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Christian Nansen*

AQ1

Abstract

BACKGROUND: Bench-top or proximal remote sensing applications are widely used as part of quality control and machine vision
systems in commercial operations. In addition, these technologies are becoming increasingly important in insect systematics
and studies of insect physiology and pest management.

RESULTS: This paper provides a review and discussion of how proximal remote sensing may contribute valuable quantitative
information regarding identification of species, assessment of insect responses to insecticides, insect host responses to
parasitoids and performance of biological control agents.

CONCLUSION: The future role of proximal remote sensing is discussed as an exciting path for novel paths of multidisciplinary
research among entomologists and scientists from a wide range of other disciplines, including image processing engineers,
medical engineers, research pharmacists and computer scientists.
© 2015 Society of Chemical Industry
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1 INTRODUCTION
The development of the microscope is undoubtedly one of the
most significant advancements in terms of technology to perform
research, and it is directly linked to at least four Nobel Prizes.1

The development of microscopes enabled scientists, like Antonj
van Leeuwenhoek in the late seventeenth century, to examine
and describe insects, protozoans, blood cells and many other
microscopic animals and objects.2 These descriptions led to iden-
tification of completely new research questions and to novel
hypotheses about cause–effect relationships across all aspects of
natural sciences. Furthermore, the initial development of micro-
scopes and the descriptions produced by natural scientists like
Leeuwenhoek were unquestionably a great source of inspiration
for a wide range of scientists to consider ‘microscopy’ as a research
tool for them to use. Microscopy is essentially a type of ‘proximal
remote sensing’, if remote sensing is defined as ‘the measurement
or acquisition of information of some property of an object or
phenomenon by a recording device that is not in physical or
intimate contact with the object or phenomenon under study’3.
Proximal remote sensing is here defined as acquisition and clas-
sification of reflectance or transmittance data with an imaging
sensor mounted within a short distance (under 1 m and typically
much less) from the target object, such as an insect body. I am
in no way arguing that recent developments in proximal remote
sensing come even close to matching the importance of the
groundbreaking innovations and discoveries by Leeuwenhoek
and other microscopists after him. However, there are important
similarities in the way the emergence of research technologies
(such as the microscope, gas chromatography, qPCR machines,
pyrosequencing equipment and advanced proximal remote sens-
ing technologies), reshape the scientific agenda and priorities
by enabling us to refine basic research questions and establish

new research hypotheses and paradigms. In addition, it is very
important to highlight how such technological advances create
novel opportunities for multidisciplinary research and teaching.

There are a number of important reasons why proximal remote
sensing continues to gain recognition and acceptance as a
research tool. Firstly, reflectance or transmittance data are nor-
mally acquired non-destructively and within a few seconds, which
means that no or negligible preparation of target objects is
required. Secondly, the data are digital and therefore quantitative
and easy to share via electronic media. The quantitative nature
of reflectance or transmittance data means that comparisons
normally based on subjective nominal scales (i.e. low, medium,
high) can be replaced by much more rigorous thresholds. After
purchase of the initial imaging equipment, reflectance or trans-
mittance data can be acquired at fairly low cost, as most proximal
remote sensing systems only require small amounts of mainte-
nance, and operating costs are generally low. In addition, the
digital nature of reflectance or transmittance data means that
they can be acquired in large quantities without major concerns
about storage. Although molecular and physiological analyses
continue to become less expensive and more powerful, they may
still be cost prohibitive at a large scale and require substantial
preparation, which is associated with a certain risk of sample con-
tamination. Thirdly, there is the potential of developing processing
and classification algorithms to deliver classification results almost
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real time. This may be less important in research applications of
proximal remote sensing, but it is probably even more important
than sensitivity and accuracy in large commercial operations, such
as elimination of objects that are not almonds on a rolling con-
veyor belt (https://www.youtube.com/watch?v=6Nv2itCkxQ4).
The example with almonds on a rolling conveyor belt was included
to illustrate a much broader point about the prospects of auto-
mated quality control, as the almonds could be almost any type
of product and the non-desirable objects being removed from
the rolling conveyor belt could be considered ‘pests’ (individual
insects) or food items with pest-induced defects.

Physical conditions affecting the quality of acquired reflectance
data include ambient temperature, lighting, projection angle and
distance between lens and target object. If these physical condi-
tions can be maintained constant, the fundamental assumption
during use of proximal remote sensing technologies is that the
radiometric signal (reflectance or transmittance) acquired from
objects, such as insect specimens, is determined by their internal
temperature, chemical composition and physical structure. Typi-
cally, proximal remote sensing data are acquired with high spectral
resolution (in hundreds or thousands of narrow spectral bands)
and also with high spatial resolution, so that hundreds or thou-
sands of pixels are acquired from a single object (such as an insect
body). High spatial resolution of the reflectance or transmittance
data being acquired is a very important distinction, because it
means that careful radiometric filtering can be deployed as a data
processing step to eliminate large proportions of the data and
only select a subset with high homogeneity/uniformity data from
each object. The main advantage of radiometric filtering is that
enhanced data homogeneity increases the likelihood of demon-
strating significant between-class separation.

The spectral range of radiometric data being acquired is referred
to as ‘visible light’ when it falls within the visible portion of
the radiometric spectrum (between 380 and 700 nm). The visi-
ble portion of the radiometric spectrum is divided into six basic
light regions: violet (380–430 nm), blue (430–500 nm), green
(500–560), yellow (560–600 nm), orange (600–650 nm) and red
(650–700 nm). UV light has shorter wavelengths (ultraviolet,
100–380 nm) and the near- and mid-infrared spectra (700–3500
nm) and thermal infrared spectrum (3500–20 000 nm) have longer
wavelengths than the visible portion of the radiometric spectrum.
Reflectance and transmittance data from all of these portions of
the radiometric spectrum may be investigated as part of proximal
remote sensing applications, and their performance will be deter-
mined by the sensitivity of the sensor and the qualities of the light
source. Most of the applications described in this review are based
on reflectance data acquired within 400–1000 nm.

It is very important to highlight that spectrometers and imag-
ing sensors have been used extensively for several decades in
studies of plant responses to growing conditions and stressors.4 –7

There is also a large body of research studies into the effects
of pathogens and herbivorous arthropods on plant health, as
described by analyses of plant reflectance profiles.6,8,9 Similarly,
there is a large body of pharmaceutical research into qualitative
traits of different types of medical product and their correspond-
ing reflectance profiles.10 – 12 Another research discipline with
widespread acknowledgement of proximal remote sensing tech-
nologies is the food industry as part of studies of food quality and
food safety, including (1) quality analysis of meat products,13 – 17

(2) detection of mycotoxin-producing strains of Apergillus flavus in
maize kernels18 and (3) quality, defects and bruises of fruits and
vegetables.19 – 22 There are also examples of how proximal remote

sensing has been used to detect damage and internal infesta-
tion by insects of food products, including field peas (Phaseolus
spp.),23,24 wheat kernels (Triticum aestivum),25,26 soy beans (Glycine
max)27 and jujubes (Ziziphus jujuba).28,29 These are just a few of the
research disciplines in which proximal remote sensing technolo-
gies are rapidly becoming mainstream, and they underscore how
this technology can be used to detect subtle differences among
classes of objects. It also highlights the importance of entomolo-
gists with interests in the use of proximal remote sensing to collab-
orate broadly with colleagues from other disciplines.

Similarly to data mining of molecular data with complicated
up- and downregulations, the research challenge associated with
analyses of proximal remote sensing data is to identify combi-
nations of specific wavelengths with a consistent response to
whatever treatment is being investigated; that is, to identify in
which combination of spectral bands there a significant differ-
ence between/among (1) two or more species, (2) age classes
within a species, (3) males and females, (4) mated and unmated
individuals, (5) host individuals with/without parasitism and (6)
individuals with/without exposure to a pesticide. These are the
types of classification challenge being addressed when prox-
imal remote sensing is applied to studies of insect pests and
their management. There are many approaches to analyses of
transmittance and reflectance data, including single spectral
bands,30,31 spectral band indices,32 – 37 partial least squares,38 – 40

principal component analysis,34,41 linear discriminant analysis,42

decision trees,43 neural networks,44 support vector machines,8

variogram analysis23,30,34,35,45 – 47 and spatial pattern analysis.48 – 50

Furthermore, factors such as spatial resolution, spectral resolution,
spectral repeatability and penetration depth of reflectance data
markedly influence the quality of reflectance and transmittance
data and therefore the ability to develop robust and reliable classi-
fication algorithms.51 However, data classification was considered
to be beyond the scope of this review, and it was therefore not
considered further. Instead, the following provides a review of
the current literature on applications of proximal remote sensing
in systematics and in studies of physiology and management of
insect pests.

2 INSECT SYSTEMATICS AND PROXIMAL
REMOTE SENSING
Biosecurity risks associated with invasive pest species is a growing
concern in many parts of the world.52 Furthermore, risks of invasive
insect species are increased by factors such as tourism, interna-
tional trade and climate change.53,54 Effective responses to protect
against invasive pest species include quarantine and inspection
policies and procedures that are expensive and time consuming
and require technicians with specific training in species identifica-
tion. Proximal remote sensing can potentially reduce inspection
costs and processing time and partially automate some aspects
of inspection for invasive insect pest species. Using reflectance
data acquired with an RGB camera in three spectral bands (Red
Green and Blue portions of the visible light spectrum) of wings
and aculeus, three closely related species of fruit flies (Anastrepha
fraterculus, A. obliqua and A. sororcula Zucchi) were classified with
about 98% accuracy.43 Although systems based on RGB cameras
may not be accurate and applicable for identification of all insect
pest species, the concept is intriguing and could potentially be
developed further by adding imaging sensors for other portions
of the radiometric spectrum and/or imaging sensors with higher
spectral resolution.
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Based on analyses of hyperspectral reflectance profiles, proximal
remote sensing has been used successfully to classify a wide range
of insects, including different species of stored-grain insects,25

two species of fruit flies (Drosophila melanogaster and D. simu-
lans),40 tobacco budworm (Heliothis virescens) and corn earworm
(Helicoverpa zea),55 and Klarica et al.38 used imaging spectroscopy
to discriminate cryptic species of ants (Tetramorium caespitum
and T. impurum). One of the key potentials of camera-based sys-
tems is that they could easily be installed at inspection points,
and they may even be connected via the internet to remote
supercomputers, which process and classify the reflectance data
being acquired at the inspection point. Thus, algorithms installed
in a central supercomputer communicating with a large num-
ber of camera-based systems could be ‘learning’ and progres-
sively improving classification capabilities through continuous
input and validation (based on molecular analyses and conven-
tional morphology-based species identification) of field samples.
The same system could also be used to share digitized models of
insects,56 and thereby reduce the need for shipment of specimens
among taxonomists, and to increase the availability of insect refer-
ence collections.

Development of imaging-based identification of potential insect
pests under quarantine may even be remotely controlled with
cameras mounted on robots to inspect imported goods and
equipment and a central computer analyzing the data and guiding
quarantine officers to particular goods and or pieces of equipment
that need further investigation. Based on the video of almonds
on rolling conveyor belts, it is even possible to imagine a sys-
tem in which mass trapping of potential quarantine insects is
integrated into the process, and a robotic system is used to sort
the insects into individual ‘wells’ which are subsequently identi-
fied on the basis of reflectance or transmittance data acquired by
proximal remote sensing technologies. Thus, a robot could sub-
sequently remove individual specimens of certain pest species or
food items with perceived pest infestations (based on real-time
and non-destructive image classification).

3 INSECT PHYSIOLOGY AND PROXIMAL
REMOTE SENSING
Certain portions of the radiometric spectrum, such as X-rays,
have shorter wavelengths than UV light and are associated with
high energy levels, which enable these wavelengths to pene-
trate deep into organic tissues. Although X-ray imaging may
not conform with the traditional perception of proximal remote
sensing, this type of imaging fits the definition of proximal remote
sensing used in this review. As an example of basic physiology
studies involving advanced imaging, synchrotron small-angle
X-ray imaging has been used in a wide range of studies of the
physiology and biomechanics of insects.57 Synchrotron X-ray
imaging is considered to be particularly advantageous in stud-
ies of minute organisms, and when the objective is to study
internal physiological and/or biomechanical responses to treat-
ments. Using an imaging probe, synchrotron X-ray imaging can
be used to obtain three-dimensional morphology data with
micrometer-range spatial resolutions in fixed and living spec-
imens. This imaging technology has been used to study the
respiratory physiology and function of insects.58,59 In addition,
synchrotron X-ray imaging data have been collected in vivo from
fruit flies to study the changes in thick-filament structure and
actin–myosin interactions during flight.60 – 62 In another example
of advanced imaging, magnetic resonance imaging and magnetic

resonance spectroscopy were used to study cold adaptation in
larvae of two gall-producing insects, Epiblema scudderiana and
Eurosta solidaginis.63 The authors developed three-dimensional
larval anatomy models and visualized the distribution of liquid
water and endogenous cryoprotectants in response to tempera-
ture treatments. Importantly, insects subjected to insertion of a
synchrotron X-ray imaging probe into the body cavity are alive
during imaging but will not survive much beyond the imaging
event. Thus, this proximal remote sensing approach cannot be
used for data collection from the same individuals at multiple time
points during an extended time point.

Phenotypic responses by organisms to treatments and environ-
mental conditions are often complex and challenging to quan-
tify in a repeatable manner. It is important to highlight how
many physiological responses by insects are associated with
significant changes in the insects’ composition of epicuticular
hydrocarbons,64 as they tend to vary (1) among closely related
species,65,66 (2) in relative composition67 or in actual composition68

among males and females within a species, (3) among life stages
and ages of adults,66,69 – 72 (4) among eusocial individuals with dif-
ferent tasks,73,74 (5) according to mating behavior and status68,69,75

6) and in response to environmental conditions.68,69,76 Owing to
the dynamics and complexity of epicuticular hydrocarbon pro-
files, it seems reasonable to assume that reflectance profiles
acquired from insect surfaces may be used to study the basic
physiology of insect pests and their responses to treatments and
environmental conditions. Although direct correlations between
epicuticular hydrocarbon profiles and proximal remote sensing
data acquired from the insect body are often lacking, it seems
likely that important associations exist and that such associations
explain the successful use of proximal remote sensing technolo-
gies (1) to age-grade laboratory-reared mosquito species (Anophe-
les spp.)77,78 and biting midges (Culicoides sonorensis),79 (2) to
assess gender, age and presence/absence of Wolbachia infection
in two species of fruit flies (Drosophila melanogaster and D. sim-
ulans)40 and (3) to differentiate mated and unmated honeybee
queens based on differences in reflectance profiles acquired from
the bee abdomen.80

4 PEST MANAGEMENT AND PROXIMAL
REMOTE SENSING
There are several ways in which proximal remote sensing can
be effectively integrated into both basic and applied pest man-
agement research. A recent study of adult beetles from two
species [maize weevils (Sitophilus zeamais) and larger black flour
beetles (Cynaus angustus)] described how temporal changes in
body reflectance were detected in response to two killing agents
(entomopathgenic nematodes and an insecticidal plant extract);81

that is, groups of treated and untreated insects were moni-
tored (via acquisition of reflectance data) over time, and fea-
tures in their body reflectance were identified, quantified and
proposed as indicators of stress to killing agents. The detected
changes in body reflectance features occurred after exposure
times that coincided with published exposure times and known
physiological responses to each killing agent. The results from
this reflectance-based study underscore the potential of hyper-
spectral imaging of the insect body as an approach to quan-
tify non-destructively and non-invasively the insect responses to
stress factors, such as stress imposed by exposure to killing agents.
To further expand on the potential perspectives of this study, prox-
imal remote sensing technologies may be integrated more broadly
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Table 1. Fruit fly species included in the preliminary studya

Genus Subgenus Group Species Origin Code (Fig. 1)

Drosophila Sophophora melanogaster suzukii Parlier, CA Swd

Drosophila Sophophora melanogaster melanogaster Catalina Island, CA Dme

Drosophila Sophophora saltans sturtevanti Wabasso, FL Dst

Drosophila Drosophila repleta hydei Berkeley, CA Dh

Drosophila Drosophila robusta robusta Rocky Point, NY Dr

Drosophila Drosophila funebris funebris Sturgis, KY Df

Drosophila Drosophila immigrans immigrans San Diego, CA Di

Drosophila Drosophila melanica paramelanica Muscatine, IA Dpa

Scaptodrosophila Scaptodrosophila victoria lebanonensis Veyo, UT Sc

a Fruit fly pupae (24–48 h old) were exposed to parasitism by the ectoparasitoid Pachycrepoideus vindemiae (Rondani) (Pteromalidae) when the pupae
were 48–72 h old. Proximal hyperspectral imaging data were acquired when the pupae were about 96 h old.
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Figure 1. Representative photos of pupae from the nine species of fruit flies with/without parasitism by the ectoparasitoid Pachycrepoideus vindemiae
(Rondani) (Pteromalidae). The vertical black bar in each photo of non-parasitized pupae represents 2 mm (a). Average relative reflectance profiles from
fruit fly pupae with/without parasitism in spectral bands from 400 to 1000 nm (b).

into studies of insect toxicology as part of the characterization
of body (or specific tissue) responses in terms of reflectance to
target-site and metabolic resistance mechanisms and or sublethal
responses to exposure to low insecticide dosages.

Proximal remote sensing may also be integrated into studies of
the performance and host selection by parasitoids. Nansen et al.30

demonstrated that three species of juvenile egg parasitoids
(Trichogramma) developing inside moth host eggs could be accu-
rately classified on the basis of proximal hyperspectral imaging
data acquired from the host eggs. This point is illustrated further
from acquisition of hyperspectral imaging data (240 narrow spec-
tral bands from 383 to 1036 nm) from pupae (24–48 h old) of nine
species of fruit flies (Table 1 and Fig. 1) with/without parasitism
by adult females of the ectoparasitic parasitoid Pachycrepoideus
vindemiae (Rondani) (Pteromalidae), which places eggs on the
host surface inside the puparium. The pupae were exposed to
parasitoids for 24 h when the pupae were 48–72 h old. After para-
sitism, pupae were placed inside a petri dish on moist tissue paper,
and proximal hyperspectral imaging data were acquired when
the pupae were about 96 h old. A total of 180 average reflectance
profiles were obtained from individual pupae [nine species× two
treatments (with/without parasitism)× ten replications= 180
reflectance profiles]. From the photos of pupae it can be seen that

there was more variation in colors among species than between
non-parasitized and parasitized pupae within species (Fig. 1a).
Average reflectance profiles of parasitized and non-parasitized
pupae followed similar general trends but varied considerably
in relative reflectance intensity, with parasitized pupae gener-
ally being darker (lower reflection) than non-parasitized pupae
(Fig. 1b). However, Fig. 1b shows that average reflectance profiles
varied considerably among the included species, and that even
though reflectance profiles from parasitized pupae were gener-
ally darker than from conspecific non-parasitized pupae, there
were several parasitized pupae with higher average reflectance
(lighter) than non-parasitized pupae from other species. Thus,
based on Fig. 1b, it is clear that reflectance in a single spectral
band would be insufficient for accurate separation/classification
of non-parasitized and parasitized pupae across species. Instead,
linear discriminant analysis82 and data processing steps described
in similar studies23,30,83 – 85 were used to classify non-parasitized
and parasitized pupae. In addition, spectral binning was deployed
so that the 220 original spectral bands were averaged into 44
spectral bands to eliminate the risk of overfitting of the classifi-
cation model.42,86 – 88 Of these 44 spectral bands, 26 were used to
create a classification model that separated the nine species of
non-parasitized pupae with about 88% accuracy. Subsequently,
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classification models were developed for each of the nine species
to separate non-parasitized and parasitized pupae, and all nine
models were associated with >95% classification accuracy. This
preliminary study therefore demonstrates that, once a robust and
sensitive classification algorithm has been developed, hyperspec-
tral imaging can be used effectively to separate closely related
fruit fly species based on pupal reflectance features, and also that
parasitism in each species is detectable with a very high level of
classification accuracy.

5 CONCLUSIONS
In many aspects of pest management, a major constraint is how
to acquire and process large quantities of data (in both space and
time), and ultimately how to convert big datasets into sustainable
and cost-effective pest management solutions. Airborne remote
sensing technologies are being integrated in a wide range of
crop management practices, including irrigation,89 fertilization,90

weed detection,91,92 yield mapping93 and pest management.51

In addition, proximal remote sensing enables acquisition of
reflectance and transmittance data with high spectral and spatial
resolutions, and this review has demonstrated how this tech-
nology is being successfully integrated into different aspects of
insect systematics (including insect pest identification) and in
studies of insect physiology and biological control. This trend
is in itself creating many new opportunities for research and
elucidating novel possibilities to investigate hypotheses about
cause–effect relationships. For instance, the non-destructive
nature of reflectance and transmittance data enables continuous
monitoring of the same individuals over time and quantification of
how they respond to imposed experimental conditions, including
pesticide-treated surfaces.85 Careful analyses of temporal changes
in body reflectance responses acquired non-destructively may be
used to optimize timing of physiological and molecular (destruc-
tive) interventions to elucidate changes in gene expression and/or
changes in biochemical pathways. Using proximal remote sensing
technologies, the ability to detect and classify objects with subtle
differences in reflectance or transmittance not only opens up new
avenues of research, it also creates a very intriguing collaborative
platform for software engineers, image analysts, electrical engi-
neers, ecologists, insect physiologists and agronomists to conduct
research and teaching into machine learning, machine vision,
automated inspection and improved quality control.
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