To this end, we implemented DeepLift (Shrikumar et al. 2019), a 

tool that gives a significance score to each of the features of a DNN relative to the state of the 

network after a “reference” signal (e.g. any gene’s 5hmC signal distribution) is processed by the 

network. If we activated the network (the state of a network when all features are processed and a 

prediction is made) by the use of features associated to a gene labeled as “High”, and decoded it 

by the features of another “High” gene, the significance scores assigned to each feature may be 

very low, since the network activation state may not change (Fig. 2.3A). On the contrary, if we 

activate the network by the use of features associated to a “High” gene and and decode it by the 

use of a “Low” gene, or vice-versa (e.g., the use of opposites), this generates an artificial contrast 

between the state and the reference set of signals that almost all features become “important” (Fig. 

2.3B). In order to obtain a distribution of relative significances per feature, we fed DeepLift the 

networks activated by neutral signal. This neutral signal was generated using randomly sampled 
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genes (equal number of High and Low genes) and averaging their signal for each of the 230 bins. 

For each label (“High” and “Low”), we ran this process for the Whole network, and found that the 

features representing the TSS, and those surrounding the promoter, are the most relevant features 

for the gene expression prediction task using 5hmC (Fig. 2.3C). This is consistent with previous 

studies finding that the signals slightly downstream of TSSs are the most informative (Cheng et al. 

2011) and that epigenetic features in or near the promoter region were the most informative in the 

gene expression prediction task (Dong et al. 2012; Singh et al. 2016; Singh et al. 2017). Then, we 

ran this process for both the Immuno and the ESC models (Fig. 2.4) and, although in both models 

the bins representing up to 600 bp downstream the TSS are the most relevant (Fig. 2.4A), the 

ranking of their significance score follows opposite directions in each model. For the ESC model 

the most significant bin is located 600 bp downstream the TSS, followed by the bins upstream, 

whereas the bin representing the TSS is the most significant for the Immuno model, followed by 

the bins downstream (Fig. 2.4B, green circles). 

Overall, our results show that 5hmC signal enrichment on its own can be used to effectively 

predict gene expression, and that the model trained in all the available datasets is sufficiently 

generalizable to cell types that are not represented in the training.   
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2.4 Discussion 

5hmC signal enrichment has been associated with positive gene expression. Here we 

explore this association further by successfully employing FCDNN that models signal from 5hmC 

enrichement methods to predict gene expression. When we calculated the AUC in models trained 

and tested on the same cell type, we obtained a median AUC of 0.87 (across 153 samples from 40 

different cell types each with 1 to 10 replicates, 2 in most cases). We extended these models to a 

diverse range of cell types and also produced a generalizable model “Whole” with a median AUC 

of 0.86 and median F1 score of 0.80 that can be used in cells from different context. This is 

comparable to other state-of-the-art models that use the genomic distribution of histone marks, and 

complex network architectures such as kernels and convolutions in DeepChrome (Singh et al. 

2016), and a hierarchy of multiple Long Short-Term Memory modules with recurrent and memory 

cells in AttentiveChrome (Singh et al. 2017) with F1 scores of 0.69 and 0.62 respectively. Both 

methods had an AUC score of 0.80, however, they trained a specific model per each cell-type and 

have not considered the generalizability of their predictions to unseen cell types. To our knowledge, 

our group is the first to implement a deep learning framework to predict gene expression from 

5hmC signal alone. 

In all samples, our Deep Neural Network framework always outperformed SVM and 

Random Forest models, as well as Logistic Regression with few exceptions (see Table S2.5, all 

six sample exceptions are bold in the “LRg” column under “Models trained in one sample” column 

group). Although exceptions occurred with some mESC samples having an exceptionally good 

AUC using Deep Neural Networks, as high as 0.9 (see the bold numbers in column “FCDNN”, 

under “Models trained in one sample”, from Table S2.5), from the compendium of all cell-types, 

mESC-related samples were generally low. Our findings may be an additional piece of evidence 
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supporting the bivalent roles that 5hmC plays in ESC , where Tet1 has a dual function of promoting 

transcription of pluripotency factors and participating in the repression of Polycomb-targeted 

developmental regulators (Wu & D’Alessio et al. 2011). We note that, regardless of these 

contrasting 5hmC roles between differentiated and ESC datasets, when we analyzed the highest 

relevant features in either ESCs or differentiated cells, we found that the bins corresponding to the 

TSS-proximal region were the most significant regions for both. Whether these Deep Neural 

Networks could be further tuned through the network structure and configuration (e.g. 

convolutional networks, total layer, kernels, neurons, etc.), optimizers, regulators and more 

hyperparameters to enhance the ESC model prediction is an open question. 

Other groups have been successful in the gene expression prediction task by integrating a 

wide range of histone marks (Sekhon et al. 2018; Zeng et al. 2019), using convolutions such as 

DeepChrome (Singh et al. 2016), or more complex DNN frameworks such as AttentiveChrome, 

with a median AUC score of 0.80 (Singh et al. 2017). For these methods the data required to 

generate the input features is dependent on sequencing assays that rely on intact cells to perform 

protein immunoprecipitation (IP) of histones and other proteins from chromatin (this process 

involves crosslinking of intact nuclei). Compared to proteins and most cellular organelles, DNA 

is more stable and can last longer out of the laboratory environment. 5hmC is a stable and covalent 

mark, therefore as long as some DNA is present in a sample, 5hmC can be assessed and quantified, 

as recently shown for cell-free (circulating or plasma) DNA from normal and cancer patients (Song 

et al. 2016). Moreover, 5hmC immunoprecipitation techniques that allow the use of minimal DNA 

starting material without compromising quality data, such as nano-hMe-Seal (Han et al. 2016; 

Gabrieli et al. 2018), can be used to get a sense of gene expression profiles of samples where DNA 

is scarce and RNA is degraded. 
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Although we carefully normalized the 5hmC enrichment datasets such that the signals 

across each feature were comparable, each 5hmC signal capture assay may add uncontrolled 

variation that, if corrected, could increase the models’ performances. For future work, we would 

like to study the technical variations from each capture assay across samples, unfortunately a 

limiting factor that is faced on this analysis is the lack of individual samples, or cell-types, covered 

by more than one technique. Even with these adversities, our models achieved high AUC scores 

similar or higher than those using protein-based assays such as histone/ chromatin 

immunoprecipitation and/or multiple enrichment datasets. Finally, for most of the samples, the 

best performing network was the one trained specifically on the same sample as expected. 

However, the overall low prediction performance in some samples (see bottom tail in Fig. S2.1B) 

warrants further studies of the possible sources of unexplored variation, to explain why 5hmC 

profiles for these few samples (including macrophages, embryonic bodies, bergman glia, Th1 and 

CD4 SP T cells) were not predictive of gene expression. 

In summary, we demonstrated that 5hmC signal can be used to train machine learning 

methods of varying complexity in the binary classification task of gene expression prediction. 

These kinds of processes are achieved to great extent thanks to deep learning’s ability to juggle 

gigantic amounts of existing data, as well as to automatically filter in/out relevant features and 

integrate complex interactions, providing us with important tools.  
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2.5 Materials and Methods 

RNA-seq analysis. All RNA-seq datasets were processed using STAR. We downloaded 

the raw reads and mapped them to the UCSC genome annotation database for the Dec. 2011 

(GRCm38/mm10) assembly of the mouse genome. Counts per gene were obtained using 

FeatureCounts. Similar results were obtained when using STAR’s count algorithm. For the 

generation of the output labels, we RPKM-normalized the RNA signal expression and took the 

median gene expression as the threshold to divide and label genes as “High” and “Low” (above or 

below threshold, respectively).  

5hmC-seq and Input analysis. All enrichment datasets were processed in the same 

pipeline. We downloaded the raw reads and mapped them to the mm10 genome reference assembly 

using Bsmap for CMS-IP and bwa for the other tools. Unmapped reads were remapped after using 

trimgalore from trimming and added to the mapping results after both files were sorted with 

samtools. PCR duplicates were estimated and removed using Picard tools’ MarkDup. Reads 

mapping in the blacklisted regions were removed before further analysis. We generated HOMER’s 

TagDirectories followed by HOMER’s makeMultiWig tracks for visualization in the genome 

browser. We took the promoters, TSS and TTS from the UCSC genome annotation database for 

the Dec. 2011 (GRCm38/mm10) assembly of the mouse genome. For each gene longer than 1000 

bases, we extended the promoter both upstream and dowmstream by 5,000bp, and divided these 

10,000bp stretches into 100 equally-sized bins (100bp per bin). We also took 1,500bp regions both 

upstream of the TSS and downstream of the TTS, resulting in 15 equally sized 100bp-bins for each 

per gene. We split the gene body (from TSS to TTS) into 100 equally-sized bins (per gene only, 

unlike the other bins). We used these bins to obtain the raw 5hmC signal from the mapping results 
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and proceeded to RPKM-normalization based on the sequencing depth per sample and the size of 

each bin.  

Machine Learning Baseline methods. All Three methods implemented as baseline, 

Logistic Regression, Random Forest, and Support Vector Machines, were run with default 

parameters in R (version 3.3.3), from packages “tibble”, “randomForest” and “e1071” respectively, 

using all the 230 bins as the explanatory variable and the gene expression as the target. The Train, 

Validation and Test datasets per sample were split into 85/7.5/7.5% form the total. For the AUC 

scores, we used the library pROC’s roc function.  

Deep Neural Networks. We developed our DNN frameworks in Python’s TensorFlow 

and translated them into Keras for their analysis with DeepChrome. We always used CPU, since 

the complexity of the networks did not require us to use GPU or intense memory requirements. 

After the hyperparameters survey, we trained our FCDNNs using the following hyperparameters: 

hidden layers (hl = {3}), neurons per layer (n = {200,100,50}, respectively), learning rate 

(lr={0.0001}), Dropout Chance (Pd = {0.85}), Decay rate (Dr={0.975}) Decay schedule (Ds = 

{20}), L2 beta regularization weight (L2 = {0.01}) and minibatch_size ( Mbsize = {128}). For the 

models consisting more than one replicate/sample in training, such as the general model “Whole”, 

and the other models “Immuno” or “ESC”, we increased the number of Epochs to 60. The Train, 

Validation and Test datasets per sample were split into 85/7.5/7.5% form the total.  

We used DeepLift with target layer index ({-2}), this computes explanations with respect 

to the logits, appropriate for our network architecture. The score layer index we used was ({0}) 

which correspond to the scores for the input layer.  
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2.6 Figures 

 

 
 
Figure 2.1. Sample normalization and Input Generation.  

(A) Gene expression obtained from RNA-seq of hypothalamus (whole brain region, Lin et al. 2017) 
were RPKM-normalized and from the resulting expression, we divided (dashed diagonal green 
line) the genes into two equal groups as Low and High expression (blue and red lines respectively). 
(B-C). Average 5hmC signal per expression group through the gene body (B) and promoter regions 
(C). Vertical lines in (B) and (C) represent single divisions (bins), blue lines (Promoter, TSS and 
TTS) represent bins with fixed size and green dashed lines (Gene Body) represent bins with 
variable size. Labelling and bin results from a biological replicate of Hypothalamus cell-type are 
shown in this figure as representation.  
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Figure 2.2. Evaluation of different methods to predict gene expression from 5hmC signal.  

(A) AUC score distribution for baseline machine learning models: logistic regression (LRg), 
golden, random forest (FRo), gray, and SVM (light gray) next to the scores from our fully 
connected de neural network (DNN), green, for each sample. Our framework outperforms all of 
the baselines. (B) Cumulative frequency of a sample being an ESC. The range in the X-axis the 
total samples we used in this study (153 total). Each model trained in multiple samples (Whole, 
Immuno and ESC; black, blue and red solid lines, respectively) was used to process each sample 
and calculate its’ AUC score, sorted increasingly. Each model’s validation AUC score is indicated 
by the dashed lines. Whole model had 82% of ESC samples below the median AUC score (X-axis 
position 77) (C) AUC score distribution for specialized models Immuno and ESC (blue and red 
respectively) next to the scores from the model trained in all the available datasets “Whole”, which 
outperforms the specialized models when predicting the expression labels of each sample.  
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Figure 2.3. DeepLift Significance scores.  

(A.-C.) Distribution of DeepLift significance scores throughout the 230 bins using different 
combination of genes (input signal) for network activation and decoding. (A) When using true 
positives (TP, red), or true negatives (TN, blue), for both activation and decoding, no enrichment 
for any specific position is found in either Immuno (top) or Embryo (bottom) models. (B) 
Providing a decoding signal to contrast with the activation signal (e.g. TP as activation and TN as 
decoding signal), the enrichment pattern of significance scores is noisy. (C) When we use a neutral 
signal (e.g. all 230 bins have random signal, or all zeroes) we obtained clear significance (compare 
Y axis across panels) near the 10 bins surrounding the TSS (see Fig. 2.1C; peak at bin 54, 
corresponding to 400bp downstream TSS) and 6 bins downstream of the start of the gene body 
(see Fig. 2.1B; peak at bin 116 and 117). 
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Figure 2.4. DeepLift Significance scores.  

(A) Distribution of DeepLift significance scores throughout the 230 bins using a neutral signal (e.g. 
all 230 bins have random signal, or all zeroes) for network activation and true positives (TP, red) 
or true negatives (TN, blue) genes for decoding. (B) Zoom-in of the TSS for the Immuno and the 
ESC models. The most significant bins for the Immuno model are found directly over the TSS and 
the following most significant bins are located downstream this position up to the 6th -to- 7th bin. 
For the ESC model, the 6th bin has the most significance and the following most significant bins 
are located upstream, towards the TSS, whereas the bins downstream (7th bin onward) had a sharp 
loss of significance. 
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2.7 Tables  

Table 2.1. All samples’s AUC score distribution for each traditional machine learning tool 

on the gene expression prediction task. 

 
Model Min 1stQ. Median Mean 3rdQ. Max 

Logistic Regression (LRg) 0.5249 0.7733 0.8290 0.8046 0.8634 0.9311 
Random Forest (RFo) 0.5384 0.7209 0.7791 0.7594 0.8124 0.8663 
Support Vector Machines (SVM) 0.5148 0.7091 0.7557 0.7392 0.7946 0.8581 

 

 

Table 2.2. Hyperparameter tuning of total connected layers and neurons per layer. Shown 

are the Min, Mean and Max values across all AUC scores per sample per configuration. 

 
Neurons per layer Min Mean Max 

200,100,50 0.5142 0.8129 0.9179 

100,100,100 0.5001 0.8135 0.9135 
50,50,50 0.4811 0.8077 0.9133 
200,200 0.5210 0.8123 0.9109 
100,100 0.5225 0.8113 0.9135 
50,50 0.4939 0.8055 0.9113 

 
 

Table 2.3. Summary statistics of the AUC scores per DNN model processing each samples’ 

unseen test datasets “Final results”. 

 
Model Min 1stQ. Median Mean 3rdQ. Max 

Whole 0.4242 0.7846 0.8601 0.8186 0.8912 0.9405 
Immuno 0.5025 0.8719 0.892 0.8741 0.9294 0.9494 

ESC 0.5483 0.7821 0.8266 0.7987 0.869 0.8964 
Sample-specific 0.5330 0.8020 0.8710 0.8384 0.8970 0.9450 

 

Table 2.4. Summary statistics of the F1 scores per DNN model processing each samples’ 

unseen test datasets “Final Results”. 

 
Model Min 1stQ. Median Mean 3rdQ. Max 

Whole 0.1342 0.7008 0.7951 0.7354 0.8249 0.8835 
Immuno 0.4043 0.8064 0.8265 0.7931 0.8647 0.8878 

ESC 0.5737 0.6854 0.7411 0.7373 0.8074 0.8340 
Sample-specific 0.5280 0.7370 0.8090 0.7788 0.8310 0.8920 
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2.8 Supplemental Data, Tables and Figures 

 
 
Figure S2.1A. AUC Scores per sample for each machine learning method (TOP). 

The AUC scores were sorted with respect to the scores obtained in the DNN model. There is a 
total of 153 samples and the sorted dataset was split on two to visualize each sample ID, here we 
show the top 76 samples. 
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Figure S2.1B. AUC Scores per sample for each machine learning method (BOTTOM). 

The AUC scores were sorted with respect to the scores obtained in the DNN model. There is a 
total of 153 samples and the sorted dataset was split on two to visualize each sample ID, here we 
show the bottom 77 samples. 
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Figure S2.2. AUC Score distribution per specialized model processing the entire dataset. 

The boxplots represent the AUC score discribution calculated in the test set of all the datasets when 
using each of the specialized models “Whole”, “Immuno” and “ESC”. The “Whole” model has 
the best performance overall likely due to being trained in a higher spectrum of cell types. 
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Figure S2.3. Accuracy distribution of the predicted labels per specialized model processing 

the tests datasets. 

Quartiles were defined using the RPKM-normalized gene expression. Q1 represent the bottom 
25% of genes based on expression mostly complised of genes with no expression, whereas Q4 
represent the 25% top most expressed genes. The ESC model had low accuracy in both Q2 and 
Q3, where Q2 had the lowest accuracy of all. 
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Table S2.1. Publication and GEO/project information of 5hmC Enricment downloaded data.  

 
GEO/Project Sequencing 

Technique 

PubmedID Citation 

PRJEB2462 hMeDIPSeq 21460836 Ficz et al. 2011 
GSE28682 CMSSeq 21552279 Pastor et al. 2011 
GSE28682 GLIBSeq 21552279 Pastor et al. 2011 
GSE44566 GLIBSeq 23987249 Neri et al. 2013 
GSE49191 CMSSeq 24270360 Jeong et al. 2013 
GSE50201 CMSSeq 24474761 Huang et al. 2014 
GSE46202 hMeSealSeq 24672749 Zhu et al. 2014 
GSE47894 hMeSealSeq 24757056 Leung et al. 2014 
GSE59121 CMSIP 25071199 Tsagaratou et al. 2014 
GSE59213 CMSIP 25071199 Tsagaratou et al. 2014 
GSE59718 hMeSealSeq 26239807 Delatte et al. 2015 
GSE73611 hMeSealSeq 26586431 Zhao et al. 2015 
GSE77845 GLIBSeq 27160912 Montagner et al. 2016 
GSE77967 hMeSeal 27477909 Han et al. 2016 
GSE66847 hMeDIPSeq 27489048 Greco et al. 2016 
GSE66834 CMSIP 27869820 Tsagaratou et al. 2017 
E-MTAB-5167 hMeDIPSeq 28125731 Lin et al. 2017 
GSE74390 hMeSealSeq 28440315 Pan et al. 2017 
GSE98964 hMeDIPSeq 28813659 Pan et al. 2017 
GSE42880 hMeDIPSeq 28847947 Mellén et al. 2017 
GSE81222 hMeDIPSeq 29020633 Kweon et al. 2017 
GSE100073 hMeSealSeq 29290626 Li et al. 2018 
GSE95720 hMeDIPSeq 29482634 Coluccio et al. 2018 
GSE104828 hMeSealSeq 29908294 Chu et al. 2018 
GSE100957 CMSSeq 30001199 Gu et al. 2018 
GSE117919 hMeDIP 30220521 Sardina et al. 2018 
GSE111700 hMeDIPSeq 30274972 Dominguez et al. 2018 
GSE109540 hMeSealSeq 30325306 Hrit et al. 2018 
GSE119500 hMeSealSeq 30325306 Hrit et al. 2018 
GSE47966 CMSIP 23828890 Lister et al. 2013 
GSE116208 CMSIP 31028100 Lio et al. 2019 
GSE119077 hMeSeal 31583744 Tran et al. 2019 
GSE131442 hMeSealSeq 31862843 Raab et al. 2019 
GSE113694 CMSIP 34288360 Yue et al. 2021 

 
  



 

 
 101

Table S2.2. Publication and GEO/project information of 5hmC Input downloaded data.  

 
GEO/Project Sequencing 

Technique 

PubmedID Citation 

GSE28682 CMSSeq 21552279 Pastor et al. 2011 
GSE28682 GLIBSeq 21552279 Pastor et al. 2011 
GSE49191 CMSSeq 24270360 Jeong et al. 2013 
GSE50201 CMSSeq 24474761 Huang et al. 2014 
GSE59121 CMSIP 25071199 Tsagaratou et al. 2014 
GSE59213 CMSIP 25071199 Tsagaratou et al. 2014 
GSE77967 hMeSeal 27477909 Han et al. 2016 
GSE66847 hMeDIPSeq 27489048 Greco et al. 2016 
GSE66834 CMSIP 27869820 Tsagaratou et al. 2017 
E-MTAB-5167 hMeDIPSeq 28125731 Lin et al. 2017 
GSE42880 hMeDIPSeq 28847947 Mellén et al. 2017 
GSE81222 hMeDIPSeq 29020633 Kweon et al. 2017 
GSE95720 hMeDIPSeq 29482634 Coluccio et al. 2018 
GSE100957 CMSSeq 30001199 Gu et al. 2018 
GSE111700 hMeDIPSeq 30274972 Dominguez et al. 2018 
GSE47966 CMSIP 23828890 Lister et al. 2013 
GSE116208 CMSIP 31028100 Lio et al. 2019 
GSE119077 hMeSeal 31583744 Tran et al. 2019 
GSE131442 hMeSealSeq 31862843 Raab et al. 2019 
GSE113694 CMSIP 34288360 Yue et al. 2021 
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Table S2.3. Publication and GEO/project information of gene expression profiling  

downloaded data.  

 
GEO/Project Sequencing 

Technique 

PubmedID Citation 

PRJNA30467 RNASeq 18516045 Mortazavi et al. 2018 

PRJEB2462 RNASeq 21460836 Ficz et al. 2011 

GSE20898 RNASeq 21867929 Wei et al. 2011 

GSE30578 RNASeq 22379031 Kirigin et al. 2012 

GSE31234 RNASeq 22500808 Zhang et al. 2012 

GSE31235 RNASeq 22500808 Zhang et al. 2012 

GSE44566 RNASeq 23987249 Neri et al. 2013 

GSE49191 RNASeq 24270360 Jeong et al. 2013 

GSE50201 RNASeq 24474761 Huang et al. 2014 

GSE47894 RNASeq 24757056 Leung et al. 2014  

GSE59121 RNASeq 25071199 Tsagaratou et al. 2014 

GSE59213 RNASeq 25071199 Tsagaratou et al. 2014 

GSE60101 RNASeq 25103404 Lara-Astiaso et al. 2014 

GSE73611 RNASeq 26586431 Zhao et al. 2015 

GSE72628 RNASeq 26607761 An et al. 2015 

GSE77845 RNASeq 27160912 Montagner et al. 2016 

GSE77967 RNASeq 27477909 Han et al. 2016 

GSE66847 RNASeq 27489048 Greco et al. 2016 

GSE66834 RNASeq 27869820 Tsagaratou et al. 2017 

GSE71513 RNASeq 27941798 Mathur et al. 2016 
E-MTAB-5167 RNASeq 28125731 Lin et al. 2017 

GSE98964 RNASeq 28813659 Pan et al. 2017 

GSE42880 RNASeq 28847947 Mellén et al. 2017 

GSE81222 RNASeq 29020633 Kweon et al. 2017 

GSE100073 RNASeq 29290626 Li et al. 2018 

GSE95720 RNASeq 29482634 Coluccio et al. 2018 

GSE104828 RNASeq 29908294 Chu et al. 2018 

GSE100957 RNASeq 30001199 Gu et al. 2018 

GSE115714 RNASeq 30212902 Lloret-Llinares et al. 2018 

GSE111700 RNASeq 30274972 Dominguez et al. 2018 

GSE109540 RNASeq 30325306 Hrit et al. 2018 

GSE119500 RNASeq 30325306 Hrit et al. 2018 

GSE47966 RNASeq 23828890 Lister et al. 2013 

GSE116208 RNASeq 31028100 Lio et al. 2019 

GSE130898 RNASeq 31371437 Welte et al. 2019 

GSE127933 RNASeq 31519808 Vanheer et al. 2019 

GSE119077 RNASeq 31583744 Tran et al. 2019 

GSE131442 RNASeq 31862843 Raab et al. 2019 

GSE113694 RNASeq 34288360 Yue et al. 2021 

GSE59213 RNASeq 25071199 Tsagaratou et al. 2014 

GSE60101 RNASeq 25103404 Lara-Astiaso et al. 2014 
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Table S2.4. Associated PMID study of 5hmC, input and expression profile per sample. 

 
  Pubmed ID Project for 

SampleName Replicates 5hmC Input Expression 

129s4_mESC 1-2 30001199 30001199 30001199 
129s4_mESC 3-4 29482634 29482634 29482634 
129s4_mESC 5 29020633 29020633 29020633 
Bcell_Activated_24 1-2 31028100 31028100 31028100 
Bcell_Activated_48 1-2 31028100 31028100 31028100 
Bcell_Activated_72 1-2 31028100 31028100 31028100 
Bcell_Resting 1-2 31028100 31028100 31028100 
Bergmann_Glia 1-2 28847947 28847947 28847947 
CD4_Naive_Tcell 1-2 25071199 25071199 25071199 
CD4_SinglePositive_Tcell 1-2 25071199 25071199 22379031 
CD8_Naive_Tcell 1-2 25071199 25071199 25071199 
CD8_SinglePositive_Tcell 1-2 25071199 25071199 27869820 
Cardiomyocites_Adult 1-2 27489048 27489048 27489048 
Cardiomyocites_E14.5 1-2 27489048 27489048 27489048 
Cardiomyocites_E14.5_shControl 1-2 27489048 27489048 27489048 
Cardiomyocites_Neonatal 1-2 27489048 27489048 27489048 
Cardiomyocites_TAC 1-2 27489048 27489048 27489048 
Colon_Epithelia 1-2 26239807 31862843 27941798 
DoublePositive_Tcell 1-2 25071199 25071199 22500808 
E13_Frontal_Cortex 1 23828890 23828890 23828890 
E14_Embryonic_Bodies 1-2 21460836 29020633 30212902 
E14_mESC 1-3 21460836 29020633 30212902 
E14_mESC_shGFP 1 23987249 27477909 23987249 
Female_Cerebellum 1 28125731 28125731 28125731 
Female_Cortex 1 28125731 28125731 28125731 
Female_Hippocampus 1 28125731 28125731 28125731 
Female_Hypothalamus 1 28125731 28125731 28125731 
Female_Liver 1 28125731 28125731 28125731 
Female_Thalamus 1 28125731 28125731 28125731 
Germinal_Center_B 1-2 30274972 30274972 30274972 
Granule_Cells 1-2 28847947 28847947 28847947 
Common_Myeloyd_Prog 1-3 27477909 27477909 25103404 
Granulocyte_Monocyte_Prog 1-3 27477909 27477909 25103404 
Hematopo_LSK 1-3 27477909 27477909 26607761 
Megakaryo_Erythr_Prog 1-3 27477909 27477909 25103404 
Hematopoietic_Stem_Cells 1 24270360 24270360 24270360 
Intestinal_Epithelial_Sox_High 1-3 31862843 31862843 31862843 
Intestinal_Epithelial_Sox_Low 1-3 31862843 31862843 31862843 
Intestinal_Epithelial_Sox_Negative 1-3 31862843 31862843 31862843 
Intestinal_Epithelial_Sox_Sublow 1-3 31862843 31862843 31862843 
J1_mESC 1-2 21460836 29020633 21460836 
LF2_mESC 1-2 30325306 29020633 30325306 
Leukemia_GMP 1-5 27477909 27477909 27477909 
Leukemia_Multipotent_Prog 1-5 27477909 27477909 27477909 
Liver 1 23987249 28125731 28125731 
MEF 1-2 30220521 27477909 31519808 
MEF 3-4 23987249 27489048 31519808 
MEF 5 21460836 27489048 31519808 
Macrophages 1-2 29908294 24270360 29908294 
Macrophages 3-4 28813659 24270360 28813659 
Male_Cerebellum 1 28125731 28125731 28125731 
Male_Cortex 1 28125731 28125731 28125731 
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Table S2.4. Associated PMID study of 5hmC, input and expression profile per sample 

(continued). 

 
  Pubmed ID Project for 

SampleName Replicates 5hmC Input Expression 

Male_Hippocampus 1 28125731 28125731 28125731 
Male_Hypothalamus 1 28125731 28125731 28125731 
Male_Liver 1 28125731 28125731 28125731 
Male_Thalamus 1 28125731 28125731 28125731 
Mast_Cells_BMMC 1 27160912 27477909 27160912 
Mesenchymal_Stem-Progenitors 1-2 29290626 27489048 29290626 
Myeloid_Progenitors 1-2 26586431 27477909 26586431 
Myeloid_Progenitors 3-4 28440315 27477909 26586431 
Naive_T_Cell 1-2 34288360 34288360 34288360 
P70_10weeks_Frontal_Cortex 1 23828890 23828890 23828890 
Purkinje_Cells 1-2 28847947 28847947 28847947 
Regulatory_T_Cell 1-2 34288360 34288360 34288360 
Th1 1-2 25071199 25071199 21867929 
V6.5_mESC_00h_wAA_2i 1 31583744 31583744 31583744 
V6.5_mESC_12h_wAA_2i 1 31583744 31583744 31583744 
V6.5_mESC_72h_wAA_2i 1 31583744 31583744 31583744 
V6.5_mESC 1-3 24474761 24474761 24474761 
V6.5_mESC 4-6 21552279 21552279 24474761 
V6.5_mESC 7-12 27477909 27477909 31371437 
WholeBrain 1 23987249 23828890 ENCODE 
iNK_T_Cell 1-2 27869820 27869820 27869820 
mESC_UnspecifiedBackground 1 24757056 24474761 24757056 
pre_iPSC_Day00_wDMSO 1-3 31583744 31583744 31583744 
pre_iPSC_Day02_wAA_2i 1-3 31583744 31583744 31583744 
pre_iPSC_Day10_wAA_2i 1-3 31583744 31583744 31583744 
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Table S2.5. Calculated AUC scores per Model (as referred in the manuscript) for each 

sample‘s test dataset. 

 
Samples Models Trained in one sample Multi-sample Models  

LRg RFo SVM FCDNN Whole Immuno ESC Subgroup 

129s4_mESC_Rep1 0.681 0.679 0.632 0.665 0.645 0.653 0.639 ESC 
129s4_mESC_Rep2 0.678 0.669 0.625 0.719 0.690 0.694 0.693 ESC 
129s4_mESC_Rep3 0.806 0.755 0.739 0.827 0.783 0.679 0.819 ESC 
129s4_mESC_Rep4 0.752 0.732 0.677 0.774 0.760 0.746 0.760 ESC 
129s4_mESC_Rep5 0.614 0.610 0.582 0.635 0.644 0.636 0.650 ESC 
Bcell_Activated_24_Rep1 0.889 0.843 0.820 0.917 0.891 0.915 0.841 Immuno 
Bcell_Activated_24_Rep2 0.860 0.841 0.787 0.895 0.831 0.876 0.758 Immuno 
Bcell_Activated_48_Rep1 0.899 0.847 0.831 0.921 0.901 0.922 0.861 Immuno 
Bcell_Activated_48_Rep2 0.854 0.835 0.778 0.882 0.793 0.847 0.720 Immuno 
Bcell_Activated_72_Rep1 0.885 0.822 0.813 0.930 0.919 0.932 0.884 Immuno 
Bcell_Activated_72_Rep2 0.838 0.812 0.759 0.876 0.786 0.843 0.709 Immuno 
Bcell_Resting_Rep1 0.903 0.838 0.832 0.918 0.898 0.919 0.859 Immuno 
Bcell_Resting_Rep2 0.862 0.833 0.777 0.904 0.841 0.881 0.759 Immuno 
Bergmann_Glia_Rep1 0.620 0.619 0.587 0.634 0.424 0.460 0.396 - 
Bergmann_Glia_Rep2 0.828 0.782 0.762 0.856 0.857 0.829 0.856 - 
CD4_Naive_Tcell_Rep1 0.890 0.840 0.802 0.906 0.837 0.885 0.773 Immuno 
CD4_Naive_Tcell_Rep2 0.926 0.855 0.851 0.942 0.929 0.941 0.902 Immuno 
CD4_SP_Tcell_Rep1 0.901 0.835 0.832 0.924 0.893 0.924 0.843 Immuno 
CD4_SP_Tcell_Rep2 0.561 0.598 0.531 0.587 0.504 0.502 0.496 Immuno 
CD8_Naive_Tcell_Rep1 0.903 0.841 0.827 0.930 0.897 0.931 0.848 Immuno 
CD8_Naive_Tcell_Rep2 0.931 0.858 0.854 0.945 0.936 0.946 0.909 Immuno 
CD8_SP_Tcell_Rep1 0.926 0.866 0.858 0.940 0.932 0.942 0.901 Immuno 
CD8_SP_Tcell_Rep2 0.919 0.856 0.855 0.943 0.940 0.948 0.908 Immuno 
Cardiomyo_Adult_Rep1 0.795 0.719 0.732 0.837 0.829 0.840 0.811 - 
Cardiomyo_Adult_Rep2 0.767 0.695 0.709 0.821 0.822 0.813 0.812 - 
Cardiomyo_E14.5_Rep1 0.690 0.659 0.642 0.744 0.753 0.737 0.740 - 
Cardiomyo_E14.5_Rep2 0.702 0.656 0.642 0.751 0.757 0.721 0.743 - 
Cardiomyo_E14.5_shCtl_Rep1 0.595 0.577 0.568 0.609 0.619 0.636 0.604 - 
Cardiomyo_E14.5_shCtl_Rep2 0.589 0.588 0.570 0.647 0.615 0.646 0.596 - 
Cardiomyo_Neonatal_Rep1 0.764 0.684 0.708 0.800 0.804 0.796 0.784 - 
Cardiomyo_Neonatal_Rep2 0.798 0.718 0.724 0.821 0.826 0.804 0.812 - 
Cardiomyo_TAC_Rep1 0.793 0.697 0.717 0.836 0.827 0.830 0.814 - 
Cardiomyo_TAC_Rep2 0.767 0.698 0.702 0.813 0.799 0.805 0.785 - 
Colon_Epithelia_Rep1 0.902 0.812 0.822 0.899 0.900 0.902 0.880 - 
Colon_Epithelia_Rep2 0.906 0.823 0.831 0.905 0.916 0.911 0.899 - 
DoublePositive_Tcell_Rep1 0.797 0.770 0.728 0.825 0.754 0.808 0.710 Immuno 
DoublePositive_Tcell_Rep2 0.882 0.818 0.806 0.903 0.866 0.900 0.820 Immuno 
E13_Frontal_Cortex_Rep1 0.810 0.783 0.743 0.865 0.830 0.811 0.801 - 
E14_Embryonic_Bodies_Rep1 0.592 0.612 0.556 0.636 0.526 0.525 0.573 ESC 
E14_Embryonic_Bodies_Rep2 0.608 0.623 0.581 0.646 0.533 0.549 0.548 ESC 
E14_mESC_Rep1 0.608 0.658 0.574 0.667 0.566 0.567 0.595 ESC 
E14_mESC_Rep2 0.612 0.673 0.582 0.720 0.618 0.628 0.634 ESC 
E14_mESC_Rep3 0.807 0.779 0.737 0.851 0.844 0.794 0.857 ESC 
E14_mESC_shGFP_Rep1 0.826 0.770 0.747 0.863 0.849 0.781 0.871 ESC 
Female_Cerebellum_Rep1 0.834 0.779 0.753 0.879 0.878 0.868 0.862 - 
Female_Cortex_Rep1 0.850 0.799 0.788 0.859 0.860 0.820 0.869 - 
Female_Hippocampus_Rep1 0.837 0.790 0.774 0.870 0.880 0.846 0.879 - 
Female_Hypothalamus_Rep1 0.849 0.799 0.778 0.895 0.895 0.872 0.888 - 
Female_Liver_Rep1 0.862 0.808 0.775 0.890 0.866 0.878 0.846 - 
Female_Thalamus_Rep1 0.848 0.799 0.799 0.882 0.882 0.857 0.881 - 
Germinal_Center_B_Rep1 0.738 0.710 0.672 0.760 0.750 0.770 0.699 Immuno 
Germinal_Center_B_Rep2 0.701 0.686 0.633 0.724 0.704 0.728 0.654 Immuno 
Granule_Cells_Rep1 0.864 0.807 0.786 0.895 0.894 0.885 0.874 - 
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Table S2.5. Calculated AUC scores per Model (as referred in the manuscript) for each 

sample‘s test dataset (continued). 

 
Samples Models Trained in one sample Multi-sample Models  

LRg RFo SVM FCDNN Whole Immuno ESC Subgroup 

Granule_Cells_Rep2 0.812 0.743 0.729 0.853 0.853 0.847 0.835 - 
Hematopo_CMP_Rep1 0.851 0.790 0.785 0.904 0.902 0.906 0.874 Immuno 
Hematopo_CMP_Rep2 0.828 0.777 0.771 0.890 0.888 0.891 0.857 Immuno 
Hematopo_CMP_Rep3 0.827 0.779 0.766 0.887 0.884 0.884 0.859 Immuno 
Hematopo_GMP_Rep1 0.826 0.785 0.753 0.894 0.898 0.897 0.880 Immuno 
Hematopo_GMP_Rep2 0.801 0.729 0.725 0.877 0.867 0.880 0.836 Immuno 
Hematopo_GMP_Rep3 0.796 0.738 0.724 0.869 0.870 0.876 0.848 Immuno 
Hematopo_LSK_Rep1 0.839 0.789 0.783 0.883 0.876 0.876 0.847 Immuno 
Hematopo_LSK_Rep2 0.824 0.776 0.755 0.872 0.869 0.872 0.835 Immuno 
Hematopo_LSK_Rep3 0.814 0.773 0.745 0.863 0.861 0.864 0.832 Immuno 
Hematopo_MEP_Rep1 0.846 0.789 0.760 0.904 0.905 0.910 0.880 Immuno 
Hematopo_MEP_Rep2 0.796 0.744 0.737 0.863 0.869 0.871 0.852 Immuno 
Hematopo_MEP_Rep3 0.824 0.778 0.753 0.884 0.884 0.892 0.860 Immuno 
Hematopo_Stem_Cells_Rep1 0.847 0.791 0.772 0.866 0.863 0.840 0.850 Immuno 
Intesti_Epithe_Sox_H_Rep1 0.891 0.823 0.807 0.903 0.903 0.892 0.891 - 
Intesti_Epithe_Sox_H_Rep2 0.877 0.809 0.795 0.898 0.900 0.887 0.886 - 
Intesti_Epithe_Sox_H_Rep3 0.878 0.804 0.796 0.897 0.900 0.881 0.893 - 
Intesti_Epithe_Sox_L_Rep1 0.887 0.834 0.818 0.901 0.905 0.894 0.890 - 
Intesti_Epithe_Sox_L_Rep2 0.873 0.826 0.794 0.897 0.900 0.887 0.886 - 
Intesti_Epithe_Sox_L_Rep3 0.877 0.825 0.804 0.907 0.911 0.900 0.896 - 
Intesti_Epithe_Sox_N_Rep1 0.892 0.824 0.806 0.907 0.908 0.899 0.894 - 
Intesti_Epithe_Sox_N_Rep2 0.875 0.812 0.795 0.895 0.899 0.892 0.883 - 
Intesti_Epithe_Sox_N_Rep3 0.889 0.821 0.811 0.905 0.908 0.902 0.895 - 
Intesti_Epithe_Sox_S_Rep1 0.883 0.824 0.805 0.906 0.912 0.901 0.901 - 
Intesti_Epithe_Sox_S_Rep2 0.890 0.835 0.814 0.909 0.912 0.899 0.900 - 
Intesti_Epithe_Sox_S_Rep3 0.887 0.826 0.807 0.908 0.914 0.902 0.903 - 
J1_mESC_Rep1 0.622 0.650 0.591 0.692 0.582 0.589 0.612 - 
J1_mESC_Rep2 0.657 0.675 0.622 0.752 0.667 0.674 0.676 - 
LF2_mESC_Rep1 0.677 0.667 0.634 0.750 0.570 0.577 0.609 - 
LF2_mESC_Rep2 0.693 0.666 0.638 0.719 0.594 0.606 0.624 - 
Leukemia_GMP_Rep1 0.820 0.758 0.751 0.881 0.886 0.889 0.860 - 
Leukemia_GMP_Rep2 0.833 0.747 0.752 0.886 0.891 0.894 0.874 - 
Leukemia_GMP_Rep3 0.866 0.782 0.785 0.897 0.892 0.904 0.866 - 
Leukemia_GMP_Rep4 0.854 0.766 0.770 0.902 0.900 0.906 0.879 - 
Leukemia_GMP_Rep5 0.833 0.752 0.750 0.880 0.882 0.893 0.857 - 
Leukemia_MPP_Rep1 0.828 0.754 0.752 0.864 0.871 0.870 0.852 - 
Leukemia_MPP_Rep2 0.824 0.755 0.755 0.864 0.871 0.874 0.847 - 
Leukemia_MPP_Rep3 0.829 0.751 0.764 0.879 0.884 0.885 0.853 - 
Leukemia_MPP_Rep4 0.800 0.720 0.730 0.851 0.858 0.852 0.841 - 
Leukemia_MPP_Rep5 0.804 0.726 0.737 0.847 0.848 0.856 0.821 - 
Liver_Rep1 0.889 0.806 0.811 0.910 0.910 0.895 0.908 - 
MEF_Rep1 0.586 0.601 0.559 0.622 0.536 0.562 0.496 - 
MEF_Rep2 0.579 0.613 0.550 0.643 0.551 0.576 0.506 - 
MEF_Rep3 0.793 0.736 0.725 0.795 0.790 0.774 0.768 - 
MEF_Rep4 0.669 0.669 0.612 0.730 0.701 0.705 0.685 - 
MEF_Rep5 0.604 0.630 0.574 0.654 0.641 0.645 0.621 - 
Macrophages_Rep1 0.824 0.754 0.746 0.851 0.837 0.840 0.820 - 
Macrophages_Rep2 0.762 0.708 0.699 0.795 0.784 0.782 0.778 - 
Macrophages_Rep3 0.524 0.538 0.514 0.556 0.547 0.557 0.534 - 
Macrophages_Rep4 0.525 0.561 0.516 0.533 0.555 0.555 0.546 - 
Male_Cerebellum_Rep1 0.853 0.783 0.774 0.882 0.884 0.873 0.865 - 
Male_Cortex_Rep1 0.838 0.786 0.766 0.881 0.874 0.832 0.882 - 
Male_Hippocampus_Rep1 0.808 0.759 0.734 0.858 0.859 0.829 0.857 - 



 

 
 107

Table S2.5. Calculated AUC scores per Model (as referred in the manuscript) for each 

sample‘s test dataset (continued). 

 
Samples Models Trained in one sample Multi-sample Models  

LRg RFo SVM FCDNN Whole Immuno ESC Subgroup 

Male_Hypothalamus_Rep1 0.849 0.805 0.79 0.896 0.890 0.864 0.888 - 
Male_Liver_Rep1 0.806 0.741 0.722 0.852 0.778 0.807 0.759 - 
Male_Thalamus_Rep1 0.843 0.801 0.790 0.890 0.887 0.850 0.887 - 
Mast_Cells_BMMC_Rep1 0.740 0.686 0.678 0.732 0.731 0.729 0.703 Immuno 
Mesenchymal_StemProge_Rep1 0.690 0.646 0.628 0.758 0.757 0.769 0.721 - 
Mesenchymal_StemProge_Rep2 0.705 0.638 0.628 0.754 0.751 0.769 0.726 - 
Myeloid_Progenitors_Rep1 0.838 0.784 0.761 0.879 0.885 0.885 0.868 Immuno 
Myeloid_Progenitors_Rep2 0.846 0.794 0.784 0.890 0.891 0.893 0.876 Immuno 
Myeloid_Progenitors_Rep3 0.838 0.787 0.761 0.879 0.885 0.885 0.868 Immuno 
Myeloid_Progenitors_Rep4 0.846 0.792 0.784 0.890 0.891 0.893 0.876 Immuno 
Naive_T_Cell_Rep1 0.919 0.856 0.837 0.943 0.939 0.948 0.908 Immuno 
Naive_T_Cell_Rep2 0.910 0.846 0.832 0.944 0.940 0.949 0.909 Immuno 
P70_10w_F_Cortex_Rep1 0.858 0.819 0.799 0.884 0.877 0.832 0.882 - 
Purkinje_Cells_Rep1 0.859 0.814 0.789 0.887 0.886 0.857 0.877 - 
Purkinje_Cells_Rep2 0.844 0.785 0.777 0.871 0.872 0.845 0.862 - 
Regulatory_T_Cell_Rep1 0.908 0.849 0.828 0.941 0.934 0.945 0.900 Immuno 
Regulatory_T_Cell_Rep2 0.916 0.845 0.835 0.937 0.924 0.935 0.887 Immuno 
Th1_Rep1 0.671 0.648 0.620 0.679 0.631 0.675 0.607 Immuno 
Th2_Rep1 0.767 0.696 0.695 0.755 0.694 0.745 0.665 Immuno 
V6.5_mESC_00h_wAA_2i_Rep1 0.805 0.774 0.733 0.814 0.801 0.732 0.824 ESC 
V6.5_mESC_12h_wAA_2i_Rep1 0.853 0.809 0.793 0.883 0.851 0.760 0.874 ESC 
V6.5_mESC_72h_wAA_2i_Rep1 0.844 0.791 0.784 0.838 0.775 0.653 0.817 ESC 
V6.5_mESC_Rep1 0.747 0.730 0.688 0.792 0.765 0.740 0.783 ESC 
V6.5_mESC_Rep10 0.849 0.818 0.779 0.868 0.837 0.751 0.866 ESC 
V6.5_mESC_Rep11 0.839 0.794 0.759 0.860 0.830 0.731 0.859 ESC 
V6.5_mESC_Rep12 0.812 0.761 0.743 0.849 0.808 0.710 0.842 ESC 
V6.5_mESC_Rep2 0.750 0.742 0.679 0.786 0.763 0.745 0.780 ESC 
V6.5_mESC_Rep3 0.773 0.754 0.703 0.802 0.792 0.755 0.806 ESC 
V6.5_mESC_Rep4 0.782 0.751 0.728 0.808 0.795 0.747 0.813 ESC 
V6.5_mESC_Rep5 0.781 0.756 0.728 0.836 0.812 0.774 0.826 ESC 
V6.5_mESC_Rep6 0.744 0.694 0.682 0.785 0.773 0.727 0.788 ESC 
V6.5_mESC_Rep7 0.820 0.770 0.753 0.853 0.809 0.707 0.844 ESC 
V6.5_mESC_Rep8 0.804 0.758 0.730 0.836 0.797 0.698 0.826 ESC 
V6.5_mESC_Rep9 0.857 0.800 0.788 0.878 0.848 0.760 0.877 ESC 
WholeBrain_Rep1 0.835 0.799 0.789 0.873 0.843 0.772 0.859 - 
iNK_T_Cell_Rep1 0.920 0.857 0.843 0.936 0.933 0.943 0.900 Immuno 
iNK_T_Cell_Rep2 0.919 0.855 0.837 0.938 0.932 0.942 0.898 Immuno 
mESC_UnspecBkGrnd_Rep1 0.783 0.765 0.724 0.801 0.786 0.708 0.807 - 
pre_iPSC_Day00_wDMSO_Rep1 0.820 0.762 0.754 0.840 0.844 0.792 0.856 ESC 
pre_iPSC_Day00_wDMSO_Rep2 0.829 0.770 0.751 0.850 0.850 0.804 0.857 ESC 
pre_iPSC_Day00_wDMSO_Rep3 0.787 0.750 0.724 0.827 0.819 0.774 0.822 ESC 
pre_iPSC_Day02_wAA_2i_Rep1 0.863 0.813 0.803 0.903 0.883 0.834 0.894 ESC 
pre_iPSC_Day02_wAA_2i_Rep2 0.866 0.812 0.809 0.905 0.886 0.840 0.896 ESC 
pre_iPSC_Day02_wAA_2i_Rep3 0.848 0.790 0.781 0.893 0.881 0.835 0.891 ESC 
pre_iPSC_Day10_wAA_2i_Rep1 0.869 0.793 0.796 0.887 0.867 0.795 0.886 ESC 
pre_iPSC_Day10_wAA_2i_Rep2 0.870 0.808 0.803 0.886 0.868 0.792 0.887 ESC 
pre_iPSC_Day10_wAA_2i_Rep3 0.859 0.795 0.789 0.886 0.864 0.780 0.886 ESC 
Mixed Models’ Test dataset     0.8200 0.8750 0.8069 - 
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Table S2.6. Calculated F1 scores per Model (as referred in the manuscript) for each sample‘s 

test dataset. 

 
Samples FCDNN Whole Immuno ESC Subgroup 

129s4_mESC_Rep1 0.630 0.634 0.636 0.628 ESC 
129s4_mESC_Rep2 0.695 0.647 0.656 0.644 ESC 
129s4_mESC_Rep3 0.766 0.756 0.637 0.774 ESC 
129s4_mESC_Rep4 0.719 0.699 0.675 0.712 ESC 
129s4_mESC_Rep5 0.609 0.572 0.444 0.592 ESC 
Bcell_Activated_24_Rep1 0.852 0.826 0.850 0.737 Immuno 
Bcell_Activated_24_Rep2 0.833 0.761 0.820 0.635 Immuno 
Bcell_Activated_48_Rep1 0.859 0.825 0.854 0.764 Immuno 
Bcell_Activated_48_Rep2 0.810 0.729 0.795 0.615 Immuno 
Bcell_Activated_72_Rep1 0.864 0.849 0.867 0.786 Immuno 
Bcell_Activated_72_Rep2 0.814 0.726 0.794 0.598 Immuno 
Bcell_Resting_Rep1 0.849 0.812 0.845 0.748 Immuno 
Bcell_Resting_Rep2 0.837 0.781 0.821 0.649 Immuno 
Bergmann_Glia_Rep1 0.533 0.153 0.093 0.201 - 
Bergmann_Glia_Rep2 0.789 0.805 0.779 0.806 - 
CD4_Naive_Tcell_Rep1 0.844 0.775 0.828 0.688 Immuno 
CD4_Naive_Tcell_Rep2 0.892 0.862 0.880 0.812 Immuno 
CD4_SP_Tcell_Rep1 0.864 0.815 0.857 0.735 Immuno 
CD4_SP_Tcell_Rep2 0.630 0.486 0.444 0.504 Immuno 
CD8_Naive_Tcell_Rep1 0.871 0.830 0.868 0.769 Immuno 
CD8_Naive_Tcell_Rep2 0.875 0.865 0.879 0.813 Immuno 
CD8_SP_Tcell_Rep1 0.873 0.856 0.868 0.782 Immuno 
CD8_SP_Tcell_Rep2 0.876 0.862 0.873 0.795 Immuno 
Cardiomyo_Adult_Rep1 0.759 0.764 0.775 0.745 - 
Cardiomyo_Adult_Rep2 0.747 0.755 0.744 0.744 - 
Cardiomyo_E14.5_Rep1 0.665 0.657 0.609 0.646 - 
Cardiomyo_E14.5_Rep2 0.683 0.672 0.596 0.652 - 
Cardiomyo_E14.5_shCtl_Rep1 0.592 0.494 0.474 0.509 - 
Cardiomyo_E14.5_shCtl_Rep2 0.594 0.457 0.492 0.458 - 
Cardiomyo_Neonatal_Rep1 0.730 0.724 0.713 0.714 - 
Cardiomyo_Neonatal_Rep2 0.751 0.749 0.716 0.739 - 
Cardiomyo_TAC_Rep1 0.768 0.749 0.735 0.724 - 
Cardiomyo_TAC_Rep2 0.741 0.730 0.726 0.727 - 
Colon_Epithelia_Rep1 0.817 0.824 0.808 0.791 - 
Colon_Epithelia_Rep2 0.829 0.853 0.835 0.831 - 
DoublePositive_Tcell_Rep1 0.771 0.633 0.718 0.557 Immuno 
DoublePositive_Tcell_Rep2 0.836 0.756 0.806 0.677 Immuno 
E13_Frontal_Cortex_Rep1 0.807 0.761 0.731 0.703 - 
E14_Embryonic_Bodies_Rep1 0.636 0.543 0.637 0.634 ESC 
E14_Embryonic_Bodies_Rep2 0.657 0.473 0.601 0.573 ESC 
E14_mESC_Rep1 0.664 0.587 0.659 0.662 ESC 
E14_mESC_Rep2 0.684 0.560 0.626 0.626 ESC 
E14_mESC_Rep3 0.790 0.790 0.748 0.790 ESC 
E14_mESC_shGFP_Rep1 0.804 0.788 0.708 0.807 ESC 
Female_Cerebellum_Rep1 0.809 0.815 0.813 0.814 - 
Female_Cortex_Rep1 0.826 0.810 0.786 0.820 - 
Female_Hippocampus_Rep1 0.820 0.811 0.790 0.818 - 
Female_Hypothalamus_Rep1 0.848 0.824 0.805 0.827 - 
Female_Liver_Rep1 0.822 0.810 0.821 0.800 - 
Female_Thalamus_Rep1 0.838 0.819 0.806 0.831 - 
Germinal_Center_B_Rep1 0.687 0.558 0.506 0.474 Immuno 
Germinal_Center_B_Rep2 0.663 0.470 0.404 0.422 Immuno 
Granule_Cells_Rep1 0.830 0.824 0.824 0.815 - 
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Table S2.6. Calculated F1 scores per Model (as referred in the manuscript) for each sample‘s 

test dataset (continued). 

 
Samples FCDNN Whole Immuno ESC Subgroup 

Granule_Cells_Rep2 0.787 0.800 0.779 0.786 - 
Hematopo_CMP_Rep1 0.832 0.837 0.840 0.789 Immuno 
Hematopo_CMP_Rep2 0.826 0.833 0.830 0.772 Immuno 
Hematopo_CMP_Rep3 0.826 0.810 0.814 0.759 Immuno 
Hematopo_GMP_Rep1 0.826 0.823 0.819 0.781 Immuno 
Hematopo_GMP_Rep2 0.813 0.801 0.817 0.773 Immuno 
Hematopo_GMP_Rep3 0.804 0.810 0.818 0.780 Immuno 
Hematopo_LSK_Rep1 0.820 0.815 0.815 0.774 Immuno 
Hematopo_LSK_Rep2 0.813 0.808 0.813 0.757 Immuno 
Hematopo_LSK_Rep3 0.801 0.802 0.807 0.764 Immuno 
Hematopo_MEP_Rep1 0.835 0.831 0.835 0.795 Immuno 
Hematopo_MEP_Rep2 0.790 0.747 0.771 0.703 Immuno 
Hematopo_MEP_Rep3 0.820 0.808 0.828 0.753 Immuno 
Hematopo_Stem_Cells_Rep1 0.810 0.773 0.726 0.719 Immuno 
Intesti_Epithe_Sox_H_Rep1 0.835 0.827 0.834 0.818 - 
Intesti_Epithe_Sox_H_Rep2 0.828 0.826 0.827 0.817 - 
Intesti_Epithe_Sox_H_Rep3 0.833 0.832 0.817 0.822 - 
Intesti_Epithe_Sox_L_Rep1 0.828 0.832 0.835 0.818 - 
Intesti_Epithe_Sox_L_Rep2 0.825 0.839 0.828 0.821 - 
Intesti_Epithe_Sox_L_Rep3 0.843 0.848 0.843 0.827 - 
Intesti_Epithe_Sox_N_Rep1 0.838 0.846 0.840 0.830 - 
Intesti_Epithe_Sox_N_Rep2 0.831 0.831 0.833 0.814 - 
Intesti_Epithe_Sox_N_Rep3 0.833 0.841 0.837 0.829 - 
Intesti_Epithe_Sox_S_Rep1 0.833 0.849 0.836 0.829 - 
Intesti_Epithe_Sox_S_Rep2 0.842 0.845 0.832 0.817 - 
Intesti_Epithe_Sox_S_Rep3 0.839 0.849 0.839 0.834 - 
J1_mESC_Rep1 0.695 0.578 0.659 0.668 - 
J1_mESC_Rep2 0.702 0.586 0.657 0.623 - 
LF2_mESC_Rep1 0.733 0.357 0.466 0.442 - 
LF2_mESC_Rep2 0.695 0.370 0.518 0.447 - 
Leukemia_GMP_Rep1 0.812 0.813 0.819 0.775 - 
Leukemia_GMP_Rep2 0.828 0.828 0.828 0.787 - 
Leukemia_GMP_Rep3 0.829 0.826 0.841 0.792 - 
Leukemia_GMP_Rep4 0.839 0.835 0.847 0.810 - 
Leukemia_GMP_Rep5 0.806 0.810 0.823 0.789 - 
Leukemia_MPP_Rep1 0.800 0.795 0.800 0.755 - 
Leukemia_MPP_Rep2 0.805 0.791 0.812 0.742 - 
Leukemia_MPP_Rep3 0.812 0.798 0.818 0.757 - 
Leukemia_MPP_Rep4 0.783 0.789 0.787 0.760 - 
Leukemia_MPP_Rep5 0.775 0.770 0.789 0.727 - 
Liver_Rep1 0.837 0.831 0.771 0.814 - 
MEF_Rep1 0.617 0.550 0.650 0.487 - 
MEF_Rep2 0.593 0.578 0.655 0.486 - 
MEF_Rep3 0.746 0.714 0.689 0.695 - 
MEF_Rep4 0.657 0.503 0.504 0.480 - 
MEF_Rep5 0.611 0.643 0.682 0.624 - 
Macrophages_Rep1 0.784 0.434 0.257 0.396 - 
Macrophages_Rep2 0.707 0.134 0.044 0.121 - 
Macrophages_Rep3 0.596 0.252 0.174 0.262 - 
Macrophages_Rep4 0.528 0.283 0.168 0.304 - 
Male_Cerebellum_Rep1 0.828 0.824 0.810 0.820 - 
Male_Cortex_Rep1 0.827 0.809 0.789 0.813 - 
Male_Hippocampus_Rep1 0.806 0.805 0.787 0.812 - 
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Table S2.6. Calculated F1 scores per Model (as referred in the manuscript) for each sample‘s 

test dataset (continued). 

 
Samples FCDNN Whole Immuno ESC Subgroup 

Male_Hypothalamus_Rep1 0.850 0.816 0.803 0.823 - 
Male_Liver_Rep1 0.784 0.745 0.769 0.727 - 
Male_Thalamus_Rep1 0.845 0.825 0.803 0.831 - 
Mast_Cells_BMMC_Rep1 0.631 0.649 0.570 0.642 Immuno 
Mesenchymal_StemProge_Rep1 0.664 0.539 0.381 0.525 - 
Mesenchymal_StemProge_Rep2 0.672 0.585 0.485 0.581 - 
Myeloid_Progenitors_Rep1 0.814 0.817 0.826 0.804 Immuno 
Myeloid_Progenitors_Rep2 0.821 0.816 0.826 0.812 Immuno 
Myeloid_Progenitors_Rep3 0.816 0.817 0.826 0.804 Immuno 
Myeloid_Progenitors_Rep4 0.821 0.816 0.826 0.812 Immuno 
Naive_T_Cell_Rep1 0.876 0.875 0.883 0.821 Immuno 
Naive_T_Cell_Rep2 0.884 0.883 0.885 0.838 Immuno 
P70_10w_F_Cortex_Rep1 0.838 0.826 0.792 0.832 - 
Purkinje_Cells_Rep1 0.829 0.830 0.801 0.820 - 
Purkinje_Cells_Rep2 0.816 0.822 0.793 0.819 - 
Regulatory_T_Cell_Rep1 0.879 0.870 0.887 0.816 Immuno 
Regulatory_T_Cell_Rep2 0.865 0.857 0.870 0.802 Immuno 
Th1_Rep1 0.593 0.538 0.565 0.545 Immuno 
Th2_Rep1 0.695 0.618 0.630 0.591 Immuno 
V6.5_mESC_00h_wAA_2i_Rep1 0.708 0.700 0.586 0.727 ESC 
V6.5_mESC_12h_wAA_2i_Rep1 0.805 0.791 0.672 0.811 ESC 
V6.5_mESC_72h_wAA_2i_Rep1 0.797 0.714 0.434 0.760 ESC 
V6.5_mESC_Rep1 0.737 0.675 0.645 0.691 ESC 
V6.5_mESC_Rep10 0.804 0.782 0.695 0.807 ESC 
V6.5_mESC_Rep11 0.805 0.778 0.637 0.799 ESC 
V6.5_mESC_Rep12 0.795 0.749 0.589 0.785 ESC 
V6.5_mESC_Rep2 0.736 0.655 0.626 0.647 ESC 
V6.5_mESC_Rep3 0.758 0.717 0.671 0.736 ESC 
V6.5_mESC_Rep4 0.764 0.718 0.662 0.739 ESC 
V6.5_mESC_Rep5 0.766 0.738 0.705 0.741 ESC 
V6.5_mESC_Rep6 0.737 0.666 0.523 0.689 ESC 
V6.5_mESC_Rep7 0.791 0.735 0.563 0.772 ESC 
V6.5_mESC_Rep8 0.775 0.714 0.510 0.747 ESC 
V6.5_mESC_Rep9 0.817 0.787 0.708 0.812 ESC 
WholeBrain_Rep1 0.832 0.803 0.692 0.806 - 
iNK_T_Cell_Rep1 0.872 0.868 0.876 0.806 Immuno 
iNK_T_Cell_Rep2 0.871 0.857 0.882 0.810 Immuno 
mESC_UnspecBkGrnd_Rep1 0.756 0.745 0.647 0.754 - 
pre_iPSC_Day00_wDMSO_Rep1 0.725 0.746 0.639 0.736 ESC 
pre_iPSC_Day00_wDMSO_Rep2 0.734 0.740 0.686 0.726 ESC 
pre_iPSC_Day00_wDMSO_Rep3 0.749 0.688 0.641 0.680 ESC 
pre_iPSC_Day02_wAA_2i_Rep1 0.827 0.820 0.770 0.834 ESC 
pre_iPSC_Day02_wAA_2i_Rep2 0.831 0.817 0.774 0.823 ESC 
pre_iPSC_Day02_wAA_2i_Rep3 0.826 0.819 0.772 0.823 ESC 
pre_iPSC_Day10_wAA_2i_Rep1 0.813 0.811 0.718 0.821 ESC 
pre_iPSC_Day10_wAA_2i_Rep2 0.806 0.806 0.703 0.823 ESC 
pre_iPSC_Day10_wAA_2i_Rep3 0.812 0.805 0.676 0.821 ESC 
Mixed Models’ Test dataset  0.748 0.802 0.738 - 
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Table S2.7. AUC and F1 scores of the specialized models with and without holding out 

randomly selected cell types. 

 
AUC [F1] scores  Whole Immuno ESC 

All Samples Mean 0.86  [0.8] 0.89  [0.83] 0.83   [0.74] 
Median 0.82  [0.74] 0.87  [0.79] 0.8     [0.74] 

Withheld Mean 0.86  [0.78] 0.90  [0.81] 0.83   [0.74] 
Median 0.80  [0.71] 0.88  [0.79] 0.81   [0.72] 

Fraction withheld  21/153 6/46 5/35 
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CHAPTER 3: Integrating 3D genome structure with 5hmC enrichment to 

predict gene expression and long-distance regulatory regions. 

 
3.1 Abstract 

5-hydroxymethylcytosine (5hmC) is an epigenetic mark generated from 5-methylcytosine 

(5mC) by TET enzymes, which deposit the highest levels of 5hmC at the most highly transcribed 

genes and the most active enhancers. Here, we use data on 5hmC distribution genome-wide, in 

conjunction with genome-wide Hi-C chromosome conformation capture data, to predict gene 

expression and to identify novel enhancers important for cell-specific gene regulation. We 

accurately detected previously validated enhancers with short range as well as other important 

enhancers with long-range interactions to the Aicda in activated and resting B cells. We also 

identified novel enhancer regions for the Il4 locus in Th2 cells, and the Cd8ab1 locus in CD4 and 

CD8 T cells. In the Aicda locus, we found previously unknown, putative distal regulatory regions 

whose time-course of 5hmC enrichment was reminiscent to that of known Tet-dependent 

enhancers TetE2 and TetE1, offering a system for prioritization of enhancers for further 

experimental validation. Our work demonstrates that the integration of 5hmC with 3D chromatin 

structure can be used to predict gene expression and to identify novel regulatory regions.  
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3.2 Introduction 

 

We showed in chapter 1 that TET enzymes convert 5-methylcytosine (5mC) to 5-

hydroxymethylcytosine (5hmC) at active enhancers, which bind transcription factors that regulate 

the expression of the genes controlled by those enhancers. These transcription factors recruit a 

variety of chromatin-based proteins that regulate expression of the corresponding genes, including 

chromatin remodelling complexes that change the accessibility of chromatin in the vicinity, histone 

acetyltransferases such as p300 and CBP that deposit H3K27Ac and other acetylated histone marks, 

and TET proteins that convert 5mC (usually present in the CpG sequence context) to its oxidized 

forms including 5hmC. Whereas DNA methylation is a stable and generally heritable mark that is 

quickly restored at most sites in the genome after DNA replication, enhancers that are newly 

activated during cellular activation or differentiation show a slow, progressive deposition of 5hmC 

during the activation/differentiation process. 5hmC can be a highly stable modification in the 

eventual, non-proliferating differentiated cells (Bachman et al. 2014), and 5hmC genomic 

enrichment can be assessed by multiple assay techniques, such as GLIB-seq (Pastor et al. 2012), 

CMS-IP (Huang et al. 2012), hMe-Seal (Song et al. 2017), nano-hmC-Seal (Han et al. 2016; 

Gabrieli et al. 2018), and hMEDIP (Song et al. 2011; Taiwo et al. 2012). 

Numerous studies have used epigenetic marks as tools to link regulatory regions to their 

target gene. Most of these studies have typically focused on signals such as histone marks 

(H3K27Ac, H3K9me3, etc.) or accessible genomic regions (Assay for Transposase-Accessible 

Chromatin, Buenrostro et al. 2015) and analyzes of these in conjunction with chromosome 

conformation capture methods such as Hi-C or its variants. 5hmC is an epigenetic modification 

embedded in the DNA molecule, that has been the focus of multiple studies confirming its 



 

 
 124

association with lineage-specific enhancers (as seen in chapter 1), and a comprehensive analysis 

of joint profiles of chromatin organization and 5hmC DNA mark is missing in the literature.  

Analysis of long-range interactions, and their dynamic association with epigenetic 

modifications during cell activation and differentiation, has been the focus of many genomics 

studies. In many cases these studies have led to the discovery and validation of novel enhancers. 

Examples include Enformer (Avsec et al. 2021), which makes gene expression predictions from 

DNA sequences by integrating information from interactions in the genome that are up to 100 kb 

away; Activity by Contact model (Fulco & Nasser et al. 2019), which constructs enhancer-gene 

connection maps to predict enhancers and their target genes by the use of chromatin accessibility 

or acetylation and chromatin conformation; TargetFinder (Whalen et al. 2016), which models the 

interaction status of predefined pairs of enhancers and promoters by integration of multiple 

genomic features; JEME (Cao et al. 2017), which considers the joint effect of multiple enhancers 

on a given TSS that can be up to 1 Mb away; GraphReg (Karbalayghareh et al. 2021), which 

utilizes either epigenomic data only (Epi-GraphReg), or integrates DNA sequences (Seq-

GraphReg) with chromatin interaction data to predict gene expression; and GC-MERGE (Bigness 

et al. 2020), which integrates multiple epigenetic modifications associated with repression and 

activation with the 3D genome organization to predict gene expression. 

A key component of many of these models is the use of machine learning to process the 

massive datasets, capture dependencies among the data, and train a model to predict the enhancer-

promoter associations. This is because machine learning algorithms are designed to automatically 

detect patterns in data (Libbrecht et al. 2015). Thus, machine learning algorithms are ideal for data-

driven sciences such as genomics (Eraslan et al. 2019), where current frontiers lie in the creative 

integration of deep neural networks (DNNs). DNNs are models composed of successive 
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elementary operations, computing increasingly complex features from the results of preceding 

operations as input (Greener & Kandathil et al. 2021). An example of creative integration was the 

adaptation of convolutional operations into graph-structured data to produce ‘graph convolutional 

networks’ (GCNs; Kipf et al. 2017) that can produce node representations that encode both local 

graph structure and features of nodes, known as vector embedding (or simply “embeddings”) that 

can be fed to downstream machine learning systems. Although efficient, these embeddings were 

limited to fixed graphs, meaning that the goal was to generate representations of the nodes 

themselves. A more recent framework, known as GraphSAGE (Hamilton et al. 2018) proposed a 

different strategy that, instead of learning the node representation themselves, learns a function to 

aggregate feature information from a node’s local neighborhood, that can efficiently generate the 

embeddings. This trained function can then be used in previously unseen data. 

Many of the state-of-the-art enhancer-gene linkage or gene expression predictors use a vast 

amount of data (Bigness et al. 2020; Avsec et al. 2021; Karbalayghareh et al. 2021; Whalen et al. 

2016). Given the robust predictions of gene expression that we were able to make using only 5hmC 

signal as a 1D epigenetic mark and rather simple neural network structures (discussed in Chapter 

2), and considering the observed 5hmC enrichment in cell-specific distal enhancers, we were 

interested in integrating 5hmC with 3D chromatin structure for the task of predicting both gene 

expression and putatively functional enhancer regions for each gene. We used the graphical 

convolutional network structure developed by Bigness and colleagues (Bigness et al. 2020). This 

structure makes use of the GraphSAGE framework (Hamilton et al. 2018), which allowed us to 

train an embedding-generator function in a cell-type, and then to used this function in a previously 

unseen cell type. We hypothesize that, as long as the graphs for each of our samples, as well as the 
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node attributes (such as the 5hmC enrichment and Input signal), are generated the same way, the 

trained function may retain predictive value across different cell-types. 

Using our previously processed 5hmC, input and gene expression datasets (from chapter 

2), and integrating publicly available chromatin contact maps for specific cell types (Table S3.1), 

we trained our graphical 5hmC convolutional networks (“GhmCNs”) for the task of predicting 

gene expression. We obtained models with high predictive ability as calculated by our unbiased 

metrics. We demonstrated the power of our approach in specific cell-types by showing that the top 

interactions defining the expression state of key genes containing 5hmC-rich enhancers have been 

validated in the literature. In the course of this analysis, we decoded our trained GhmCN models 

with GNNExplainer, thereby discovering new potential regulatory regions that bore several 

hallmarks of bona fide enhancers: they were enriched for H3K27ac, were highly accessible and 

contained multiple transcription factor binding sites (TFBS), identified both from sequence only 

(Castro-Mondragon et al. 2021) and from physical binding measured by ChIP-seq data for 

transcription factors known to be relevant for gene expression.  
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3.3 Results 

Cell-specific predictions. As input data for our models we used our previously processed 

RNA-seq, 5hmC and Input enrichment datasets, and in addition integrated multiple publicly 

available Hi-C contact maps at 10 kb resolution. Details of the input generation can be found in 

the methods section; briefly, for each sample we build a graph based on the strongest Hi-C contacts 

per window, where the nodes are the 10 kb windows, and the edges are drawn between each 

window and its top 10 interactors. For each node, we obtained 5hmC and Input signal; if a node 

overlapped a gene’s TSS, that gene’s expression label was assigned to the node. We trained all of 

our graphical 5hmC convolutional network (GhmCN) models based on the extensive 

hyperparameter tuning performed by Bigness and colleagues (Bigness et al. 2020). Details of the 

parameters can also be found in the Methods section. For each cell type, we collected and 

calculated the area under the curve (AUC) score for the gene expression prediction task, based on 

the test set, and plotted the respective true positive versus the false positive rates in Fig. 3.1A. 

Across the six different cell types/conditions, all the models we generated displayed a powerful 

ability to discriminate between positive and negative cases, with activated B cells showing the 

highest and the DP thymocyte model showing the lowest AUC scores of 0.8593 and 0.8046, 

respectively.  

To test the relevance of long-range interactions, as well as to establish a baseline of our 

predictions, we repeated our cell-specific models by using only the nearest bins (1D genomic 

distance) (for a total of 10 interactions per bin, 5 upstream and 5 downstream each) as interaction 

partners for each bin and regenerated our models (Fig S3.1). We observed that all of our models 

suffered loss of both AUC and AUPR scores when using only the 10 nearest bins (+/-5) to the 
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promoter region, pointing to the importance of long-range interactions in improving gene 

expresion predictions, presumably by capturing key distal regulatory regions that act as enhancers. 

Cross-cell type comparisons. One of the properties of graphical convolutional networks 

is that they are not tied to a specific graph structure. In our study, the graph structure is composed 

of the Hi-C contacts (observed interactions between genomic regions). This plasticity means that 

the weights of a trained GhmCN model can be used to process a different cell-type’s input features 

and to make predictions. Given this property, we were interested in the cross-cell prediction ability 

of each of our models to obtain evidence of how generalizable our cell-specific models are. We 

took the weights (training parameters) from the embedding-generating function of a model trained 

in a given cell-type, predicted the gene expression of a different cell-type using its input features, 

and calculated the predictive ability of the pre-trained model on this cross-cell gene expression 

prediction task. We repeated this process for each of our 6 models. Fig. 3.1B shows the cross-cell-

type AUC scores, ranging from 0.81 when predicting gene expression in Activated B cells by using 

a model trained on resting B cells, to 0.54, when predicting gene expression in resting B cells using 

a model trained on data from Naïve CD4 T cells (detailed numbers can be found in Fig S3.2A). 

Overall, we saw that the closer a cell-type is to the model being used to process its features, the 

higher the predictive ability of that combination of model and cell-type. We corroborated this 

observation by observing the grouping of each of the 6 cell-types’ expression profiles through 

principal component analysis (Fig S3.2B).  

Mixed-Hi-C model. Given our observations that the models trained in one cell-type and 

tested in a different cell-type depend on the similarity between the cell types, we asked if using an 

aggregate set of Hi-C interactions such that the graph structure is identical across samples, could 

be a viable option. To do this, we generated an “averaged” 3D contact map, based on the known 
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similarity of Hi-C contacts patterns across cell types, largely determined by linear genomic 

distance (Sanborn et al. 2015; Yardımcı et al. 2019). A similar approach of using an aggregate Hi-

C signal has been employed by the ABC score (Fulco et al. 2019). Our motivation was that the use 

of an aggregate Hi-C map would benefit the analysis of cell types where maps of 3D contacts are 

not available.  

To this end, we downsampled all of our Hi-C datasets to 183M randomly selected valid 

interactions, using only samples with more that 183M valid interactions (Table S3.1, methods; DP 

and Th2 cells were excluded due to low coverage) and obtained the normalized interactions 

thereafter using the iterative correction (ICE) technique (Imakaev et al. 2012). Similar to using the 

complete datasets, we took the top 10 interactions for each bin to generate the interaction graph. 

We re-processed each of the cell-types using this new graph structure based on the averaged Hi-C 

values and obtained the AUC scores shown in Fig. 3.1C. Except naïve CD8 T cells, all cell-types 

tested have performed better with cell-specific contact maps rather than the averaged contact map, 

suggesting the importance of cell-specific chromatin organization in gene regulation. In a few 

cases, the AUC score for averaged maps was not much different from that of the cell-specific graph 

structure; this was particularly true for DP and Th2 cell-types, which had the lowest sequencing 

depth, and, hence low power to delineate specific enhancer-promoter contacts in the cell-specific 

model. The cell-types that showed a noticeable drop in their AUC score when the averaged Hi-C 

data is used (from 0.8593 to 0.7954 in activated B cells) were the ones with deeply sequenced Hi-

C maps. Overall, our results suggest that, while it is ideal to use cell-specific and sufficiently 

sequenced Hi-C contact maps, the averaged Hi-C data and the graph structure inferred from it can 

be used in conjunction with cell-specific 5hmC data to reasonably predict gene expression of cell-

types without available Hi-C data. We then repeated the averaged-Hi-C experiment withhelding 
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the Hi-C interactions of the datasets with a matching 5hmC enrichment profile, and then testing 

this averaged map with said sample’s 5hmC profiling. Thus, we further tested the in-silico 

generalizability of our averaged maps (e.g. exclude Hi-C from B cells and then test this B-cell-

withheld average-Hi-C with the B cell’s 5hmC dataset). We found small differences between the 

average map containing all of the available Hi-C datasets and those with the sample of interest 

being withheld in both AUC and AUPR scores (Table 3.1).  

Explaining the predictions of our GCN model. In our model, the Hi-C datasets are used 

only to generate the graph structure (define the nodes and what nodes are interacting), and are not 

used downstream in generating the models, or making predictions based on the models. The 

predictions from the graphical convolutional network models are based on the 5hmC IP and Input 

signal’s embeddings. The graphical convolutional network structure does not have a module (inner 

function) to obtain the relative importance of the produced embeddings per node (defined as the 

10-Kb windows, the Hi-C resolution used in this study), or the effect (additive or not) that each 

embedding from a node’s connections (the neighborhood) has in the prediction itself. To overcome 

these limitations, we used GNNExplainer (Ying et al. 2019), a tool that assigns a relative 

significance score to a node and its interacting neighbors in the prediction result for said node. 

GNNExplainer takes the predicted label (High or Low), the trained GhmCN model’s weights, and 

the graph structure, and converts each interaction between any two nodes to a significance score. 

Here we focused on the interactions between the node of interest (i.e., a specific gene) and its 

neighboors, and did not focus on the interactions among the neighbors themselves. Below we 

analyze our models with GNNExplainer to prioritize interactions of the nodes containing gene 

transcription start sites (TSS). We found that the top ranked nodes for each gene showed a high 

probability of containing regulatory elements with biological significance (see below). 
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Case study A: New and reported regions for Aicda regulation in B cell activation. The 

nodes conserved after filtering top 10 interactions with Aicda promoter in resting and activated B 

cells are listed in Table S3.2. As discussed in Chapter 1, AID, encoded by the Aicda gene, is 

crucial for class switch recombination (CSR) in B cells activated with LPS and IL-4. We also 

reported two Tet-dependent enhancers located ~10-kb (TetE1) and ~26-kb (TetE2) 5’ of the Aicda 

TSS, which showed a progressive increase in 5hmC signal with time after stimulation. We found 

that in both resting and activated B cells, these two experimentally validated regions were among 

the top 10 candidates reported by GNNExplainer, suggesting our model’s ability to capture 

putative functional enhancers. Among the other top-ranked interactions in activated B cells were 

the 10-kb window harbouring the Apobec TSS as well as the region between TetE2 and TetE1; 

these regions all contain known Aicda regulators discussed in Chapter 1.  

Notably, we also observed two long-distance interactions (more than 100-kb away from 

the Aicda TSS) that were not found in resting B cells. These regions were located ~260-kb 

(6:122290000-122300000) and ~160-kb (6:122390000-122400000) 5’ of the Aicda TSS (Fig. 

3.2A, Table S3.2, 1st and 2nd row respectively), and have not previously been reported to have 

regulatory roles in Aicda expression. Since 5hmC is enriched in lineage-specific enhancers as seen 

in Fig. 1.1G, we tested the hypothesis that these two new regions may harbor unreported long-

distance regulators of Aicda expression by exploring the dynamics of 5hmC enrichment within 

these 10-kb windows (Fig. 3.2B-D). Using our previously published 5hmC mapping data (by 

CMS-IP) obtained from WT and double Tet2/3-deficient B cells, resting or 24, 48 and 72 hours 

after activiation with LPS and IL-4, as discussed in Chapter 1, we observed that a region inside 

each node significantly gained (p-value <0.1) 5hmC signal after 72 hours of stimulation 

(chr6:122,293,509-122,294,342 and chr6:122,393,397-122,393,996 respectively, Fig. 3.2E). This 
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pattern is reminiscent of the 5hmC gain that is observed in the known Tet-dependent Aicda 

regulators TetE2 and TetE1 (Fig. 3.2D). Using Remap2022, a manually curated, high-quality 

catalog of regulatory regions (Hammal et al. 2021), and UniBind, collection of high-confidence 

direct TF-DNA interactions (Puig et al. 2021), we found additional evidence of relevant DNA 

binding proteins such as SMARCA4, CHD4, NIPBL, KMT2A, HDAC2 and P300, all associated 

with chromatin remodelling, that were present in the TetE1 and TetE2 known regulatory regions 

as well as in the two novel regions we report here. 

Taken together, we found that the top ranked interacting regions identified by 

GNNExplainer captures the validated Aicda enhancers TetE2 and TetE1 discovered in Chapter 1. 

In addition, our model predicts two novel regions that are also likely to be Aicda enhancers, since 

they share the stimulation-responsive 5hmC pattern with TetE2 and TetE1 as well as the binding 

sites of similar chromatin remodelling proteins. Experimental validation of these new regions as 

Aicda enhancers in B cells both in culture and in vivo are needed to fully understand their causal 

role in regulation of Aicda during B cell activation. 

Case study B: Novel and reported Th2 interactions. Type 2 helper T (Th) cells (Th2 

cells) are generated by polarization of naïve CD4 T cells in the presence of interleukin (IL)-4, a 

potent inducer that directs differentiation of naive CD4+ T cells into CD4+ Th2 effector cells 

(Chen et al. 2004). Many studies have focused on Il4 gene regulatory networks: key regions within 

the the last exons of Rad50 (Lee et al. 2004; Fields et al. 2004), a gene located 5’ of Il4; between 

the TTS of Il4 and Kif3a (Harada et al. 2012), and in the intergenic space between Il4 and Il13 

(Loots et al. 2000; Baguet et al. 2004), have been reported as Il4 enhancers (Ansel et al. 2006).  

We found that, among the top 10 interacting regions associated to the Il4 TSS, 5 covered 

reported regulatory regions: CNS2, also known as hypersensitive site V (HS V) (Agarwal & Rao 
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1998; Vijayanand et al. 2012; Harada et al. 2012), CNS1 (Loots et al. 2000; Harada et al. 2012; 

Baguet et al. 2004; Guo et al 2002) located between Il4 and Il13, CGRE 1.6 kbp upstream from 

the IL-13 gene (Harada et al. 2012; Yamashita et al. 2002), RHS6/7 and RHS5 located in the last 

exon of the Rad50 gene (Lee G.R. et al. 2004; Lee, D.U. et al. 2004; Fields et al. 2004) (between 

the coordinates chr11:53600000-53670000 in Fig. 3.3A). Of the other 5 interacting regions, two 

(here termed Kif-A and Kif-B for convenience) appeared particularly relevant based on their 

proximity to the Il4 gene and that none of the other T cell samples (DP, CD4 and CD8 naive T 

cells) had these two regions in their top interactions (Table S3.4, see regions demarked by the 

black box). Inside the Kif-A and Kif-B regions we observed clear 5hmC signal peaks and strong 

presence of transcription factor binding sites in or near the 5hmC signal peaks (chr11:53580000-

53600000, Fig. 3.3B). The predominant TFBSs found by Remap2022 (Hammal et al. 2021) and 

UniBind (Puig et al. 2021), and analysis of public ChIP-seq datasets in our regions of interest, are 

associated with binding of Foxo1, NFAT1, 2 and 4, CREB, STAT, MYC, Fos, JunD/B, BATF, 

MAFF, IRF4 and more bZip-related TFs, all important for IL-4 production (Sahoo et al. 2015). 

Although Malik and colleagues (Malik et al. 2017) showed that inhibition of Foxo1 had no effect 

on Il4 expression, several reports have shown evidence of the crucial role of BATF and other bZIP 

factors both in Th2 cell generation and Il4 expression both in mouse and human (Kuwahara et al. 

2016; Bao et al. 2016; Sahoo et al. 2015s).  

To explore the potential roles of the Kif-A and Kif-B regions in regulating Il4 expression, 

we downloaded accessibility data, chromatin immunoprecipitation (ChIP-seq) data of multiple 

epigenetic marks associated to regulatory regions (Histone 3 K27ac, K27me3, K4me1, K4me3 & 

K79me2), as well as ChIP-seq data for the transcription factors BACH, BAFF, p300 and IRF4 for 

Th2 cells (Table S3.3). We found that subregions inside each of these two nodes (Fig 3.3B, pink 
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highlights) have clear 5hmC peaks with strong co-binding of key transcription factors such as 

BATF and IRF4, also that this binding of IRF4 is lost in BATF KO and BATF/BATF3 DKO Th2 

cells. Moreover the Kif-A and Kif-B regions were accessible and displayed H3K27ac enrichment 

in Th2 cells, and contained one  perfect match (chr11:53585651-53585753) to the the activating 

protein 1 (AP-1) binding consensus sequence (TGASTCA), and the other (chr11:53593319-

53593416) a very close match to the AP-1–IRF composite elements (AICE2; 

TacCnnnnTGASTCA), known to enable IRF4/8-dependent transcription by cooperative binding 

with BATF, resulting in expression of genes associated with activation and differentiation for Th17, 

B, and dendritic cells, and are also used in Th2 cells (Glasmacher et al. 2012l; Yosef et al. 2013). 

Kuwahara and colleagues (Kuwahara et al. 2016) showed that there is a positive feed-forward 

(amplification) loop between Il4 and Batf to induce Th2 cell differentiation, where the BATF:IRF4 

complex is key for IL-4 expression, and overexpression of IL-4 further augments BATF expression. 

Both ReMap 2022 and UniBind provided further evidence for BATF and IRF4 binding as well as 

general bZIP TF binding. Taking these observations, it is possible that the Kif-A and Kif-B regions 

may be unreported Il4 enhancers mediated through bZIP TF family members, such as the 

BATF:IRF4 complex; this hypothesis is currently being investigated. 

Case study C: Short- and long-range enhancer predictions for naïve CD4 and CD8 T 

cells. As a final case, we wanted to examine the Cd8ab1 gene complex in the T cell lineage. The 

dynamic and complex pattern of CD8 expression (encoded by the Cd8b1 gene) has been reported 

to be regulated by at least six Cd8 enhancers, designated as Enhancer of CD8 (E8)-I to E8VI, and 

found within the Cd8ab1 gene complex (Gülich et al. 2019). We observed that in naïve CD8 T 

cells the top 10 selected interactions not only contained the E8II, E8VI, E8I, and E8V enhancers 

(Table S3.5, Fig. 3.4A), but also the nodes containing these regions were among the top candidates 
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explaining Cd8b1 gene expression as categorized by GNNExplainer (Fig. 3.4B). On the other hand, 

the top 10 interactions selected in naïve CD4 T cells only contained the enhancer E8I (Table S3.5, 

Fig. 3.4C).  However, it is worth mentioning that this enhancer E8I contributes to CD8 expression 

under HDAC inhibitor conditions in naïve CD4 T cells (Gülich et al. 2019). When followed by 

our GNNExplainer analysis, we observe that the ranking assigned to each of the nodes was 

associated to the evidence we had for those regions being important for the regulation in naïve 

CD8 T cells, for example the top three most relevant nodes (position 1st to 3rd in the rank, Table 

S3.5, under Naïve CD8 T “GNNExplainer rank”) are associated to the E8 enhancers I, II, and VI, 

whose interplay has been observed to regulate CD8 expression: E8I-core and E8VI double deletion 

leads to CD8 expression reduction during activation (Gülich et al. 2019); E8I is key to maintain 

transcription of CD8a during activation (Ellmeier et al. 2002); E8II deletion disrupted CD8a 

expression in both DP thymocytes and CD8+ T cells (Hostert et al. 1998). 

Overall, our study has brought multiple data modalities altogether to not only use the 5hmC 

signal as a means of predicting gene expression, as observed in Chapter 2, but also to extend this 

to further explain, and prioritize putative functional enhancers with respect to their 3D promixty 

to the promoters rather than their linear genomic distance. With these analyzes we obtained a high 

ability to label gene expression prediction in High and Low categories and additionally, were able 

to identify regions with the potential for regulating expression of particular genes. Finally, we 

show that we can use averaged Hi-C data for the sole purpose of predicting gene expression, 

although the discovery of novel regulatory regions may be compromised since the averaged Hi-C 

data lose key cell-type-specific interactions.  
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3.4 Discussion 

5hmC is a DNA modification mark that has been associated with active regions in the 

genome, such as highly expressed genes and lineage-specific enhancers with high activity, as 

defined by both H3K27 acetylation and monomethylation marks. Here we have shown that this 

5hmC genomic distribution can be used to link enhancers to their target genes by integrating 3D 

chromatin structure (as obtained by Hi-C-derived genomic interaction matrices) into the task of 

predicting  gene expression. In our GhmCN machine learning models, we used the 3D chromatin 

structure to connect 5hmC signal levels, within each genomic region of size 10-kb, with their top 

10 interacting genomic regions. By doing this, we integrated the spatial structure and the 5hmC 

signal distribution to predict gene expression and obtained cell-specific models with high 

predictive power, having an AUC score above 0.81 in all our tested models. By only using the 5 

interactions next to each bin when constructing the graphs to integrate the 5hmC signal, we 

demonstrated the importance of long-range interactions since the models without these interactions 

performed worse as indicated by our unbiased metrics. When we tried to use cell-type-specific 

trained models with data from other cell-types, the prediction accuracy dropped proportional to 

the distance between the cell types used for training and testing. However, when we generated an 

averaged Hi-C interaction map from subsampled multiple Hi-C datasets (cell types included naïve 

and activated B cells; DP and CD4+ naïve T cells; CD8+ naïve, effector and exhausted T cells; 

LSK, Th2 and BMDMs), we showed that these models conserved strong predictive ability with a 

minimum AUC score of 0.78. This provided us evidence that cell-type-specific 5hmC enrichment 

signals can be a powerful way to predict gene expression when integrated with averaged 3D 

chromatin structure data. Since GCN models do not inform what nodes, or edges, are the most 

important in making the classification for a given node (prediction of binary expression class), we 
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used GNNExplainer, a tool that assigns relative importance to each edge and node feature in a 

graph. Our GNNExplainer analysis proved to be a reliable way to interpret which nodes (genomic 

regions) were the most important among those interacting with a gene’s TSS, in terms of making 

gene expression predictions.  

Validating our methods, we found that the top candidates for exemplar genes were 

consistent with observed roles for those regions that had been reported in the literature, such as 

TetE1- and TetE2-containing nodes being ranked in the top 5 important interactions in activated 

B cells. Moreover, our prioritization of the top ten candidate interacting regions allowed us to 

focus deeper on regions that GNNExplainer deemed important, but that might not yet have been 

validated as having regulatory roles (for novel putative enhancers). We believe the analysis 

strategy we followed here can be an important tool to prioritize putative functional enhancers that 

regulate key genes of each studied cell type. Finally, it is important to keep in mind that, while Hi-

C and 5hmC signal enrichment constitute a powerful pair, Hi-C is substantially more expensive 

and requires intact nuclei, compared to just 5hmC. Even though this is a limitation, our results 

showing that an averaged Hi-C contact map from an ensemble of cell types provides reasonable 

predictions when combined with cell-specific 5hmC signals making it possible to generalize our 

model to a broader set of samples. It would be interesting to eliminate the use of Hi-C to link 

5hmC-derived enhancers to their targer genes, however, this would require a study surveying 

multiple cell-types through multiple differentiation steps to have a dynamic high-resolution map 

of 5hmC changes pointing to possible putative enhancers.  
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3.5 Materials and Methods 

5hmC Enrichment datasets. All enrichment datasets (and its input) were processed with 

the same pipeline as follows. We downloaded the raw reads and mapped them to the mm10 

genome reference assembly using Bsmap (Xi et al. 2009). Unmapped reads were remapped after 

using TrimGalore (Krueger 2015) and added to the mapping results after both files were sorted 

with SAMtools (Li et al. 2009). PCR duplicates were estimated and removed using Picard 

Toolkit’s MarkDuplicates (Broad Institute. Picard Toolkit 2018). Mapping results aligned to 

ENCODE’s blacklisted regions (Amemiya et al. 2019) were removed before further analysis. We 

generated HOMER’s TagDirectories followed by HOMER’s makeMultiWig tracks for 

visualization in the genome browser (Heinz et al. 2010). The 5hmC (and input) signal in the 

graph’s nodes was obtained using GenomicAlignments’s summarizeOverlaps function (Lawrence 

et al. 2013). 

ATAC-seq datasets. Paired raw reads were aligned to the Mus musculus genome (mm10) 

using Bowtie (Langmead et al. 2009). Unmapped reads were trimmed to remove adapter sequences 

and clipped by one base pair with TrimGalore (Krueger 2015) before being aligned again. Sorted 

alignments from the first and second alignments were merged together with SAMtools (Li, 

Handsaker et al. 2009), followed by removal of reads aligned to the mitochondrial genome. 

Duplicated reads were removed with Picard Toolkit’s MarkDuplicates (Broad Institute. Picard 

Toolkit 2018). Reads aligning to the blacklisted regions (Amemiya et al. 2019) were removed 

using bedtools intersect (Quinlan et al. 2010). Final mapping results were processed using 

HOMER’s makeTagDirectory program followed by the makeMultiWigHub.pl program (Heinz et 

al. 2010) to produce normalized bigWig genome browser tracks. 
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ChIP-seq datasets. All downloaded ChIP-seq datasets were processed similarly to the 

5hmC enrichment datasets with the only difference being the use of BWA mem (Li et al. 2009) 

opposed to Bsmap for the mapping steps, Bsmap is specific to reduced genomes such as bisulphite-

treated samples. 

Hi-C-seq analysis. All datasets were processed using HiC-Pro (Servant et al. 2015). We 

downloaded the raw reads and mapped them to the UCSC genome annotation database for the Dec. 

2011 (GRCm38/mm10) assembly of the mouse genome. We obtained the appropriate restriction 

enzyme per sample from their corresponding manuscript’s published methods, required for HiC-

Pro’s configuration file. For samples with either multiple lanes or multiple replicates, we generated 

a merged sample folder and re-compute the ICE (Imakaev et al. 2012) normalized matrices by 

running HiC-Pro and the steps "-s merge_persample -s build_contact_maps -s ice_norm". To 

generate the contacts without long-range interactions, we filter out the interactions beyond 60-kb, 

thus keeping only the neighborhood of 5 interactions of each bin. 

RNA-seq analysis. All expression profiles datasets were processed using STAR (Dobin et 

al. 2012). We downloaded the raw reads and mapped them to the UCSC genome annotation 

database for the Dec. 2011 (GRCm38/mm10) assembly of the mouse genome. Counts per gene 

were obtained using FeatureCounts (Liao et al. 2013). Similar results were obtained when using 

STAR’s count algorithm. For the generation of the output labels, we RPKM-normalized the RNA 

signal expression and took the median gene expression as the threshold to divide and label genes 

as “High” and “Low” (above or below threshold, respectively). 

Graph Convolution Networks. We followed the same strategy as reported by Bigness 

and colleagues (Bigness et al. 2020). Briefly, we followed the GraphSAGE framework (Hamilton 

et al. 2018) formulation as the structure for our GCNs due to its portability and lack of restrictions 
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to a specific graph. The window size we used to capture the 5hmC signal enrichment, and used in 

the convolution embeddings was equal to the size of the Hi-C nodes, 10-kb. The model layers 

consisted of a series of convolutions (convolutions = {2}) interconnected by a ReLU operational 

unit, followed by a multi-layered perceptron (layers = {3}) preceeded by a dropout chance of (ds 

= {0.5}) to avoid overfitting. Based on the ICE (Imakaev et al. 2012) normalized Hi-C signal, we 

filtered a total of top 10 neighboors (k = {10}) per node. With this construction it is possible that 

some nodes will have more than 10 edges/neighbors because our network is undirected and a gene 

node can be within the top 10 neighbors of another gene. It is worth mentioning that we tried to 

use 15 neighboors instead, but we also faced the problem discussed in Bigness et al., 2021. Our 

NVIDIA GPU ran out of memory to hold this bigger network structure. To assign genes to the 

nodes, we used as anchor point the TSS coordinates of genes. When a node had more than one 

TSS (overlapping genes), the mean expression was taken. A gene was marked as either being "On" 

or "Off" based on the median gene expression of the sample: gene expression above the median 

indicates that a gene was "On". Training the network made use of mask to consider only the nodes 

with at least one TSS, therefore, a valid prediction. The Train, Dev and Test fold datasets per 

sample were split into 70/15/15% form the total. For GNNExplainer we used (e = {1500}) epochs, 

and explained the queried nodes up to 1-hop away (num_hops = {1}).  
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3.6 Figures 

Figure 3.1. Evaluation of GhmCN models on cell-specific and cross-cell-type gene expression 

prediction tasks. 

(A) Receiver operator characteristic (ROC) curves for each of the six models trained and tested 
using matching set of Hi-C, 5hmC signal and expression information for each cell-type. The best 
performers are the B-cell associated samples, which may be due to the high sequencing depth of 
the Hi-C contact maps compared to the DP and the Th2. (B) Calculated AUROC curve for cross-
cell analysis of our models. We took a model trained in one cell-type to make gene expression 
predictions for another cell-type. The more closely related the samples used for training and testing, 
the higher were the AUC scores obtained. (C) ROC curves for each of the six models trained and 
tested using an averaged set of Hi-C contacts but with cell-specific 5hmC signal. The averaged Hi-
C was obtained from subsampling multiple Hi-C datasets from different cell-types to the same 
sequencing depth and obtaining the ICE normalized matrices from the contacts. Aside from a slight 
improvement for CD8 T cells, we observed a descrease in prediction accuracies for all other cell 
types when averaged Hi-C data is used instead of the cell-specific Hi-C data (e.g., a substantial 
drop from 0.86 to 0.81 for activated B cells).  
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Figure 3.2. Novel Aicda gene regulatory regions reminiscent of Tet-dependent enhancers.  

(A) Genome browser overview of the top 10 interactions used to predict Aicda gene expression in 
resting and activated B cells. Red and blue lines below the Placental conservation track indicate 
the 10-kb windows used to process Hi-C data and generate the graph structure. Arcs above and 
below the 10-kb windows represent the actual interactions for activated (top, red) and resting 
(bottom, green) B cells. Multiple resting B cell interactions from Aicda to beyond the TSS of 
Apobec were omitted; these data can be accessed in Table S3.2. Red highlights near the Aicda 
gene show the validated Aicda enhancers, TetE1 and TetE2. The two blue highlights at left 
represent the two novel putative enhancers, which make interactions with the Aicda promoter only 
in activated B cells. (B, C) A zoomed in view of the two long-distance nodes containing the two 
novel putative enhancers that interact with Aicda only in activated B cells, 260-kb (B) and 160-kb 
(C) away from Aicda’s TSS respectively. The highlighted regions indicate our regions of interest 
with clear enrichment of 5hmC peaks in activated B cells. (D-E) Analysis of 5hmC-signal 
enrichment 24, 48 and 72 hours after activation of WT (blue lines) and TET2/3 DKO (red lines) 
B cells in (D) the known TetE2 and TetE1 enhancers and (E) in the novel putative enhancers 
(highlighted yellow regions shown in (B) and (C) respectively. Error bars represent the standard 
error of the mean. These data were obtained from our previously published work, discussed in 
chapter 1. There is a significant 5hmC increase (*) in all four regions of WT cells, but not Tet2/3 
DKO B cells, after 72h of activation compared to resting B cells (Welch Two Sample t-test’s p 
values of 0.09366 and 0.0814 for (D) left and right panel respectively; and 0.08347 and 0.06413 
for (E) left and right panel, respectively) (* p-value < 0.1). 
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Figure 3.3. Novel Th2 gene regulatory regions with strong BATF:IRF4 features.  

(A) Genome browser overview of the top 10 interactions used to predict Il4 gene expression in 
Th2 cells. Red and blue lines above the Placental conservation track represent the 10-kb windows 
used to process Hi-C data and generate the graph structure. Red arcs on top of the 10-kb windows 
represent the used interactions for Th2 cells. For continuity, the distance to the two interactions 
that were far apart (right side of the panel) was omitted. From top to bottom tracks are 10-kb 
scaffolds, placental conservation, GENCODE VS23 gene annotations, 5hmC signal for DP, CD4 
T naïve and Th2 cells, followed by RNA-seq signal in same cellular order. The yellow highlight 
above the green segment represent two Il4-interacting nodes (here termed Kif-A and Kif-B) that 
haven’t been analyzed in the literature yet for roles in Il4 gene regulation. (B) is a zoomed in 
version of both Kif-A and Kif-B regions (the green segment). From top to bottom tracks are 10-kb 
scaffolds, placental conservation, GENCODE VS23 gene annotations, Th2-specific 5hmC signal, 
perfect match to AICE sequence, accessibility signal, H3K27ac, H3K27ac, H3K27me3, H3K4me1, 
H3K4me3, H3K79me2, input, BATF, BATF3 in BATF-KO condition, IRF4, IRF4 in 
BATF/BATF3 DKO, IRF4 in BATF/BATF3 DKO plus BATF-HKE, IRF4 in BATF KO condition, 
p300, PollII and Bach2 ChIP-seqs, followed by RepeatMasker annotations. The yellow highlights 
represent the same regions as in (A), pink highlight represents the 5hmC peaks that had co-binding 
of BATF, BATF and IRF4; IRF4 whose binding is lost in BATF KOs; have strong accesssibility 
and H3K27ac enrichment signal; and have a perfect match for the AP-1 sequence (left) and a very 
close match to the AP-1–IRF composite elements (AICE2; TacCnnnnTGASTCA). These two 
regions, one per interacting node, represent what we suspect to be previously unreported Il4 
regulatory regions.  
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Figure 3.4. Effective selection of close- and long-range interactions in CD4/8 naïve T cells.  

Genome browser overview of the Cd8ab1 gene complex in the T cell lineage. Interleaved red and 
blue lines represent each 10-kb window. Arcs above or below the 10-kb windows represent the 
Cd8ab1 locus’ interactions for CD8 (top, red) and CD4 (bottom, blue) naïve T cells. From top to 
bottom tracks are 10-kb scaffolds, placental conservation, GENCODE VS23 gene annotations, 
accessibility signal for DP, SP CD4, SP CD8, Naïve CD4 and Naïve CD8, mRNA signal for CD4 
and CD8 naïve T cells followed by 5hmC signal for CD4 and CD8 naïve T cells. The orange and 
green highlights represent the regions corresponding to [OR containing] the annotated enhancer 
E8 at the bottom of the tracks. The E8I-core is located inside the E8I region. Unlike CD4 T cells, 
naïve CD8 T cells interact heavily with many regions in the vicinity, a feature reported to be key 
for upregulating Cd8b1.  
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3.7 Tables 

Table 3.1 AUC and AUPR scores when a sample was withheld from making the averaged 

contact maps. 

 
Metric Scores Resting B Activ72h B Naïve CD4T Naïve CD8T 

All Available Hi-C 
AUROC 0.812 0.796 0.839 0.857 
AUPR 0.772 0.743 0.797 0.815 

Sample withheld  
AUROC 0.808 0.79 0.84 0.851 
AUPR 0.771 0.75 0.8 0.829 
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3.7 Supplemental Tables and Figures 

Table S3.1. Samples used in this study and their valid interactions. 

 
Valid 

Interactions 
Cell Type 

Matched 

5hmC 

Used 

Individual 

Used in 

averaged HiC 

GEO Citation 

1,314,772,344 Resting B X X X GSE82144 Vian et al. 2018 
1,060,738,232 (72h) Activated B X X X GSE82144 Vian et al. 2018 
433,592,619 Effector CD8T   X GSE158375 Lu et al. 2021 
248,466,091 Naïve CD4T X X X GSE158375 Lu et al. 2021 
225,882,913 Exhausted CD8T   X GSE158375 Lu et al. 2021 
213,565,710 Naïve CD8T X X X GSE158375 Lu et al. 2021 
183,924,654 LSK   X GSE99151 Johanson et al. 2018 
169,355,943 DP X X  GSE182995 Feng et al. 2021 
68,556,096 Th2 X X  GSE66343 Ren et al. 2017 

 

Table S3.2. Set of nodes found among resting and activated B cell samples. 

 
 Absent in 

GeneName/NodeID Coordinates Resting  Activated  

94953 6:122290000-122300000 X  

94963 6:122390000-122400000 X  

94969 6:122450000-122460000  X 

Rimklb 6:122480000-122490000 X  

94973 6:122490000-122500000   

94974 6:122500000-122510000   

Mfap5 6:122510000-122520000 X  

94976 6:122520000-122530000   

94977 6:122530000-122540000   

94978 6:122540000-122550000   

Aicda 6:122550000-122560000   

94982 6:122580000-122590000  X 

94983 6:122590000-122600000 — X 

Apobec1 6:122600000-122610000 —  

Gdf3 6:122610000-122620000  X 

Dppa3 6:122620000-122630000  X 

94989 6:122650000-122660000  X 
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Table S3.3. All data downloaded for the integrative analysis of Th2’s Il4 gene. 

 
Assay Antibody Sample Name GEO Citation 

ATAC-seq — ATAC_Th2 GSE159505 Kiuchi et al. 2021 
ChIP-seq H3K27ac H3K27ac GSE144586 Maqbool et al 2020 
ChIP-seq H3K27ac H3K27ac_ GSE63380 Kuwahara et al. 2016 
ChIP-seq H3K27me3 H3K27me3 GSE144586 Maqbool et al 2020 
ChIP-seq H3K4me1 H3K4me1 GSE144586 Maqbool et al 2020 
ChIP-seq H3K4me3 H3K4me3 GSE144586 Maqbool et al 2020 
ChIP-seq H3K79me2 H3K79me2 GSE144586 Maqbool et al 2020 
ChIP-seq Input Input GSE144586 Maqbool et al 2020 
ChIP-seq anti-IRF4 IRF4 GSE64749 Bruchard et al. 2015 
ChIP-seq p300 p300 GSE40463 Adamson et al. 2013 
ChIP-seq PolII PolII GSE144586 Maqbool et al 2020 
ChIP-seq anti-BATF BATF GSE85172 Iwata et al. 2017 
ChIP-seq anti-BATF3 BATFKO BATF3 GSE85172 Iwata et al. 2017 
ChIP-seq anti-IRF4 IRF4 GSE85172 Iwata et al. 2017 
ChIP-seq anti-IRF4 DKO_IRF4 GSE85172 Iwata et al. 2017 
ChIP-seq anti-IRF4 Batf-HKE IRF4 GSE85172 Iwata et al. 2017 
ChIP-seq anti-IRF4 BATFKO IRF4 GSE85172 Iwata et al. 2017 
ChIP-seq anti-BACH2 Bach2_Thn GSE63380 Kuwahara et al. 2016 
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Table S3.4. Th2 unique interactions across our T cell lineage data. 

 
Set of interactions found among T cells Present in 

GeneName/NodeID Coordinates DP CD4 T Naive CD8T Naive Th2 

154414 11:52800000-52810000   X  

154442 11:53080000-53090000 X    

154467 11:53330000-53340000 X    

154475 11:53410000-53420000 X    

154480 11:53460000-53470000  X X  

154481 11:53470000-53480000 X X X  

Sowaha   11:53480000-53490000 X  X  

154483 11:53490000-53500000  X X  

154485 11:53520000-53530000  X   

154487 11:53530000-53540000 X  X  

154488 11:53540000-53550000   X  

154489 11:53550000-53560000  X X  

Kif3a    11:53560000-53570000   X  

154492 11:53580000-53590000    X 

154493 11:53590000-53600000    X 

154494 11:53600000-53610000 X X  X 

Il4      11:53610000-53620000 - - - - 
154496 11:53620000-53630000  X X X 

Il13     11:53630000-53640000   X X 

154499 11:53650000-53660000  X  X 

154500 11:53660000-53670000    X 

154501 11:53670000-53680000    X 

154518 11:53840000-53850000    X 

154526 11:53920000-53930000 X    

154529 11:53950000-53960000   X  

154537 11:54030000-54040000    X 

154569 11:54340000-54350000  X   

154598 11:54640000-54650000 X    

154658 11:55240000-55250000   X  

154667 11:55320000-55330000  X   

155836 11:67010000-67020000  X   

157501 11:83670000-83680000 X    

158046 11:89120000-89130000 X    

160526 11:113910000-113920000  X   

160589 11:114550000-114560000   X  
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Table S3.5. CD4 and CD8 Naïve T cell interactions, their GNNExplainer ranking for Cd8b1 

prediction, and coordinates that have a E8 enhancer. 

 
Interactions among Naive CD4/8 T cells Present in E8 enhancers 

GeneName/NodeID Coordinates CD4 T Naive CD8 T Naive  

   GNNExplainer rank  GNNExplainer rank  

Fabp1    6:71190000-71200000 X 4    

Mir8112+Krcc1 6:71270000-71280000 X 7    

89854 6:71290000-71300000 X 2    

89855 6:71300000-71310000 X 3 X 7  

89856 6:71310000-71320000 X 1 X 6  

Cd8b1    6:71320000-71330000 -  -   

89857 6:71330000-71340000   X 8 IV, III, II 
89858 6:71340000-71350000   X 3 II, VI 
89859 6:71350000-71360000 X 10 X 2 I, I-core 

89860 6:71360000-71370000   X 1 V 

Cd8a     6:71370000-71380000   X 5 V 

89862 6:71380000-71390000 X 8 X 9  

89863 6:71390000-71400000   X 10  

89864 6:71400000-71410000   X 4  

89866 6:71410000-71420000 X 6    

89868 6:71430000-71440000 X 5    

89872 6:71470000-71480000 X 9    
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Figure S3.1. AUC and AUPR scores of using only 10 interactions around each bin. 

Every cell-specific model performed better integrating all of the long-range interactions when 
evaluated with either AUC or AUPR unbiased metric scores. 
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Figure S3.2. Cross-Cell AUC scores and PCA plot of RNA-seq data used in this study. 

(A) contains all of the individual AUC scores per comparison, whereas (B) is the PCA drawn from 
the top 1000 most variable genes among all six samples. 
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Conclusion 

Here we have explored the role 5hmC enrichment plays in maintaining gene expression in 

the B cell activation context, as a predictor of gene expression, and also as a marker for putative 

distal enhancers that can be linked to their target genes through the 3D genome structure. Our work 

deleting TET proteins, responsible for 5hmC deposition through 5mC oxidation, showed that the 

presence of 5hmC in the key regulatory element TetE1 is important for sustained expression of the 

gene Aicda, required for CSR during B cell activation. Furthermore, we showed that 5hmC signal 

enrichment alone (throughout the gene body and around the promoter) can effectively be used to 

train models in the binary classification task of gene expression, yielding sample-specific models 

that reach high performance (median AUC scores above 0.87); we also showed that 5hmC models 

can be generalized with conserved prediction ability (model trained in all data got an AUC score 

of 0.86). Finally, we demonstrated that putative enhancers can be found by the integration of 3D 

structure when solving the task of binary classification of gene expression by 5hmC signal 

enrichment. The windows likely to contain the putative enhancers are found by GNNExplainer, 

ranking the most important 10-kb interactions used by the predictive models. The putative 

enhancers can be further defined by locating the 5hmC peaks inside these 10-kb windows. 

Our research in the use of 5hmC signal enrichment for the predicting, both gene expression 

and distal enhancers, highlights the importance of this specific modification in gene regulation. 

Combined with our predictive models, 5hmC signal that can be obtained from DNA alone can 

allow us to study samples whose viability is compromised, such as FFPE preserved tissues. The 

goal when predicting the gene expression is to explore mechanisms controlling (or driving) the 

expression of genes. When using a set of features that represent the 5hmC signal enrichment in the 

gene body and throughout the promoter, we found that the most important fixed-size bins (features) 
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are those closely located both upstream (200-bp) and downstream (600-bp) of the gene’s 

transcription start site as suggested by our DeepLift results from the Promoter-related bins. From 

the variable-sized bins representing the gene body, our DeepLift analysis indicated that the first 

couple of bins were the most significant, further corroborating our observations that the most 

important bins associated with promoters occur just 3’ of the promoter and just within the gene 

body. These observations were confirmed by analysing either sample-specific trained models, or 

across the specialized models "Immuno" and "Embryo". Although ESC-related models did not 

achieve as high performance as the models trained using differentiated cells, the most important 

features are shared, suggesting a similar mechanism for 5hmC deposition and its subsequent 

association with gene expression. Our results emphasize that the further study of 5hmC deposition 

dynamics in and around transcription start sites may provide substantial insights into how TET 

and 5hmC dysregulation may drive cells toward oncogenic transformation. 




