Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory

Title

Preparation and Reactions of Base-Free Bis(1,2,4-tri-tert-butylcyclopentadienyl)uranium Oxide, Cp'2UO

Permalink

https://escholarship.org/uc/item/6cp108pr

Authors

Zi, Guofu
Werkema, Evan L.
Walter, Marc D.
et al.

Publication Date

2005-05-25
Peer reviewed

Preparation and Reactions of Base-free Bis(1,2,4-tri-tert-butylcyclopentadienyl)uranium Oxide, $\mathrm{Cp}_{2} \mathbf{Z} \mathbf{U O}$

Guofu Zi, Li Jia, Evan L. Werkema, Marc D. Walter, Jochen P. Gottfriedsen, and Richard A. Andersen*
Department of Chemistry and Chemical Sciences Division of Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720
E-mail: raandersen@lbl.gov

Address correspondence to this author at Department of Chemistry, University of California, Berkeley, CA 94720. E-mail: raandersen@lbl.gov.

Abstract

Reduction of the uranium metallocene, $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}(\mathbf{1}), \mathrm{Cp}_{2}{ }_{2} \mathrm{UCl}_{2}$, in the presence of 2,2'-bipyridyl and sodium naphthalene gives the dark green metallocene complex, Cp' ${ }_{2} \mathrm{U}$ (bipy) (6), which reacts with p-tolylazide or pyridine- N -oxide to give $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{U}=\mathrm{N}\left(p\right.$-tolyl) (7) or $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{U}(\mathrm{O})(\mathrm{py})(8)$, respectively. The Lewis acid, BPh_{3}, precipitates $\mathrm{Ph}_{3} \mathrm{~B}$ (py) and gives the base-free oxo, $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UO}$ (10), which crystallizes from pentane. The oxometallocene $\mathbf{1 0}$ behaves as a nucleophile with $\mathrm{Me}_{3} \mathrm{SiX}$ reagents but it does not exhibit cycloaddition behavior with acetylenes, suggesting that the polar resonance structure, $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}^{+}-\mathrm{O}^{-}$dominates the double bond resonance structure $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{U}=\mathrm{O}$.

Introduction

The U-O functional group is ubiquitous in uranium chemistry as shown by the prevalence of binary oxides in the solid state and the uranyl ion $\mathrm{UO}_{2}{ }^{2+}$ in solution, which illustrates the thermodynamic
stability of the U-O bond. ${ }^{1}$ Although the rate of ligand substitution on the uranyl ion is rapid in solution, ${ }^{2,3}$ the rate of oxygen-atom exchange in aqueous acid is very slow, ${ }^{4}$ but it is rapid in basic solution. ${ }^{5}$ The gas phase ions, $\mathrm{UO}_{\mathrm{x}}{ }^{\mathrm{n}+}$, have been generated in a mass spectrometer and their reactions with hydrocarbons have been studied. ${ }^{6-9}$ In addition to providing reactivity patterns, these gas phase studies yield useful thermodynamic bond disruption enthalpies for the U-O bonds which lie in the range of 120-190 $\mathrm{kcal} \mathrm{mol}^{-1}$. ${ }^{6-9}$

This paper describes the synthesis of base-free $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}$ (10), $\mathrm{Cp}{ }_{2} \mathrm{UO}$, and some of its reactions with silyl- and alkylhalides. These reactions provide a molecular model for the heterogeneous reaction of solid $\mathrm{U}_{3} \mathrm{O}_{8}$ and chlorocarbons that results in complete destruction of the latter to CO_{x} and $\mathrm{HCl} .{ }^{10}$ This unusual and potentially useful reaction probably occurs at the surface U-O functional group, which implies that the U-O group in a well defined molecular compound will provide molecular models for this reaction as well as information about the nature of the multiple U-O bond. A portion of this work has been previously communicated. ${ }^{11}$

Results and Discussion

Strategy. Our strategy is to use substituted cyclopentadienyl ligands that are more heavily substituted than the $1,3-\left(\mathrm{Me}_{3} \mathrm{E}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}(\mathrm{E}=\mathrm{C}, \mathrm{Si})$ ligands, since these less substituted cyclopentadienyl ligands yield oxo-dimers of the type $\left(\eta^{5}-1,3-\mathrm{R}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)_{4} \mathrm{U}_{2}(\mu-\mathrm{O})_{2}\left(\mathrm{R}=\mathrm{SiMe}_{3}, \mathrm{CMe}_{3}\right)$, which have been prepared by two synthetic routes: the reaction of the corresponding dimethyl derivatives with water or the thermal oxidative elimination of dihydrogen from the corresponding dimeric hydroxides, eqs 1 and 2, respectively. ${ }^{12-14}$ The oxide dimers give molecular ions in their mass spectra and they do not undergo intermolecular exchange in solution up to $130^{\circ} \mathrm{C}$, implying that dissociation to monomers does not occur. As a consequence, the reaction chemistry of the U-O functional group is non-existent, though the cyclopentadienyl rings can be removed by proton sources, such as excess water. Clearly, preparation of a monomeric oxometallocene derivative of uranium is desirable so the intrinsic reaction chemistry can be explored.

$$
\begin{align*}
& 2\left(1,3-\mathrm{R}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{UMe}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow\left(1,3-\mathrm{R}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)_{4} \mathrm{U}_{2}(\mu-\mathrm{O})_{2}+4 \mathrm{CH}_{4} \tag{1}\\
& \left(1,3-\mathrm{R}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)_{4} \mathrm{U}_{2}(\mu-\mathrm{OH})_{2} \rightarrow\left(1,3-\mathrm{R}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)_{4} \mathrm{U}_{2}(\mu-\mathrm{O})_{2}+\mathrm{H}_{2} \tag{2}
\end{align*}
$$

Increasing the number of $\mathrm{Me}_{3} \mathrm{C}$-groups on the cyclopentadienyl framework should increase the steric hindrance between the cyclopentadienyl groups in a hypothetical oxo-dimer, and perhaps yield monomers. This is a useful strategy for preparation of the monomeric cerium hydride, $\left[\eta^{5}-1,2,4-\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{CeH}$ abbreviated as $\mathrm{Cp}{ }_{2} \mathrm{CeH}^{15}$ where Cp ' is used as the symbol for $1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}$ in this paper, while the $1,3-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}$ ligand yields the dimeric hydride, $\left[\eta^{5}-1,3-\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]_{4} \mathrm{Ce}_{2}(\mu-\mathrm{H})_{2} .{ }^{16}$ Accordingly, synthesis of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UCl}_{2}$ (1), its conversion to the dimethyl derivative $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UMe}_{2}$ (3), and reaction of the latter with water is a synthetic objective. Although the dimethyl derivative $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UMe}_{2}$ (3) can be made, its reactions with water under various conditions are not clean. The reaction mixtures always contain large amounts of the free diene, $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{3}$, and therefore water is not a useful reagent for synthesis of this oxometallocene derivative of uranium.

A new and successful strategy is derived from our synthesis of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Ti}(\mathrm{O})(\mathrm{py})$, which results from exposure of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$, to $\mathrm{N}_{2} \mathrm{O}$ in pyridine. ${ }^{17}$ Unfortunately, an analogous uranium complex, such as $\mathrm{Cp}{ }_{2} \mathrm{U}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ is unavailable, but the isolable bipyridyl derivative, $\mathrm{Cp}{ }_{2} \mathrm{U}(\mathrm{bipy})$ (6) described below, is a useful starting material. The literature contains two examples of generating the $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}$ fragment (and $\left.\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}_{2}\right)$, by valence disproportionation of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{UCl}$, which is trapped by acetylenes or organic azides. ${ }^{18,19}$ In addition, the isolable benzene or toluene complexes, $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}\right]_{2}(\mathrm{PhH})$ and $\left\{\left[\left(\mathrm{Me}_{3} \mathrm{C}\right)\left(3,5-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)\right] \mathrm{N}_{2} \mathrm{U}\right\}_{2}(\mathrm{PhMe})$, function similarly. ${ }^{20,21}$
$\mathbf{C p}{ }_{2} \mathbf{U} \mathbf{X}_{2}$. The preparation of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}(\mathbf{1}), \mathrm{Cp}^{\prime}{ }_{2} \mathrm{UCl}_{2}$, has been reported ${ }^{22}$ and a large scale preparation ($20-30 \mathrm{~g}$) is given in the Experimental Section. The synthetic routes to the metallocenes described in this paper are shown in Schemes 1 and 2, and some of their physical properties are listed in Table 1. The halides and pseudohalide, $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UX}_{2}\left(\mathrm{X}=\mathrm{F}\right.$ (4), $\mathrm{Cl}(\mathbf{1}), \mathrm{Br}(2), \mathrm{N}_{3}$ (17)) are all red or orange-red in color, soluble in and readily crystallized from pentane, and give monomeric molecular ions in their EI mass spectra. The dibromide complex 2 is obtained from anion
exchange between $\mathrm{Me}_{3} \mathrm{SiBr}$ and $\mathrm{Cp}_{2} \mathrm{UCl}_{2}$ (1), but the diiodide complex cannot be obtained pure by anion exchange between $\mathbf{1}$ and $\mathrm{Me}_{3} \mathrm{SiI}$, as a mixture of all three possible metallocenes is obtained. The dimethyl complex $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UMe}_{2}$ (3) is obtained from the reaction of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UCl}_{2}$ (1) with MeLi in diethyl ether in good yield. Monitoring the reaction by ${ }^{1} \mathrm{H}$ NMR spectroscopy in $\mathrm{Et}_{2} \mathrm{O}-d_{10}$ shows that some Cp’Li is formed, the amount increasing with time, showing that the Cp'-ligands are not substitutionally inert. $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UMe}_{2}$ (3) reacts with ammonia to yield the yellow diamide $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{U}\left(\mathrm{NH}_{2}\right)_{2}$ (5). Exposure of 3 to $\mathrm{BF}_{3}\left(\mathrm{OEt}_{2}\right)$ yields the difluoride $\mathrm{Cp}_{2}{ }_{2} \mathrm{UF}_{2}$ (4), a synthetic route also used to prepare ($\eta^{5}-1,3-$ $\left.\mathrm{R}_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right)_{2} \mathrm{UF}_{2} .{ }^{23}$

The solid-state crystal structures of 1, 3, 4, 5 and 17 have been determined. Crystal data for all of the structures are shown in Table 2a and 2b, and selected geometrical parameters are shown in Table 3. ORTEP diagrams for $\mathbf{4}$ and 17 are shown in Figures 1 and 2, and ORTEP diagrams for 1, $\mathbf{3}$ and $\mathbf{5}$ are in the Supporting Information since the stereochemistry of the latter three metallocenes is essentially identical to those shown in Figures 1 and 2. The orientation of the cyclopentadienyl rings in all five metallocenes is nearly eclipsed, with the $\mathrm{Me}_{3} \mathrm{C}$-groups on each ring at the back of the wedge located as far from each other as possible. This orientation sets the disposition of the other four $\mathrm{Me}_{3} \mathrm{C}$-groups such that two of them pointing towards the open wedge are nearly eclipsed. The two X-groups are oriented on either side of the eclipsed $\mathrm{Me}_{3} \mathrm{C}$-groups such that the molecule has idealized C_{2} symmetry.

The geometrical parameters for the five structures are similar to each other, Table 3. The averaged U C(Cp’) distances range from $2.75 \AA$ to $2.85 \AA$, the Cp'(cent)-U-Cp'(cent) angles from 143° to 147°, and the X-U-X angles from 97° to 104° in $\mathrm{Cp}{ }_{2} \mathrm{U}\left(\mathrm{N}_{3}\right)_{2}$ and $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{U}\left(\mathrm{NH}_{2}\right)_{2}$, respectively. The geometrical parameters for the other three metallocenes lie within these extreme values. The difference between the U-X distances in these metallocenes parallel the change in radius of the individual X-groups. ${ }^{24}$

The ${ }^{1} \mathrm{H}$ NMR spectra at room temperature of the $\mathrm{Cp}{ }_{2} \mathrm{UX}_{2}$ metallocenes show the $\mathrm{Me}_{3} \mathrm{C}$-groups in a 2:1 intensity ratio, and where located, a single Cp'-ring CH resonance, Table 1 . This pattern is consistent with metallocenes that have idealized $\mathrm{C}_{2 \mathrm{v}}$ symmetry in solution. This implies that the Cp'rings are fluxional, since the solid state structures have idealized C_{2} symmetry. Lowering the
temperature of solutions in $\mathrm{C}_{7} \mathrm{D}_{8}$ results in decoalesence of the $\mathrm{Me}_{3} \mathrm{C}$-resonance of area 2 so that at low temperature the $\mathrm{Me}_{3} \mathrm{C}$-resonances appear as three equal intensity resonances, and the Cp '-ring CH resonances appear as a pair of resonances of equal intensity. A plot of δ vs T^{-1} for the $\mathrm{Me}_{3} \mathrm{C}$-resonances only is shown for $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UF}_{2}$ (4) in Figure 3, which shows the temperature dependence of the chemical shifts from which a ring rotation barrier of approximately $12 \mathrm{kcal} \mathrm{mol}^{-1}$ is calculated at the coalescence temperature of 233 K . The barriers for some of the other metallocenes reported here are given in Table 4. The fluxional process that gives rise to site exchange in the $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UX}_{2}$ metallocenes is nearly identical for the series 1, 4 and 17, suggesting that the physical process that gives rise to the barrier involves ring rotation of the Cp '-rings around their pseudo- C_{5} axis. As the rings rotate about this axis they pass through several conformations, each of which has a different free energy and symmetry, which are related by different energy barriers. ${ }^{25,26}$ The largest barrier presumably involves a conformation in which the $\mathrm{Me}_{3} \mathrm{C}$-groups at the back of the wedge pass through an eclipsed conformation. Since the Cp'(cent)-U-Cp'(cent) angles are essentially the same for $\mathbf{1 , 4}$, and $\mathbf{1 7}$, Table 3 , it follows that the solution barriers should be nearly identical. The barriers in $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UX} 2$ are about 3-4 kcal mol ${ }^{-1}$ larger than in $\left[\eta^{5}-1,3-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]_{2} \mathrm{UX}_{2}$ for a given X-group. ${ }^{23}$ The larger rotational barrier and the more open Cp'(cent)-U-Cp'(cent) angle by about 20° is consistent with the notion that the barrier is largely due to the steric hindrance between the $\mathrm{Me}_{3} \mathrm{C}$-groups at the back of the metallocene wedge and not directly due to the size of the X-groups. ${ }^{23}$
$\mathbf{C p}{ }_{2} \mathbf{U}$ (bipy). The bipyridyl complex, $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{U}(\mathrm{bipy})(\mathbf{6})$, is prepared by the slow addition of two equiv of sodium naphthalene to a $1: 1$ mixture of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UCl}_{2}(\mathbf{1})$ and 2,2'-bipyridyl in tetrahydrofuran, Scheme 1. The complex is soluble in toluene, from which it may be crystallized as large dark-green crystals. The compound melts at $271-276{ }^{\circ} \mathrm{C}$, gives a molecular ion in its mass spectrum, and the ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{6} \mathrm{D}_{6}$ at $30^{\circ} \mathrm{C}$ shows resonances for all ring and bipyridyl resonances, Table 1 . The infrared spectrum shows strong absorptions at 935, 955 and $1495 \mathrm{~cm}^{-1}$, features associated with the bipyridyl radical anion, ${ }^{27,28}$ which implies that the complex is not a U(II) metallocene. ${ }^{29}$ For the purpose of the present paper, however, the bipyridyl complex $\mathbf{6}$ is a useful starting material for the molecules described next.
$\mathbf{C p}{ }_{2} \mathbf{U}=\mathbf{N}\left(\boldsymbol{p}\right.$-tolyl). The bipyridyl complex, $\mathrm{Cp}{ }_{2} \mathrm{U}(\mathrm{bipy})(\mathbf{6})$, reacts with p-tolylazide to give $\mathrm{Cp}{ }_{2} \mathrm{U}=\mathrm{N}\left(p\right.$-tolyl) (7) and N_{2}, Scheme 2. The imide 7, is soluble in pentane from which it may be crystallized, gives a monomeric molecular ion in its mass spectrum, and is a monomer in the solid state as shown by the ORTEP diagram in Figure 4. The orientation of the Cp'-rings is such that the $\mathrm{Me}_{3} \mathrm{C}$ groups at the back of the wedge avoid each other as much as possible, which results in an eclipsing interaction between a $\mathrm{Me}_{3} \mathrm{C}$-group pointing towards the open wedge and the N -p-tolyl group. The eclipsing interaction results in a long U-C(3) distance, the carbon atom of the cyclopentadienyl ring to which the eclipsed $\mathrm{Me}_{3} \mathrm{C}$-group is attached, of 2.912(6) \AA. This distance is longer than the averaged UC(Cp') distance of 2.80(5) Å. The eclipsing interaction results in bending of the planar N-p-tolyl group towards the other Cp’-ring so the $\mathrm{U}-\mathrm{N}-\mathrm{C}(35)$ angle is $172.3(5)^{\circ}$. Related distortions are apparent as the [Cp'(C(18)-C(22))cent]-U-N and [Cp'(C(1)-C(5))cent]-U-N angles are 104° and 112°, respectively. The p-tolylimido ligand is planar and oriented so that the plane defined by the tolyl group is nearly a perpendicular bisector (83°) of the plane that contains the Cp '(cent)- $\mathrm{U}-\mathrm{Cp}$ '(cent). The $\mathrm{U}-\mathrm{N}$ distance of $1.988(5) \AA$ is in the range found in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}\left[\mathrm{N}-2,4,6-(t-\mathrm{Bu})_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right]$ 1.95(1) $\AA \AA^{30}\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}(\mathrm{O})\left(\mathrm{N}-2,6-i-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right) \quad 1.988(4) \AA \AA^{31}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}(\mathrm{NPh})_{2} 1.952(7) \AA \AA^{32}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}[\mathrm{N}-$ $\left.2,4,6-(t-B u)_{3} \mathrm{C}_{6} \mathrm{H}_{2}\right]\left[\mathrm{N}-\mathrm{N}=\mathrm{CPh}_{2}\right] 1.987(5) \AA \AA^{33}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Th}\left[\mathrm{N}-2,6-\mathrm{Me}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right][\mathrm{thf}] 2.045(8) \AA \AA^{34}$
$\mathbf{C p}{ }_{2} \mathbf{U O}(\mathbf{p y})$ and $\mathbf{C p}{ }_{2} \mathbf{U} \mathbf{U O}(\mathbf{d m a p})$. Treatment of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UCl}_{2}(\mathbf{1})$ with 2 equiv of potassium graphite in tetrahydrofuran, followed by addition of 2 equiv of pyridine-N-oxide, gives the cluster $\mathrm{Cp}^{\prime}{ }_{4} \mathrm{U}_{6} \mathrm{O}_{13}$ (bipy) $)_{2} .{ }^{22}$ In contrast, reaction of $\mathrm{Cp}{ }^{\prime}{ }_{2} \mathrm{U}$ (bipy) (6) with 1 equiv of pyridine-N-oxide in diethyl ether, gives a red solution from which red crystals of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}(\mathrm{O})(\mathrm{py})(8)$ are isolated in 65% yield. The crystal structure of a related metallocene oxo adduct, $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}(\mathrm{O})\left[\mathrm{C}(\mathrm{NMeCMe})_{2}\right]$, where $\mathrm{C}(\mathrm{NMeCMe})_{2}$ is a $\mathrm{N}, \mathrm{N}^{\prime}$-heterocyclic carbene ligand, has been reported recently. ${ }^{35}$ This, along with (η^{5} $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{U}(\mathrm{O})(\text { (thf })^{36}$ are the only other terminal oxometallocene uranium(IV) derivatives of the general class $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{R}_{5}\right)_{2} \mathrm{U}(\mathrm{O})(\mathrm{L})$, where L is a neutral ligand, that have been reported. Ligand exchange in $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}(\mathrm{O})(\mathrm{py})(8)$ occurs on the chemical time scale since addition of $4-\mathrm{Me}_{2} \mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{~N}$ (dmap) displaces pyridine in diethyl ether solution and the complex, $\mathrm{Cp}{ }_{2} \mathrm{U}(\mathrm{O})(\mathrm{dmap})(9)$, may be crystallized as green-
yellow blocks from that solution. An ORTEP of 9 is shown in Figure 5, crystal data are in Table 2b and selected geometrical parameters are listed in Table 3. The orientation of the Cp'-rings is nearly staggered, the oxygen atom and the dmap ligand lie in the open wedge of the bent metallocene. The dmap ligand is nearly planar, the dihedral angle defined by intersection of the planar pyridine ring and the NMe_{2} group is 15°, and the planar pyridine ring is twisted out of the plane defined by the UNO atoms. Thus, the molecule has no symmetry in the solid state. It is interesting to note that there is a short intermolecular contact between $\mathrm{O}(1)$ and $\mathrm{C}(40)$, a methyl group of the NMe_{2} group on the dmap ligand, of $3.321(6) \AA$. The $\mathrm{U}(1)-\mathrm{N}(1)$ distance of $2.535(4) \AA$ is slightly shorter than the averaged $\mathrm{U}-\mathrm{N}$ distance of $2.65 \AA$ in $\mathrm{Cp}_{2} \mathrm{U}(\text { triflate })_{2}(\mathrm{py})_{2}{ }^{37}$ and $\left(\eta^{5}-\mathrm{MeC}_{5} \mathrm{H}_{4}\right)_{3} \mathrm{U}\left(4-\mathrm{Me}_{2} \mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{~N}\right) .{ }^{38}$ The $\mathrm{U}(1)-\mathrm{O}(1)$ distance of $1.860(3) \AA$ is significantly shorter than that found in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}(\mathrm{O})\left[\mathrm{C}(\mathrm{NMeCMe})_{2}\right]$ of $1.917(6) \AA \AA^{35}$ but slightly longer than that found in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}(\mathrm{O})\left(\mathrm{N}-2,6-i-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ of $1.844(4) \AA \AA^{30}$ and identical to that found in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}(\mathrm{O})\left(\mathrm{O}-2,6-i-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ of $1.859(6) \AA .{ }^{31}$ The U-O distance is rather longer than that found in uranyl salts, which lies in the range of 1.70-1.76 $\AA .{ }^{39}$ The infrared spectra of $\mathbf{8}$ and $\mathbf{9}$ show narrow, intense features at 760 and $765 \mathrm{~cm}^{-1}$, respectively, that are assigned to the U-O stretching frequencies. Although this assignment is not supported by labeling studies, the values are comparable to those found in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}(\mathrm{O})\left(\mathrm{N}-2,6-i-\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ of $751 \mathrm{~cm}^{-1},{ }^{31}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}(\mathrm{O})(\mathrm{O}-2,6-i-$ $\mathrm{Pr}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$) of $753 \mathrm{~cm}^{-1}$, ${ }^{31}$ which are supported by ${ }^{18} \mathrm{O}$ labeling studies. ${ }^{30}$ In addition, the asymmetric U-O stretching frequency in matrix isolated UO_{2} is at $776 \mathrm{~cm}^{-1}{ }^{40}$

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UO}(\mathrm{py})(8)$ in $\mathrm{C}_{7} \mathrm{D}_{8}$ at $30{ }^{\circ} \mathrm{C}$ shows the $\mathrm{Me}_{3} \mathrm{C}$-resonances as a 1:2 pattern but the resonance of area 2 is very broad. The pyridine ring and Cp '-ring CH resonances are not observed, Table 1. Addition of free pyridine does not alter the appearance of the spectrum except that resonances due to free pyridine are observed. Heating the sample with added pyridine sharpens the two $\mathrm{Me}_{3} \mathrm{C}$-resonances, and at temperatures greater than $60^{\circ} \mathrm{C}$ three resonances appear at approximately 0,5 and 10 ppm in an area ratio of 2:1:2 due to the pyridine ring CH 's. A resonance due to the Cp '-ring CH cannot be assigned with certainty. This change in line shape suggests that exchange between free and bound pyridine is slow at room temperature, but the individual pyridine-ring resonances are not
resolved, and at higher temperature, intermolecular exchange is rapid so that averaged chemical shifts are observed. As the temperature is decreased below $30^{\circ} \mathrm{C}$, the $\mathrm{Me}_{3} \mathrm{C}$-groups decoalesce to a $1: 1: 1$ pattern but neither the pyridine nor Cp '-ring CH resonances are visible, presumably due to their line widths. Using the $\mathrm{Me}_{3} \mathrm{C}$-resonances, the barrier to $\mathrm{Me}_{3} \mathrm{C}$-site exchange is calculated to be $12 \mathrm{kcal} \mathrm{mol}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathrm{Cp}{ }_{2} \mathrm{UO}$ (dmap) (9) provides more information about the dynamic processes that occur in solution. At $30^{\circ} \mathrm{C}$, the three chemically inequivalent $\mathrm{Me}_{3} \mathrm{C}$-resonances of the Cp -rings and the chemically equivalent $\mathrm{Me}_{2} \mathrm{~N}$-resonances of the dmap ligand are observed in the ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{C}_{7} \mathrm{D}_{8}$, Table 1 . The Cp '-ring and pyridine ring CH resonances are not conclusively identified due to their line widths, as is the case in the pyridine complex 8. At $30^{\circ} \mathrm{C}$, addition of free dmap to Cp' ${ }_{2} \mathrm{UO}$ (dmap) (9) does not perturb the resonances due to the $\mathrm{Me}_{3} \mathrm{C}$ and $\mathrm{Me}_{2} \mathrm{~N}$ groups. Increasing the temperature of this mixture to $60{ }^{\circ} \mathrm{C}$ results in coalescences of the $\mathrm{Me}_{2} \mathrm{~N}$-resonance of the free and coordinated dmap. Thus at $30^{\circ} \mathrm{C}$, intermolecular exchange is slow, but by $60^{\circ} \mathrm{C}$, it is rapid on the NMR time scale. A plot of the chemical shifts of the $\mathrm{Me}_{3} \mathrm{C}$ - and $\mathrm{Me}_{2} \mathrm{~N}$-resonances as a function of T^{-1}, in absence of added dmap, is shown in Figure 6. It is clear that at $30^{\circ} \mathrm{C}$, the three $\mathrm{Me}_{3} \mathrm{C}$-resonances are inequivalent as expected for a molecule of C_{s} symmetry, that is, the individual Cp '-rings are related by a time averaged plane of symmetry, but a perpendicular plane of symmetry and a C_{2} axis are absent. As the temperature is raised, two $\mathrm{Me}_{3} \mathrm{C}$-resonances coalesce so that time averaged $\mathrm{C}_{2 \mathrm{v}}$ symmetry is observed. As this process occurs near the temperature where intermolecular ligand exchange occurs, the physical process of ligand dissociation that generates a metallocene of averaged $\mathrm{C}_{2 \mathrm{v}}$ symmetry is sufficient to cause the coalescence and the barrier is about $15 \mathrm{kcal} \mathrm{mol}^{-1}$, Table 4. The $\mathrm{Me}_{2} \mathrm{~N}$-resonances are chemically equivalent at $30^{\circ} \mathrm{C}$ implying that the planar pyridine ligand is free to rotate about the U N bond in solution. As the temperature is lowered, the $\mathrm{Me}_{2} \mathrm{~N}$-resonance decoalesces and two distinct methyl resonances emerge, consistent with slowing and stopping rotation about the U-N bond. This assumes that the entire $4-\mathrm{Me}_{2} \mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{~N}$ ligand rotates rather than just the $\mathrm{Me}_{2} \mathrm{~N}$ group since the pyridine ring resonances cannot be identified with certainty. The $\Delta \mathrm{G}^{\ddagger}\left(\mathrm{T}_{\mathrm{c}}=-49^{\circ} \mathrm{C}\right)$ is $9.7 \mathrm{kcal} \mathrm{mol}^{-1}$ for the dmap rotational barrier.
$\mathbf{C p}{ }_{2} \mathbf{U} \mathbf{U O}$. Although $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{U}(\mathrm{O})(\mathrm{py})(8)$ exchanges with dmap in solution, poorer donor ligands cannot compete with these nitrogen heterocycles. In order to investigate the intrinsic reactivity patterns of the U-O functional group, and to compare them with those of base-free imide 7, a synthetic route to the base-free oxo compound is needed. This is accomplished by addition of BPh_{3}, which forms the insoluble BPh_{3} (py) complex, and leaves the base-free oxo $\mathrm{Cp}{ }_{2} \mathrm{UO}(\mathbf{1 0})$ in toluene solution, Scheme 2. Removal of toluene yields a brown-red solid that may be crystallized as brown-red microcrystals from pentane. ${ }^{41}$ The Lewis acid-base reaction is reversible in solution, since addition of pyridine regenerates the complex $\mathbf{8}$ quantitatively. The base-free metallocene $\mathbf{1 0}$ gives a monomeric molecular ion in its mass spectrum but the ${ }^{1} \mathrm{H}$ NMR spectrum is difficult to reconcile with a simple monomeric species in solution.

The ${ }^{1} \mathrm{H}$ NMR spectrum of the base-free oxo $\mathbf{1 0}$ consists of five resonances in either $\mathrm{C}_{7} \mathrm{D}_{8}$ or $\mathrm{C}_{7} \mathrm{H}_{14}$ at 99.0, 27.1, $-12.3,-35.1$ and -90.8 ppm in area ratio 2:9:9:9:2 at $19^{\circ} \mathrm{C}$. The chemical shifts of the $\mathrm{Me}_{3} \mathrm{C}-$ resonances in $\mathbf{1 0}$ are qualitatively similar to those in the dmap complex $\mathbf{9}$ and imply that the two Cp'rings are related only by a plane of symmetry in a molecule of idealized C_{s} symmetry. This requires that the Cp '-rings are not free to oscillate about their pseudo- C_{5} axis in order to generate a time averaged C_{2} axis, which is improbable given the barriers shown in Table 4. The variable temperature ${ }^{1} \mathrm{H}$ NMR spectra show that the $19{ }^{\circ} \mathrm{C}$ spectrum in either solvent is deceptively simple. A plot of δ vs T^{-1} in $\mathrm{C}_{7} \mathrm{D}_{8}$ solvent of the $\mathrm{Me}_{3} \mathrm{C}$-resonances is shown in Figure 7. As the temperature is increased, the total intensity of the three equal area $\mathrm{Me}_{3} \mathrm{C}$-resonances at 27, -12 and -35 ppm , A set ($\mathrm{A} 1, \mathrm{~A} 2$ and A 3), decrease as two new resonances in a 1:2 ratio appear at -6.5 and -9.7 ppm , B set (B 1 and B 2). As the temperature is increased the $\mathrm{A}: \mathrm{B}$ ratio decreases and at $100^{\circ} \mathrm{C}$ the ratio is approximately $3: 1$. The relative intensity of the individual components within the A and B sets does not change with temperature though their chemical shifts are temperature dependent. Cooling to $19{ }^{\circ} \mathrm{C}$ regenerates the original spectrum without loss in absolute intensity. The behavior on cooling is rather more complex. As the temperature is decreased from $19{ }^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$, the middle resonance (A2) in the A set of resonances broadens and disappears into the base line. On further cooling to $-70^{\circ} \mathrm{C}$, three equal area resonances, C set $(\mathrm{C} 1, \mathrm{C} 2$
and C3), emerge from the base line, but their common parentage is not the middle resonance (A2) of the A set, see Figure 7. In addition, the deshielded resonance (A1) in the A set broadens and disappears by $70^{\circ} \mathrm{C}$, while the upfield resonance (A3) is still visible. During the cooling process the absolute intensity of the A-set of resonances decreases by about 50%, but the new resonances that appear do not account for the "lost" intensity. On warming to $19{ }^{\circ} \mathrm{C}$, the original spectrum is observed with the original absolute intensity.

An interpretation of the high temperature ${ }^{1} \mathrm{H}$ NMR spectrum is that a dimer-monomer equilibrium exists in solution and the monomer concentration increases with temperature. The 2:1 pattern of the $\mathrm{Me}_{3} \mathrm{C}$-resonances suggests the monomer has $\mathrm{C}_{2 v}$ symmetry, as in the high temperature spectra of the pyridine complexes $\mathbf{8}$ and $\mathbf{9}$. Unfortunately, aromatic and aliphatic hydrocarbon solvents are the only ones that are compatible with the base-free oxometallocene 10, so using solvents of different dielectric constant is not possible, and this postulate cannot be tested. The low temperature behavior is more difficult to interpret since the intensity changes show that not all of the resonances are observed. A postulate is that the dimer is largely present at room temperature and below, and the dimer has averaged $\mathrm{C}_{2 \mathrm{~h}}$ symmetry as in $\left[\eta^{5}-1,3-\left(\mathrm{Me}_{3} \mathrm{E}\right)_{2} \mathrm{C}_{5} \mathrm{H}_{3}\right]_{4} \mathrm{U}_{2}(\mathrm{O})_{2}(\mathrm{E}=\mathrm{C}, \mathrm{Si}) .{ }^{12-14}$ Cooling slows Cp'-ring rotation and some of the $\mathrm{Me}_{3} \mathrm{C}$-resonances disappear. Unfortunately, single crystals of the base-free metallocene $\mathbf{1 0}$ cannot be grown, which would be the ultimate test of this proposition. EXAFS studies have been used to solve a related structural dilemma and such a study is contemplated for $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UO} .{ }^{13}$

Reactions of 10. The oxo $\mathbf{1 0}$ reacts with excess $\mathrm{Me}_{3} \mathrm{SiCl}$ rapidly to give $\mathrm{Cp}{ }_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{Cl})(\mathbf{1 1)}$ cleanly at room temperature in a mixing experiment in $\mathrm{C}_{6} \mathrm{D}_{6}$ in an NMR tube. The reaction does not proceed further unless heated, heating at $65{ }^{\circ} \mathrm{C}$ slowly yields $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UCl}_{2}(\mathbf{1})$ and $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{O}, \mathrm{t}_{1 / 2}$ is about 30 h at this temperature. The $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{Cl})(11)$ is prepared on a synthetic scale in two ways: reaction of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UO}(\mathrm{py})$ (8) and $\mathrm{Me}_{3} \mathrm{SiCl}$ in toluene followed by crystallization from pentane, or reaction of $\mathrm{Cp}_{2}{ }_{2} \mathrm{UCl}_{2}(\mathbf{1})$ with one equiv of $\mathrm{LiOSiMe}_{3}$ in diethyl ether followed by crystallization from pentane. Synthesis and characterization details for this and the other metallocenes described in this section are given in the Experimental Section, and some physical properties are listed in Table 1. In
mixing experiments monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy, excess $\mathrm{Me}_{3} \mathrm{SiX}$ reacts rapidly and cleanly to yield $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{X})(\mathrm{X}=\mathrm{Br}(12)$, $\mathrm{I}(13), \mathrm{CN}(14)$, OTf (15)). In the case of $\mathrm{X}=\mathrm{Br}$, some $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UBr}_{2}$ (2) and $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{O}$ are formed but the rate is very slow even at $65^{\circ} \mathrm{C}, \mathrm{t}_{1 / 2}$ is about 70 h . In the case of $\mathrm{X}=\mathrm{I}$, OTf or CN , no resonances due to $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UX}_{2}$ are detected when the solutions are kept at 65 ${ }^{\circ} \mathrm{C}$ for up to three days. In contrast, excess $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ reacts with 10 instantaneously to give $\mathrm{Cp}{ }_{2} \mathrm{U}\left(\mathrm{N}_{3}\right)_{2}$ (17) and $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{O}$; no resonances attributable to $\mathrm{Cp}_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)\left(\mathrm{N}_{3}\right)$ (16) are detected. However, upon addition of 1 equiv of $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ to $\mathrm{Cp}{ }_{2} \mathrm{UO}(\mathbf{1 0})$ on a synthetic scale, the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude products shows resonances due to $\mathrm{Cp}{ }_{2} \mathrm{U}\left(\mathrm{N}_{3}\right)_{2}$ (17), unreacted $\mathrm{Cp}{ }_{2} \mathrm{UO}$ (10) and three new resonances attributable to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)\left(\mathrm{N}_{3}\right)(16)$. The latter resonances disappear on addition of more $\mathrm{Me}_{3} \mathrm{SiN}_{3}$. On a synthetic scale, the method of choice is addition of excess $\mathrm{Me}_{3} \mathrm{SiX}$ to $\mathrm{Cp}{ }_{2} \mathrm{U}(\mathrm{O})(\mathrm{py})$ in toluene followed by crystallization from pentane. The ${ }^{1} \mathrm{H}$ NMR spectra of these compounds show the $\mathrm{Me}_{3} \mathrm{C}$-resonances as a 1:1:1 pattern (except for the diazide) consistent with a molecule of C_{s} symmetry. The infrared spectrum of 14 shows a CN absorption at $2040 \mathrm{~cm}^{-1}$, which may be compared to a value of $2110 \mathrm{~cm}^{-1}$ found in $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{U}(\mathrm{CN}) .^{42}$ The infrared spectrum of 17 shows two N_{3} absorptions at 2100 and $2080 \mathrm{~cm}^{-1}$, close to that found in $\left[(\mathrm{ArO})_{3} \operatorname{tacn}\right] \mathrm{U}\left(\mathrm{N}_{3}\right)\left(\left[(\mathrm{ArO})_{3} \operatorname{tacn}\right]^{3-}=[1,4,7-\operatorname{tris}(3,5\right.$-di-tert-butyl-2-oxybenzyl)-1,4,7-triazacyclononane] ${ }^{3-}$) of $2080 \mathrm{~cm}^{-1} .^{43}$

An ORTEP diagram of the solid state structure of $\mathbf{1 4}$ is shown in Figure 8. The orientation of the rings is rather different from those observed for the molecules shown in Figures 1 and 2. The rings are nearly staggered and the $\mathrm{Me}_{3} \mathrm{C}$-groups at the back of the wedge are avoiding each other as much as possible. However, the other four $\mathrm{Me}_{3} \mathrm{C}$-groups are oriented to the left and right side of the open wedge, while the OSiMe_{3} and CN groups occupy sites in the wedge. The $\mathrm{U}-\mathrm{O}-\mathrm{SiMe}_{3}$ and $\mathrm{U}-\mathrm{C}-\mathrm{N}$ angles are not linear, U -O-Si is $160.6(3)^{\circ}$ and $\mathrm{U}-\mathrm{C}-\mathrm{N}$ is $164.5(7)^{\circ}$. A non-linear U-O-Si angle is common, while a U-C-N angle is not. Perhaps a reason for the bending can be traced to the OSiMe_{3} group avoiding the methyl groups on C(27) while the CN group is avoiding those on $\mathrm{C}(11)$.

Silicon tetrafluoride reacts instantaneously, as does $\mathrm{BF}_{3}\left(\mathrm{OEt}_{2}\right)$, with $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UO}(\mathbf{1 0})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ to give resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UF}_{2}$ (4) in the ${ }^{1} \mathrm{H}$ NMR spectrum. The conversion is quantitative, but the fate of
the non-metal fragment is unknown. The difluoride, $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UF}_{2}$ (4), is also formed from the oxo 10 and $\mathrm{Me}_{3} \mathrm{SiCF}_{3}$. The binary silicon halides, $\mathrm{SiX}_{4}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I})$, give resonances attributable to $\mathrm{Cp}{ }_{2} \mathrm{U}\left(\mathrm{OSiX}_{3}\right)(\mathrm{X})$ since their ${ }^{1} \mathrm{H}$ NMR spectra show three equal area resonances for the $\mathrm{Me}_{3} \mathrm{C}$-groups, which over time evolve into the spectra of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UX}_{2}(\mathrm{X}=\mathrm{Cl}(1), \mathrm{Br}(2))$. In the case of the iodide, the end point is a mixture that may contain $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UI}_{2}$, but this deduction is uncertain since the diiodide complex has not been prepared in pure form.

In contrast to the alkylsilyl halides, aryl and alkyl halides do not react cleanly with $\mathrm{Cp}_{2}{ }_{2} \mathrm{UO}$ (10). Fluorobenzene does not react with $\mathbf{1 0}$, and the reactions of chloro- and bromobenzene are not clean. Chlorobenzene reacts rapidly in $\mathrm{C}_{6} \mathrm{D}_{6}$ as the resonances due to $\mathrm{Cp}{ }_{2} \mathrm{UO}$ (10) disappear and nine new paramagnetic resonances in approximately equal relative intensity (see Experimental Section for details) along with resonances due to Cp 'H appear in an approximate area ratio of 2:1. The intensity ratio does not change when the sample is heated to $65^{\circ} \mathrm{C}$ for one day and resonances due to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UCl}_{2}(\mathbf{1})$ are not observed. Repeating the experiment with $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$ gives the same results, showing that the nine resonances are due to nine $\mathrm{Me}_{3} \mathrm{C}$-groups, which implies that a mixture of compounds are formed. Bromobenzene behaves similarly, but the chemical shifts of the nine resonances are different, implying that a halide or halides are attached to uranium. t-Butyl chloride reacts with $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UO}$ (10) in $\mathrm{C}_{6} \mathrm{D}_{6}$ to generate a ${ }^{1} \mathrm{H}$ NMR spectrum that contains nine resonances whose chemical shifts and relative intensities are identical to those observed in the reaction of PhCl , and resonances due to Cp ' H and isobutene. Repeating the experiment with $\left(\mathrm{CD}_{3}\right)_{3} \mathrm{CCl}$ yields the same result and no Cp 'D is observed, implying that the source of $\mathrm{H}(\mathrm{D})$ is not the alkylchloride.

The oxo 10 reacts rapidly with AgF to give $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UF}_{2}$ (4) as the only paramagnetic compound observed in the ${ }^{1} \mathrm{H}$ NMR spectrum along with the dimer $\mathrm{Cp}{ }^{\prime}{ }_{2}$. Silver chloride also reacts rapidly with the oxo $\mathbf{1 0}$, as resonances due to $\mathrm{Cp}{ }_{2} \mathrm{UO}$ (10) disappear from the ${ }^{1} \mathrm{H}$ NMR spectrum and nine resonances with chemical shift and intensity ratios identical to those in the PhCl reaction appear along with resonances due to $\mathrm{Cp}^{\prime}{ }_{2}$. Adding more AgCl results in disappearance of the nine resonances while the resonances for

Cp’2 increase in intensity. Silver bromide behaves similarly and the chemical shifts and relative intensity of the nine resonances are identical to those formed in reaction of PhBr .

A mixture of $\mathrm{Cp}{ }_{2} \mathrm{UO}$ (10) with $\mathrm{Cp}_{2}{ }_{2} \mathrm{UF}_{2}$ (4) gives a ${ }^{1} \mathrm{H}$ NMR spectrum that contains only the resonances of the individual starting compounds. However, mixing $\mathrm{Cp}{ }_{2} \mathrm{UO}^{(10)}$ and $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UCl}_{2}$ (1) in $\mathrm{C}_{6} \mathrm{D}_{6}$ gives resonances due to $\mathrm{Cp}{ }^{2}, \mathrm{Cp}^{\prime}{ }_{2} \mathrm{UCl}^{44}$ and nine resonances whose chemical shifts and relative intensity are identical to those in the reaction of PhCl or AgCl with $\mathrm{Cp}{ }_{2} \mathrm{UO}$ (10). No change is observed over time or upon heating.

In summary, $\mathrm{Me}_{3} \mathrm{SiX}$ reacts with $\mathrm{Cp}{ }_{2} \mathrm{UO}(\mathbf{1 0})$ cleanly to give addition products which, in some cases, react further to give the metathesis products. This implies that the $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UO}$ (10) is an excellent nucleophile. The other reactions described are more complex, but a pattern is apparent. It seems reasonable to postulate that halide atom transfer occurs and the resulting $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}(\mathrm{O})(\mathrm{X})$ metallocene decomposes by losing Cp’ 2 or Cp'H fragments. Since these reactions are not clean, they are not studied further.

Addition of pyridine-N-oxide to $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UO}(\mathbf{1 0})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ results in rapid disappearance of the resonances due to $\mathrm{Cp}{ }_{2} \mathrm{UO}(\mathbf{1 0})$ and formation of resonances due to $\mathrm{Cp}{ }_{2}$ in quantitative yield. It seems reasonable to suggest that the initial reaction is oxygen atom transfer generating " $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{U}(\mathrm{O})_{2}$ ", which eliminates to Cp_{2} and forming " UO_{2} ". A similar reaction occurs when the oxo 10 is mixed with either $\mathrm{Ph}_{3} \mathrm{PS}$ or $\mathrm{Ph}_{3} \mathrm{PSe}$; where the uranium containing products are therefore " $\mathrm{U}(\mathrm{O})(\mathrm{E})$ " $(\mathrm{E}=\mathrm{S}, \mathrm{Se})$.

As mentioned above, the oxo $\mathbf{1 0}$ forms isolable adducts with pyridine and 4-dimethylaminopyridine. These two adducts $\mathbf{8}$ and $\mathbf{9}$, along with those formed with $\mathrm{Ph}_{3} \mathrm{PO}$ and $\mathrm{Ph}_{2} \mathrm{CO}$, are the only adducts that are stable in $\mathrm{C}_{6} \mathrm{D}_{6}$ solution. When the oxo $\mathbf{1 0}$ is exposed to other Lewis bases, such as ethers (diethyl ether or tetrahydrofuran), amines $\left(\mathrm{Me}_{(3-x)} \mathrm{H}_{\mathrm{x}} \mathrm{N}, \mathrm{x}=0-3\right)$ or azomethines, decomposition occurs with formation of Cp'H. The decomposition rates vary from minutes to hours to days but the final organic product is always Cp 'H. No reaction is observed between the oxo $\mathbf{1 0}$ and dihydrogen, ethylene, and acetylenes $\mathrm{RC} \equiv \mathrm{CR}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Ph}, \mathrm{Me}_{3} \mathrm{Si}\right)$. When the acetylene is $\mathrm{RC} \equiv \mathrm{CH}$, hydrogen atom transfer is observed, Cp’H is the final product.

Reactions of 7. In contrast to the rich reaction chemistry of $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UO}(\mathbf{1 0})$, the reactions of the basefree imide $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}=\mathrm{N}(p$-tolyl) (7) are meager. The imide 7 does not form adducts with ethers or pyridines. It does not react with $\mathrm{Me}_{3} \mathrm{SiX}$ reagents except $\mathrm{Me}_{3} \mathrm{SiN}_{3}$, which gives $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{U}\left(\mathrm{N}_{3}\right)_{2}(\mathbf{1 7})$ in poor yield (20\%). It does react with SiF_{4} or $\mathrm{BF}_{3}\left(\mathrm{OEt}_{2}\right)$, giving $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UF}_{2}$ (4) in quantitative yield. Thus, the imido metallocene $\mathbf{7}$ is a poorer nucleophile than the oxo metallocene $\mathbf{1 0}$. This result might be due to steric or electronic effects of the p-tolyl group, experiments designed to test this proposition are underway.

Although the imide 7 does not react with $\mathrm{Ph}_{3} \mathrm{PE}(\mathrm{E}=\mathrm{O}, \mathrm{S}, \mathrm{Se})$, it reacts rapidly and quantitatively with pyridine-N-oxide to give $\mathrm{Cp}^{\prime}{ }_{2}$. The cyclopentadienyl ring coupling product has been previously observed in the reaction of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}(\mathrm{NPh})(\mathrm{py})$ with pyridine- N -oxide, which gives a mixture of $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{U}(\mathrm{NPh})_{2},\left(\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2}$ and " UO_{2} " ${ }^{30}$ More surprising, however, is the reaction with $\mathrm{Ph}_{2} \mathrm{CO}$, which yields $\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{UO}(\mathbf{1 0})$ and $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N}\left(p\right.$-tolyl) rapidly and cleanly in $\mathrm{C}_{6} \mathrm{D}_{6}$, Scheme 2 . This reaction is important since it directly addresses the question of the bond enthalpy of the uranium oxo and imido bonds in these metallocenes. Information on this question is available from the heat of formation of ketones and azomethines, which suggests that the $\mathrm{C}=\mathrm{O}$ bond is stronger than the $\mathrm{C}=\mathrm{NR}$ bond by about $30 \mathrm{kcal} \mathrm{mol}^{-1} .^{45,46}$ This difference implies that the $\mathrm{U}=\mathrm{O}$ bond is stronger than the $\mathrm{U}=\mathrm{N}(p$-tolyl) bond by at least $30 \mathrm{kcal} \mathrm{mol}^{-1}$. The ability of benzophenone to act as an oxygen-atom transfer reagent has been observed previously. ${ }^{47,48}$

Conclusions

The bipyridyl complex, $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}($ bipy $)(6)$ is a useful starting material for the oxo-metallocene and p tolylimidometallocene. The base-free oxo $\mathrm{Cp}{ }_{2} \mathrm{UO}(10)$ reacts with $\mathrm{Me}_{3} \mathrm{SiX}$ reagents to yield addition products, $\mathrm{Cp}{ }_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{X})$, and in some cases substitution products, $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UX}_{2}$, as do $\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Zr}(\mathrm{O})(\mathrm{py})^{49}$ and $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Ti}(\mathrm{S})(\mathrm{py}) .{ }^{50}$ The oxo $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UO}$ (10) does not react with dipolar molecules such as acetylenes, $\mathrm{RC} \equiv \mathrm{CR}$, in contrast to $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)_{2} \mathrm{Ti}(\mathrm{O})(p y) .{ }^{51}$ The nucleophilic behavior is consistent with the view that the uranium-oxygen bond is better represented by the polar valence-bond resonance structure $\mathrm{U}^{+}-\mathrm{O}^{-}$, rather than the double bond resonance structure $\mathrm{U}=\mathrm{O}$.

Although the $\mathrm{U}=\mathrm{O}$ bond enthalpy is unknown, the exchange reaction between $\mathrm{Cp}{ }_{2} \mathrm{U}=\mathrm{N}(p$-tolyl) (7) and $\mathrm{Ph}_{2} \mathrm{CO}$ indicates that $\mathrm{U}=\mathrm{O}$ is at least $30 \mathrm{kcal} \mathrm{mol}^{-1}$ stronger than $\mathrm{U}=\mathrm{N}(p$-tolyl). Experiments that address the fundamental question about the nature of the multiple bonds in these uranium compounds are underway.

Experimental Section

General Procedures. All reactions and product manipulations were carried out under dry nitrogen using standard Schlenk and glovebox techniques. All organic solvents were freshly distilled from sodium benzophenone ketyl immediately prior to use. $\mathrm{Me}_{3} \mathrm{SiX}\left(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{CN}, \mathrm{OTf}, \mathrm{N}_{3}\right.$) were distilled under nitrogen before using. 2,2'-Bipyridyl (bipy), pyridine-N-oxide, $\mathrm{Ph}_{3} \mathrm{~B}, \quad 4$ dimethyaminopyridine (dmap) and $\mathrm{LiOSiMe}_{3}$ were sublimed before using. [$\eta^{5}-1,2,4-$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{Mg},{ }^{22}$ and $p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{3}{ }^{52}$ were prepared according to the literature methods. All other chemicals were purchased from Aldrich Chemical Co. and used as received unless otherwise noted. Infrared spectra were obtained as Nujol mulls. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker AVB-400, AVQ-400 and AV-300 spectrometers. All chemical shifts are reported in δ units with reference to the residual protons of the deuterated solvents, which are internal standards, for proton chemical shifts. Melting points were measured on a Thomas-Hoover melting point apparatus in sealed capillaries and are uncorrected. Electron impact mass spectra were recorded by the mass spectroscopy laboratory, and elemental analyses were performed by the analytical laboratories, both at the University of California, Berkeley.

Isomerization of $\left(\mathbf{M e}_{3} \mathbf{C}\right)_{3} \mathbf{C}_{5} \mathbf{H}_{3}$. To An NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathbf{M g}(30 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, was added one drop of degassed $\mathrm{H}_{2} \mathrm{O}$. Two sets of resonances due to the kinetic and thermodynamic isomers were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in an approximate area ratio of 2:1 at $20^{\circ} \mathrm{C}$. Kinetic isomer, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 3.09\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$. Thermodynamic isomer, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.42(\mathrm{~s}, 1 \mathrm{H}$, CH), 5.95 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{C} H), 2.95(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} H), 1.26\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.18\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.08(\mathrm{~s}, 9 \mathrm{H}$,
$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$ This sample was heated at $65{ }^{\circ} \mathrm{C}$ and monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy; after 28 h the conversion to the thermodynamic isomer was complete.

Preparation of $\left.\left[\eta^{5} \mathbf{- 1 , 2 , 4 - (} \mathbf{M e}_{3} \mathbf{C}\right)_{3} \mathbf{C}_{5} \mathbf{H}_{2}\right]_{2} \mathbf{U C l}_{\mathbf{2}} \mathbf{(1)}$. To a toluene (300 mL) suspension of $\left[\eta^{5}-1,2,4\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{Mg}(25.0 \mathrm{~g}, 51 \mathrm{mmol})$ and $\mathrm{UCl}_{4}(19.0 \mathrm{~g}, 50 \mathrm{mmol})$ was added a freshly distilled pyridine (50 mL) dried with sodium. After the solution was heated at reflux for one day with stirring, the solvent was removed. The red residue was extracted with pentane ($150 \mathrm{~mL} x 3$) and filtered. The volume of the filtrate was reduced to 200 mL and cooled to $-20^{\circ} \mathrm{C}$. Two crops of dark red crystals were collected by filtration. Yield: 26.4 g (68\%). EI-MS [M ${ }^{+}$], m / z (calcd, found): 774(100, 100), 775 (39, 38), 776 (71, 71), $777(26,25), 778(15,13), 779(5,4)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{Cl}_{2} \mathrm{U}: \mathrm{C}, 52.7$; H, 7.55. Found: C, 52.6; H, 7.55.

Preparation of $\left[\boldsymbol{\eta}^{\mathbf{5}} \mathbf{- 1 , 2 , 4 - (} \mathbf{(M e} \mathbf{3}_{3} \mathbf{C}_{3} \mathbf{C}_{5} \mathbf{H}_{\mathbf{2}}\right]_{\mathbf{2}} \mathbf{U B r}_{\mathbf{2}}$ (2). $\mathrm{Me}_{3} \mathrm{SiBr}(0.22 \mathrm{~mL}, 1.68 \mathrm{mmol})$ was added to a pentane (20 mL) solution of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}(\mathbf{1} ; 0.65 \mathrm{~g}, 0.84 \mathrm{mmol})$ with stirring at room temperature. After the mixture was stirred for 12 h at room temperature, the volatile components were removed. The resulting dark red solid was re-dissolved in pentane (20 mL), and the above procedure was repeated twice more. The dark red residue was extracted with pentane ($15 \mathrm{~mL} x 2$) and filtered. The volume of the filtrate was reduced to 5 mL , and cooling to $-20^{\circ} \mathrm{C}$, yielding red crystals, which were isolated by filtration. Yield: 0.62 g (85\%). EI-MS [M $\left.{ }^{+}\right], m / z$ (calcd, found): $862(50,48), 863(19,20)$, $864(100,100), 865(38,32), 866(54,52), 867(19,18), 868(3,3)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{Br}_{2} \mathrm{U}: \mathrm{C}$, 47.2; H, 6.76. Found: C, 46.9; H, 6.85.

Preparation of $\left.\left[\boldsymbol{\eta}^{\mathbf{5}} \mathbf{- 1 , 2 , 4 - (} \mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathbf{H}_{\mathbf{2}}\right]_{2} \mathbf{U M e}_{\mathbf{2}}$ (3). A diethyl ether (11.6 mL) solution of $\mathrm{MeLi}(0.67$ M in diethyl ether; 7.8 mmol) was slowly added to a diethyl ether (100 mL) solution of $\left[\eta^{5}-1,2,4-\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}(\mathbf{1} ; 3.0 \mathrm{~g}, 3.9 \mathrm{mmol})$ with stirring at room temperature. After the solution was stirred for 1 h at room temperature, the solvent was removed. The red residue was extracted with pentane ($25 \mathrm{~mL} x 2$) and filtered. The volume of the filtrate was reduced to 10 mL and cooled to $-20^{\circ} \mathrm{C}$, yielding red crystals, which were isolated by filtration. Yield: 2.4 g (85\%). EI-MS [M ${ }^{+}$-15]: $m / z 719$. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{U}$: C, 58.8; H, 8.78. Found: C, 59.0; H, 8.98.

Preparation of $\left.\left[\boldsymbol{\eta}^{\mathbf{5}} \mathbf{- 1 , 2 , 4 - (} \mathrm{Me}_{3} \mathbf{C}\right)_{3} \mathbf{C}_{5} \mathbf{H}_{2}\right]_{2} \mathbf{U F}_{2}$ (4). $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(1.0 \mathrm{~mL}, 7.9 \mathrm{mmol})$ was added to a pentane (50 mL) solution of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UMe}_{2}(3 ; 2.0 \mathrm{~g}, 2.72 \mathrm{mmol})$ with stirring at room temperature. After the solution was stirred at room temperature overnight, the solvent was removed. The orange-red residue was extracted with pentane ($25 \mathrm{~mL} \times 2$) and filtered. The volume of the filtrate was reduced to 15 mL and cooled to $-20^{\circ} \mathrm{C}$, yielding orange-red crystals, which were isolated by filtration. Yield: 1.4 g (70\%). EI-MS [M ${ }^{+}$], m/z (calcd, found): 742 (100, 100), 743 (37, 40), 744 (7, 10). Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{~F}_{2} \mathrm{U}$: C, 55.0; H 7.87. Found: C, 54.7; H 7.96.

Preparation of $\left[\eta^{5}-\mathbf{1}, \mathbf{2}, \mathbf{4}-\left(\mathrm{Me}_{3} \mathrm{C}_{3} \mathbf{C}_{5} \mathbf{H}_{2}\right]_{2} \mathbf{U}\left(\mathrm{NH}_{2}\right)_{2} \quad\right.$ (5). In a 250 mL flask, $\quad\left[\eta^{5}-1,2,4-\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UMe}_{2}(3 ; 1.0 \mathrm{~g}, 1.36 \mathrm{mmol})$ was dissolved in toluene (30 mL). The head space of the flask was evacuated and replaced with 1 atm of NH_{3} (dried over sodium metal at $-35{ }^{\circ} \mathrm{C}$). After the solution was stirred for 4 h at room temperature, the solvent was removed. The yellow residue was extracted with pentane ($25 \mathrm{~mL} \times 2$) and filtered. The volume of the filtrate was reduced to 10 mL and cooled to $-20^{\circ} \mathrm{C}$, yielding yellow crystals, which were isolated by filtration. Yield: $0.74 \mathrm{~g}(74 \%)$. EIMS $\left[\mathrm{M}^{+}\right], m / z$ (calcd, found): $736(100,100), 737(39,40), 738(8,5)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{U}$: C, 55.4; H, 8.48; N, 3.80. Found: C, 55.8; H, 8.13; N, 3.68.

Preparation of $\left[\boldsymbol{\eta}^{5}-\mathbf{1}, \mathbf{2}, 4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathbf{H}_{2}\right]_{2} \mathbf{U}$ (bipy) (6). A green THF solution of sodium naphthalene, which was prepared from naphthalene ($3.3 \mathrm{~g}, 25.8 \mathrm{mmol}$) and sodium metal ($1.0 \mathrm{~g}, 43.5 \mathrm{mmol}$) in THF (200 mL) with stirring overnight at room temperature, was slowly added to a THF (100 mL) solution of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}(1 ; 10 \mathrm{~g}, 12.9 \mathrm{mmol})$ and 2,2'-bipyridyl (bipy; $2.1 \mathrm{~g}, 13.5 \mathrm{mmol}$) with stirring at room temperature. After the green solution was stirred for 12 h , solvent was removed. The dark green residue was extracted with toluene ($100 \mathrm{~mL} \mathrm{x} \mathrm{3)} \mathrm{and} \mathrm{filtered}$. reduced to 100 mL and cooled to $-20^{\circ} \mathrm{C}$. Two crops of dark green crystals were collected by filtration. Yield: 7.2 g (65\%). EI-MS [M $\left.{ }^{+}\right], m / z$ (calcd, found): $860(100,100), 861(51,57), 862(13,16), 863(2$, 3). Anal. Calcd for $\mathrm{C}_{44} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{U}$: C, 61.4; H, 7.73; N, 3.25. Found: C, 61.2; H, 7.82; N, 3.28.

Preparation of $\left[\eta^{\mathbf{5}}-\mathbf{1}, \mathbf{2}, \mathbf{4}-\left(\mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{C}_{5} \mathbf{H}_{2} \mathrm{l}_{2} \mathbf{U}=\mathrm{N}(\boldsymbol{p}\right.\right.$-tolyl) (7). A hexane (1.9 mL) solution of p $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{3}\left(1.2 \mathrm{M}\right.$ in hexane; 2.3 mmol) was added to a hexane (100 mL) solution of $\left[\eta^{5}-1,2,4-\right.$ $\left(\mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}$ (bipy) (6; $2.0 \mathrm{~g}, 2.3 \mathrm{mmol}$) with stirring at room temperature. During the course of the reaction, the color of the solution changed from green to dark-brown. After the solution was stirred for 2 h at room temperature, solvent was removed and the dark-brown solid was exposed to vacuum overnight at $50^{\circ} \mathrm{C}$ in a water bath. The residue was extracted with pentane ($25 \mathrm{~mL} \times 2$) and filtered. The volume of the dark brown solution was reduced to 20 mL and cooled to $-20^{\circ} \mathrm{C}$, yielding dark brown crystals, which were isolated by filtration. Yield: 1.5 g (80%). EI-MS [M ${ }^{+}$], m / z (calcd, found): 809 (100, 100), $810(47,58), 811(12,14), 812(2,2)$. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{65} \mathrm{NU}: \mathrm{C}, 60.8 ; \mathrm{H}, 8.09 ; \mathrm{N}, 1.73$. Found: C, 61.1; H, 8.40; N, 1.84 .

Preparation of $\left[\eta^{5} \mathbf{- 1 , 2 , 4 - (} \mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{C}_{5} \mathbf{H}_{2}\right]_{2} \mathbf{U}(\mathbf{O})(\mathbf{p y})(\mathbf{8})$. To a diethyl ether (30 mL) solution of $\left[\eta^{5}\right.$ -1,2,4-($\left.\mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}$ (bipy) ($6 ; 2.0 \mathrm{~g}, 2.3 \mathrm{mmol}$) was slowly added a diethyl ether (20 mL) solution of pyridine-N-oxide ($0.22 \mathrm{~g}, 2.3 \mathrm{mmol}$) with stirring at room temperature. During the course of the reaction, the color of the solution changed from green to red. After the solution was stirred for 2 h at room temperature, solvent was removed and the red solid was exposed to vacuum overnight at $50^{\circ} \mathrm{C}$ in a water bath. The residue was extracted with diethyl ether ($25 \mathrm{~mL} \times 2$) and filtered. The volume of filtrate was reduced to 10 mL and cooled to $-20^{\circ} \mathrm{C}$, yielding red crystals, which were isolated by filtration. Yield: 1.2 g (65\%). IR: $v \mathrm{UO}, 760(\mathrm{~s}) \mathrm{cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{39} \mathrm{H}_{63} \mathrm{NOU}: \mathrm{C}, 58.6 ; \mathrm{H}, 7.94 ; \mathrm{N}$, 1.75. Found: C, 58.6; H, 8.29; N, 1.92.

Preparation of $\left.\left[\boldsymbol{\eta}^{5} \mathbf{- 1 , 2 , 4 - (} \mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathbf{H}_{2}\right]_{\mathbf{2}} \mathbf{U} \mathbf{(O) (d m a p)}$ (9). A diethyl ether (20 mL) solution of 4dimethylaminopyridine (dmap; $0.18 \mathrm{~g}, 1.48 \mathrm{mmol}$) was added to a diethyl ether (30 mL) solution of [η^{5} -$\left.1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})($ (py) (8; $1.1 \mathrm{~g}, 1.38 \mathrm{mmol}$) with stirring at room temperature. During the course of the reaction, the color of the solution changed from red to yellow-green. After the solution was stirred for 2 h at room temperature, solvent was removed. The yellow-green residue was extracted with diethyl ether ($25 \mathrm{~mL} \times 2$) and filtered. The volume of the filtrate was reduced to 10 mL and cooled
to $-20^{\circ} \mathrm{C}$, yielding yellow-green crystals, which were isolated by filtration. Yield: 0.75 g (65%). IR: v UO, 765(s) cm^{-1}. Anal. Calcd for $\mathrm{C}_{41} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{OU}: \mathrm{C}, 58.4 ; \mathrm{H}, 8.13$; $\mathrm{N}, 3.32$. Found: C, 58.6; H, 8.52; N , 3.39.

Preparation of $\left.\left[\eta^{5} \mathbf{- 1 , 2 , 4 - (} \mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathbf{H}_{2}\right]_{2} \mathbf{U O} \mathbf{(1 0)}$. Method A. To a toluene (20 mL) solution of $\left[\eta^{5}\right.$ -1,2,4-($\left.\left.\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})($ py $)(8 ; 1.6 \mathrm{~g}, 2.0 \mathrm{mmol})$ was added a toluene $(10 \mathrm{~mL})$ solution of $\mathrm{Ph}_{3} \mathrm{~B}(0.49$ $\mathrm{g}, 2.0 \mathrm{mmol}$) with stirring at room temperature. During the course of the reaction, the color of the solution changed from red to brown-red and a precipitate $\left(\mathrm{Ph}_{3} \mathrm{~B} \cdot \mathrm{py}\right)$ appeared. After the solution was stirred for 2 h at room temperature, solvent was removed. The brown-red residue was extracted with pentane ($25 \mathrm{~mL} x 2$) and filtered. The volume of the filtrate was reduced to 10 mL and cooled to $-20^{\circ} \mathrm{C}$, yielding brown-red microcrystals, which were isolated by filtration. Yield: 1.2 g (83\%). EI-MS $\left[\mathrm{M}^{+}\right]$, m / z (calcd, found): $720(100,100), 721(39,34), 722(7,6)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{OU}: \mathrm{C}, 56.6 ; \mathrm{H}, 8.11$. Found: C, 56.6; H, 7.95. This compound cannot be prepared in THF or diethyl ether solution, since in these solvents, the diene, $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{3}$ results.

Method B. NMR Scale. $\mathrm{Ph}_{3} \mathrm{~B}(5 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added to an NMR tube charged with $\left[\eta^{5}-1,2,4-\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})(\mathrm{dmap})(9 ; 17 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$. The color of the solution immediately changed from yellow-green to brown-red, and resonances due to [$\eta^{5}-1,2,4-$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0})$ were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion).

Method C. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}=\mathrm{N}(p$-tolyl) (7; 16 $\mathrm{mg}, 0.02 \mathrm{mmol}$) and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, benzophenone ($3.6 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added. The color of the solution immediately changed from dark-brown to brown-red. The ${ }^{1} \mathrm{H}$ NMR spectrum contained resonances consistent with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}$ (10) and $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$ (${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 7.97(\mathrm{~m}, 2 \mathrm{H}$, aryl H), $7.12(\mathrm{~m}, 3 \mathrm{H}$, aryl $H), 6.98(\mathrm{~m}, 2 \mathrm{H}$, aryl $H), 6.89(\mathrm{~m}, 3 \mathrm{H}$, aryl $H), 6.77$ (m, 4 H , aryl H), $1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.) (100% conversion). 10 cannot be isolated on a synthetic scale by this method, since in the presence of $\mathrm{Ph}_{2} \mathrm{C}=\mathrm{N}-p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{3}$, the diene, $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{3}$ slowly results.

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(10)$ with Pyridine. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, a drop of pyridine was added. The color of the solution immediately changed from brown-red to red, and resonances due to [$\eta^{5}-1,2,4-$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})\left(\right.$ py) (8) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion).

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(10)$ with dmap. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, 4-dimethylaminopyridine (dmap; $2.5 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added. The color of the solution immediately changed from brown-red to yellow-green, and resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})$ (dmap) (9) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100\% conversion).
 mmol) was added to a toluene (20 mL) solution of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})($ ру) (8; $1.2 \mathrm{~g}, 1.5$ mmol) with stirring at room temperature. After the solution was stirred overnight at room temperature, solvent was removed. The orange-red residue was extracted with pentane ($25 \mathrm{~mL} \times 2$) and filtered. The volume of the filtrate was reduced to 10 mL and cooled to $-20^{\circ} \mathrm{C}$, yielding orange-red crystals, which were isolated by filtration. Yield: $1.1 \mathrm{~g}(88 \%)$. EI-MS [M ${ }^{+}$], m / z (calcd, found): 828 (100, 100), 829 (47, 50), $830(46,49), 831(18,20)$; the parent ion is $[\mathrm{M}-15]^{+}$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{67} \mathrm{ClOSiU}: \mathrm{C}, 53.6 ; \mathrm{H}$, 8.15. Found: C, 53.2; H, 8.37.

Method B. To a diethyl ether (20 mL) solution of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}(\mathbf{1} ; 2.0 \mathrm{~g}, 2.6 \mathrm{mmol})\right.$ was added a diethyl ether (10 mL) solution of $\mathrm{Me}_{3} \mathrm{SiOLi}(0.25 \mathrm{~g}, 2.6 \mathrm{mmol})$ with stirring at room temperature. After the solution was stirred at room temperature for one week, solvent was removed. The orange-red residue was extracted with pentane ($25 \mathrm{~mL} x 2$) and filtered. The volume of the filtrate was reduced to 10 mL and cooled to $-20^{\circ} \mathrm{C}$, yielding orange-red microcrystals, which were identified as $\mathbf{1 1}$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Yield: 1.6 g (75\%). Solvent has a large effect on this reaction; the conversion is very low (below 10%) even at $65^{\circ} \mathrm{C}$ for 3 days in THF or toluene solution.

Method C. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ (0.5 mL), an excess of $\mathrm{Me}_{3} \mathrm{SiCl}$ was added. The color of the solution immediately changed from brown-red to orange-red, and resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{Cl})$ (11) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). The sample was maintained at $65^{\circ} \mathrm{C}$ and monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After 1 day, conversion to $\left[\eta^{5}-1,2,4-\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}$ (1) was 35% complete, and after 3 days, conversion to $\left[\eta^{5}-1,2,4-\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}(\mathbf{1})$ was complete.

Preparation of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{Br})(12)$. Method A. This compound was prepared as red crystals from the reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})($ ру) $(\mathbf{8} ; 1.2 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{SiBr}(2.0 \mathrm{~mL}, 15 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ by procedures similar to those used in the synthesis of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{Cl})(11)$. Yield: $1.1 \mathrm{~g}(85 \%)$. EI-MS [M $\left.{ }^{+}\right], m / z$ (calcd, found): 872 $(89,90), 873(42,40), 874(100,100), 875(44,40), 876(13,15)$; the parent ion is $[M-15]^{+}$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{67} \mathrm{BrOSiU}: \mathrm{C}, 50.9$; H, 7.74. Found: C, 50.7; H, 7.80.

Method B. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ (0.5 mL), an excess of $\mathrm{Me}_{3} \mathrm{SiBr}$ was added. The color of the solution immediately changed from brown-red to orange-red, and resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{Br})$ (12) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). The sample was maintained at $65^{\circ} \mathrm{C}$ and monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After 1 day, conversion to $\left[\eta^{5}-1,2,4-\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UBr}_{2}$ (2) was 15% complete, and after 10 days, conversion to $\left[\eta^{5}-1,2,4-\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UBr}_{2}$ (2) was complete.

Preparation of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{I})$ (13). Method A. This compound was prepared as red crystals from the reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})($ py $)(8 ; 1.2 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{SiI}(2.0 \mathrm{~mL}, 14 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ by procedures similar to those used in the synthesis of [$\left.\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{Cl})(\mathbf{1 1})$. Yield: 1.2 g (87\%). EI-MS [M $\left.{ }^{+}\right], m / z$ (calcd, found): 920
(100, 100), 921 (47, 35); the parent ion is $[\mathrm{M}-15]^{+}$. Anal. Calcd for $\mathrm{C}_{37} \mathrm{H}_{67} \mathrm{IOSiU}: \mathrm{C}, 48.2 ; \mathrm{H}, 7.34$. Found: C, 48.0; H, 7.31.

Method B. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of $\mathrm{Me}_{3} \mathrm{SiI}$ was added. The color of the solution immediately changed from brown-red to red, and resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{I})(13)$ were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.

Preparation of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{CN})(14)$. Method A. This compound was

 prepared as red crystals from the reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})($ py $)(\mathbf{8} ; 1.2 \mathrm{~g}, 1.5 \mathrm{mmol})$ and $\mathrm{Me}_{3} \mathrm{SiCN}(2.0 \mathrm{~mL}, 15 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$ by procedures similar to those used in the synthesis of [$\left.\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{Cl})(11)$. Yield: 1.1 g (89\%). IR: v UCN, 2040(s) cm^{-1}. EI-MS $\left[\mathrm{M}^{+}\right], m / z$ (calcd, found): $819(100,100), 820(49,50), 821(15,15), 822(2,2)$; the parent ion is $[\mathrm{M}-$ CN^{+}. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{67} \mathrm{NOSiU}: \mathrm{C}, 55.6$; H, 8.24; N, 1.71. Found: C, 55.4; H, 8.12; N, 2.01.Method B. NMR Scale. An excess of $\mathrm{Me}_{3} \mathrm{SiCN}$ was added to an NMR tube charged with [$\eta^{5}-1,2,4-$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$. The color of the solution immediately changed from brown-red to red, and resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{CN})(\mathbf{1 4})$ were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.

Preparation of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{OTf})(15)$. Method A. This compound was

 prepared as orange-red microcrystals from the reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})(\mathrm{py})(8 ; 1.2 \mathrm{~g}$, 1.5 mmol) and $\mathrm{Me}_{3} S i O T f(2.0 \mathrm{~mL}, 11 \mathrm{mmol}$) in toluene (20 mL) by using the procedures similar to those used in the synthesis of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{Cl})(\mathbf{1 1})$. Yield: 1.2 g (86\%). EI-MS: $m / z 927\left[\mathrm{M}^{+}-\mathrm{CH}_{3}\right]$. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{67} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{SSiU}: \mathrm{C}, 48.4 ; \mathrm{H}, 7.16$. Found: C, 48.2; H, 7.24.Method B. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of $\mathrm{Me}_{3} \mathrm{SiOTf}$ was added. The color of the solution immediately changed from
brown-red to orange-red, and resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{OTf})$ (15) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.

Preparation of $\left.\left[\boldsymbol{\eta}^{5} \mathbf{- 1 , 2 , 4 - (} \mathbf{(M e} \mathbf{3}_{3} \mathbf{C}\right)_{3} \mathbf{C}_{5} \mathbf{H}_{\mathbf{2}}\right]_{2} \mathbf{U}\left(\mathbf{N}_{3}\right)_{2}$ (17). Method A. $\mathrm{Me}_{3} \mathrm{SiN}_{3}(2.0 \mathrm{~mL}, 15 \mathrm{mmol})$ was added to a toluene (20 mL) solution of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})(\mathrm{py})(8 ; 1.2 \mathrm{~g}, 1.5 \mathrm{mmol})$ with stirring at room temperature. After the solution was stirred overnight at room temperature, solvent was removed. The orange-red residue was extracted with pentane ($25 \mathrm{~mL} x \mathrm{2}$) and filtered. The volume of the filtrate was reduced to 10 mL and cooled to $-20^{\circ} \mathrm{C}$, yielding orange-red crystals, which were isolated by filtration. Yield: 1.0 g (85\%). IR: $v \mathrm{UN}_{3}, 2100,2080 \mathrm{~cm}^{-1}$. EI-MS $\left[\mathrm{M}^{+}\right], m / z$ (calcd, found): $788(100,100), 789(41,45), 790(8,10)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{U}: \mathrm{C}, 51.7 ; \mathrm{H}, 7.41 ; \mathrm{N}, 10.7$. Found: C, 51.7; H, 7.32; N, 10.7.

Method B. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ (0.5 mL), an excess of $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ was added. The color of the solution immediately changed from brown-red to orange-red, and resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{N}_{3}\right)_{2}\right.$ (17) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0})$ or $\left[\eta^{5}-1,2,4-\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})\left(\right.$ py) (8) with 1 equiv of $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ gave resonances due to $\left[\eta^{5}-1,2,4\right.$ $\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{N}_{3}\right)_{2}(\mathbf{1 7})$ and resonances attributable to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)\left(\mathrm{N}_{3}\right)(\mathbf{1 6}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 18.6\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}\right), 5.6\left(18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-4.6\left(18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-11.7(18 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$; the protons of the rings were not observed.).

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}$ (10) with Pyridine-N-oxide. NMR Scale. To an NMR

 tube charged with $\left.\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, pyridine- N oxide ($2.0 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added. The color of the solution immediately changed from brown-red to black, and resonances due to $\left(2,3,5-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right)_{2}{ }^{53}\left({ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 6.48(4 \mathrm{H}, \mathrm{CH}), 1.38(36 \mathrm{H}$, $\left.\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.01\left(18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right).\right)$ were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). (2,3,5-$\left.\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right)_{2}$ can be isolated in 70% yield $(0.33 \mathrm{~g})$ from the reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}$ (10; $0.72 \mathrm{~g}, 1.0 \mathrm{mmol})$ and pyridine- N -oxide $(0.10 \mathrm{~g}, 1 \mathrm{mmol})$ in pentane solution.

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(10)$ with $\mathrm{Ph}_{3} \mathrm{PE}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{PE}(\mathrm{E}=$ S , Se) ($6 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added. The color of the solution immediately changed from brown-red to black, and resonances due to $\left(2,3,5-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right)_{2}$ were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy $(100 \%$ conversion).

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(10)$ with SiF_{4} or $\mathrm{BF}_{3}\left(\mathrm{OEt}_{2}\right)$. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of SiF_{4} or $\mathrm{BF}_{3}\left(\mathrm{OEt}_{2}\right)$ was added. The color of the solution immediately changed from brown-red to orange-red, and resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UF}_{2}$ (4) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion).

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}$ (10) with $\mathrm{Me}_{3} \mathrm{SiCF}_{3}$. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of $\mathrm{Me}_{3} \mathrm{SiCF}_{3}$ was added. The color of the solution immediately changed from brown-red to orange-red, resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UF}_{2}(4 ; 60 \%$ conversion $)$ and resonances due to other unidentified uranium containing compounds were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}$ (10) with SiCl_{4}. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of SiCl_{4} was added. The color of the solution immediately changed from brown-red to orange-red, and resonances attributable to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiCl}_{3}\right)(\mathrm{Cl})\left({ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 14.6\left(18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-5.1\left(18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, -14.8 (18H, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$; the protons of the rings were not observed.) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). The sample was maintained at $65^{\circ} \mathrm{C}$ and monitored periodically by ${ }^{1} \mathrm{H}$

NMR spectroscopy. After 1 day, conversion to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}$ (1) was 30% complete, and after 4 days, conversion to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}(\mathbf{1})$ was complete.

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathbf{H}_{2}\right]_{2} \mathrm{UO}$ (10) with SiBr_{4}. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of SiBr_{4} was added. The color of the solution immediately changed from brown-red to orange-red, and resonances attributable to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiBr}_{3}\right)(\mathrm{Br})\left({ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 15.6\left(18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-4.7\left(18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)\right.$, -14.8 (18H, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$; the protons of the rings were not observed.) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). The sample was maintained at $65^{\circ} \mathrm{C}$ and monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy. After 1 day, conversion to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UBr}_{2}\right.$ (2) was 20% complete, and after 10 days, conversion to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UBr}_{2}$ (2) was complete.

Reaction of $\left.\left[\boldsymbol{\eta}^{5} \mathbf{- 1 , 2 , 4 - (} \mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(10)$ with SiI_{4}. NMR Scale. To an NMR tube charged with $\left.\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of SiI_{4} was added. The color of the solution immediately changed from brown-red to orange-red, and resonances attributable to [η^{5} -1,2,4-($\left.\left.\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiI}_{3}\right)(\mathrm{I})\left({ }^{1} \mathrm{H}\right.$ NMR $\left.\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 15.4\left(18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-3.3\left(18 \mathrm{H},\left(\mathrm{CH}_{3}\right)\right)_{3} \mathrm{C}\right),-14.5$ (18H, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$; the protons of the rings were not observed.) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(10)$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$. NMR Scale. To an NMR

 tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$ or $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{Cl}$ was added. The color of the solution immediately changed from brown-red to brown, resonances due to $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{3}$ and nine new resonances (${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 26.6\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 23.4$ $\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 12.9\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.6\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-20.4\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-25.5\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-26.0$ $\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-28.0\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-33.5\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$.) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathbf{H}_{2}\right]_{2} \mathrm{UO}(10)$ with $\mathrm{C}_{6} \mathbf{H}_{5} \mathbf{B r}$. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}$ was added. The color of the solution immediately changed from brown-red to brown, resonances due to $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{3}$ and nine new resonances $\left({ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 28.2\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 22.5\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, $16.7\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 4.3\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-19.9\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-27.8\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-28.6\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, $-29.6\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-33.0\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$.) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}$ (10) with $\mathrm{Me}_{3} \mathrm{CCl}$ or $\left(\mathrm{CD}_{3}\right)_{3} \mathrm{CCl}$. NMR Scale. To an

 NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(10 ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of $\mathrm{Me}_{3} \mathrm{CCl}$ or $\left(\mathrm{CD}_{3}\right)_{3} \mathrm{CCl}$ was added. The color of the solution immediately changed from brown-red to brown, resonances due to $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{3}, \mathrm{Me}_{2} \mathrm{C}=\mathrm{CH}_{2}\left({ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 4.74$ (s, 2H, $\left.\left.\mathrm{CH}_{2}\right), 1.58(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH} 3).\right)^{54}$ and new nine resonances (${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 26.6\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 23.4(9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 12.9\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.6\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-20.4\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-25.5\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-26.0(9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-28.0\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-33.5\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$.) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, after 1 day at $65{ }^{\circ} \mathrm{C}$ or 10 days at room temperature, the nine resonances disappeared, and resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}$ (1) were observed (30\% conversion).Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}$ (10) with AgF. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of AgF was added. The color of the solution immediately changed from brown-red to orange-red, resonances due to (2,3,5-($\left.\left.\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right)_{2}$ along with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UF}_{2}$ (4) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100\% conversion).

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}$ (10) with AgCl . NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of AgCl was
added. The color of the solution immediately changed from brown-red to brown, resonances due to $\left(2,3,5-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right)_{2}$ and new nine resonances $\left({ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 26.6\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 23.4(9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 12.9\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.6\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-20.4\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-25.5\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-26.0(9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-28.0\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, $-33.5\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$.) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, after 1 day at $65{ }^{\circ} \mathrm{C}$ or 10 days at room temperature, the nine resonances disappeared, and only resonances due to $\left(2,3,5-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right)_{2}$ were observed (100\% conversion).

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(10)$ with AgBr . NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of AgBr was added. The color of the solution immediately changed from brown-red to brown, resonances due to $\left(2,3,5-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right)_{2}$ and new nine resonances $\left({ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 28.2\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 22.5(9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 16.7\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 4.3\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-19.9\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-27.8\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-28.6(9 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, -29.6 $\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, $-33.0\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$.) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. This NMR sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, after 1 day at $65{ }^{\circ} \mathrm{C}$ or 10 days at room temperature, the nine resonances disappeared, and only resonances due to $\left(2,3,5-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right)_{2}$ were observed (100% conversion).

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}$ (10) with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UF}_{2}$ (4). NMR Scale.

 To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UF}_{2}(4 ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added. The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.
Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(10)$ with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}(1)$. NMR Scale.

To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}_{2}(\mathbf{1} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added. The color of the solution immediately changed from brown-red to black. Resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UCl}\left({ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $-7.8\left(36 \mathrm{H}, v_{1 / 2}=45 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-24.9\left(18 \mathrm{H}, v_{1 / 2}=45 \mathrm{~Hz},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$; protons of the rings were not
observed.) ${ }^{44}\left(2,3,5-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right)_{2}$ and new nine resonances $\left({ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 26.6\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, $23.4\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 12.9\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 1.6\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-20.4\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-25.5\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$, -26.0 (9H, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-28.0\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-33.5\left(9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$.) were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum. The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.

Reaction of $\left.\left[\boldsymbol{\eta}^{5} \mathbf{- 1 , 2 , 4 - (M e} \mathbf{M e}_{3}\right)_{3} \mathrm{C}_{5} \mathbf{H}_{2}\right]_{2} \mathrm{UO}$ (10) with $\mathbf{P h}_{3} \mathbf{P O}$. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}), \mathrm{Ph}_{3} \mathrm{PO}(6 \mathrm{mg}, 0.02$ mmol) was added. The color of the solution immediately changed from brown-red to brown, and resonances attributable to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})\left(\mathrm{OPPh}_{3}\right)\left({ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 8.8(36 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right), 5.4\left(18 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$; the protons of the rings were not observed.) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). This compound was not isolated on a synthetic scale, since it is poorly soluble in nonpolar solvents, and it decomposes to $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{3}$ in polar solvents

Reaction of $\left.\left[\boldsymbol{\eta}^{5} \mathbf{- 1 , 2 , 4 - (} \mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}$ (10) with $\mathrm{Ph}_{2} \mathbf{C O}$. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL}), \mathrm{Ph}_{2} \mathrm{CO}(4 \mathrm{mg}, 0.02$ mmol) was added. The color of the solution immediately changed from brown-red to brown, and resonances attributable to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})\left(\mathrm{OCPh}_{2}\right)\left({ }^{1} \mathrm{H}\right.$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta 26.2(18 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right),-8.0\left(36 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}\right)$; the protons of the rings were not observed.) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion). When the sample was heated at $65^{\circ} \mathrm{C}$ and monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, decomposition to $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{3}$ and other unidentified uranium containing compounds was observed.

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(10)$ with Amines or $\mathrm{PhC} \equiv \mathbf{C H}$. NMR Scale. To an NMR

 tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of amine $\left(\mathrm{NH}_{3}, \mathrm{MeNH}_{2}, \mathrm{Me}_{2} \mathrm{NH}, \mathrm{Me}_{3} \mathrm{~N}\right)$ or $\mathrm{PhC} \equiv \mathrm{CH}$ was added. The color of the solution immediately changed from brown-red to brown, resonances due to $\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{3}$ and resonances due to other unidentified uranium containing compounds were observed.Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(10)$ with $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}, \mathrm{RC} \equiv \mathrm{CR}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Ph}, \mathrm{Me}_{3} \mathrm{Si}\right), \mathrm{H}_{2}$ or $\mathbf{C}_{2} \mathbf{H}_{\mathbf{4}}$. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UO}(\mathbf{1 0} ; 15 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}, \mathrm{RC} \equiv \mathrm{CR}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Ph}, \mathrm{Me}_{3} \mathrm{Si}\right), \mathrm{H}_{2}$ or $\mathrm{C}_{2} \mathrm{H}_{4}$ was added. The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.

Reaction of $\left[\boldsymbol{\eta}^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}=\mathrm{N}\left(\boldsymbol{p}\right.$-tolyl) (7) with $\mathrm{Me}_{3} \mathrm{SiX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}), \mathrm{Ph}_{3} \mathrm{PE}(\mathrm{E}=\mathbf{O}$, S, Se), Diethyl Ether, Tetrahydrofuran, Pyridines, $4-\mathrm{Me}_{2} \mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{~N}$ or $\mathbf{P h C l}$. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}=\mathrm{N}(p$-tolyl) (7; $16 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}$ (0.5 $\mathrm{mL})$, an excess of $\mathrm{Me}_{3} \mathrm{SiX}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}), \mathrm{Ph}_{3} \mathrm{PE}(\mathrm{E}=\mathrm{O}, \mathrm{S}, \mathrm{Se})$, diethyl Ether, tetrahydrofuran, pyridines, $4-\mathrm{Me}_{2} \mathrm{NC}_{5} \mathrm{H}_{4} \mathrm{~N}$ or PhCl was added. The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.

Reaction of $\left[\boldsymbol{\eta}^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}=\mathrm{N}(p$-tolyl) (7) with Pyridine-N-Oxide. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}=\mathrm{N}(p$-tolyl) (7; $16 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5$ mL), pyridine- N -oxide ($2 \mathrm{mg}, 0.02 \mathrm{mmol}$) was added. The color of the solution immediately changed from dark-brown to black, and resonances due to $\left(2,3,5-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right)_{2}$ were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100% conversion).

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathbf{H}_{2}\right]_{2} \mathrm{U}=\mathrm{N}\left(p\right.$-tolyl) (7) with $\mathrm{Me}_{3} \mathrm{SiN}_{3}$. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}=\mathrm{N}(p$-tolyl) (7; $16 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of $\mathrm{Me}_{3} \mathrm{SiN}_{3}$ was added. Resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{N}_{3}\right)_{2}(\mathbf{1 7} ; 20 \%$ conversion $)$ along with other unidentified uranium containing compounds were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The sample was monitored periodically by ${ }^{1} \mathrm{H}$ NMR spectroscopy, and the spectrum did not show any change when heated at $65^{\circ} \mathrm{C}$ for 3 days.

Reaction of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}=\mathrm{N}\left(p\right.$-tolyl) (7) with SiF_{4} or $\mathrm{BF}_{3}\left(\mathrm{OEt}_{2}\right)$. NMR Scale. To an NMR tube charged with $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}=\mathrm{N}(p$-tolyl $)(7 ; 15 \mathrm{mg})$ and $\mathrm{C}_{6} \mathrm{D}_{6}(0.5 \mathrm{~mL})$, an excess of SiF_{4} or $\mathrm{BF}_{3}\left(\mathrm{OEt}_{2}\right)$ was added. The color of the solution immediately changed from dark-brown to
orange-red, and resonances due to $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UF}_{2}$ (4) were observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (100\% conversion).

Acknowledgement. This work was supported by the Director, Office of Basic Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the US Department of Energy under contract No. DE-AC03-76SF00098. We thank Dr. Fred Hollander and Dr. Allen Oliver (at CHEXRAY, the UC Berkeley X-ray facility) for their help with the crystallography.

Supporting Information Available. Crystallographic data (also deposited with the Cambridge Crystallographic Data Centre; copies of the data (CCDC 262849-262856) can be obtained free of charge via www.ccdc.cam.ac.uk/ data_request/cif, by emailing data_request@ccdc.cam.ac.uk or by contacting The Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax +44 1223 336033); labeling diagrams, tables giving atomic positions and anisotropic thermal parameters, bond distances, and angles, and least-squares planes for each structure. This material is available free of charge via the Internet at http://pubs.acs.org. Structure factor tables are available from the authors.

Figure 1. ORTEP drawing of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UF}_{2}(4)$ with 35% thermal ellipsoids.

Figure 2. ORTEP drawing of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{N}_{3}\right)_{2}(\mathbf{1 7})$ with 35% thermal ellipsoids.

Figure 3. Plots of δ versus $1 / \mathrm{T}$ for $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{UF}_{2}(4)$ in $\mathrm{C}_{7} \mathrm{D}_{8}$.

Figure 4. ORTEP drawing of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}=\mathrm{N}(p$-tolyl) (7) with 35% thermal ellipsoids.

Figure 5. ORTEP drawing of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})$ (dmap) (9) with 35% thermal ellipsoids.

Figure 6. Plots of δ versus $1 / \mathrm{T}$ for $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})(\mathrm{dmap})(9)$ in $\mathrm{C}_{7} \mathrm{D}_{8}$.

Figure 7. Plots of δ versus $1 / \mathrm{T}$ for $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}(\mathrm{O})(\mathbf{1 0})$ in $\mathrm{C}_{7} \mathrm{D}_{8}$.

Figure 8. ORTEP drawing of $\left[\eta^{5}-1,2,4-\left(\mathrm{Me}_{3} \mathrm{C}\right)_{3} \mathrm{C}_{5} \mathrm{H}_{2}\right]_{2} \mathrm{U}\left(\mathrm{OSiMe}_{3}\right)(\mathrm{CN})$ (14) with 35% thermal ellipsoids.

Scheme 1

Scheme 2

Table 1. Physical Properties of $\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}(\mathrm{X})(\mathrm{Y}), \mathrm{Cp}{ }^{\prime}=\mathbf{1 , 2 , 4 - (\mathrm { CMe } _ { 3 }) _ { 3 } \mathrm { C } _ { 5 } \mathrm { H } _ { 2 }}$

compound	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	${ }^{1} \mathrm{H}$ NMR ($\left.\delta, 30{ }^{\circ} \mathrm{C}\right)^{\text {a }}$				
		$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$	$\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$	ring CH	other
$\mathrm{Cp}{ }_{2} \mathrm{UCl}_{2}(\mathbf{1})$	192-194	9.8 (12)	9.8 (12)	-20.2 (7)	30.3 (110)	
$\mathrm{Cp}_{2} \mathrm{UBr}_{2}(2)$	205-206	12.2 (570)	12.2 (570)	-20.5 (40)	32.7 (850)	
$\mathrm{Cp}{ }_{2} \mathrm{UMe}_{2}(3)$	143-144	3.3 (5)	3.3 (5)	-7.5 (8)	7.6 (25)	$\mathrm{UCH}_{3},-98(45)$
Cp ${ }_{2} \mathrm{UF}_{2}$ (4)	160-162	0.64 (10)	0.64 (10)	-7.9 (3)	8.6 (12)	
$\mathrm{Cp}{ }_{2} \mathrm{U}\left(\mathrm{NH}_{2}\right)_{2}(5)$	165-167	5.4 (4)	-1.9 (5)	-1.9 (5)	14.1 (46)	UN $H_{2},-34$ (27)
Cp’ ${ }^{\prime} \mathrm{U}$ (bipy) (6)	271-276	1.1 (4)	1.1 (4)	-8.8 (3)	1.4 (4)	bipyridyl
						$3-\mathrm{CH}{ }^{\text {b }} 97.2$ (12)
						4-C $H^{\text {b }}$-7.4 (d, $J=$
						7.2 Hz)
						5-CH ${ }^{\text {b }}$-57.9 (11)
						6-CH ${ }^{\text {b }}$-99.4 (16)
Cp ${ }_{2} \mathrm{U}[\mathrm{N}(4-$	234-239	-6.1 (11)	-6.1 (11)	-22.5 (9)	22.2 (18)	Ntolyl
MeC6 H_{4})] (7)						$o-\mathrm{CH} H^{\mathrm{b}} 29.4$ (d, $J=$
						7.2 Hz)
						m-CH 24.7 (d, J

a) The chemical shifts are expressed in δ units with $\delta>0$ to downfield in $\mathrm{C}_{6} \mathrm{D}_{6}$ or $\mathrm{C}_{7} \mathrm{D}_{8}$ at $30{ }^{\circ} \mathrm{C}$. The values in parentheses are the full widths at half-maximum (Hz).
b) The specific assignments are uncertain, although the chemical shift values are not.
c) These resonances are not observed at room temperature.
d) The ortho and meta resonances are not observed at room temperature.

Table 2a. Selected Crystal Data and Data Collection Parameters for 1, 3, 4 and 5

compound	1	3	4	5
formula	$\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{Cl}_{2} \mathrm{U}$	$\mathrm{C}_{36} \mathrm{H}_{64} \mathrm{U}$	$\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{~F}_{2} \mathrm{U}$	$\mathrm{C}_{34} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{U}$
fw	775.77	734.90	742.83	736.91
space group	Pca2 ${ }_{1}$	$P 2{ }_{1} / n$	$P 2_{1} 2_{1} 2_{1}$	$P 2{ }_{1} / n$
$a(\AA)$	16.154(1)	10.337(1)	10.219(1)	10.269(1)
$b(\AA)$	10.340(1)	25.591(3)	17.012(2)	25.460(1)
$c(\AA)$	20.513(1)	13.151(2)	19.282(2)	13.202(1)
α (deg)	90	90	90	90
β (deg)	90	90.017(2)	90	90.100(1)
γ (deg)	90	90	90	90
$V\left(\AA^{3}\right)$	3426.4(3)	3479.1(7)	3351.9(6)	3451.7(2)
Z	4	4	4	4
$D_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.504	1.403	1.472	1.418
$\mu(\mathrm{Mo} / \mathrm{K} \alpha)_{\text {calc }}\left(\mathrm{cm}^{-1}\right)$	49.14	4.69	4.87	47.26
size (mm)	$0.05 \times 0.14 \times 0.25$	$0.23 \times 0.20 \times 0.15$	$0.27 \times 0.17 \times 0.12$	$0.34 \times 0.35 \times 0.15$
temp (K)	131(1)	120(2)	133(2)	161(1)
diffractometer	Bruker SMART CCD	SMART CCD	SMART CCD	Siemens SMART

scan type	$\omega(0.3$ deg per frame $)$			
2θ range (deg)	3.00 to 45.00	4.44 to 47.14	4.86 to 49.22	4.00 to 46.50
no. of reflns, collected	14508	15595	14989	16178
no. of unique reflns	$3288\left(R_{\text {int }}=0.075\right)$	$5725\left(R_{\text {int }}=0.0743\right)$	$5534\left(R_{\mathrm{int}}=0.0466\right)$	$6244\left(R_{\mathrm{int}}=0.030\right)$
no of obsd reflns	3765	4353	5089	4704
no of variables	333	355	353	334
abscorr $\left(T_{\max }, T_{\min }\right)$	$1.00,0.60$	$0.54,0.41$	$0.56,0.35$	$0.95,0.63$
R	0.037	0.036	0.033	0.032
R_{w}	0.043	0.069	0.075	0.044
$R_{\text {all }}$	0.058	0.057	1.03	0.048
gof	1.21	0.001	0.013	1.60
max. Δ / σ in final cycle	0.00			0.00

Table 2b. Selected Crystal Data and Data Collection Parameters for 7, 9, 14 and 17

compound	7	9	14	17
formula	$\mathrm{C}_{41} \mathrm{H}_{65} \mathrm{NU}$	$\mathrm{C}_{41} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{OU}$	$\mathrm{C}_{38} \mathrm{H}_{67} \mathrm{NOSiU}$	$\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{U}$
fw	810.00	843.03	820.05	788.89
space group	$P 2{ }_{1} / n$	$P(-1)$	$P 2_{1} 2_{1} 2_{1}$	$P 2{ }_{1} / \mathrm{c}$
$a(\AA)$	16.608(1)	10.773(1)	12.786(2)	16.481(2)
$b(\AA)$	12.174(1)	12.037(2)	17.319(3)	11.292(2)
$c(\AA)$	19.371(1)	16.180(2)	18.007(3)	19.268(3)
α (deg)	90	95.815(1)	90	90
β (deg)	108.357(1)	102.558(1)	90	90.216(2)
γ (deg)	90	101.994(1)	90	90
$V\left(\AA^{3}\right)$	3717.23(8)	1979.56(4)	3987.3(11)	3586.2(8)
Z	4	2	4	4
$D_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.447	1.414	1.366	1.461
$\mu(\mathrm{Mo} / \mathrm{K} \alpha)_{\text {calc }}\left(\mathrm{cm}^{-1}\right)$	43.95	41.32	4.13	4.56
size (mm)	$0.20 \times 0.16 \times 0.13$	$0.10 \times 0.19 \times 0.25$	$0.28 \times 0.27 \times 0.03$	$0.18 \times 0.11 \times 0.08$
temp (K)	164(1)	140(2)	128(2)	110(2)
diffractometer	Siemens SMART	Siemens SMART	Bruker SMART CCD	Bruker SMART CCD

scan type	$\omega(0.3$ deg per frame $)$			
2θ range (deg)	4.00 to 46.50	4.00 to 46.50	4.56 to 49.0	4.86 to 48.32
no. of reflns, collected	17110	11012	17738	15572
no. of unique reflns	$6569\left(R_{\text {int }}=0.049\right)$	$6763\left(R_{\text {int }}=0.025\right)$	$6535\left(R_{\mathrm{int}}=0.0453\right)$	$5873\left(R_{\mathrm{int}}=0.0641\right)$
no of obsd reflns	4164	5761	6007	4292
no of variables	388	406	400	388
abscorr $\left(T_{\max }, T_{\min }\right)$	$0.5,0.40$	$0.9,0.7$	$0.89,0.39$	$0.71,0.49$
R	0.028	0.027	0.035	0.041
R_{w}	0.034	0.031	0.083	0.088
$R_{\text {all }}$	0.044	1.04	0.045	0.069
gof	1.10	0.013	0.001	1.010
max. Δ / σ in final cycle	0.00			0.001

Table 3. Selected Distances (\AA) and Angles (deg)

compound	1	3	4	5	7	9	14	17
C(Cp') \cdots U (ave)	2.78(5)	2.80(7)	2.76(3)	2.85(6)	2.80(5)	2.87(3)	2.79(2)	2.75(2)
C(Cp')‥U (range)	2.72(1)	2.727(8)	2.716(6)	2.756(6)	2.720(6)	2.841(4)	2.695(6)	2.714(7)
	2.84(1)	2.894(8)	2.806(6)	2.926(7)	2.912(6)	2.927(4)	2.980(7)	2.802(6)
Cp'(cent) \cdots U (ave)	2.50	2.53	2.48	2.55	2.53	2.61	2.51	2.48
Cp'(cent)-U-	145	147	144	146	143	142	140	143
Cp'(cent)								
U \cdots X (ave)	2.570(2)	2.37(3)	2.081(5)	2.193(5)	1.988(5)	U $\cdots \mathrm{O} 1.860$ (3)	U $\cdots \mathrm{O} 2.104(4)$	2.219(6)
						U $\cdots \mathrm{N} 2.535(4)$	U $\cdots \mathrm{C} 2.415(6)$	2.244(6)
X-U-X (ave)	98.1(8)	97.6(3)	99.8(2)	104.4(2)		88.7(1)	86.6(2)	97.1(2)
or X-U-Y (ave)								

Table 4. Barriers to $\mathrm{Me}_{3} \mathrm{C}$-Group Site Exchange in $\mathrm{Cp}_{2}{ }_{2} \mathrm{U}(\mathrm{X})(\mathrm{Y})^{\mathrm{a}}$

compound	$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UCl}_{2}(\mathbf{1})$	$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{UF}_{2}(\mathbf{4})$	$\mathrm{Cp}{ }_{2}{ }_{2} \mathrm{U}(\mathrm{O})(\mathrm{py})$ $(\mathbf{8})$	$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}(\mathrm{O})(\mathrm{dmap})(\mathbf{9})$	$\mathrm{Cp}^{\prime}{ }_{2} \mathrm{U}\left(\mathrm{N}_{3}\right)_{2}(\mathbf{1 7})$
T_{C}	-40	-40	30	60	-33
$\Delta \mathrm{G}^{\ddagger}$	12	12	12	15	12

a. The free energy of activation was determined by the temperature dependence in $\mathrm{C}_{7} \mathrm{D}_{8}$ of the $\mathrm{Me}_{3} \mathrm{C}$ groups only and is expressed in units of $\mathrm{kcal} \mathrm{mol}^{-1}$ and T_{c} is in units of ${ }^{\circ} \mathrm{C}$. When $\mathrm{X}=\mathrm{Y}=\mathrm{Br}(2)$ or Me (3), the resonance disappears about $-10^{\circ} \mathrm{C}$ but does not reappear as two sharp resonances by $-70^{\circ} \mathrm{C}$.

References

(1) Gmelin Handbook of Inorganic Chemistry, U Suppl., Vol. A6; Springer: Berlin, 1992.
(2) Farkas, I.; Bányai, I.; Szabó, Z.; Wahlgren, U.; Grenthe, I. Inorg. Chem. 2000, 39, 799.
(3) Vallet, V.; Szabó, Z.; Grenthe, I. J. Chem. Soc., Dalton Trans. 2004, 3799.
(4) Gordon, G.; Taube, H. J. Inorg. Nucl. Chem. 1962, 19, 189.
(5) Clark, D. L.; Conradson, S. D.; Donohoe, R. J.; Keogh, D. W.; Morris, D. E.; Palmer, P. D.; Rogers, R. D.; Tait, C. D. Inorg. Chem. 1999, 38, 1456.
(6) Cornehl, H. H.; Heinemann, C.; Marçalo, J.; Pires de Matos, A.; Schwarz, H. Angew. Chem. Int. Ed. 1996, 35, 891.
(7) Cornehl, H. H.; Heinemann, C.; Wesendrup, R.; Diefenbach, M.; Schwarz, H. Chem. Eur. J. 1997, 3, 1083.
(8) Marçalo, J.; Leal, J. P.; Pires de Matos, A.; Marshall, A. G. Organometallics 1997, 16, 4581.
(9) Gibson, J. K. Organometallics 1997, 16, 4214.
(10) Hutchings, G. J.; Heneghan, C. S.; Hudson, I. D.; Taylor, S. H. Nature 1996, 384, 341.
(11) Andersen, R. A.; Jia, L.; Blosch, L. L. Book of Abstracts; 215th ACS National Meeting, Dallas, March 1998; INOR-061.
(12) Lukens, W. W.; Beshouri, S. M.; Blosch, L. L.; Andersen, R. A. J. Am. Chem. Soc. 1996, 118, 901.
(13) Lukens, W. W.; Allen, P. G.; Bucher, J. J.; Edelstein, N. M.; Hudson, E. A.; Shuh, D. K.; Reich, T.; Andersen, R. A. Organometallics 1999, 18, 1253.
(14) Zalkin, A.; Beshouri, S. M. Acta Cryst. 1988, C44, 1826.
(15) Maron, L.; Werkerma, E. L.; Perrin, L.; Eisenstein, O.; Andersen, R. A. J. Am. Chem. Soc. 2005, 127, 279.
(16) Gun’ko, Y. K.; Bulychev, B. M.; Soloveichik, G. L.; Belsky, V. K. J. Organomet. Chem. 1992, 424, 289.
(17) Smith, M. R.; Matsunaga, P. T.; Andersen, R. A. J. Am. Chem. Soc. 1993, 115, 7049.
(18) Fagan, P. J.; Manriquez, J. M.; Marks, T. J.; Day, C. S.; Vollmer, S. H.; Day, V. W. Organometallics 1982, 1, 170.
(19) Warner, B. P.; Scott, B. L.; Burns, C. J. Angew. Chem. Int. Ed. 1998, 37, 959.
(20) Evans, W. J.; Kozimor, S. A.; Ziller, J. W.; Kaltsoyannis, N. J. Am. Chem. Soc. 2004, 126, 14533.
(21) Diaconescu, P. L.; Arnold, P. L.; Baker, T. A.; Mindiola, D. J.; Cummins, C. C. J. Am. Chem. Soc. 2000, 122, 6108.
(22) Duval, P. B.; Burns, C. J.; Clark, D. L.; Morris, D. E.; Scott, B. L.; Thompson, J. D.; Werkema, E. L.; Jia, L.; Andersen, R. A. Angew. Chem. Int. Ed. 2001, 40, 3358.
(23) Lukens, W. W.; Beshouri, S. M.; Blosch, L. L.; Stuart, A. L.; Andersen, R. A. Organometallics 1999, 18, 1235.
(24) Pauling, L. The Nature of the Chemical Bond; Connell University Press: Ithaca, NY, 1960.
(25) Abel, E. W.; Long, N. J.; Orrell, K. G.; Osborne, A. G.; Šik, V. J. organomet. Chem. 1991, 403, 195.
(26) Okuda, J.; Herdtweck, E. Chem. Ber. 1988, 121, 1899.
(27) Saito, Y.; Takemoto, J.; Hutchinson, B.; Nakamoto, K. Inorg. Chem. 1972, 11, 2003.
(28) Schultz, M.; Boncella, J. M.; Berg, D. J.; Tilley, T. D.; Andersen, R. A. Organometallics 2002, 21, 460.
(29) The electronic structure of the bipy complex $\mathbf{6}$ is under investigation. The results of these physical studies will be published at a later date.
(30) Arney, P. S. J.; Burns, C. J. J. Am. Chem. Soc. 1995, 117, 9448.
(31) Arney, P. S. J.; Burns, C. J. J. Am. Chem. Soc. 1993, 115, 9840.
(32) Arney, D. J. S.; Burns, C. J.; Smith, D. C. J. Am. Chem. Soc. 1992, 114, 10068.
(33) Kiplinger, J. L.; Morris, D. E.; Scott, B. L.; Burns, C. J. Chem. Commun. 2002, 30.
(34) Haskel, A.; Straub, T.; Eisen, M. S. Organometallics 1996, 15, 3773.
(35) Evans, W. J.; Kozimor, S. A.; Ziller, J. W. Polyhedron 2004, 23, 2689.
(36) Villiers, C.; Adam, R.; Ephritikhine, M. Chem. Commun. 1992, 1555.
(37) Berthet, J. C.; Nierlich, M.; Ephritikhine, M. Eur. J. Inorg. Chem. 2002, 850.
(38) Zalkin, A.; Brennan, J. G. Acta Cryst. 1987, C43, 1919.
(39) Wells, A. F. Structural Inorganic Chemistry; Clarendon Press: Oxford, 1984; p1265.
(40) Jones, L. H. Spectrochim Acta 1959, 11, 409.
(41) We have been unable to obtain single crystals of this material. Further physical studies including EXAFS are in progress. The EXAFS studies were essential in defining the molecular structure of other oxo metallocenes described in reference 13.
(42) Bagnall, K. W.; Plews, M. J. J. Chem. Soc., Dalton Trans. 1982, 1999.
(43) Castro-Rodriguez, I.; Olsen, K.; Gantzel, P.; Meyer, K. J. Am. Chem. Soc. 2003, 125, 4565.
(44) Zi, G.; Jia, L.; Gottfriedsen, J. P.; Andersen, R. A. Unpublished.
(45) Coates, G. E.; Sutton, L. E. J. Chem. Soc. 1948, 1187.
(46) Sandorfy, C. In The Chemistry of the C-N Double Bond; Patai, S., Editor; Interscience: London, 1970; Chapter 1.
(47) Hanna, T. E.; Keresztes, I.; Lobkovsky, E.; Bernskoetter, W. H.; Chirik, P. J. Organometallics 2004, 23, 3448.
(48) Bryan, J. C.; Mayer, J. M. J. Am. Chem. Soc. 1990, 112, 2298. This paper contains an excellent discussion of the thermodynamic issues involved in the oxygen atom transfer reaction.
(49) Howard, W. A.; Trnka, T. M.; Waters, M.; Parkin, G. J. Organomet. Chem. 1997, 528, 95.
(50) Sweeney, Z. K.; Polse, J. L.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1998, 120, 7825.
(51) Polse, J. L.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1995, 117, 5393.
(52) Ugi, I.; Perlinger, H.; Behringer, L. Chem. Ber. 1958, 91, 2330.
(53) Sitzmann, H.; Wolmershäuser, G. Chem. Ber. 1994, 127, 1335.
(54) Jordan, A. Y.; Meyer, T. Y. J. Organomet. Chem. 1999, 591, 104.

