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Atrial fibrillation detection from raw
photoplethysmography waveforms: A deep
learning application
Kirstin Aschbacher, PhD,*†1 Defne Yilmaz, BA,*1 Yaniv Kerem, MD,‡

Stuart Crawford, PhD,‡ David Benaron, MD,‡ Jiaqi Liu, BS,‡

Meghan Eaton, MSN, PNP-BC,‡ Geoffrey H. Tison, MD, MPH,*x Jeffrey E. Olgin, MD,*
Yihan Li, DPhil,‡2 Gregory M. Marcus, MD, MAS, FHRS*2
From the *Division of Cardiology, Department of Medicine, University of California, San Francisco, San

Francisco, California, †Department of Psychology, University of California, San Francisco, San
Francisco, California, ‡Jawbone Health, San Francisco, California, and xBakar Computations Health
Sciences Institute, University of California, San Francisco, San Francisco, California.
BACKGROUND Atrial fibrillation (AF), a common cause of stroke,
often is asymptomatic. Smartphones and smartwatches can detect
AF using heart rate patterns inferred using photoplethysmography
(PPG); however, enhanced accuracy is required to reduce false
positives in screening populations.

OBJECTIVE The purpose of this study was to test the hypothesis
that a deep learning algorithm given raw, smartwatch-derived
PPG waveforms would discriminate AF from normal sinus rhythm
better than algorithms using heart rate alone.

METHODS Patients presenting for cardioversion of AF (n 5 51)
were given wrist-worn fitness trackers containing PPG sensors
(Jawbone Health). Standard 12-lead electrocardiograms over-read
by board-certified cardiac electrophysiologists were used as the
reference standard. The accuracy of PPG signals to discriminate AF
from sinus rhythm was evaluated by conventional measures of heart
rate variability, a long short-term memory (LSTM) neural network
given heart rate data only, and a deep convolutional-recurrent
neural net (DNN) given the raw PPG data.

RESULTS From among 51 patients with persistent AF (age 63.6 6
11.3 years; 78%male; 88%white), we randomly assigned 40 to train
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and 11 to test the algorithms. Whereas logistic regression analysis
of heart rate variability yielded an area under the receiver operating
characteristic curve (AUC) of 0.717 (sensitivity 0.741; specificity
0.584), the LSTM model given heart rate data exhibited AUC of
0.954 (sensitivity 0.810; specificity 0.921), and the DNN model
given raw PPG data yielded the highest AUC of 0.983 (sensitivity
0.985; specificity 0.880).

CONCLUSION A deep learning model given the raw PPG-based
signal resulted in AF detection with high accuracy, performing bet-
ter than conventional analyses relying on heart rate series data
alone.
KEYWORDS Artificial intelligence; Atrial fibrillation; Heart rate
sensor; Machine learning; Mobile health; Smartwatch; Photople-
thysmography; Wearable
(Heart Rhythm O2 2020;1:3–9) © 2020 Heart Rhythm Society. Pub-
lished by Elsevier Inc. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
0/).
Introduction
Atrial fibrillation (AF) is a leading cause of stroke and
increases the risk of myocardial infarction, chronic kidney
disease, dementia, and mortality.1–5 Although anticoagulant
therapy may mitigate these risks, clinically occult AF
frequently conceals evidence of the disease until one of
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KEY FINDINGS

- A machine learning model fed raw photoplethys-
mography (PPG) waveform data seems to more
accurately discriminate atrial fibrillation from sinus
rhythm compared to conventional heart rate vari-
ability measurements.

- A machine learning model fed raw PPG waveform data
seems to more accurately discriminate atrial fibrilla-
tion from sinus rhythm compared to a machine
learning model using heart rate information alone.

- Restriction to sedentary individuals undergoing
cardioversion in this study may not apply to ambula-
tory free-living individuals in the community.
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those complications first becomes apparent.6 Therefore,
approaches to accurately detect asymptomatic AF are
needed.

Digital technology now offers tools to facilitate AF
detection outside of traditional clinical settings. Many
smartwatches and fitness trackers measure continuous
heart rate data based on photoplethysmography (PPG).
PPG uses optical sensors to detect changes in the blood
volume of tissue microvasculature in the finger (eg, using
a smartphone camera) or wrist (eg, using a wearable wrist-
band). Because AF has a characteristic irregularly irreg-
ular pulse, it may be particularly amenable to detection
using such a sensor. Whereas the initial studies relied on
conventional measures of heart rate variability (similar
to what is used in clinically applicable electrocardio-
graphic [ECG] algorithms),7 the application of deep
learning algorithms to PPG waveforms is particularly
promising, as deep learning algorithms can learn highly
predictive models from raw data.8

We previously demonstrated that a deep neural net fed
serial heart rate measurements derived from the PPG sensor
on Apple Watches could accurately discriminate AF from
sinus rhythm.9 However, a low positive predictive value
was observed, particularly in an ambulatory population,
which would translate into a substantial number of false-
positive results if applied broadly to the population. There-
fore, further efforts to enhance the accuracy of AF detection
are needed. A major potential advantage of deep learning
algorithms is that they can ingest “raw” signals (such as
the complete PPG waveform), thereby omitting the need
for extensive preprocessing and feature extraction. Deep
learning models have the potential to learn representations
from PPG waveforms across multiple domains, including
time, frequency, and morphology, without being given
explicit formulas. Hence, we sought to determine how
well a wrist-worn fitness tracker using a deep learning algo-
rithm fed continuous raw waveform PPG data could reliably
detect AF.
Methods
Study design
This study obtained PPG waveforms using a wearable
wristband device (Jawbone Health, San Francisco, CA)
from an in-person cohort of patients receiving electrical
cardioversion, and these waveforms were used to build an
AF prediction model. The model was supervised by labels
that were first generated by application of standard Muse
(GE Healthcare, Chicago, IL) software to ECG data and
confirmed by board-certified cardiac electrophysiologists.
ECGs were recorded in 10-second intervals before and
immediately after the shock(s) administered during each
electrical cardioversion procedure. All participants provided
written informed consent before enrollment. This study was
approved by the institutional review board of the University
of California, San Francisco (UCSF).
Study sample
We enrolled 51 consecutive, consenting, English-speaking
patients scheduled to undergo electrical cardioversion for
AF at UCSF between December 15, 2017, and July 20,
2018. Patients were excluded if they exhibited atrial arrhyth-
mias other than AF at the time of enrollment or had ventric-
ular pacing .80% of the time.
Data collection procedure
Patients undergoing electrical cardioversion were sedated and
remained supine during the study. Before cardioversion, a 12-
lead ECG was obtained, and an application-activated Jawbone
wrist-worn prototype fitness tracker was applied to the partici-
pant’s wrist for at least 20 continuous minutes before electrical
cardioversion. During the procedure, a study coordinator re-
corded the exact time of shock administered, total energy deliv-
ered (in joules), success of the procedure, and, if successful, the
time of transition from AF to normal sinus rhythm as deter-
mined by a concomitant continuous 12-lead ECG. After the
procedure, the Jawbone wrist device was removed at least 20
minutes after the final shock was administered.

We sought to enroll at least 50 patients based on our past
experience validating a smartwatch to detect AF among
patients undergoing cardioversion (at which conventional
approaches such as those discussed later also were used).9

We used an 80%/20% train/test split for the machine learning
algorithm. One additional patient was enrolled during the
study period, for a total of 51 patients. Data from 40
randomly selected patients (80% of the minimum planned
of 50) were used to train the models, and data from the re-
maining 11 patients were used to test the models. In total,
this resulted in 72 total hours of continuous PPG data
(47 hours of AF and 25 hours of sinus rhythm). In addition,
to better differentiate AF from normal sinus rhythm, a second
de-identified dataset from 13 individuals without known
arrhythmia during sleep, yielding 91 hours of PPG record-
ings, was incorporated into the training model. We contrasted
3 models using the area under the receiver operating charac-
teristic curve (AUC) as the primary performance metric: (1) a
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“traditional model” using heart rate variability as a predictor
in a logistic regression model; (2) a single-layer, long short-
term memory (LSTM) neural network fed a series of 35
consecutive heartbeat periods as the sole input; and (3) a
deep convolutional-recurrent neural net (DNN) using the
raw PPG waveform as the input.

Statistical analysis

Model 1: Conventional approach
To evaluate a “conventional approach” used in previous
studies,7 we computed the root mean square of the successive
interval differences (RMSSD), an established measure of
heart rate variability. R-R intervals were identified using a
previously validated adaptive multiscale peak detection algo-
rithm applied to a bandpass-filtered optical signal.10 The
normality of the distribution was verified through visual in-
spection. RMSSD was calculated on each sequence of 35
heartbeats, constituting a time window of approximately 30
seconds. In order to maximize the comparability of perfor-
mance metrics across all 3 models, we fit the logistic regres-
sion coefficients in the training set and reported the final
performance indicators from the test set of UCSF patients.
Model performance was based on the AUC (primary) and
sensitivity and specificity (secondarily) in the test set.

Model 2: LSTM neural net
A single-layer LSTM neural network was given a training
sample consisting of a sequence of 35 consecutive heartbeat
Table 1 Baseline characteristics of participants undergoing cardiovers

Baseline characteristics

Mean age (y)
Male
White
Body mass index (kg/cm2)
Medical characteristics
Hypertension
Diabetes mellitus
Coronary artery disease
Congestive heart failure
Obstructive sleep apnea
Myocardial infarction
Cardiomyopathy
Valvular heart disease
Chronic obstructive pulmonary disease
Previous cardioversion
Stroke

Treatment characteristics
Beta-blocker
Antiarrhythmic drug
Anticoagulant drug

Procedural characteristics
No. of shocks
Successful cardioversion
Joules delivered

Demographic, medical, and procedural characteristics for all participants in trai
6 SD or n (%), unless otherwise indicated.
periods, which roughly corresponded to a 30-second time
window, and required fitting of exactly 4385 parameters.11

Heartbeat periods were extracted from the bandpass-filtered
waveform using a modified multiscale peak detection algo-
rithm,10 which measured the distance between consecutive
minima in the optical absorption.

Model 3: DNN
To evaluate the predictive value of a deep learning
approach utilizing the raw PPG waveform data, we used
a convolutional-recurrent neural network. An earlier itera-
tion of this approach has been previously described in
detail.12 In brief, the architecture (Supplemental Figure 1)
involved multiple convolutional layers, each followed by
max-pooling, then an LSTM11 layer, and finally several
flattened layers, resulting in roughly 10,000 parameters to
estimate. Model hyperparameters were chosen with mini-
mal cross-validation. Notably, no specifically extracted
amplitude or morphologic features were used, although in
theory, this DNN model has the capacity to “learn” fea-
tures within the time, frequency, or morphologic domains.
As an input, the model ingested raw PPG signals sampled
at 20 Hz and then outputted a sequence of calibrated,
instantaneous probabilities.
Results
Participant characteristics
Table 1 characterizes the 51 patients with AF who underwent
cardioversion. There were no substantial differences in
ion

Train (n 5 40) Test (n 5 11) P value

62.8 6 11.0 65.6 6 14.4 .48
30 (75%) 10 (91%) .26
36 (90%) 9 (82%) .46
30.2 6 6.2 30.0 6 6.3 .91

20 (50%) 8 (73%) .18
10 (25%) 1 (9%) .26
4 (10%) 0 (0%) .27
4 (10%) 1 (9%) .91
17 (43%) 4 (36%) .71
3 (8%) 1 (9%) .86
4 (10%) 1 (9%) .93
2 (5%) 0 (0%) .45
1 (3%) 0 (0%) .60
19 (48%) 6 (55%) .68
2 (5%) 1 (9%) .61

22 (55%) 9 (82%) .11
25 (63%) 4 (36%) .12
38 (95%) 11 (100%) .45

1.3 6 0.9 1.1 60.3 .22
34 6 0.4 9 6 0.4 .80
306.5 6 312 242.7 6 117 .30

n and test sets undergoing cardioversion are listed. Values are given as mean



6 Heart Rhythm O2, Vol 1, No 1, April 2020
patient or procedural characteristics between those selected
for training and those selected for testing. Figure 1 illustrates
PPG waveforms from a randomly chosen participant during
representative sections of the pre- vs post-cardioversion pe-
riods. Specific rhythm characteristics after cardioversion for
each patient are shown in Supplementary Tables 1 and 2.
Figure 2 illustrates the raw PPG waveform from 1 patient
against the DNN-generated probability that a given PPG
segment was classified as AF. It also illustrates the power
spectra across component frequencies.
Model selection
The AUC for discrimination of AF from sinus rhythm in the
test dataset was higher in the DNN model using the raw PPG
waveform (AUC 5 0.983) than in the traditional logistic
regression model using RMSSD (AUC 5 0.717) or the
LSTM model fed only heart rate data (AUC 5 0.954)
(Table 2 and Figure 3). Sensitivity and specificity values
were computed using a discrimination cutoff of 0.5
(Table 2). Figure 4 offers qualitative insight into how the po-
tential morphology differences between PPG segments
labeled as AF vs sinus rhythm might potentially combine
with heart rate information to inform prediction.
Discussion
A decade ago, the National Heart, Lung, and Blood Institute
recommended that one of the most important challenges in
cardiovascular research was the use of emerging technolo-
gies, such as wearables, for early AF detection.13 Herein,
we differentiate episodes of AF vs sinus rhythm with near-
perfect prediction by applying a convolutional-recurrent
Figure 1 Raw photoplethysmography (PPG) waveforms of a randomly selected
waveform tracings from the raw PPG output of a single participant in AF befor
morphology of the AF waveform displays the characteristically “irregularly irregul
derlies all AF arrhythmias as measured on standard 12-lead electrocardiograms. Bo
form, both in amplitude and period.
neural network algorithm to raw, wearable-based PPG data
gathered from patients undergoing cardioversion. Moreover,
the ability to obtain strong predictions with the passively
collected, raw waveform is both novel and potentially advan-
tageous. Therefore, PPG waveforms derived from a wearable
wristband device, combined with deep learning algorithms,
may provide useful tools for population screening of
occult AF.

The DNN model using raw PPG waveforms performed
substantially better than a traditional approach using heart
rate variability among a set of UCSF patients presenting for
cardioversion for persistent AF. Moreover, the DNN also
performed somewhat better than a single-layer LSTM neural
network algorithm using the beat-to-beat heart rate data
alone,7 which was derived from the PPG waveforms. Previ-
ous studies utilizing PPG data via either a smartphone camera
or a smartwatch to detect AF used only an analysis of the
heart rate to identify AF.7,9 In both cases, the model perfor-
mance was somewhat similar to that observed in the current
study when constrained to the heart rate data only, albeit
lower than the performance reported here when compared
to an analysis using the raw waveform data. Of note, a previ-
ous study of the Cardiio Rhythm Mobile application, which
used a support vector machine classification of rhythm irreg-
ularity features derived from PPG waveforms, was not as
high-performing as the neural network-based models re-
viewed here.14 Because PPG-based tools may one day pro-
vide a population screening tool for occult AF, it is
important to note that the positive predictive value of the
DNN in this study (95%)was higher than reported in previous
studies.15,16 It is particularly crucial for artificial intelligence–
based AF screening tools to have a high positive predictive
patient in both atrial fibrillation (AF) and normal sinus rhythm. Shown are
e cardioversion and in normal sinus rhythm after cardioversion. Top: The
ar” pattern, with irregularities in both wave amplitude and period, which un-
ttom: In contrast, the morphology of the sinus rhythm waveform is more uni-



Figure 2 Deep neural network model predictions plotted against the actual photoplethysmography (PPG) waveform and frequency analysis. Top:Model pre-
diction outcome for a sample participant, using the deep convolutional-recurrent neural network, in which outcomes at or above 0.5 are classified as atrial fibril-
lation and those below 0.5 as normal sinus rhythm.Middle: Spectrogram with consecutive Fourier transformation on the raw optical data, illustrating the power
spectra across component frequencies. These spectra illustrate (as expected) the greater preponderance of higher frequencies and spectral variability pre- vs post-
cardioversion. Bottom: Raw PPG optical stream at 20 Hz.
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value in order to minimize the number of false positives and
thereby reduce unnecessary patient visits, anxiety, and costs.

Furthermore, the ability to utilize the raw PPG waveform is
an important and novel discovery of this study, which could
have other important implications beyondmodel performance.
Whereas the LSTM is limited to learning features within the
time domain, the DNN has the theoretical capability to identify
other features, such as amplitude or morphology, as well as
high-level interactions between various domains. In addition,
previousmethods for analyzingPPGhaveoften required exten-
Table 2 Performance characteristics of 3 models in the cardioversion p

Algorithm type AUC Sensitiv

Conventional heart rate variability*
(model 1)

0.717 74.1

Machine learning fed heart rate only
data† (model 2)

0.954 81.0

Machine learning fed raw waveform
data‡ (model 3)

0.983 98.5

Model evaluation indices are given for each of the 3 models applied to the tes
AUC 5 area under the receiver operating characteristic curve; NPV 5 negative

*Using the root mean square of the successive interval differences.
†Using a long short-term memory algorithm.
‡Using a deep convolutional-recurrent neural network algorithm.
sive signal preprocessing and feature engineering (eg, peak
detection and extraction of heart rate series); therefore, the abil-
ity to analyze raw PPG data is a novel discovery.

In terms of platforms and technology, both wearable
and smartphone camera-derived PPG waveforms have
yielded strong AF detection models.7,9 Although smart-
phone cameras initially might seem preferable for PPG
waveform acquisition due to convenience and ubiquity,
wristbands may have distinct advantages. AF detection
studies have observed relatively high rates of
atient test set

ity (%) Specificity (%) PPV (%) NPV (%)

58.4 80.8 48.8

92.1 96.0 67.1

88.0 95.1 96.2

t set of patients undergoing cardioversion.
predictive value; PPV 5 positive predictive value.



Figure 3 Model performance characteristics for conventional heart rate,
heart rate analyzed by deep learning, and the raw photoplethysmography
(PPG) waveforms analyzed by deep learning. The area under the receiver
operating characteristic curve (AUC), measured in the test set, is reported
for each of the 3 models. The green line represents the conventional logistic
regression model fed the root mean square of successive differences, a con-
ventional assessment of heart rate variability. The blue line represents the
long short-term memory model fed a heart rate data series. The red line rep-
resents the deep learning model (a convolutional-recurrent neural network)
fed the raw PPG waveform data.

8 Heart Rhythm O2, Vol 1, No 1, April 2020
nonadherence or dropout,17 so passive collection methods
that minimize engagement efforts may be crucial. The fact
that the neural networks tested herein performed well with
relatively few patients relies partially on the ability to
collect more data per patient, which is facilitated by
wristband-enabled passive collection.
Figure 4 Waveform morphology of a single patient in atrial fibrillation (AF) and
ability in heart rate and photoplethysmography (PPG) amplitude for a randomly sele
AF (red in B) is characterized by greater heart rate variability and lower amplitud
inverse of the time between consecutive minima. The y-axis is the PPG amplitude
mean heart rate cycle, using resampling to equate the time domain. It is visually evi
patient.
Study limitations
These results were gathered using a wearable wristwatch,
which may not be economically accessible to a subset of the
population at high risk for undetected AF due to poor access
to medical care; nonetheless, the use of smartphones and
wearables with PPG technology is becomingmore ubiquitous
over time, even in developing nations.18 Themajority of study
participants were white, and the optical PPG sensors may
behave differently in patients of other races or ethnicities
with different skin colors or tones. In addition, the study
only recruited individuals with a known diagnosis of AF;
therefore, we made no identifications of new diagnoses of
AFwith themodel, and its accuracy in detecting other arrhyth-
mias cannot currently be determined. Finally, although excel-
lent test characteristics were observed among sedentary
cardioversion patients, these results were obtained in a
controlled setting andmay not be applicable to ambulatory in-
dividuals. Because the model was supervised to distinguish
AF from sinus rhythm, further testing is needed to identify
the extent to which the model may tend to falsely classify
noise, premature beats, and/or atrial tachyarrhythmias as
AF. Indeed, premature atrial contractions were fairly
commonly observed in these patients, although they were
not quantified specifically to determine the precise influence
on the accuracy of each AF detection method. Future studies
will be important to elucidate the effects of premature atrial
contractions, particularly on false-positive results, before
these algorithms can be reliably deployed in ambulatory
free-living individuals.
Conclusion
This study demonstrates that a deep learning algorithm can
use a raw PPG signal, without feature engineering or exten-
sive preprocessing, to detect AF with very high accuracy.
Moreover, this novel approach was superior to standard
normal sinus rhythm (NSR). Morphologic differences are shown. Left:Vari-
cted patient who was successfully cardioverted, during AF (A) and NSR (B).
e. The x-axis represents beats per minute (BPM), which is calculated as the
in arbitrary units (a.u.). Right: Morphologic characteristics of the patient’s
dent that the morphology differed during AF and NSR for this representative
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methods that rely on heart rate variability and standard statis-
tical approaches and outperformed a machine learning algo-
rithm that was fed PPG-derived heart rate data alone. The
success of the deep learning algorithms exhibited herein sug-
gests that AF detection tools are now ready for the challenge
of bedside-to-field translation. AF detection tools, fueled by
artificial intelligence and wearables, have the potential to
mitigate cardiovascular morbidity risks through the identifi-
cation and delivery of early treatment to millions of individ-
uals suffering from undiagnosed AF.
Appendix
Supplementary data
Supplementary data associated with this article can be found
in the online version at https://doi.org/10.1016/j.hroo.2020.
02.002.
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