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Finite-energy sum rules (FESR)1,2 express analyticity and tie 

together the high-energy and the low-energy behavior of scattering amplitudes. 

Assuming the high-energy amplitude is dominated by a few Regge poles in the 

crossed channel (t), and that the low-energy amplitude is dominated by a few 

direct-channel (s) resonances, the FESR al101v us to determine the t-channel 

Regge parameters in terms of the parameters of the s-channel resonances. In 

the nn system both the sand t channels contain the same particles, 

therefore we obtain self-consistency-- or bootstrap-- conditions. 3 We show 

how resonances in the direct nn channel (p, f, g) generate (via FESR) 

the 

from 

p-Regge 

1 - - to 2 

pole in the t channel, and we calculate O:p(t) for a 

+3. This is relevant to the intriguing question of elementarity 

versus compositeness of particles: If we assume the It = 1 amplitude is 

dominated by one Regge pole, the p, then our model predicts that this pole is 

-2 moving, with da/dt ~ 1.0 GeV ,and it cannot be a fixed Regge pole (elemen-

tary particle).4 We also treat the superconvergent It = 2 and the It = 0 

amplitudffi (with P and pI), and we solve the p-f-bootstrap system. 

The Regge amplitude at fixed momentum transfer t for high energies 

s is 

a H -
-ina 

{ °i2
}, A ~ ~C~O) 

e for It (1) sin nO: 

1 1 ') 2 'vhere v =-(s - u) 2" Zt(t - 4m '-), Vo ;;; 1 BeV , and ~ is the reduced _ (') 
- J1 



I 

,/ 
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residue function (regular at threshold). If the asymptotic formula (1) 
1 

is good for v > N, then the following FESR are equally good 

N f dv v
n 

1m A(v,t) - S (N, t) 
n 

~ ~(t)+n+l 
~ ~(t) a(t) + n + 1 . 

o 

(2) 

For the low-energy (LE) integral on the left-hand side (LHS) of (2) we use 

the narrow resonance approximation: 

LHS 

where Cts is the isospin crossing matrix, m is the resonance mass, r 

its width, and x its elasticity. 

There are two approaches to any bootstrap, old5 or new: 3 (a) One 

uses the physical masses and couplings in the s channel as input on the LHS 

to compute the corresponding output information in the t channel on the 

RHS of (2). One then asks whether the input and output parameters are 

consistent, m. 
ln 

(s) ? (t) 
m '" m phys. - out (b) One solves the system of 

bootstrap equations requiring m. 
l.n 

m t' and then one checks that the ou 

self-consistent parameters are approximately equal to the physical ones, 

(s) (t) 
min = mout 

? 
~ m 
- phys. In approach (a) we test consistency. In 

approach (b) we mix up consistency and stability, and we also test unique-

ness. We shall mostly use (a), since it is much easier for computations. 

We work at fixed t and with definite isotopic spin, 

the t-channel. We start with It = 1. The RHS of the FESR is therefore 

given by the p Regge term. This amplitude is odd in Zt therefore we 

SO' S2' etc. We work at t = m 
2 and not at t = 0, because we can use 

p 

know ~ only at t = 2 At t 2 we have: m = ~es p 



B(t 
2 

~es ) 
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where c£ is the leading coefficient of p£(z). B(t = 0) is unknown. 

The approximation6 B(t) ~ B(O) cannot be used, because it is undefined 

unless we specify the value of vo. If we change YO' B will pick up an 

exponential t-dependence. Choosing 2 Vo = 1 BeV we obtain the output 

8(m 2) / 8(0) = 3.0 ± 0.1. 
p 

By far the most important input resonances7 are the p, f(1250 ), 

and g(1650). Therefore we consider the following three cases. Limit of 

integration N: (I) above the p, (II) above the f, and (III) above the 

g. We choose N halfway between the highest resonance included and the 

one immediately above. A reasonable range for N about the halfway point 

is 2 aN = ±0.15 BeV , as explained below. (Alternatively we could allow N 

to vary from the midpoint between the two resonances half the remaining 

distance to the next resonance, i.e., by aN ~ ±0.25 BeV2 .) 

In case (I) we take only the p on the LHS of (2); we use the 

experimental value dCX/dt 1 BeV-2 for connecting 8 and r (Eq. 4) , 

and from So at t 2 obtain r' out/r in = 0.95 ± 0.21, where = m we 
p p p 

rout = r t and r in = r s. This should be compared with the value-in 
p p p p 

the old bootstrap5 rout/rin ~ 5-10. Our result depends crucially on the 

value of the crossing matrix element Cll 1/2 and on the p spin. It 

2 also depends on N, and the uncertainty aN =0.15 BeV produces the error 

in this and all following results. Because the FESR are linear in the 

amplitudes, we can compute only the ratio rout/rin, while the absolute 

value of r drops out of the equations. r (the p-coupling constant), 
D P 

merely serves to fix the scale of all amplitudes. 
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In case (II) we use the p and the f as input on the LHS and 

SO(t 
2 out/ in 4 where the error from == m ) we obtain r r == 0.8 ± 0.11, p p p . 

refers to aN only. There are various ways of reexpressing this result. 

For example, we can require self-consistency, assume that m 
p 

are given, and compute rf/rp == 1.01 ± 0.18. The experimental p width 

is not well known: Rosenfeld7 gives for the experimental ratio 0.91. 

Alternatively we can require exact self-consistency, take the experimental 

widths, and use So to determine the cutoff N. We obtain 

sN = s(v == N) == 1.92, which sould be compared with the half-way point 

sN == 2.12. 

Since we now have a broader support we can also use the higher 

moment sum rule S2. From 80 and 82 we determine the output aCt): 

(a + l)/(a + 3) 

Using sN 1·92, determined above from 80, we obtain a(mp2) 1.1 + 0.4 

and a(O) 0.4 + 0.3. 

Next we treat case (III) with (p, f, g) as input. g has an 

unknown 2n branching ratio,7 

to determine x; we get 
g 

x • We g 

58 ± 8%. 

impose r 
out 

p 

If we use 82 

x 
g == 58 ± l~. Combining and 82 to eliminate 

2 a (m ) 
p p 

2 
1.0 ± 0.3 and a (m ) == 2.9 ± 0.8. 

p g 

r in and use p 

we have 

13 , we obtain p 

80 

Next we note that the P£(z)'s in the amplitudes corresponding to 

the three input resonances p, f, and g all have their first zeros simul-

taneously at t ~ -0.3 BeV2, or more precisely at -0.26, -0.31, -0.29, 

respectively. Therefore the RHS will vanish near this point: 13 (-0.3) ~ o. 
p 
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Inclusion of the low partial waves neglected on the LHS will shift this 

value downward by at ~ 0.1 BeV2 . 

is connected with the vanishing of 

Let us check whether this zero of 

a (t). Unfortunately (5) 
p 

gives 

B (t) 
p 

o 
a=O 

if B := O. Therefore we go to 
2 

t - -0.75 BeV and check if a becomes 

negative. We obtain a (-0.75) 
p 

-0.4 ± 0.1. Interpolation between the t 

values gives ex := 0 
p 

for 2 t ;::: -0.3 BeV . Summarizing, an input of p, f, 

and g in the s channel is able to generate an output ex (t), with 
p 

-~~ a p ~ +3. Our model predicts that the Regge pole in the crossed channel 

-2 must be a moving pole with do: /dt := 1.0 ± 0.2 BeV • 
p 

If there were only one p Regge pole, then factorization would 

lead to a contradiction between the one p pole approach, to nN charge 

exchange, and nn elastic scattering. In the former case3 only the 

helicity flip amplitude, BCEX' vanishes for ex (t) 
p 

0, while the non-flip 

amplitude A'CEX remains non-zero for a = O. In a one p pole approach -

this indicates that the p trajectory chooses sense at ex = 0, 'while the 

present analysis indicates that p chooses nonsense. This contradiction 

disappears if we assume we have one effective p trajectory, which simu-

lates the combined effect of p and , 8 
p • 

The It = 2 amplitude does not contain any known Regge pole, and 

is therefore superconvergent. Since it is even in we can test the 

relation Sl = O. The contributions of p, f, and g at t:= 0 are 

-0034, +1.24, and -4.10, and have the tendency to cancel on the LHS, thus 

producing a zero on the RHS of (2). On the other hand the convergence of 

the LHS is extremely bad, because the sole difference between the p-produ-

cing sum rules for It = 1, and the superconvergent sum rules for It = 2, 

is a sign in the crossing matrix. The only way to simultaneously generate 
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the p in It = 1 and superconvergence in It = 2 ~s to have very large, 

but strongly overlapping, resonances, or nonresonating contributions. 

The It = 0 amplitude is complicated because it contains two Regge 

poles, called P and pI, at t = O. Using p and f as input on the 

LHS (case II), and taking the cutoff sN = 1.92, we have self-consistency 

2 
for It = 1 as above, and we obtain,for It = 0, for the LHS at t = mf 

81 = 38, while the f contribution9 to the RHS is 40 ± 9. Therefore one 

pole dominates Im A at (We do not know whether to identify the 

f with P or with Pl.) In contrast P and pI have comparable impor-

tance at t = 0 (for 2 s = 1.9 BeV ), since the LHS = 1.8, while the P 

t 'b t' 10 t th RHS" 0 8 th d' ff 'd tl b' d t con rl u lon 0 e glves., e 1 erence eVl en y elng ue 0 

the P'. 

Finally we solve a simple bootstrap model. We use two equations: 

So for It = 1 at t = 2 and 81 for It = 0 at t = mf 
2 We assume m , . 

p 

the FE8R are dominated by p and f. For algebraic convenience, (i) we 

put m = 0; 
n 

(ii) we fix the cutoff N at the f resonance, and corre-

spondingly take only half the f contribution on the LHS; (iii) we retain 

only the leading term in the Legendre function on both the LHS and RHS. 

We have two equations in the two unknowns: The mass ratio IJ. = (mf\2 
. mp) 

coupling merely 

and 

the coupling ratio ~ = [(2£ + 1) x mrJf/[···J
p

' The p 

fixes the scale of all amplitudes, while the p mass fixes the scale of 

11 ,11 a energles. 

experiment: 

1 [3 J 
2 

m 
p 

2 

Finally we take da/dt (which is needed inEq. 4) from 

dcX 
dt = 0.60. The equations and now read: 

! flJ. + !)2 0.60 
2 ~ 2 2 

2 , 

1~ 2 
1 Cd.!:!: \ 0.1S0 Leg) 
42) A 2 2 IJ. • 

(6) 
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The solution is ~ = 2.7 and A = 2.0, while the experimental values are 

~ = 2.7 ± 0.2 and A = 2.3 ± 0.5. If we restrict our attention to physical 

values A > 0, ~ > ° then the solution is unique and stable. Perturbing 

the LHS of (6) (7) by l~ changes the solution by less than 10%. 

Discussion of Approximations and Errors. Resonance saturation 

on the LHS requires a low N, since above the low-energy region the leading 

direct-channel trajectories, p and f, will be accompanied by more and 

more resonances, or nonresonating background, in the lower partial waves. 

On the other hand tne assumption of Regge dominance on the RHS requires a 

high N.12 As we go from t = 0 to 
2 

t = m 
p 

the relative importance of 

the low partial waves decreases, since the contribution of each partial wave 

is proportional to For example, for s = m 
p 

2 and 2 
t = m 

we have z s 3. Therefore if the s channel E(750) exists and has the 

p 

same width as the p, it will be only 1/9 as important as the s-channel p 

at 2 t = m • 
p 

This relative suppression factor together with low widths or 

elasticities (or both) is responsible for the unimportance of the neglected 

8 resonances. On the other hand high partial waves become relatively more 

importan t as z increases. s 

wave series diverges at t = 

Because of this the real part of the partial 

2 m , 
p 

so one might fear the convergence13 of 

the imaginary part is slow. Letcus check how strong the first neg-

lected wave is, for example the d wave at 2 At and s = m 
p 

2 
s = m ,the Born d wave from p exchange (note that the Born approxima

p 

tion is good for high £) amounts to only 0.4% of the resonating p wave, and 

the d wave from the f tail amounts to 2~. Closely related is Bareyre's 

1 . 14 f conc USlon or nN scattering that up to the 1688 resonance (F wave) all 

Gwave phase shifts are smaller than 3 degr. Evidently the prominent reso-

nances are peripheral effects, iRes ~ kR, and the peripheral waves are 
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either resonating or very small. We conclude that for s = m 2 and 
p 

2 t = m the ultra peripheral as well as the central partial waves are 
p 

unimportant, and the LHS of the FESR is well approximated by the prominent 

peripheral resonance, the p. This is not surprising. The crucial point 

is that Regge theory in the direct channel tells us that for t ~ 00 

the saturation of the LHS of the FESR by the leading resonances becomes 

exact. 15 

On the RHS we ask: For what Nand t is a secondary Regge 

trajectory, pi, negligible? We assume the p' corresponds to particles 

in the t channel. These belong to low partial waves, and can be suppressed 

by going to high Zt' This is equivalent to large N and/or low t. To 

summarize, on the hBS we want low N and/or high t, on the RHS we want 

high N and/or low t. Our quantitative analysis indicates that there is 

no gap between the two (s,t) regions in which the approximations are 

valid,·e.g. at 'V. t 'V 2 s 'V 'V m 
p. 

both approximations are good to 90%. 

The background integral in the £ plane which was neglected on the 

RHS, is responsible for the wiggles of the LHS as a function of N. We 

estimate the error from neglecting it by computing the standard deviation 

of the oscillating expression (LHS) . (a + n + 1) • (~+n+l)-l from its 

average value 8. Numerical evaluation for I t = 1 in the region between 

the f and the g shows that this error amounts to about 10~, and that it 

can be simulated by taking oNl = ±0.10 BeV2 in the narrow resonance 

expression. In the narrow resonance approximation the LHS becomes a step 

function, and the choice of N relative to adjoining resonances becomes 

important. For It = 1 the narrow resonance approximation reproduces the 

finite width result, if we choose N halfway between adjoining resonances 

with oN2 = ±0.10 BeV2 . Here we combine these two oNls and use 
2 oN = 0.15 BeV . 
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