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Realizing Farthest-Point Voronoi Diagrams

Therese Biedl ∗ Carsten Grimm †‡ Leonidas Palios § Jonathan Shewchuk ¶ Sander Verdonschot ‖

Abstract

The farthest-point Voronoi diagram of a set of n sites
is a tree with n leaves. We investigate whether arbi-
trary trees can be realized as farthest-point Voronoi di-
agrams. Given an abstract ordered tree T with n leaves
and prescribed edge lengths, we produce a set of n sites
S in O(n) time such that the farthest-point Voronoi dia-
gram of S represents T . We generalize this algorithm to
smooth, strictly convex, symmetric distance functions.
Lastly, given a subdivision Z of Rk with k a small con-
stant, we check in linear time whether Z realizes a k-
dimensional farthest-point Voronoi diagram.

1 Background

In 1999, Liotta and Meijer posed the following question:
Given a tree T , can one draw T in the plane so that the
resulting embedding is the Voronoi diagram of some set
of sites in the plane? They consider the ordered model :
The tree T is given as an abstract ordered tree, i.e., as
a set of vertices, a set of edges, and a cyclic order of the
of the edges incident to each vertex. We are searching
for a set of sites S such that the vertices and edges of
the Voronoi diagram of S form an embedding of T that
respects the cyclic order of the edges around each vertex
in T . Liotta and Meijer showed that every ordered tree
can be realized as a Voronoi diagram [7, 8].

Quite related to this is the Inverse Voronoi Problem,
which asks the question in the geometric model. Here we
are given a tree (or more generally a graph) and also a
drawing of it, i.e., coordinates for all interior nodes and
rays to infinity for all edges to leaves. We are searching
for a set of sites S such that the Voronoi diagram of
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S is exactly this tree with this drawing. The problem
was introduced by Ash and Bolker [4] and the question
can be answered in linear time [6], even if the tree has
vertices of degree exceeding three [5].

A number of variants have been studied. Aloupis et
al. [3] posed an extension-version of the Inverse Voronoi
Problem. Other papers study the straight skeleton,
rather than the Voronoi diagram. Aichholzer et al. re-
solved this for the ordered model [2], and (with different
coauthors) for the ordered model where edge directions
are given [1]. The Inverse Straight Skeleton Problem
was resolved by Biedl et al. [5].

Our results. We ask whether trees can be realized by
yet another computational geometry construct, namely,
the farthest-point Voronoi diagram (defined below). We
consider both models and obtain the following results.

Ordered Model: Similarly as in [3, 8], for the ordered
model the answer is always “yes”. Thus for any given
ordered tree T , we can find a set of sites S in convex
position such that the farthest-point Voronoi diagram of
S is T , with the edges in the specified order. In contrast
to related results, we can also realize edge lengths, i.e.,
if each interior edge e is assigned a positive weight w(e),
then we can find sites so that e has length w(e).

We give the construction first for the “normal” (Eu-
clidean) farthest-point Voronoi diagram, and then gen-
eralize it to any convex distance function for which the
unit circle is smooth and strictly convex.

Geometric Model: Similarly as in [5, 6], for the geo-
metric model not every geometric tree can be realized.
Nonetheless, one can test in polynomial time whether
for a given geometric tree T there exists a set of points
whose farthest-point Voronoi diagram is T . If so, then
the set of sites is not always unique, but it can be de-
scribed as the solution space of a linear program.

We describe this result for arbitrary fixed dimension.
For a given convex subdivision Z of Rk with n cells, we
formulate a linear program with k variables that tests
whether there exists a set of n sites whose farthest-point
Voronoi diagram realizes Z. This linear program can be
solved in linear time if k is a small constant [10].

2 Preliminaries

Let S be a set of sites and let p be a point in the plane.
Let FS(p) be the smallest disc centered at p that con-
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tains all sites in S; we call this the full disc of p with
respect to S. For a set S of sites, the farthest-point
Voronoi diagram of S, denoted by fVor(S), is defined as
follows: A point p is a vertex of fVor(S) if and only if
FS(p) passes through three or more sites in S. A point
p is located in the relative interior of an edge of fVor(S)
if and only if FS(p) passes through exactly two sites in
S. fVor(S) divides the plane into convex cells, and one
easily verifies that each cell consists of all points that
are farthest from one site s. We say that site s is rel-
evant if there is a point in the plane for which s is a
farthest point, and proper if there is a point for which
s is the unique farthest point. (For strictly convex dis-
tance functions “relevant” and “proper” are the same
thing; see Section 4.2 for more details.)

The structure of the farthest-point Voronoi diagram
is closely related to the convex hull CH(S) of S: (i) A
site s ∈ S is proper if and only if s is an extreme point
of S. (ii) Two sites s and s′ are adjacent along CH(S)
if and only if the farthest-point Voronoi cells of s and s′

share an unbounded edge (ray or line). (iii) The circular
order of the sites along CH(S) is the circular order of
the farthest-point Voronoi cells in fVor(S).

3 Ordered Trees

Consider the farthest-point Voronoi diagram fVor(S) of
a set S of sites in the plane. We introduce symbolic ver-
tices as endpoints for the unbounded edges of fVor(S).
We say that fVor(S) is a realization of an ordered tree
T if T is isomorphic to the abstract ordered tree formed
by the Voronoi vertices, the symbolic vertices and the
Voronoi edges of fVor(S). In the following, we con-
sider only ordered trees without degree two vertices,
since there are no degree two vertices in a farthest-point
Voronoi diagram.

(a)

s

s′

region of s

region of s′

(b)

Figure 1: (a) An ordered tree T ; (b) a realization of T
as a farthest-point Voronoi diagram. Empty squares are
leaves; also symbolic endpoints of unbounded edges.

Given an ordered tree T , we seek to determine a set
S of sites in the plane such that fVor(S) realizes T . We
proceed in an incremental fashion where we place sites
to create the internal vertices of T one by one.

Realizing a star. We begin with an ordered tree T1
with one internal node v of degree `. We realize T1 by
placing ` sites s1, s2, . . . , s` on a unit circle C centered
at the origin. The origin becomes the Voronoi vertex
that we identify with v.

Any subsequent site s has to be placed at a location
that is safe for the current sites S in the following sense:
Every vertex in the diagram for S remains a vertex in
the diagram for S ∪ {s} and every bounded edge in the
diagram for S remains a bounded edge in the diagram
for S ∪ {s}. It is acceptable for a safe site to increase
the degree of a vertex of the diagram. After the initial
step, every point s strictly inside C is safe.1

On the other hand, any subsequent site s must be
proper. Any site outside the convex hull CH(S) is
proper.1 Thus, all additional sites will be placed in the
lunes that remain when we remove CH({s1, . . . , s`})
from the disc bounded by C.

(a) (b)

Figure 2: (a) An ordered tree with one internal vertex;
(b) a realization of that ordered tree as a farthest-point
Voronoi diagram. All subsequent sites will be placed in
the lunes (shaded blue).

Realizing larger trees. Suppose we can realize every
ordered tree with k ≥ 1 internal vertices as farthest-
point Voronoi diagram, for some k ∈ N. Consider an
ordered tree Tk+1 with k + 1 internal vertices. There is
an internal vertex v in Tk+1 that becomes a leaf when all
leaves adjacent to v are deleted. Let Tk be the tree that
results from deleting the leaves adjacent to v. Since Tk
is an ordered tree with k internal vertices, we can find
a set S of sites such that fVor(S) is a realization of Tk.
We seek to place additional sites such that the resulting
farthest-point Voronoi diagram realizes Tk+1.

Vertex v is a leaf in Tk, hence corresponds to a sym-
bolic endpoint in fVor(S) that lies on a ray r. Let u
be the internal vertex at which r ends (hence u is the
neighbor of v in Tk). Ray r separates the regions of two

1In the appendix, we provide full proofs for the claim for
smooth, strictly convex, symmetric distance functions.
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s ss′ s′

u u

v

p

FS(u) \ CH(S) A(p, s, s′)

Figure 3: Extending the realization of an ordered tree.

sites s and s′, so by the definition of fVor(S), for every
point p ∈ r the full disc FS(p) goes through s and s′

and contains all other sites in its interior.

We want to place sites such that we create a Voronoi
vertex at some point p on ray r (and then assign this
point to v). To create a Voronoi vertex at p, we have
to place a new site s′′ on the boundary of FS(p). To
make its region appear between the ones of s and s′, we
should place s′′ on the (shorter) circular arc A(p, s, s′)
from s to s′ along FS(p). If v is adjacent to ` leaves in
Tk+1 (` > 1 since we have no vertices of degree 2), then
we should place `− 1 new sites along A(p, s, s′).

Observe that the choice of p is arbitrary, as long as
it is on the ray. We can therefore choose the distance
between u and p (the future location of v) and real-
ize any specified edge length of (u, v). To summarize,
we can realize every ordered tree T as a farthest-point
Voronoi diagram by placing the sites for some vertex
of T on a circle and then repeatedly expanding the re-
sulting farthest-point Voronoi diagram by placing the
next vertex on the appropriate ray and sites for it on
the corresponding arc. We place n sites for an ordered
tree with n leaves. The entire construction takes O(n)
time, since computing the coordinates of each site takes
constant time in the real RAM model of computation.

Theorem 1 For every ordered tree T with n ≥ 2 leaves,
without vertices of degree two, and with edge lengths for
edges connecting non-leaves, we can find a set S of n
sites in O(n) time such that the farthest-point Voronoi
diagram of S is a realization of T where every bounded
edge in fVor(S) has a prescribed length.

4 Other Distance Functions

Voronoi diagrams and farthest-point Voronoi diagrams
can naturally be generalized to a wider class of distance
functions defined as follows: a distance function d is
specified by giving its unit circle Cd, i.e., all those points
considered to have distance one from the origin. We
assume throughout that d is convex and symmetric, i.e.,

Cd is a closed curve that bounds a convex shape that
has 2-fold rotational symmetry about the origin.

To measure distances, we use homothets of Cd, i.e.,
scaled and translated copies. We call such a homothet
a d-disc and say that it is centered at p if the origin was
translated to p. Given a set S of sites, let the full d-disc
FdS(p) be the smallest d-disc centered at p that encloses
all sites of S. The d-farthest-point Voronoi diagram of a
set S of sites, denoted by fVord(S), is defined as before
by letting p be a vertex (resp. interior point of an edge)
if and only if FdS(p) contains three (resp. two) sites.2

We briefly argue that this indeed expresses “farthest”
correctly. For two points p and q, the distance d(p, q)
(with respect to the distance function defined by Cd)
is defined to be the smallest scaling factor at which a
d-disc centered at p touches q. Since d is symmetric,
we have d(p, q) = d(q, p). In particular, a site s ∈ S
is farthest from the point p if s is on the boundary of
FdS(p). If p is a point on an edge of fVord(S), then by
definition there are two sites s, s′ on FdS(p). Thus p is
equidistant from s, s′ and all other sites are no farther.
Hence any edge of fVord(S) bounds a region where all
points have the same farthest point. See Figure 4.

4.1 Smooth Strictly Convex Symmetric Distances

We call a distance function d strictly convex if the
boundary of Cd contains no line segments, and smooth if
every point on the boundary of Cd has a unique tangent.
We now show that we can realize arbitrary ordered trees
as d-farthest-point Voronoi diagram for any smooth and
strictly convex symmetric distance function d.

s3

s4

v1,2,3

s2

s1
v3,4,5

v1,3,5

FS(v3,4,5)

s5

Figure 4: A d-farthest-point Voronoi diagram.

The approach is the same as for the Euclidean case,
with the only change that we use Cd, rather than geo-
metric circles, to define arcs to place sites on. Thus, for
a tree T1 with a single interior node v with ` incident
leaves, place ` sites on the unit circle Cd. The origin
becomes the Voronoi vertex that we identify with v.

2For non-symmetric convex distances, the full d-disc is a mir-
rored homothet of Cd and the correspondence to vertices and
edges of the diagram no longer holds [9].
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To create sites for a tree Tk+1 with k + 1 interior
nodes, find one node v that is adjacent to only one other
interior node u, and remove all incident leaves of v. Re-
cursively find sites for the resulting tree Tk. Find the
unbounded edge r from u on which the symbolic end-
point for v resides, and pick an arbitrary point p on
it. Find the full d-disc FdS(p); this contains the two
sites s, s′ whose farthest regions meet at edge r on their
boundaries. Turn p into a vertex of the d-farthest-point
Voronoi diagram by placing sites at the shorter arc of
FdS(p), placing `− 1 sites if v was incident to ` leaves.

It remains to argue that this is correct, i.e., that all
newly placed sites are safe and proper. In a nutshell,
this holds because they are strictly inside FdS(u) and
strictly outside CH(S). We give a proof in the appendix.

Theorem 2 Let d be a smooth and strictly convex sym-
metric distance function. For every ordered tree T with
n ≥ 2 leaves, without vertices of degree two, and with
edge lengths for edges connecting non-leaves, we can find
a set S of n sites in O(n) time such that the d-farthest-
point Voronoi diagram of S is a realization of T where
every bounded edge has its prescribed length.

4.2 Polygonal Convex Symmetric Distances

We now illustrate some of the challenges that arise when
our distance function is not smooth or not strictly con-
vex. Unlike for strictly convex distances, the d-bisector
of two sites s and s′ (i.e., the set of all points that are
equidistant from s and s′ with respect to d) is not nec-
essarily homeomorphic to a line, and indeed, may be
a 2-dimensional region. Ma [9] shows that this occurs
precisely when the line segment ss′ is parallel to a line
segment on the boundary of the unit circle Cd that de-
fined d. This limits our ability to realize ordered trees as
d-farthest-point Voronoi diagrams when d is polygonal,
i.e., Cd is a k-sided convex polygon.

Theorem 3 Let d be a convex distance function defined
by a polygon with k edges and let T be a tree with more
than k leaves. There is no set of sites S such that the
d-farthest-point Voronoi diagram of S realizes T .

Proof. For every edge e of the unit circle Cd, at most
one site can be extreme in the direction normal to e.
More precisely, for any half-plane h ⊃ S whose bound-
ing line ` is parallel to e, there is at most one site on
`—otherwise fVord(S) is not a tree. So if fVord(S) is
a tree, then at most k sites in S have nonempty cells,
hence the tree has at most k leaves. Therefore, we can-
not realize trees with more than k leaves. �

For example, for the L1-distance and the L∞-
distance, the unit circle Cd is a 4-sided polygon, so
no tree with more than four leaves can be realized as
farthest-point Voronoi diagrams under these distances.

s
s′

region of s′

bisector of
s and s′

Cd
s′′

region of s′′

Figure 5: If some portion of Cd (red) is a line segment,
two sites on that line segment (e.g., s, s′) can have a
two-dimensional bisector (grey region). The general-
ized convex hull H(S) (green) may strictly include the
convex hull (dashed). Here, the site s is a vertex of the
(ordinary) convex hull but s is not proper: removing s
leaves the generalized convex hull unchanged.

A second problem with distance functions that are
not strictly convex is that not all extreme points of the
convex hull are proper; for example point s in Figure 5
is an extreme point of CH(S) but any point p for which
s is farthest also has s′ as farthest point.

However, we can prove a similar relationship. Let
H(S) be the intersection of all d-discs that contain
S. We refer to H(S) as the generalized convex hull
of S. We call a site s an extreme point of H(S) if
H(S) 6= H(S \ {s}). We give in the appendix the fol-
lowing characterization:

Lemma 4 A site s in S is proper if and only if s is an
extreme point of the generalized convex hull H(S).

We may attempt to follow the steps of the algorithm
from the Euclidean setting, in the hope of always find-
ing proper sites. We now show that this can fail. As
before define v, u, r, s, s′ in the expansion step. Presume
we are in a situation where FdS(u) contains s, s′ on adja-
cent straight-line edges. Then the generalized hull H(S)
coincides with FdS(u) on the stretch between s and s′.
Thus, the region where we placed sites for strictly con-
vex distances is empty, giving no suitable, safe, proper
candidates. Put differently, we cannot longer realize or-
dered trees in the carefree online fashion we use for the
Euclidean distance. Rather, we need to know the or-
dered tree in advance and we need to decide a priori
which site will occupy which edge of Cd. We conjecture
that with a judicious choice, we can realize every tree
with at most k leaves if Cd is a k-sided polygon, but this
remains an open problem. Without giving details, we
note that all ordered trees can be realized by any con-
vex symmetric distance function for which Cd is strictly
convex and smooth in at least one region, by placing all
initial sites and later additions only within that part of
Cd.
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5 Geometric Trees

In this section, we study how to test whether a speci-
fied geometric tree is a farthest-point Voronoi diagram
in the Euclidean metric. We are given a tree with a fixed
drawing in the plane, with the leaves at infinity. Rein-
terpreting this, we are given a subdivision of the plane
into cells, and we ask whether there exists a set of sites
whose farthest-point Voronoi diagram comprises these
cells. An affirmative answer is possible only if every cell
of the subdivision is convex and unbounded.

Our approach generalizes to arbitrary dimension k, so
assume that we are given a convex subdivision Z of Rk,
where each cell in Z is a convex, unbounded polyhedron.
We wish to determine whether Z is the farthest-point
Voronoi diagram of some set S of sites. Each cell in
Z has some number of (k − 1)-dimensional facets (e.g.,
edges if k = 2), and we assume that for each such facet
f we know a unit normal vector nf . Thus, for each facet
f , its affine hull has the form {p : 〈nf , p〉 = αf}, where
αf is a suitable scalar. Let fστ denote a facet whose
incident cells are σ and τ , where nf is directed from τ
into σ and thus σ is the cell whose interior points have
a positive signed distance from fστ (i.e., 〈nf , p〉 ≥ αf
for all points p ∈ σ.)

Suppose Z can be realized as farthest-point Voronoi
diagram. In this realization each cell σ is assigned a site
ρ(σ) such that the points in σ are exactly those points
for which ρ(σ) is the farthest site. We will describe any
(putative) realization as such a function ρ(σ).

The following result holds for realizations of farthest-
point Voronoi diagrams in arbitrary dimension (and also
for ordinary Voronoi diagrams [5]).

Lemma 5 (bisector condition) Let ρ be a realiza-
tion of Z. For every facet fστ in Z, the affine hull
of fστ must be the bisector of ρ(σ) and ρ(τ).

Hence, given ρ(σ) we can compute ρ(τ) by reflecting
ρ(σ) about f , i.e., ρ(τ) = ρ(σ) − 2(〈nf , ρ(σ)〉 − αf )nf .
As this is an affine equation in ρ(σ), it can be expressed
in the matrix form[

ρ(τ)
1

]
= Rστ

[
ρ(σ)

1

]
where Rστ is a (k+1)×(k+1) matrix determined solely
by the normal vector and scalar of the face fστ . Thus
we have a system of k + 1 equations for each facet of
Z. Let τ̄ denote the vector [ρ(τ) 1]

T
, so the equation

becomes τ̄ = Rστ σ̄.
We need a second condition. In the ordinary Voronoi

diagram, a site must lie inside the cell of points for which
it is the nearest site. For the farthest-point Voronoi dia-
gram, we need a condition that is essentially the inverse.

Lemma 6 (outside condition) Let ρ be a realization
of a subdivision Z. For every facet f incident to a cell

σ, the affine hull H of f has the cell σ on one side and
the site ρ(σ) on the other.

Proof. Say the facet is f = fστ . According to the
bisector condition, ρ(σ) and ρ(τ) are on opposite sides
of H, and every point on the same side of H as ρ(σ) is
closer to ρ(σ) than it is to ρ(τ). No point p ∈ σ can
lie on the same side of H as ρ(σ), as p’s farthest site
cannot be ρ(σ). �

We express the outside condition as the two inequal-
ities

〈nστ , ρ(σ)〉 ≤ αστ ≤ 〈nστ , ρ(τ)〉,
where, as before, nστ is a unit vector normal to fστ such
that 〈nστ , p〉 ≥ αστ for all points p ∈ σ and 〈nστ , p〉 ≤
αστ for all points p ∈ τ . Crucial to our testing routine
is the following.

Theorem 7 Let Z be a convex subdivision of Rk. Let
S = ρ(·) be an assignment of sites to cells in Z. Then
Z is the farthest-point Voronoi diagram of S if and only
if the bisector condition and the outside condition holds
for every facet of Z.

Proof. Necessity has been shown already. Suppose for
the sake of contradiction that the two conditions hold,
yet Z is not the farthest-point Voronoi diagram of S.
Then there exists some cell σ of Z containing an interior
point p for which the farthest site in S is not ρ(σ) but
instead some other site ρ(τ) assigned to a cell τ .

Shoot a ray from the interior of τ toward p, and let
fτω be the first facet (breaking ties arbitrarily) of τ that
the ray strikes. The ray strikes fτω before reaching p,
as p is in the interior of a cell other than τ ; therefore,
p is on ω’s side of the affine hull of fτω. By the outside
condition therefore p is not on ρ(ω)’s side of the affine
hull of fτω. As fτω bisects ρ(ω) and ρ(τ) by the bisector
condition, therefore p is closer to ρ(τ) than to ρ(ω),
contradicting the fact that ρ(τ) is the site in S that is
farthest from p. The result follows. �

Theorem 7 implies that we can answer the question
by finding a set S of sites that satisfy all the bisector
conditions and outside conditions—one of the former
and two of the latter for each facet of Z—or by showing
that no such set of sites exists. As the bisector con-
ditions are linear equations and the outside conditions
are linear inequalities, the question reduces to finding a
feasible point of a linear program.

For efficiency, we recommend reducing the linear pro-
gram to k variables prior to solution by performing sub-
stitutions of the bisector conditions. We achieve this
with a propagation procedure that exploits the dual
graph of the convex subdivision Z, as Biedl et al. [5]
do for the ordinary Voronoi diagram. Form the dual
graph G of Z: G’s vertices correspond to the k-cells of
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Z and G’s edges correspond to Z’s facets. Choose a
distinguished k-cell σ in Z (hence a distinguished node
in the graph). The variables in our system are the co-
ordinates of the putative site ρ(σ), hence the first k
entries of vector σ̄. Perform a depth-first search of G,
during which we express the coordinates of every other
site as a linear combination of σ̄’s coordinates by com-
posing reflections of the form τ̄ = Rωτ ω̄. Composing
these reflections is simply matrix multiplication; thus
we obtain a linear relationship of the form τ̄ = R′στ σ̄
for every cell τ , even those that do not share a facet
with σ. (R′στ = Rστ if (σ, τ) is an edge of G.)

Next, consider the edges of G that the depth-first
search did not traverse. Each such edge (ω, τ) corre-
sponds to a facet of Z that introduces an additional
reflection equation of the form ω̄ = Rτω τ̄ , which hence
becomes another linear equality constraint imposed on
σ̄: R′σωσ̄ = RτωR

′
στ σ̄. However, these constraints are

often redundant or trivial (i.e., σ̄ = σ̄). We can stack
these linear equations (k + 1 equations per untraversed
edge) in the form of a matrix equation Mσ̄ = b, where
M has k + 1 columns and O(mk) rows, and m is the
number of facets in Z. This linear system hence defines
an affine subspace Λ of vectors σ̄ that are compatible
with the bisector condition. Typically Λ is a single point
or empty, but it could have dimension as high as k.

The outside condition imposes another system of
O(mk) linear inequalities, two per facet. If Λ is a sin-
gle point, it is now a simple matter to check whether it
satisfies all these inequalities. If Λ is a larger subspace,
we restrict the inequalities to the subspace Λ and solve
the consequent linear program. Any feasible point can
be used for σ̄ (hence gives the site ρ(v)), and we can
compute the other sites by applying the reflection equa-
tions. The solution space may have dimension up to k,
as Figure 6 illustrates. If Λ = ∅ or the linear program
is infeasible, Z is not a farthest-point Voronoi diagram
of any set of sites.

Suppose Z has n cells and m facets in k dimensions.
It takes O(nk3) time to compute the propagation matri-
ces R′στ (accounting for fewer than n multiplications of
(k+1)×(k+1) matrices); O(mk3) time to compute the
remaining equations and inequalities due to the bisec-
tor and outside conditions; and O(f(k)(n+m)) time to
solve the linear program where f(·) is a function (typi-
cally exponential) [10]. As the size of the input subdi-
vision Z is Ω(m+n), the total running time is linear in
the input size if the dimension k is a small constant.

Theorem 8 Given a convex subdivision Z of Rk, where
k is a small constant, we can test in linear time whether
there exists a set of sites whose farthest-point Voronoi
diagram is Z.

2×

Figure 6: A farthest-point Voronoi diagram (thick
edges) and three sets of sites (discs, circles, crosses) that
realize it. Once one site is fixed in the open gray cell G,
the others follow by reflection at the bisectors (thick or
dashed). Sites on the boundary of G (e.g., the square)
yield sites that coincide, and sites outside G generate
sites that violate the outside condition.
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A Smooth Strictly-Convex Distance Functions

Recall that the distance function d is given by specifying
its unit circle Cd, a d-disc is a homothet of Cd, and the
radius of a d-disc D is the scaling factor used to obtain
D from Cd. In this section, we show in detail that if
Cd is strictly convex and smooth, then our algorithm
to find sites whose farthest-point Voronoi diagram re-
alizes a given ordered tree T works correctly. There
are two things that must be shown: every added site
s is d-proper (there exists a point p for which s is the
unique farthest site) and d-safe (all previously placed
sites remain d-proper).

A.1 Proper Sites

Recall that an extreme point of the convex hull CH(S)
is a site s ∈ S such that CH(S \{s}) is a strict subset of
CH(S). Equivalently, a site s ∈ S is an extreme point
of S if there exists a half-space ` that has all points in
S \ {s} in its interior and s in its exterior.

Theorem 9 Let S be a set of sites in the plane and let
d be a smooth strictly convex distance function.

1. A site s is d-proper if and only if s is an extreme
point of the convex hull of S.

2. The regions of two sites si and sj share an un-
bounded edge if and only if si and sj are consecutive
extreme points of the convex hull of S.

3. The d-proper sites appear in the same order along
the convex hull of S as their corresponding regions
in the d-farthest-point Voronoi diagram.

Proof. To show the first claim, suppose the site s is
d-proper. Then there is a point p such that FdS(p) has
only the site s on its boundary. Since Cd is convex, the
convex hull CH(S) is contained in FdS(p). Since Cd is
strictly convex, CH(S) intersects FdS(p) only in point s.
Hence, CH(S\{s}) is strictly inside FdS(p), which proves
that CH(S \ {s}) ⊂ CH(S) and, thus, the site s is an
extreme point of the convex hull CH(S).

Conversely, suppose s is an extreme point of CH(S),
say half-space ` separates s from the rest of S. Since Cd
is smooth, there exist two points on Cd whose tangent
has the same slope as the affine hull of `. By scaling Cd
sufficiently much, we can hence find a homothet D of Cd
that in the vicinity of one of these points is arbitrarily
close to `. Hence D contains S \ {s} and not s. Scaling
D while keeping its center then yields a d-disc with only
s on its boundary, proving that the region of s is non-
empty.

The proof of (2) and (3) is very similar to part (1)
after observing that (si, sj) is an edge of the convex hull
if and only if there exists a half-space ` that contains
all points in S \ {si, sj} in its interior and si, sj in its

exterior. With this we can find an unbounded region of
points whose farthest site is either si or sj , and therefore
there must be an unbounded edge separating their two
regions. �

As we will see below, we always choose the next site(s)
to be outside the convex hull of the current sites. As
such, all sites that we choose will be d-proper.

A.2 Properties of Homothets

Before proving safety, we need some basic observations
about homothets of a strictly convex smooth Cd.

Theorem 10 (Ma [9]) Let D and D′ be two different
homothets of a compact convex set Cd. Then the bound-
aries of D and D′ intersect in at most two points, or in
a point and a line segment, or in two line segments.

Corollary 11 Let D and D′ be two different homothets
of a strictly convex smooth compact set Cd. Then the
boundaries of D and D′ intersect at most two points.

Proof. The claim follows from Theorem 10, since the
boundary of a homothet of a strictly convex compact set
does not contain any line segments, by definition. �

We say that two curves C,C ′ truly intersect at some
point p if they have p in common, and any sufficiently
small circle centered at p intersects the curves in four
points and in order C,C ′, C, C ′.

Lemma 12 Let D and D′ be two different homothets of
a strictly convex smooth compact set Cd. If the bound-
aries of D and D′ intersect in two points a, b, then they
truly intersect at both a and b.

Proof. We consider the situation near a. Since D and
D′ are smooth, there are unique tangents ta and t′a at
a for D and for D′, respectively. We argue that these
tangents have different slopes.

Since Cd is strictly convex, the slope of the tangent
determines the point on Cd uniquely, up to reflection
through the center-point, and the line from this point
to the center-point has the same slope regardless of how
we scale or translate Cd. Thus, the line from a to the
center-point p of D has the same slope as the line from
a to the center-point p′ of D′, so p, a, p′ are all on one
line.

Repeating the argument at b, we see that p, b, p′ (and
therefore also a) are all on one line. But then D and D′

must have the same scale-factor (else they could not
both contain both a and b), and therefore the same
center-point, and so are the same homothet. Contra-
diction, so ta and t′a have different slopes. Since D and
D′ are smooth, their boundary locally follows the lines
along ta and t′a, which means that they truly intersect
at a. �
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Finally we need a rather technical observation, which
will be crucial for defining the “lunes” which are used
for placing sites safely.

Lemma 13 (Inside-Outside Lemma) Let a and b
two points in the plane and let h and h̄ be the half-
planes bounded by the line through a and b. Consider
two d-discs D and D′ such that

(a) the centers of D and D′ both lie in h,

(b) the radius of D′ is larger than the radius of D, and

(c) the boundaries of D and D′ intersect at a and b.

Then we have the following.

(1) Within the half-plane h, the d-disc D′ contains D,
i.e., h ∩D ⊂ h ∩D′.

(2) Within the half-plane h̄, the d-disc D contains D′,
i.e., h̄ ∩D′ ⊂ h̄ ∩D.

a b

p′

p

D

D′

ρ

D′′

Figure 7: Two d-discs D (blue) and D′ (red) that have
their centers p and p′ on the same side as the line
through their two intersection points a and b. The ray
ρ from p through p′ first hits D, then ρ hits a copy D′′

of D centered at p′ (dotted, blue), and finally ρ hits D′.

Proof. Let p be the center of D and p′ the center of D′.
Consider the ray ρ that shoots from p through p′. We
argue that ρ hits D strictly before D′.

As illustrated in Figure 7, we place a copy D′′ of D
centered at p′. The ray ρ hits D before D′′, since D′′ is
a copy of D translated from p to p′. Furthermore, the
ray ρ hits D′′ strictly before D′, since D′ is a strictly
larger copy of D′′ with the same center. This means
that the ray ρ hits the boundary of D strictly before
the boundary of D′. Since D and D′ are strictly convex
and homothetic, the boundaries of D and D′ cannot
have any intersection other than a and b. Therefore,
within the half-space h, the boundary of D lies in the
interior of D′, i.e., h ∩D ⊂ h ∩D′. This proves (1).

To show (2), observe that since the boundaries of D
and D′ intersect in two points, at both points we have
true intersections. Due to (1), we enter D as we traverse
the boundary of D′ from h to h̄ through a (or through
b). Since the boundaries of D and D′ intersect only at
a and b, we know that, within h̄, the boundary of D′

lies in the interior of D, i.e., h̄ ∩D′ ⊂ h̄ ∩D. �

A.3 Lunes and Safe Sites

Let us assume that the sites are numbered s1, s2, . . . , sn
in an arbitrary manner. Let vi,j,k be the point equidis-
tant to sites si, sj , and sk; and let ei,j be the edge (if
any) on the bisector of sites si and sj . Suppose p is a
point along an unbounded edge ei,j defined by the sites
si and sj , and we want to place a new site s on the
d-arc Ad(p, si, sj) to create a new vertex at some point
p. Define the d-lune Luned(si, sj) to be the union of all
d-arcs Ad(p, si, sj) such that p is an interior point of ray
r. Figure 8 depicts an example of a d-lune.

s3

s4

s2

s1
v3,4,5

p

s

s5

Figure 8: The d-lune Luned(s3, s4) for the sites from
Figure 4 together with its defining edge e3,4. A new
site s in this d-lune creates a new vertex at p along e3,4,
where p is the center of the d-disc through s3, s4, and
s.

Lemma 14 For any two consecutive vertices si, sj on
CH(S), if vi,j,k is the finite end of edge ei,j, then any

point in Luned(si, sj) belongs to FdS(vi,j,k) \ CH(S).

Proof. Consider FdS(p) for some point p on ei,j . By
definition of a full circle it contains all sites in S,
so CH(S) ⊂ FdS(p) since Cd is convex. Therefore
A(p, si, sj) is outside CH(S). On the other hand, both
p and vi,j,k are within one half-plane h defined by the
line through si, sj (since ei,j consists of those points
for which these are the farthest sites). By the Inside-
Outside lemma therefore A(p, si, sj) (which is outside

h) therefore is within FdS(vi,j,k) ∩ h. �

So as promised previously, all newly placed sites are
outside the convex hull of preexisting sites, and so are
proper. Now we are ready to prove safety.
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Lemma 15 (Safety Lemma) For any two consec-
utive vertices si, sj on CH(S), every new site in
Luned(si, sj) is safe.

Proof. Let s be be a new site for S that is contained
in Luned(si, sj). Let ei,j be the unbounded edge where
the regions of si and sj meet, and let vi,j,k be the vertex
where ei,j ends. By the definition of Luned(si, sj), the

new site s is contained in the full d-disc FdS(vi,j,k) that
passes through si and sj . Thus, s is safe for vi,j,k.

Consider a vertex vi,k,l that is connected to vi,j,k by
the edge ei,k. We argue that Luned(si, sj)—and, there-

fore, the new site s—is contained in FdS(p) for any point
p ∈ ei,k, i.e., the new site s is safe for ei,k and vi,k,l.

Let hs be the half-plane containing s that is bounded
by the line through si and sk. We apply Lemma 13 in
two ways, depending on whether p lies in hs or not.

p

s
v1,3,5

`3,5

v3,4,5

s4

s2

s1
s3

s5

Figure 9: An example for the case p /∈ hs from the proof
of Lemma 15 with i = 3, j = 4, k = 5, and l = 1.

Suppose p /∈ hs, as illustrated in Figure 9. We ap-
proach si and sk when we walk from vi,j,k along ei,k to-

wards vi,k,l. Therefore, FdS(vi,j,k) is larger than FdS(p).

Since p, vi,j,k /∈ hs, Lemma 13 implies hs ∩ FdS(vi,k,l) ⊂
hs∩FdS(p). We know s ∈ Luned(si, sj) = hs∩FdS(vi,k,l).

Therefore, s ∈ hs ∩ FdS(p), and, thus, s is safe for p.
Suppose p ∈ hs, as illustrated in Figure 10. Then

there is a point w along ei,k that intersects `i,k, since
vi,j,k /∈ hs. We move away from si and sk when we

walk from w along ei,k to vi,k,l. Therefore, FdS(p) is

larger than FdS(w). Since p, w ∈ hs, Lemma 13 implies
hs ∩ FdS(w) ⊂ hs ∩ FdS(p). We know from the previous
case, when p /∈ hs, that s ∈ hs ∩ FdS(w). Therefore,
s ∈ hs ∩ FdS(p) and, thus, the new site s is safe for p.

In summary, if s ∈ Luned(si, sj) is safe for vi,j,k then
s is safe for all edges incident to vi,j,k, except for the
unbounded edge ei,j . We can repeat the above argu-
ment for all neighbors of vi,j,k and their neighbors and
so forth. In this fashion, the safety of s propagates to
all vertices and all bounded edges of the d-farthest-point
Voronoi diagram of S.3 Therefore s is safe for S. �

3In fact, the safety of s extends to all unbounded edges other

v3,4,5

s

`3,5
s4

s2

s1

v1,3,5

s3

s5

w

Figure 10: An example for the case p ∈ hs from the
proof of Lemma 15 with i = 3, j = 4, k = 5, and l = 1.

B Polygonal Distance Functions: Proof of Lemma 4

Proof. Suppose s is a proper site in S. Then there
is a point p such that FdS(p) has only the site s on its
boundary. All other sites of S are in the interior of
FdS(p) by definition of full disc. Scaling FdS(p) down
while staying centered at p gives another homothet D of
Cd; note that D ⊂ FdS(p) since d is convex. If we shrink
little enough then D hence contains all of S \{s}, but it
does not contain s. Therefore, H(S \{s}) ⊆ D does not
contain s. By definition, s is an extreme point of H(S).

Conversely, suppose s is an extreme point of H(S).
That means there is a homothet D of Cd that contains
S \{s} and that does not contain s. Let p be the center
of D. Suppose we grow D until we arrive at a d-disc D′

centered at p with s on the boundary. We have D ⊂ D′,
since both D and D′ are convex and symmetric to p.
Hence, D′ is a d-disc centered at p that contains S and
has only the site s on its boundary. This means s is the
only d-farthest point from p, i.e. s is a proper site. �

than ei,j in the diagram for S, as well.




