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Abstract

Introduction: Predicting risk for Alzheimer’s disease when most people are likely still

biomarker negative would aid earlier identification. We hypothesized that combining

multiplememory tests and scores inmiddle-aged adults would provide useful, and non-

invasive, prediction of 6-year progression toMCI.

Methods:Weexamined 849menwhowere cognitively normal at baseline (mean age±
SD= 55.69± 2.45).

Results:California Verbal Learning Test learning trials was the best individual predictor

of amnesticMCI (OR=4.75). A latent factor incorporating sevenmeasures across three

memory tests providedmuch stronger prediction (OR= 9.88). This compared favorably

with biomarker-based prediction in a study of much older adults.

Discussion: Neuropsychological tests are sensitive and early indicators of MCI risk at

an agewhen few individuals are likely to have yet becomebiomarker positive. The single

bestmeasuresmay appear time- and cost-effective, but 30 additionalminutes of testing

and use of multiple scores within tests provide substantially improved prediction.

K EYWORD S

Alzheimer’s disease, mild cognitive impairment, neuropsychology

The pathogenesis of Alzheimer’s disease (AD) begins decades before

the onset of dementia, so it is necessary to identify risk factors as early

as possible.1–4 The recent A/T/N (amyloid/tau/neurodegeneration)

framework emphasizes biomarkers in an effort to improve early iden-

tification and move toward a biological diagnosis.5,6 Preclinical AD is

stage 1 of the A/T/N framework staging, defined as being amyloid pos-

itive but still cognitively normal (CN). However, being biomarker pos-

itive indicates that a significant amount of disease progression has

already taken place. The ability to identify individuals at risk before

they becomebiomarker positivewould thus be of great potential value.

It would also be useful to identify people who are likely to be at ele-

vated risk before embarking on costly and invasive biomarker test-

ing. This view echoes those of several research groups that have noted

there is pressing need to identify tests that are non-invasive, low-cost,

and can improve earlier identification of risk for AD.4,7–9

Episodic memory is an effective early predictor of progression

to Alzheimer’s disease (AD).10–15 It should also be a good predic-

tor of amnestic mild cognitive impairment (MCI). Memory is severely

impaired in AD, and MCI diagnoses are in part based on impaired

memory performance.16 However, comprehensive neuropsychological

assessment of memory (and other cognitive domains) is often lacking

in longitudinal studies aimed at detecting which individuals are at the

Alzheimer’s Dement. 2020;12:e12004. c○ 2020 the Alzheimer’s Association 1 of 9wileyonlinelibrary.com/journal/dad
https://doi.org/10.1002/dad2.12004



2 of 9 GUSTAVSON ET AL.

greatest risk forMCI/AD. It is also important to recognize that CN indi-

viduals are not a homogeneous group. Examining variability within the

range of normal cognitive functionmay be useful for early prediction of

MCI.

Efforts to improve longitudinal prediction of MCI or AD using cog-

nitive measures have often focused on evaluating which measure pro-

vides the best prediction,15,17,18 This approach rests on an unspo-

ken assumption that including the lesser predictors in the model may

not improve (or may even hurt) predictive ability. However, we have

shown that multiple memory tests (and scores within tests) have both

common and unique genetic and environmental influences,19,20 sug-

gesting that the right combination of tests might enhance prediction.

Here, we tested the hypothesis that combining multiple memory mea-

sures (within-test and across multiple tests) provides stronger and

more robust prediction than the single best measure of progression

toMCI.

We evaluated our hypothesis in a community sample of middle-

aged adults from the Vietnam Era Twin Study of Aging (VETSA) who

were all cognitively normal (CN) at baseline. The participants com-

pleted multiple memory tests at mean ages of 56 and 62. Examining

these associations inmidlife is important because improving treatment

efficacy may depend on early intervention,7,21 and cognitive abilities

may already be subtly declining by the late 50s.20,22–24 Yet there is

exceedingly little focus on prediction of MCI, particularly in adults this

young. In these analyses, we compared two approaches to aggregating

measures: z-score composites and factor scores. We expected the fac-

tor score approach to have the strongest prediction because it weighs

more strongly the measures that are the best indicators of the latent

memory construct.

1 METHOD

1.1 Participants

Analyses focused on 849 individuals from the longitudinal VETSA who

were CN at wave 1, returned to complete the wave 2 assessment

approximately6years later, andhaddata for all covariates. Participants

were recruited randomly fromaprevious large-scale study ofVietnam-

Era Twin (VET) Registry participants.25 All served in the U.S. Armed

Forces at some time between 1965 and 1975; nearly 80%did not serve

in combat or in Vietnam.26,27 Participants are generally representative

of Americanmen in their age group with respect to health and lifestyle

characteristics.28 All participants provided written informed consent

and the study was approved by local institutional review boards at the

University of California, San Diego and Boston University.

Of the 1237 individuals who completed the VETSA protocol at the

first wave, 107 (8.6%) were excluded from the analysis of progression

to MCI because they had MCI at wave 1. This left 1130 (91.4%) CN

individuals, 906 (80.2%) of whom returned for wave 2. Of these 906,

a total of 57were excluded for missing covariates. This left 849 (93.7%

of 906) and 75.1%of the total CN individuals atwave 1 for the analyses

of progression to MCI. To compute standardized memory scores used

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed longitudinal

studies on progression to mild cognitive impairment

(MCI). Few of these studies have focused on midlife pre-

dictors of early MCI and none have systematically exam-

ined the predictive efficacy of multiple measures within

the same cognitive domain.

2. Interpretation: Results demonstrate that compared to

single memory tests, an additional 30 minutes of mem-

ory testing can result in two to three times better predic-

tion of 6-year progression to amnestic MCI in cognitively

normal (CN) individuals who are only in their mid-50s at

baseline. This finding has important implications for early

identification given that prediction compared favorably

to biomarker-based prediction in a study of adults who

were approximately 15-years older.

3. Future directions: Few individuals are likely to be

biomarker positive in their 50s, but episodic memory

may also predict later progression to biomarker posi-

tivity. Combining more extensive memory testing with

biomarker assessment may substantially improve earlier

risk prediction.

in the odds ratios (ORs) for the primary analyses, we used data from

all 1237 individuals at wave 1, plus an additional 53 attrition replace-

ments who completed the VETSA protocol for the first time during the

wave 2 assessment but were in the age range of participants at wave 1

(total N = 1290). All participants with available data were used so that

ORs should better reflect those who would be obtained from a large

population sample.

1.2 Episodic memorymeasures

Episodic memory was measured at both waves with the logical mem-

ory (LM) and visual reproductions (VR) subtests of theWechslerMem-

ory Scale–Third Edition (WMS-III)30 and theCaliforniaVerbal Learning

Test–Second Edition (CVLT-II).31 For LM and VR, we examined imme-

diate recall and delayed recall measures. For the CVLT, we examined

short delay and long delay free recall, and total score for learning tri-

als 1 through 5. In analyses involving MCI, all memory measures were

z-scored and transformed so that ORs reflect the increase in odds of

MCI for every decrease of one standard deviation (SD) in memory per-

formance (in relation to the full sample of N = 1290 at wave 1). These

standardization procedures were also conducted for the aggregated

memorymeasures described next.

In addition to examining the predictive ability of each memory

measure alone we combined measures in two ways. First, we cre-

ated z-score composites for measures within a given test (eg, LM
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F IGURE 1 Structural equationmodels used to create factor scores for episodic memory at wave 1. In eachmodel, variance explained in a given
memorymeasure (rectangle) by latent factors (ovals) can be computed by squaring the factor loading on that factor. Factor scores for the
highest-level episodic memory latent factor in eachmodel were exported inMplus and used as a continuous variable in separate logistic regression
analyses involvingMCI. All factor loadings were significant (P< 0.05) and all models fit the data well

immediate and delayed recall), and comparable measures across tests

(eg, LM immediate recall, VR immediate recall, CVLT short delay free

recall). We also created z-score composites that combined the six

short/long delay conditions across all tests or all seven memory mea-

sures (including CVLT learning trials).

Second, we created factor scores from latent memory variables.

Latent factors were exported from structural equation models in

MPlus version 7.2,32 based in part on those reported in earlier work

from this sample (see supplement for more information).19,20 These

factor scores are similar to the z-score composites, but measures are

weighted according to their factor loadings on the latent memory fac-

tor. Latent factors are displayed in Figure 1 andwere also based on the

full wave 1 sample (N = 1289). Each model had good fit to the data

based on standard structural equation metrics, including root mean

square error of approximation values of <0.06, and the Comparative

Fit Index values of>0.95.33

1.3 Mild cognitive impairment diagnoses

MCI was diagnosed using the Jak-Bondi approach.4,16,34 Impairment

in a cognitive domain was defined as having at least two tests >1.5

SD below the age- and education-adjusted normative means after

accounting for “premorbid” cognitive ability by adjusting neuropsycho-

logical scores for performance on a test of general cognitive ability that

was taken at a mean age of 20 years (see Supplemental Method for

more information).35,36 This test is correlated r = .84 with Wechsler

Adult Intelligence Scale.35,36 The adjustment for age 20 cognitive abil-

ity ensures that the MCI diagnosis is capturing a decline in function

rather than long-standing low ability. The validity of the VETSA MCI

diagnoses is supported in the present sample by evidence of reduced

hippocampal volume in those diagnosed with amnestic MCI.37 In addi-

tion, higher AD polygenic risk scores were associated with signifi-

cantly increased odds of MCI in this sample,38 indicating that the MCI

diagnosis is genetically related to AD. MCI diagnoses at wave 2 were

also based on measures that were adjusted to account for practice

effects,39 leveraging data from attrition replacement participants who

completed the task battery for the first time at wave 2 (N = 179) to

estimate the increase in performance expected in returnees who com-

pleted the tests twice.

Because we were interested in transition toMCI, analyses included

only individuals whowere CN atwave 1 and had data for all covariates.

Of the 849 returnees meeting this criterion, 45 (5.3%) progressed to

amnesticMCI, and 41 (4.8%) progressed to non-amnesticMCI.
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TABLE 1 Demographic and clinical characteristics and covariates included in analyses involvingmild cognitive impairment (MCI)

Remained cognitively

normal (N= 763)

Progressed to amnestic

MCI (N= 45)

Progressed to non-

amnesticMCI (N= 41)

Demographic variable M SD M SD M SD

p (CN vs

aMCI)

p (CN vs

nMCI)

Lifetime education (years) 14.03 2.16 13.58 1.75 13.49 1.83 0.191 0.098

Age (at wave 1) 55.69 2.45 56.37 2.48 56.68 2.41 0.102 0.024

Age interval (wave 2–wave 1) 5.75 0.70 5.76 0.67 5.65 0.54 0.907 0.400

Depression symptoms (at wave 1) 7.69 7.14 7.32 7.03 9.71 9.66 0.858 0.152

Ethnicity (%white non-Hispanic) 91.34 - 84.44 - 80.49 - 0.119 0.031

APOE status (% 𝜀4 positive) 30.80 - 33.33 - 21.95 - 0.480 0.193

Diabetes (% yes at wave 1) 10.35 - 11.11 - 17.07 - 0.868 0.267

Hypertension (% yes at wave 1) 58.32 - 64.44 - 73.17 - 0.230 0.069

Note: The final two columns display the p value for comparisons between individuals who remained cognitively normal (N = 763) and either progressed

to amnestic MCI (aMCI; N = 45) or non-amnestic MCI (nMCI; N = 41), controlling for clustering of data within families. Significant group differences are

displayed in bold (p < 0.05). Lifetime education was the number of years of school completed. Depression symptoms were measured with the Center for

Epidemiologic Studies Depression Scale,41 with scores above 15 indicating risk for clinical depression. Rate of APOE 𝜀4 positivity across the entire sample

(30.5%) is similar to 28.9% in the UKBiobank, the largest population sample of APOE prevalence to date (n= 326,535).50

1.4 Data analysis

All statistical analyses were conducted using R version 3.5.1. Analyses

involving MCI were conducted with mixed-effects logistic regression

using the lme4 package.40 In these analyses, we controlled for wave 1

age, the time interval between assessments, education, race/ethnicity

(white non-Hispanic vs other), wave 1 diabetes (yes/no), wave 1 hyper-

tension (yes/no), apolipoprotein E (APOE) 𝜀4 allele status (𝜀4+ vs 𝜀4−),
and wave 1 depression symptoms based on Center for Epidemiologic

Studies Depression Scale (CES-D).41 Diabetes and hypertension sta-

tus were based on whether the participant (1) reported being diag-

nosed by a doctor, (2) reported that theywere currently takingmedica-

tion for diabetes or high blood pressure, and/or (3) reported whether

they had high blood pressure on the day of testing (hypertension only).

Finally, twin pair identification numberwas included as a randomeffect

to account for the clustering of data within families. The lme4 package

uses list-wise deletion with missing observations, and reports profile-

based 95% confidence intervals (95%CIs).

The predictive utility of all models was assessed with average area

under the curve (AUC) calculated from fourfold cross-validation with

10 repeats. Random effects were not included in the cross-validated

models due to difficulty obtainingmodel convergencewith a decreased

sample sizeofMCI cases in each fold.However,we found that removing

random effects from the full models resulted in decreased odds ratios

of cognitive scores. Therefore, these AUC values may represent con-

servative estimates.

2 RESULTS

2.1 Descriptive statistics

There were no significant differences between CN and amnestic MCI

groups in any demographic or clinical characteristics (Table 1). Com-

pared to CN returnees, those diagnosed with non-amnestic MCI at

wave2wereolder at baseline (p=0.024) anda smaller proportionwere

whitenon-Hispanic (p=0.031).APOE 𝜀4wasnot a significant predictor,

but it was in the expected direction for amnesticMCI (33% in amnestic

MCI vs 30% in controls). Descriptive statistics formemorymeasures at

wave 1 are displayed in Table 2.

2.2 Six-year prediction of progression tomild
cognitive impairment

The results of the primary analyses are displayed in Table 3. Each cell

displays anOR froma separate longitudinal logistic regression inwhich

amemorymeasure predicts progression to amnesticMCI (Table 3A) or

non-amnestic MCI (Table 3B) 6 years later. As shown in Table 3A, each

of the seven individual memory measures at wave 1 significantly pre-

dicted progression to amnesticMCI at wave 2. The learning trials mea-

sure of the CVLT provided the strongest individual prediction (OR =
4.75, 95% CI 2.59-12.44), whereas the immediate recall condition of

VRwas theweakest individual predictor (OR=1.91, 95%CI1.21-3.43).

However, the strongest prediction came from the latent factor score

that incorporated all seven dependent measures at wave 1 (OR= 9.88,

95% CI 4.39-37.72). Cross-validated receiver operating characteristic

(ROC) curves for these three models are displayed in Figure 2A. VR

immediate recall had a significantly lower AUC (.570) than CVLT learn-

ing trials (.741) or the full latent factor score (.796), both Z > 2.65,

p < 0.008, but the factor score outperformed the CVLT learning trials

at a trend level only (Z= 1.81, p= 0.070).

Although most CIs overlapped, long delay recall conditions tended

to be stronger predictors of progression to MCI than short delay con-

ditions (average increase of 11.5%, range 4.4%–23.0%). OR estimates

for composites greatly outperformed the individual measures. Aggre-

gating measures within the same test resulted in a small increase in

ORs (average increase of 21.2%, range 2.1%–55.1%). Aggregatingmea-

sures of the same type across tests resulted in a larger increase in
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TABLE 2 Descriptive statistics for episodic memorymeasures at baseline (mean age 56)

Memory variable N M SD Range Skewness Kurtosis

Logical memory

Immediate recall 1281 23.47 6.16 4, 44 -0.04 -0.10

Delayed recall 1279 20.01 6.63 0, 41 -0.10 -0.13

Visual reproductions

Immediate recall 1284 78.24 12.41 21, 103 -0.58 0.48

Delayed recall 1283 54.75 19.51 0, 100 -0.15 −0.44

California Verbal Learning Test

Learning trials 1270 42.84 8.51 18, 74 0.09 −0.06

Short delay free recall 1270 8.64 2.74 1, 16 0.07 −0.21

Long delay free recall 1269 9.06 2.89 0, 16 0.00 −0.30

Note: In all analyses involving MCI, dependent measures were standardized and reverse scored so that odds ratios reflect increase in risk of MCI at lower

levels of cognitive ability. Shown here are descriptive statistics for all individuals who completed the wave 1 protocol (used to standardize data and create

z-score composites and latent factor scores). Distributional characteristics remained acceptable for the subset of 849 individuals in the analyses involving

progression toMCI (range skewness=−.45 to .22; range kurtosis=−.36 to .05; see Supplementary Table S1).

TABLE 3 Odds ratios and 95% confidence intervals from logistic regressions of mild cognitive impairment (MCI) predicted by baselinememory
measures

Dependentmeasure Logical memory Visual reproductions CVLT z-score composites Latent factor scores

A. Prediction of amnesticMCI

Immediate recall only 3.01 1.91 3.61 5.27 5.67

[1.79, 6.44] [1.21, 3.43] [2.00, 9.39] [2.78, 15.29] [2.92, 16.98]

Delayed recall only 3.22 2.35 3.77 5.86 6.45

[1.89, 6.83] [1.50, 4.38] [2.14, 8.48] [3.09, 15.83] [3.30, 17.99]

Learning trials only - - 4.75 - -

[2.59, 12.44]

Immediate and delay recalla 3.28 2.40 4.26 6.57 6.91

[1.93, 7.05] [1.51, 4.56] [2.29, 10.92] [3.32, 19.91] [3.47, 20.20]

Immediate and delay recall+ learning trialsa - - 5.60 8.82 9.88

[2.83, 16.06] [4.04, 32.61] [4.39, 37.72]

B. Prediction of non-amnesticMCI

Immediate recall only 1.10 2.02 1.29 1.71 1.63

[.71, 1.72] [1.33, 3.28] [.85, 1.99] [1.08, 2.85] [1.03, 2.69]

Delayed recall only 1.11 1.55 1.78 1.72 1.86

[.71, 1.77] [1.01, 2.47] [1.15, 3.01] [1.07, 2.96] [1.16, 3.21]

Learning trials only - - 1.03 - -

[.66, 1.57]

Immediate and delay recalla 1.11 1.96 1.53 1.78 1.91

[.71, 1.76] [1.27, 3.25] [1.01, 2.47] [1.11, 3.04] [1.19, 3.31]

Immediate and delay recall+ learning trialsa - - 1.36 1.64 1.56

[.89, 2.15] [1.02, 2.76] [.99, 2.60]

Note: Each cell displays an odds ratio (OR) from a separate analysis in which that memory measure (or combination of measures) predicts progression to

amnesticMCI (A) or non-amnesticMCI (B). Significant ORs are displayed in bold (P< 0.05). Like all individual measures, z-score composites and factor scores

were scored such that higher ORs indicate greater risk for amnesticMCI (aMCI) or non-amnesticMCI (nMCI) at−1 SD for that variable.
aIndicates measures in this row were also based on z-score composites (eg, LM immediate and LM delayed recall in the first column), except for the final

column, which was based on factor scores (from themodels displayed in Figure 1C andD).
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F IGURE 2 Receiver operating characteristic (ROC) curves for the logistic regressions displayed in Table 3 for mild cognitive impairment (MCI)
at wave 2 predicted bymemorymeasures at wave 1. Threemodels are displayed here: the worst individual predictor of amnesticMCI (visual
reproductions [VR] immediate recall; dotted line), the best individual predictor of amnesticMCI (California Verbal Learning Test [CVLT] learning
trials; dashed line), and the best overall predictor of amnesticMCI (latent factor score of all measures; black line). Area under the curve (AUC)
estimates were obtained by doing fourfold cross-validation repeated 10 times. Delong tests revealed significant AUC differences for amnesticMCI
between VR immediate recall (AUC= .570) and both CVLT learning trials (AUC= .741) and the full latent factor score (AUC= .796), both Z> 2.65,
p< 0.008, but not between CVLT-learning trials and the latent factor score, Z= 1.81, p= 0.070. There were no significant AUC differences for
non-amnesticMCI, Z’s< 1.36, p> 0.175 (AUCs for VR immediate recall= .686, CVLT learning trials= .607, latent factor score= .637)

ORs (average increase of 105.9% range 46.0%–296.9%). Aggregat-

ing across all seven measures resulted in the largest increase in ORs

compared to individual measures (average increase of 213.1%, range

85.6%–517.2%). Finally, ORs for latent factors scores were always

larger than z-score composites (average increase of 8.7%, range 5.1%–

12.0%).

A different pattern of results was observed for non-amnestic

MCI. Some memory measures at wave 1 predicted progression to

non-amnestic MCI at wave 2 (three of seven measures), the strongest

of whichwas VR immediate recall (OR= 2.02, 95%CI 1.33-3.28). How-

ever, the predictive ability was weaker than it was for amnestic MCI.

Although aggregatingmeasures sometimes resulted in largerORs than

those for individual measures, none of these estimates was stronger

than that forVR immediate recall alone. Thus, therewas someevidence

that baseline memory predicted later non-amnestic impairment, but

combining amix of informative and non-informative predictors did not

appear to strengthen prediction.

3 DISCUSSION

Memory performance among CN adults who were only in their 50s

predicted 6-year progression to amnestic MCI. The results confirmed

our primary hypothesis that combining multiple measures of mem-

ory improved prediction of progression to amnestic MCI. Although it

will be important to cross-validate these findings in an independent

sample, these results have strong implications for prospective studies

aimed at early identification of individuals at greatest risk for MCI and

AD. They suggest that longitudinal prediction of amnestic MCI can be

improved substantially by both administering multiple memory tests

and utilizing multiple scores that are available within each test. The

use of a single best measuremay appear to be time- and cost-effective.

However, in this study, administering neuropsychological tests of both

verbal and non-verbal memory added only about 30 minutes of addi-

tional test administration time and resulted in a dramatic increase in

the OR. Even when more than one test has been used, many studies

seldom include more than one score from each test. Calculating addi-

tional scores from already completed tests adds nothing to participant

burden, but does increase predictive power.

Predictors of 3-year progression to MCI or dementia in CN adults

in theAustralian Imaging, Biomarker & Lifestyle Study of Ageing (AIBL)

serve as a sample comparison.42 In AIBL (mean age= 72.0 years), Amy-

loid 𝛽 (A𝛽) positivity was the best individual predictor (OR = 4.8), sim-

ilar to our CVLT trials 1-5 (OR = 4.75). AIBL examined CVLT delayed

recall (OR = 4.2), which was similar to that demonstrated in VETSA

here (OR= 3.77). The best prediction in AIBL came from combining A𝛽

and CVLT delayed (OR = 15.9) compared with the prediction based on

all memory measures in VETSA (OR = 9.88). Thirteen percent of AIBL

progressed to MCI or dementia, whereas 5% of VETSA participants

progressed to amnesticMCI. However, thememory tests in VETSA are
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accounting for substantially earlier prediction because the average age

was 16 years younger than in AIBL.

Althoughmeasures of A𝛽mayhave increased prediction of progres-

sion to MCI in VETSA, we found that cognitive performance alone has

good predictive utility. Obtaining biomarkers of amyloid accumulation

in a sample with such a low number of individuals who are expected

to be A𝛽 positive43 would be highly cost-ineffective. Non-invasive neu-

ropsychological tests are cost-effective and sensitive measures for

very early risk identification. Using cognitive testing as a first-line

screening in clinical trials to reduce unnecessary numbers of positron

emission tomography (PET) scans and cerebrospinal fluid (CSF) draws

could save millions of dollars and reduce participant burden associ-

atedwith obtaining biomarkermeasures of amyloid.44 Moreover, being

A𝛽negative at this age does not necessarily mean non–AD-related, as

there is also evidence that A𝛽 at subthreshold levels can still have neg-

ative effects on cognition.13 In any case, it will be important for future

work on younger samples to evaluate the joint prediction to see if AD

biomarkers improve prediction over neuropsychological tests alone in

participants as young as those in VETSA.

Including tests in other cognitive domains might also further

improve prediction. Some examples include the preclinical Alzheimer

cognitive composite (PACC), which used four tests common to three

samples,45 and multiple tests in the Einstein aging study46 and the

rush memory and aging project.47 However, these indices were cre-

ated by and for older samples, and were based on a limited number of

tests. As in the large majority of studies, their focus was on predicting

progression to AD rather than MCI. Baseline ages of participants for

these analyses were 16 to 24 years older than the VETSA baseline age.

VETSAwasdesigned tohaveanextensiveand taxingbattery inorder to

capture heterogeneity and to avoid ceiling effects in ourmuch younger

participants.27,48 We see our approach as complementary. Instead of

including one score per test as in these other studies, we examinemore

extensive coverage within specific domains.

In contrast, combining multiple memory predictors did not increase

overall prediction forprogression tonon-amnesticMCI (thoughall 95%

CIs overlapped). The results argue against general cognitive deficit as a

predictor of MCI. Rather, there appears to be some specificity of cog-

nitive predictors of MCI. Thus, combining multiple cognitive measures

appears tobe capableof dramatic improvement inprediction if theyare

domain-relevant.

3.1 Strengths and limitations

First, amnestic MCI diagnoses were not validated with AD biomark-

ers, and we do not know how many MCI cases will develop AD. On

the other hand, these diagnoses at wave 1 were validated with evi-

dence of reduced hippocampal volume37 and higher AD polygenic risk

scores in individuals with amnestic MCI,38 the latter supporting their

being AD-related. Moreover, the 9% of individuals excluded for MCI

at wave 1 and 10% converting to MCI at wave 2 correspond well to

recent estimates that about 10% of individuals in their mid-50s are

amyloid positive, with another 10%percent becoming amyloid positive

by age 65.43 We do not expect all of our MCI subjects to be exactly

the same as individuals who are amyloid-positive, but this correspon-

dence at least suggests the plausibility of this being AD-related MCI.

Some individuals may also be at subthreshold amyloid levels, and there

is growing evidence that subthreshold levels may still be associated

with reduced cognitive function.13 Second, the sample comprised only

men, so it will be important to examine whether these findings gen-

eralize to women. Third, many CIs overlapped, but a power analysis

suggested that a latent factor based on many test scores would sub-

stantially reduce the number of participants needed for studies. Given

the proportion of amnesticMCI in this sample (5.3%), power estimates

using Gpower V3.1.9.2 (without covariates) suggest that a study that

administered only LM delayed recall (OR = 3.22) would require 102

subjects to significantly predict progression to amnesticMCI at the .05

level (with 80% power).With the latent factor based on all sevenmem-

ory scores (OR = 9.88), the same power analysis indicates that only 35

subjects would be necessary. Thus, we conclude that the small amount

of additional non-invasive time in adding two memory tests is a very

worthwhile investment.

Fourth, CN individuals closest to the MCI cutoff being at greatest

risk for later MCI might appear to suggest that some prediction could

stem from test/retest noise. However, the fact that z-score and factor

score approaches (which reducemeasurement error) improved predic-

tion argues against this point. Post hoc analyses revealed significant

prediction by the factor score (OR = 3.42) even when the amnestic

MCI groupwas reduced to only 22 (of 45) individualswho also declined

by >1 SD on the full memory factor score between waves 1 and 2.

Fifth, as is common for subjects who do not return, the 242 dropouts

had significantly lower memory factor scores at wave 1 (P = 0.009)

than the returnees. Thus, we may have lost some individuals who

were at the greatest risk for later memory impairment, but that would

suggest that our findings regarding predictive ability are conserva-

tive. Finally, fitting the latent factor model and conducting the logis-

tic regression simultaneously might lead to further improvement of

prediction. Indeed, prediction of amnestic MCI by latent factors in the

same model resulted in 37% to 57% larger ORs than the factor scores

displayed in Table 3 (as high as 15.54; see Table S2). However, we pre-

sented the results of the two-step procedure here (exporting factor

scores and then running a logistic regression) because they are more

conservative and are more generalizable in that they can be used by

other researchers and/or clinicians to generate riskprobabilities in new

samples without having to refit a new latent variable model.

3.2 Concluding remarks

Baseline memory measures can be very useful for early identification

as they strongly predict progression to amnestic MCI in middle-age

adults. All individuals were CN at baseline, but individual differences

still effectively predictedMCI 6 years later. Prospective studies ofMCI

designed to identify those at greatest risk should administer multiple

memory tests and utilize multiple scores from each test as early as

possible to maximize their ability to predict change. The Alzheimer’s
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Association has projected that diagnosing individuals in theMCI stage,

as opposed to the dementia stage, could improve quality of life and

massively reduce the financial impact of the disease.49 Thus, evenmod-

erate additional gain in prediction by using additional tests could save

large amounts of money when applied to large populations. It is also

worth examining whether and when tests in other cognitive domains

might further improve prediction. Nevertheless, the results indicate

that neuropsychological assessment can be a sensitive predictor of risk

for MCI even at an age when few individuals are likely to have become

biomarker positive.
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