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Abstract
The effect of disorder on the normal state resistivity and the superconducting properties of
Nb3Sn is explored in a combination of ab initio calculations and microscopic theory. The crystal
symmetry is calculated to be preferentially tetragonal at a normal state resistivity below
27.0±1.4 mWcm, and preferentially cubic above this value, which is shown to be consistent
with the experimentally observed transition point. The phonon density of states, the Eliashberg
spectrum ( ) ( )a w wF2 , the electron–phonon coupling constant, the characteristic frequency, the
critical temperature Tc, and the upper critical magnetic field at 0K ( )H 0c2 are calculated over a
large normal state resistivity range and shown to be consistent with experimental observations.
The high degree of consistency between the calculation results and experimental observations is
a strong indication that the calculation approach utilized here, a combination of ab initio
calculations and microscopic theory, is a useful tool for understanding the superconducting and
normal state properties of Nb3Sn.

Keywords: Nb3Sn, microscopic theory, superconducting properties

1. Introduction

Since the discovery of superconductivity in Nb3Sn by
Matthias et al [1] in 1954, this material has attracted a sig-
nificant amount of scientific attention, not just because of the
exotic properties of the material, but also for the suitability of
the material for large-scale high-magnetic field applications,
such as the high luminosity large hadron collider, the inter-
national thermonuclear experimental reactor, nuclear magn-
etic resonance magnets, and high-magnetic field facilities.
Nb3Sn is well suited for these applications because Nb3Sn
wires can be produced and bundled into cables in a reliable
and relatively affordable manner. The superconducting
properties of Nb3Sn exceed the superconducting properties of
NbTi, which is another commonly used superconductor for
medium-magnetic field applications.

In spite of previous scientific research spanning several
decades, the superconductor Nb3Sn still has features that are
not yet fully understood, such as the profound degree by

which strain affects the superconducting properties of the
material. In addition to strain, the degree of disorder also
strongly affects the superconducting properties of Nb3Sn (see
for instance Orlando et al [2]). In this paper, a number of
phenomena of Nb3Sn are considered, which include the
preferential crystal symmetry, the Eliashberg spectra, the
critical temperature, and the upper critical magnetic field as a
function of disorder. The behavior is calculated through the
use of ab initio calculations and subsequently validated
through previously published experimental observations. The
purposes of this work are to provide a thorough review of
existing literature on the microscopic properties of Nb3Sn, to
combine microscopic theory with density functional theory
(DFT) calculations, and to validate calculation results for the
purpose of demonstrating the applicability of the approach for
understanding the exotic properties of Nb3Sn. For future
purposes, the calculation approach taken here could be used
to investigate specific phenomena of superconducting Nb3Sn,
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such as the large intrinsic strain sensitivity of its super-
conducting properties (also see [3]).

Firstly, three starting assumptions are discussed in
section 2. Secondly, a variety of calculation results pertaining
to normal state properties of Nb3Sn are compared to exper-
imental observations in section 3 for the purpose of providing
empirical validation for assumptions given in section 2. This
comparison includes results regarding the martensitic trans-
formation, the electron density of states, the Fermi velocity,
the phonon density of states, the Eliashberg spectrum, the
electron–phonon coupling constant, and the characteristic
phonon frequency. Thirdly, calculation results are shown
side-by-side with experimental observations on the super-
conducting phase boundary in section 4, which include the
critical temperature, the upper critical field and a discussion
on the influence of the martensitic transformation on the
critical temperature and upper critical field. Finally, this is
followed by a discussion in section 5 and conclusions in
section 6.

2. Starting assumptions

2.1. Assumption #1: electron lifetime broadening
approximation

In order to study the influence of disorder in the ab initio
calculations, a previously published concept after Testardi
and Mattheiss [4, 5] was used. In this concept, disorder is
introduced through electron lifetime broadening. The under-
lying idea is that the energy of an electron in a disordered
material is poorly defined in comparison to the energy of an
electron in a perfect crystal, because the electron in the dis-
ordered material scatters more often. The degree of uncer-
tainty, i.e. broadening, is expressed with [5]:

( )
t

=E , 1b

where Eb is the broadening energy in (eV), ÿ is the reduced
Planck constant in (eV×s), and τ is the mean scattering time
in (s). Thus, disorder is incorporated through a mean scat-
tering time τ, where a smaller τ indicates a higher degree of
disorder.

This broadening term is subsequently introduced in DFT
and density functional perturbation theory (DFPT) calcula-
tions, through which the effect of disorder on a stoichiometric
unit cell, i.e. two Sn ions and six Nb ions, is investigated.

The validity of this assumption is empirically demon-
strated through a variety of comparisons between calculation
results and experimental observations, in particular with
regards to the disorder-dependent occurrence of the marten-
sitic transformation in section 3.2.

2.2. Assumption #2: empirical α2 ωð Þ dependence

A second underlying assumption involves the electron–pho-
non coupling characteristic a2. The relevance of ( )a w2 is that
it relates the electron–phonon coupling constant λ to the
electronic and vibrational properties of the material. λ is

related to the phonon density of states ( )wF through [6]:

( ) ( ) ( )òl
a w w

w
dw=

F
2 , 2

2

where ( )a w2 is the electron–phonon coupling characteristic,
ω the vibrational frequency, and ( )wF the phonon density of
states. It was empirically demonstrated by Markiewicz [7]
that, in stoichiometric Nb3Sn, ( )a w2 is proportional to an
exponential function:

( ) ( ) ( )a w a w w= -exp , 32
0 0

where w0 is a characteristic frequency and a0 is a constant.
Analogous to the method as used by Markiewicz, ( )a w2 was
determined from published measurements of the Eliashberg
spectrum ( ) ( )a w wF2 (after Rudman et al [8], Shen [9], Geerk
et al [10], Freeriks et al [11], and Wolf [12]) and the phonon
density of states ( )wF (after Schweiss et al [13]), as shown in
figure 1. These results are then fitted with equation (3) to find
a value of 14.2 meV for w0 and 32.0meV for a0.

According to McMillan [14] and Hopfield [15] λ is
proportional to the electron density of states N (EF) through:

( ) ( )l
w

=
á ñ

á ñ
N E I

M
, 4F

2

2

where á ñI 2 is the mean electronic matrix element, M the
effective ion mass, and wá ñ2 the average of the squared
vibrational frequency in the Eliashberg spectrum. The phonon
density of states is a normalized quantity, i.e.:

( ) ( )ò w dw ºF 1. 5

The definition of wá ñ2 is as follows:

( ) ( ) ( )òw
l

a w w w dwá ñ º ´F
2

. 62 2

When combining equations (2), (4)–(6), a solution for ( )a w2

is found for a material with a single ion species:

( ) ( ) ( ) ( )a w
w

a
w

=
á ñ

=
I

M

N E N E

2
, 72

2
F

IM
2 F

where aIM
2 is a constant. However, Nb3Sn contains two dif-

ferent ion species. As argued by Schweiss [13], λ can be
approximated as the sum of the contributions of the various
ions, through:

( )l l l= + + . 8eff 1 2

The total phonon density of states is expressed as a sum of the
projected phonon densities of states, i.e. the sum of con-
tributions from individual ions:

( ) ( ) ( ) ( )w w w= + +F F F . 91 2

The effective electron–phonon coupling characteristic may
then be expressed in terms of the various constituents, with:

( ) ( ) ( ) ( ( ) ( ) )

( )

a w w
w

a w a w= + +F
N E

F F ,

10

eff
2 F

IM1
2

1 IM2
2

2

( ) ( ) ( ) ( )
( )

( )
a w

w
a w a w

w
=

+ +N E F F

F
. 11eff

2 F IM1
2

1 IM2
2

2

2
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A key point is that while equation (7) implies that a2 may be
expressed with a simple analytical equation, in the case of
multiple ion species a2 depends on the relative contributions
of the various ions, so that an analytical deduction is no
longer trivial. To account for the relative contributions of the
various ions, a weighting function is introduced:

( ) ( ) ( )
( )

( )
a w

a w a w
w

=
+ +

f
F F

F
, 12IM,eff

2 IM1
2

1 IM2
2

2

( ) ( ) ( ) ( )a w
w

a w=
N E

f . 13eff
2 F

IM,eff
2

Here aIM,eff
2 is a constant related to the effective ion mass and

the mean electronic matrix element and ( )wf is a weighting
function.

The value of N (EF) of stoichiometric Nb3Sn is taken at
15.4states/(eV×unit cell) according to Schachinger et al
[16], which is consistent with literature results by Orlando
et al [17] and Ghosh et al [18], also see section 3.3. With the
given value of N (EF) in stoichiometric Nb3Sn, the value of
aIM,eff

2 and the frequency-dependent ( )wf may be derived
from empirical observations. Combining equations (3) and
(13), a value of 2.08×10−3 eV2/(states×unit cell) is found
for aIM,eff

2 , and ( )wf is expressed as:

( ) ( ) ( )w w w w= -f exp . 140

( )wf is a function which peaks at the w0, which is equal to
14.2meV. This result is consistent with the analysis by
Schweiss et al [13], who pointed out the relatively large
contribution of phonons to the intermediate frequency range
of the Eliashberg spectrum, and attributed this result to the
relatively large degree of electron–phonon coupling of nio-
bium with respect to tin. In other words, Markiewicz’s
empirical description of the electron–phonon coupling char-
acteristic may be understood in terms of the relative con-
tributions of two different types of ions. Combining

equations (13) and (14) we find an empirical expression of
( )a weff

2 which is:

( ) ( ) ( ) ( )a w a w w= -N E exp , 15eff
2

IM,eff
2

F 0

where aIM,eff
2 is equal to 2.08×10−3 eV2/(states× unit

cell) and w0 is equal to 14.2meV.

To summarize, an attempt was made to analytically
derive the expression of aeff

2 but it was found that even when
a2 is known for a material with a single ion species, finding
an analytical expression for a more complex material such a
Nb3Sn is non-trivial. Therefore, the next best thing is done: to
combine microscopic theory with experimental observations
on stoichiometric Nb3Sn and find an empirical expression of

( )a weff
2 , where aIM,eff

2 and w0 are treated as global constants.
The validity of this approach is empirically justified in
section 3.4.

2.3. Assumption #3: constant effective Coulomb repulsion
term μ�

A third starting assumption pertains to the effective Coulomb
repulsion term. The proper value of *m is determined in two
separate manners.

Firstly, *m in both stoichiometric and off-stoichiometric
Nb–Sn was previously experimentally determined by
Rudman et al [8]. From figure 2 it is clear that *m stays within
the 0.13±0.02 range over the entire normal state resistivity
range.

Secondly, the Eliashberg spectra of several stoichio-
metric low-resistivity Nb3Sn samples were previously pub-
lished and the critical temperature of stoichiometric Nb3Sn is
known to be about 18K. The critical temperature is related to
the Eliashberg spectrum and *m . Two commonly used
expressions, both of which incorporate strong-coupling cor-
rections, are the critical temperature expressions by Kresin

Figure 1. Left: experimentally observed Eliashberg function ( ) ( )a w wF2 as a function of vibrational frequency ω of low-resistivity Nb3Sn,
determined from stoichiometric tunnel junctions, after Freeriks et al [11], Rudman et al [8], Shen [9], Geerk et al [10], and Wolf [12]. Right:
experimentally observed Eliashberg function divided by phonon density of states, after Schweiss et al [13], and empirical exponential fit.
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[19] and by Allen and Dynes [20], with:

( )w
=

á ñ

-l
T

e

0.25

1
, 16c,Kresin

2 0.5

2 eff

( ) ( )
* *

w l
l m lm

=
- +
- -

⎛
⎝⎜

⎞
⎠⎟T

f f

1.2
exp

1.04 1

0.62
, 17c,AD

1 2 log

where leff , f1, f2, and w log are related to λ, *m , and the
Eliashberg spectrum. For brevity, the full sets of equations are
not reproduced here, but the reader is referred to the original
papers.

With both the Eliashberg spectrum and critical temper-
ature of stoichiometric low-resistivity known, the only
unknown parameter is *m , which may then be calculated for
each measurement and each of the two expressions. The result
of this is shown in table 1. The average of *m , deduced for
five published Eliasberg spectrum and using both equations is
0.125, with a standard deviation of 0.04. This value is taken
as a global constant, which is found to be consistent with the
experimental observations over the entire investigated resis-
tivity range (figure 2).

3. Comparison of calculated versus experimentally
observed normal state properties

3.1. DFT and DFPT calculations

With these three assumptions, a series of DFT and DFPT
calculations are performed using quantum Espresso [21], an
open source software suite for electron-structure calculations.
The purpose is to allow for comparisons between calculation
results and experimental observations.

DFT and DFPT calculations are performed on a simu-
lated stoichiometric Nb3Sn unit cell, consisting of six nio-
bium and two tin atoms, which are arranged in the A15 crystal
structure (figure 3, left graph). Quantum Espresso uses a plane
waves basis set and pseudopotentials. Perdew–Wang 91
gradient corrected functional approximation pseudopotentials
[22] are used, and they are readily available on the Quantum
Espresso website [23]. All calculations were performed with a
kinetic energy cutoff of 40 Rydberg (540 eV) and a charge

density cutoff of 320 Rydberg (4350 eV). Structural optim-
ization and density of states calculations were performed with
a k-point grid consisting of 16×16×16 automatic Mon-
khorst–Pack divisions. Fermi velocity calculations were per-
formed with a k-point grid of 40×40×40 automatic
Monkhorst–Pack divisions. The phonon calculations were
performed with a k-point grid consisting of 8×8×8
Monkhorst–Pack divisions and a q-point grid consisting of
4×4×4 Monkhorst–Pack divisions. Following Testardi
[4], Fermi–Dirac broadening is utilized in all calculations,
where the amount of broadening is given by equation (1).

3.2. Occurrence of the martensitic transformation

The martensitic transformation is a phenomenon in which the
crystal structure spontaneously transforms from cubic to tet-
ragonal upon cooling below the martensitic transformation
temperature TM in low-resistivity Nb3Sn. This phenomenon
was studied in detail by Mailfert et al [24], Arko et al [25],
Watanabe et al [26], Axe et al [27], and Mentink et al [28] in
which the effect of the martensitic transformation on the
normal state resistivity rn and the phonon properties of low-
resistivity Nb3Sn were investigated. In these analyses, the
martensitic transformation temperature TM was determined at
45±7K, which corresponds to a normal state resistivity of
27±3 mWcm [28].

Devantay et al [29] and Zhou et al [30] performed studies
of binary Nb–Sn bulk samples with a variety of tin con-
centrations. In both investigations the normal state resistivity
at Tc, the composition, and the effect of the martensitic
transformation on selected x-ray diffraction peaks at room
temperature and at 10K was determined. According to
Devantay et al, a sample with an average tin concentration of
24.4at% and a normal state resistivity of 19mWcm is a mix
of cubic and tetragonal Nb3Sn at 10K, while in a sample with
a tin concentration of 23.9 at% and a normal state resistivity
of 23mWcm, no indication of tetragonal distortion was
observed. In the investigation by Zhou et al, predominantly
tetragonal Nb3Sn was observed in three samples with normal
state resistivities below 20.9mWcm, while the material was
shown to be almost entirely cubic for samples with normal
state resistivities above 31.3mWcm (not including a sample
with an unusually high normal state resistivity, which the

Figure 2. Effective Coulomb repulsion term *m as a function of rn of
Nb–Sn after Rudman et al [8] and assumed globally constant *m .

Table 1. Values for λ, wá ñ2 0.5 and *m of weakly disordered
stoichiometric Nb3Sn after Rudman et al [8], Shen [9], Geerk et al
[10], Freeriks et al [11], and Wolf [12], mean values, and standard
deviations.

λ wá ñ2 0.5 (meV) *mKresin
*m -Allen Dynes

Freeriks 2.55 10.9 0.17 0.17
Wolf 1.79 15.2 0.16 0.15
Shen 1.56 13.9 0.09 0.11
Geerk 1.50 13.8 0.08 0.06
Rudman 1.75 14.2 0.13 0.12
Average 1.83 13.6 0.127 0.122
Std.dev 0.42 1.6 0.042 0.044
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author attributed to NbSn2 grain boundary precipitation). In
experiments by Goldacker et al [31, 32], it was observed that
the martensitic transformation in stoichiometric Nb3Sn could
be prevented through various additions including tantalum,
titanium, nickel, gallium, and hydrogen. The martensitic
transformation was completely suppressed in samples with
0.6 at% H, 2.8 at% Ta, 1.3 at% Ti, and 1 at% Ni, with normal
state resistivities of 37mWcm, 29mWcm, 33mWcm, and
30mWcm, respectively. The martensitic transformation did,
however, occur in a binary bulk sample, also see Guritanu
et al [33], and a sample with 0.9 at% Ga, with normal states
resistivities of 13 and 23mWcm. The martensitic transfor-
mation temperature range of 20–50K was observed in a
sample with 1.7 at% Ta and a normal state resistivity of 26
mWcm, and it was concluded that 1.7 at% is very close to the
critical tantalum concentration that is required to suppress the
martensitic transformation.

In summary, the literature results show that there is a
critical value of resistivity (25 ± 3 mWcm), above which the
material remains cubic (i.e. the martensitic transformation is
suppressed) and below which the transformation occurs,
independently of whether this resistivity is caused by off-
stoichiometry, the presence of ternary impurities, or a non-
zero temperature.

The effect of disorder on the optimal crystal structure is
investigated here by performing structural optimizations at
various values of τ, where τ is indicative of the degree of
disorder. The positions of the ions inside the crystal as well as
the lattice parameters are optimized simultaneously, under the
assumption of no externally applied stress. The structural
optimizations start from an orthorhombic configuration and
are found to converge to either a cubic or a tetragonal crystal
symmetry (see figure 3, right graph). The calculation results
indicate that the crystal is preferentially cubic at t t< c and
tetragonal at t t> c, and the transition between cubic and
tetragonal crystal symmetry is found to occur at a critical
mean scattering time tc of (1.53 ± 0.08)×10−14 s.

Whenever the optimal crystal structure at a given τ is
tetragonal, the calculation result additionally indicates

sublattice distortion in the niobium chains, a phenomenon that
was previously studied from a theoretical perspective by
Labbé et al [34], from a computational perspective by Sadigh
et al [35] and Weber et al [36], and from an experimental
perspective by Shirane et al [37]. Conversely, no sublattice
distortion is observed whenever the optimal crystal structure
is cubic.

Following Testardi et al [4], Mattheis et al [5, 38],
Schachinger et al [16], and Allen et al [39–41], the normal
state resistivity is calculated through an expression which
relates rn to N (EF), vF, τ, and V, with:

( )
( )r

t
=

V

eN E v
, 18x

x
n,

F F,
2

where r xn, is the normal state resistivity in direction x in
(Ωm), V the molecular volume (m3), e is elementary charge in
(C), ( )N EF is electron density of states at the Fermi energy in
(states × eV−1´ unit cell−1), and v xF, the root mean square
Fermi velocity in direction x in (ms−1). According to Scha-
chinger [16], this expression is valid for Nb3Sn under the
assumption that the normal state resistivity is dominated by s-
wave scattering of non-magnetic impurities. Following
Pickett et al [42], the root mean square Fermi velocity is
calculated:

( )=V a a a , 19x y z

( )
( ( ) ( ( ) ))

( ( ) )
( )

å
å

d

d
=

-

-
v

E k n E k n E

E k n E

, ,

,
, 20x

k n x

k n

F,
2 ,

2
F

, F

( ) ( ) ( ) ( )=
+ D -

D
E k n

E k k n E k n

k
,

, ,
, 21x

x

x

( ) ( )( ) ( )
 

d =
+ +

t t
-

E
1

2 exp exp
, 22

E E

where k is a three-dimensional coordinate in momentum-
space in (m−1, m−1, m−1), n the band number, Dk the dis-
tance between two k-space coordinates in (m−1), E the energy
of electron band n at momentum-space coordinate k in (eV), x
a specific direction in momentum space, ÿ the reduced Planck

Figure 3. Left: A15 crystal structure of Nb3Sn. Right: mean scattering time dependent optimal lattice parameters.
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constant in (eV×s), and v xF, the Fermi velocity along
direction x in (ms−1). The total Fermi velocity is related to the
directional Fermi velocity through:

( )= + +v v v v , 23a b cF F,
2

F,
2

F,
2

where a, b, and c represent the three orthogonal crystal
directions (figure 3, left graph).

In this manner, the electron density of states, the Fermi
velocity, and the lattice parameters at τ=(1.53 ± 0.08)×
10−14 s are calculated with N (EF) =15.13±0.23 states/
(eV ×unit cell), v xF, =(1.225 ± 0.008) ´ 105 ms−1,
vF=(2.121 ± 0.014) × 105 ms−1, and = =a ax y

az=0.5312 nm. Using equation (18), the critical normal state
resistivity rc is calculated at 27.0± 1.4 mWcm, where Nb3Sn
is preferentially cubic when r r>n c and preferentially tetra-
gonal when r r<n c.

The calculated rc of 27.0±1.4 mWcm is consistent with
the critical resistivity 25±3 mWcm that is derived from
experimental observations, which is an indication of the
applicability of the electron lifetime broadening hypothesis
(section 2.1).

3.3. Comparison of calculated N (EF), vF, and phonon
dispersion curves to literature results

The normal state resistivity dependent electron density of
states N (EF) and Fermi velocity vF were previously derived
from experimental data by by Lim et al [43], Schachinger
et al [16], Orlando et al [17], and Ghosh et al [18]. The
analyses of Schachinger et al and Orlando et al were per-
formed on two samples with different Sn contents, while the
analysis of Ghosh et al was performed on stoichiometric
Nb3Sn in which disorder was introduced through radiation
damage. These analyses utilized various experimental obser-
vations, including the heat capacity, the critical temperature,
and the upper critical field.

Ab initio calculations of the normal state resistivity
dependent electron density of states and Fermi velocity are
performed and compared to literature results. The results are
found to be consistent for both the electron density of states
(figure 4) and the Fermi velocity (figure 5). The calculations
were only performed in the preferentially cubic regime (also

see section 3.2). Performing calculations on a single unit cell
in the preferentially tetragonal regime gives incorrect results,
because this implicitly and incorrectly assumes that the c-axis
is perfectly aligned throughout the crystal. In reality, it was
argued by Kartha et al [44] and experimentally demonstrated
by Goringe et al [45] and Onozuka et al [46] in the case of V3

Si, that the martensitic transformation results in tweed mod-
ulation. This phenomenon describes the division of the
sample into different regions, where the orientation of the
short c-axis (figure 3, right graph) varies between the regions.
Very fine tweed patterns are observed, with widths as fine as
10nm [45], i.e. only one order of magnitude above the lattice
constant of the material (see figure 3, right graph). It is not
understood how the formation of the tweed pattern affects the
electronic properties nor the local stress and strain state.
While this phenomenon might be incorporated in the DFT
calculations through the use of a very large supercell, the
computational requirements of such a calculation are extreme.
This is why the calculations in this paper only consider the
properties of preferentially cubic Nb3Sn.

In figure 6, calculated phonon dispersion curves are
compared to the experimental observations by Axe et al [47],
and Pintschovius et al [48], while the phonon density of states
at three different degrees of disorder is compared to an
experimental observation of the frequency dependent phonon
density of states, after Schweiss et al [13] (figure 7). This
comparison is somewhat imperfect, as it compares calculation
results of cubic and thus higher-resistivity Nb3Sn to exper-
imental results of low-resistivity Nb3Sn.

In an in-depth discussion of inelastic neutron scattering
measurements, Axe et al [27] identify two mechanisms that
contribute to a broadening of the phonon density of states,
which are phonon scattering off of thermally excited quasi-
particles and direct excitation of quasi-particles across the
superconducting gap by phonons. These two phenomena
contribute to a broadening with a full width half max
(FWHM) of 1.2 meV. To allow for a qualitative comparison
of the calculation results and the experimental observations,
the calculation results are convoluted with a gaussian function
with an FWHM of 1.2 meV (figure 7). This does not affect the
derived electron–phonon constant and the characteristic fre-
quency, as these are integrals over the entire frequency range.

Figure 4. Calculated electron density of states N (EF) as a function of
rn, compared to various literature results from Lim et al [43],
Schachinger et al [16], Orlando et al [17], and Ghosh et al [18].

Figure 5. Calculated root mean square Fermi velocity vF as a
function of normal state resistivity rn, compared to literature results
after Schachinger et al [16] and Orlando et al [17].
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Apart from these details, the calculation results are gen-
erally very similar to the experimental observations (figures 6
and 7). In general, the calculated frequencies of the various
vibrational modes are somewhat low in comparison to the
experimental observations, although it is not clear whether
this is a small systematic error in the calculation result or due
to the imperfect nature of the comparison discussed here.

3.4. Calculated versus experimentally observed Eliashberg
spectra of high-resistivity Nb3Sn

To validate whether w0 and aIM,eff
2 are indeed weakly

dependent or independent of disorder and thus may be con-
sidered as global constants (section 2.2), ( ) ( )a w wF2 of high-
resistivity Nb3Sn is determined from the calculated electron
and phonon density of states through equation (15) and
compared to experimental observations of stoichiometric and
off-stoichiometric Nb–Sn tunnel junctions by Rudman et al
[8] (figure 8). Consistent with Rudman’s observations, the
calculation result indicates that three peaks are present and

that the amplitude of ( ) ( )a w wF2 decreases with increasing
amount of disorder (i.e. increasing rn). The frequencies of the
peaks in the calculated spectra are somewhat low frequency in
comparison to the experimental result, which could mean that
a small systematic error is present in the phonon density of
states calculation. However, Rudman et al [8] points out that
some anomalies were observed in the tunnel junction data,
which might also imply a slight systematic upward bias in the
experimental results.

From the calculated Eliashberg spectra, λ and wá ñ2 0.5 are
derived through equations (2) and (6) and compared to
experimental observations by Rudman et al [8] (figure 9). In
addition, from the Eliashberg spectra published by various
authors (figure 1, left graph), λ and wá ñ2 0.5 are derived using
equations (2) and (6) (table 1). The calculated values of λ are
very close to Rudman’s observations, while the calculated
wá ñ2 0.5 is somewhat lower than Rudman’s values over the
entire rn range, albeit within one standard deviation of the
mean literature values (table 1).

In summary, the calculated electron–phonon coupling
constant λ is consistent with experimental results over the
investigated disorder range. The characteristic frequency
wá ñ2 0.5 is somewhat below the experimentally observed
number, but the general trend is consistent. This result

Figure 6. Calculated phonon dispersion curves of disordered Nb3Sn,
compared to experimental observations. The phonon dispersion
curves are calculated at τ=0.76×10−15s, which corresponds to a
normal state resistivity of 57.3mWcm. The calculation result is
compared to experimental observations by Pintschovious et al [48]
and Axe et al [47].

Figure 7. Calculated phonon density of states ( )wF as a function of
vibrational frequency ω, compared to experimental observations.
The phonon densities of states are calculated at τ=1.45×10−15s,
0.76×10−15s, and 0.51×10−15s, which corresponds to 28.4,
57.3, and 89.8 mWcm respectively. The experimental result is of low-
resistivity Nb3Sn, after Schweiss et al [13].

Figure 8. Calculated Eliashberg function ( ) ( )a w wF2 as a function of
ω of disordered Nb3Sn, compared to ( ) ( )a w wF2 derived from off-
stoichiometric tunnel junctions, after Rudman et al [8].

Figure 9. Calculated electron–phonon coupling constant λ and
characteristic phonon frequency wá ñ2 0.5 as a function of normal state
resistivity rn, compared to values derived from experimental
observations by Rudman et al [8]. Also shown are the average
literature values and standard deviations of low-resistivity Nb3Sn,
shown in table 1.
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indicates that, within the uncertainty of this comparison, it
seems reasonable to treat aIM,eff

2 and w0 as global constants,
which supports assumption #2 (section 2.2).

4. Comparison of calculation results and
experimental observations on the superconducting
phase boundary

4.1. Critical temperature T c as a function of normal state
resistivity

Using the expressions for critical temperature given by Kresin
(equation (16)) and Allen–Dynes (equation (17)), the normal
state resistivity dependent critical temperature is calculated
and compared to experimental results (figure 10).

In this comparison, the emphasis is placed on inductive
and heat capacity measurements instead of resistivity mea-
surements. While it is relatively straightforward to produce
samples of Nb3Sn with very sharp Tc transitions at Tc ≈
18 K, producing low-Tc Nb–Sn samples with sharp Tc tran-
sitions is a major challenge. Investigations of the Tc width in
low-Tc samples indicate that the Tc transitions are typically
several Kelvin wide (see Hellman et al [49] and Mentink et al
[50]). In resistivity measurements, the measured normal state
resistivity may be considered an effective average, but only a
fraction of the sample needs to be superconducting in order to
form a superconducting path and short the sample. This
means that an upward bias in a direct Tc versus rn measure-
ment is unavoidable. Inductive and heat capacity measure-
ments do not suffer from this problem so that the latter in
particular is considered a ‘true’ bulk measurement. Unfortu-
nately, the normal state resistivity of samples investigated
through inductive and heat capacity measurements is not
always known. However, the relationship between normal
state resistivity and composition in binary Nb–Sn samples
where disorder is not introduced through some other fashion
is well understood (Godeke [51], Flükiger [52]), and was
empirically summarized by Godeke et al [51], with:

( ) ( ( ) ) ( )r b b b= - - +91 1 7 0.75 3.4 for 25%, 24n
4

where β is the atomic tin fraction, and rn is the residual

resistivity (i.e. the normal state resistivity slightly above Tc)
in (mWcm). The uncertainty in this description is estimated to
be about 5 mWcm. Thus, in measurements where the off-
stoichiometric composition rather than the normal state
resistivity is known, the normal state resistivity is calculated
through equation (24).

Besides the resistivity measurements of Orlando et al
[17], in which disorder is introduced through anti-site dis-
order, aluminum additions, and off-stoichiometry (indicated
as ‘stoi.’, ‘al.add’, and ‘offst.’ respectively in figure 10), and
the resistivity measurements of Ghosh et al [18] in which
disorder is introduced through electron irradiation (indicated
as ‘elec. irad’ in figure 10), various heat capacity and
inductive measurements of off-stoichiometric Nb–Sn samples
are shown, after Hellman et al, Devantay et al [29], Moore
et al [53], and Rudman et al [54].

The comparison between the calculation results and
experimental observations shows a high degree of con-
sistency, in particular with regards to induce and heat capacity
measurements.

4.2. Upper critical magnetic field Hc2 as a function of critical
temperature Tc

In addition to the critical temperature, the upper critical field
is investigated. The upper critical magnetic field in phonon-
mediated superconductors has been thoroughly investigated
in the past, resulting in a number of descriptions. After the
initial success of the Ginzburg–Landau–Abrikosov–Gor’kov
(GLAG) theory [55–57], various corrections were considered
and developed to account for the different phenomena which
affect the upper critical magnetic field. The temperature
dependence of Hc2 was described by Maki and De Gennes
[58], under the assumption of a dirty superconductor, a
spherical Fermi surface, a weakly energy dependent electro-
nic density of states, and a weak-coupling interaction. Sub-
sequent refinements were made to include various effects,
such as the impurity dependence of Hc2 by Helfand et al
[59, 60], Fermi surface anisotropy by Hohenberg et al [61]
and Schachinger et al [16], spin–orbit coupling by Werthamer
et al [62], Schopohl et al [63], and Rieck et al [64], aniso-
tropic scattering by Schopohl et al [65], Pauli paramagnetic
limiting by Orlando et al [17, 66] and Rieck et al [64], strong
coupling effects by Werthamer et al [67], Masharov [68], and
Schossmann et al [69], p- and d-wave scattering by Rieck
et al [64] and the energy-dependence of N (EF) by Schoss-
mann et al [70]. A useful overview of these various
mechanisms is provided by Rieck et al [64].

A number of authors investigated the temperature
dependence of the upper critical magnetic field, in an attempt
to determine which of the aforementioned phenomena should
be considered to get a realistic description of Nb3Sn. Orlando
et al [17] considered the influence of Pauli paramagnetic
limiting and spin–orbit coupling and found that a large
amount of spin–orbit coupling was required to counteract the
reduction of ( )H 0c2 due to Pauli paramagnetic limiting.
However, in a subsequent paper by the same authors [66], it
was pointed out that the original paper incorrectly assumed a

Figure 10. Calculated critical temperature Tc as a function of normal
state resistivity rn, compared to experimental literature data.
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first-order transition rather than a second-order transition,
resulting in an incorrect description of the Pauli limiting field.
Schachinger et al [16] used a description which emphasized
Pauli paramagnetic limiting and Fermi surface anisotropy,
without considering spin–orbit coupling, and investigated the
same experimental data that was obtained by Orlando et al
[17]. In this approach, a free parameter was used to describe
the extent by which Fermi anisotropy raises ( )H 0c2 .

Rieck et al constructed a highly comprehensive model
that takes into account various phenomena, such as Fermi
surface anisotropy, Pauli limiting, s-, p- and d-wave scatter-
ing, and spin–orbit coupling where the magnitude of each of
these phenomena is described with a free parameter. In
evaluating the same experimental data that Orlando et al [17]
obtained, Rieck et al determined that the experimental data
was accurately described with dirty limit theory in the case of
the off-stoichiometric sample and clean limit theory in the
case of the low-resistivity stoichiometric sample, and that
allowing for fitting of the various free parameters which
account for the influence of the other physical phenomena
only led to a minor improvement in fitting accuracy. In other
words, the influence of the various phenomena is minor or the
influences of the various phenomena cancel each other out.

Consistent with this analysis, it was subsequently
demonstrated by Godeke et al [71] that the Maki–De Gennes
description (which is a dirty limit, weak coupling approx-
imation that does not consider other phenomena such as Pauli
limiting and spin–orbit coupling) matches the observed
temperature dependence of Hc2 in a large variety of binary
and ternary Nb3Sn wires, bulk samples, and thin films.

It should be emphasized that most of these analyses
mainly concern themselves with the experimentally deter-
mined temperature-dependent upper critical field. Here,
however, Hc2 at 0K is calculated from other microscopic
parameters such as the calculated Fermi velocity.

Figure 11 shows a collection of experimental observa-
tions of ( )H 0c2 as a function of Tc in binary and ternary
Nb3Sn samples. Unlike the ( )rTc n dependence (figure 10),
where the use of resistively determined Tc as a function of rn
measurements can lead to incorrect results, resistance mea-
surements can be used to determine the ( )H 0c2 as a function
of Tc relationship, because in the preferentially cubic regime,

( )m H 00 c2 rises with increasing Tc and thus a resistive mea-
surement of ( )H Tc2 probes the same compositional fraction
inside a sample as a resistive measurement of Tc.

The experimental observations (figure 11) consist of
resistive measurements of thin films, bulk samples, and
strands, after Mentink et al [50, 72], Zhou et al [30], Jewell
et al [73], Orlando et al [2], Devantay et al [29], and Godeke
et al [71]. In addition, radio-frequency measurements of bulk
material were taken by Foner et al [74], and magnetic mea-
surements of bulk material were taken by Arko et al [25] and
Jewell et al [73]. Critical current density measurements of
binary thin film samples were performed by Mentink et al [3].
Magnetic measurements of Nb3Sn wires were taken by Naus
et al [75], in which Tc and the Kramer extrapolated

( )H K4.2K were determined. From these measurements,

( )H 0c2 was extrapolated through a method that is discussed
elsewhere [50].

Here, the upper critical field is calculated in the dirty to
intermediate limit, where strong-coupling corrections and
Pauli limiting are accounted for. The influence of these phe-
nomena is chosen because they are well-described in literature
and do not require the use of free parameters. The accuracy of
the calculations may potentially be enhanced further, which is
discussed in section 5.

The slope of d d+H Tc2 at 0T is described by GLAG
theory [5, 17, 55–57], with:

( )
∣

( )
( )

( )
( )


d m
d

p
z

h l-
=

+⎛
⎝⎜

⎞
⎠⎟

H

T

k

e

T

v X Z

24

7 3

1
, 25T

H0 c2
2

B
2

c
2

F
2c

c2

where ( )d m dH T0 c2 is in (T K−1), ( )z 3 is Apery’s constant.
hHc2 is the strong coupling correction factor for m H0 c2 [68]. Z
is the reduced collision frequency [59], which is closely
related to mean scattering time:
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The upper critical field +Hc2 is calculated from ( )d dH Tc2

using parameter *hc2, with:
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Combining equations (25) and (28), the upper critical

Figure 11. Calculated upper critical field ( )m H 00 c2 as a function of
critical temperature Tc, compared to literature data.
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magnetic field without Pauli limiting +Hc2 is expressed as:
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According to Masharov et al [68] the strong coupling cor-
rection factor hHc2 is expressed as:
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where k TB c is in (eV), wá ñ2 0.5 is in (eV), and hHc2 is a
dimensionless parameter. At Tc =17.2 K (i.e. rn=28.4
mWcm), hHc2 is calculated at 1.13, while at Tc =7.3 K (i.e.
rn=90 mWcm), it is calculated at 1.03. The Z dependent *hc2
is taken from Rieck et al [64]. This function is equal to the
dirty limit value of 0.69267 over most of the disorder range,
but it rises to 0.72 near the clean limit. The Z dependent X is
calculated through equation (27). The result is linearized
between Z=1.56 to Z=17.5:

( ) ( ) ( )* » +-X Z h Z Z0.608 0.766, 311
c2

which results in an average deviation of 0.4% and a maximum
deviation of 0.6% between the exact and linearized expres-
sions in the range of Z=1.56–17.5. ( )+H 0c2 is then expressed
as:
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After Orlando et al [66], the Pauli paramagnetic limiting field
in the absence of spin–orbit coupling is expressed as:

( ) ( ) ( )m l= ´ +H T0 1.858 1 , 35P0 c

where Tc is in (K) and m H0 P is in (T). Following Orlando et al
[66], the expression for ( )H 0c2 is:

( ( )) ( ( )) ( ( )) ( )= +- + - -H H H0 0 2 0 . 36c2
2

c2
2

P
2

Relative to the ( )+H 0c2 , Pauli limiting reduces ( )H 0c2 by 13%
at Tc =17.2 K (i.e. rn=28.4 mWcm), and 17% at Tc =
7.3 K (i.e. rn=90 mWcm).

The final result is shown in figure 11. It is clear that the
calculated results are generally consistent with experimental
observations, albeit somewhat on the low end of the exper-
imental range, in particular in the Tc regime of 14–16K.

4.3. Effect of the martensitic transformation on Tc and μ0Hc2 0ð Þ

In figure 11 a significant drop in ( )m H 00 c2 is observed near
Tc =18K, that seems to correlate with the onset of the

tetragonal regime. Here we argue that these two phenomena
are related.

To investigate this possibility, a calculation is performed
where the martensitic transformation is suppressed, i.e. rather
than allowing the unit cell to find the optimal (non-cubic)
configuration, cubic symmetry is enforced and the properties
of the crystal are evaluated. Unfortunately, only the electronic
properties of this unstable crystal can be evaluated, as the
unstable nature prevents calculation of the vibrational prop-
erties. Instead, the phonon density of states at τ=1.45×
10−14s, corresponding to rn=26.7mWcm, is taken. At
τ=1.91×10−14s, corresponding to rn= 21.4mWcm, a
critical temperature of 18.8K and an upper critical field of
34.5T is found, thus implying that if the tetragonal trans-
formation does not occur, the superconducting properties
continue to rise with decreasing normal state resistivity.

This statement is controversial and in past publications
two arguments were given for to explain why the occurrence
of the martensitic transformation does not result in the
reduction of m H0 c2:

First of all, it is commonly assumed that Nb3Sn may be
approximated as a dirty limit superconductor. This means that
in equation (26), Z may be approximated at ¥ and X(Z) may
be approximated at ´ Z0.853 . Also ignored strong coupling
effects and Pauli limiting, the upper critical field may then be
related to the electronic heat capacity, so that a rather simple
expression of ( )m H 00 c2 may be deduced:

( )( ) ( )*g
p l

=
+k N E

e
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3
, 37

2
B
2

F

( ) ( )*m g r=H C T0 , 380 c2,dirty dirty c n
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where *g is the renormalized electronic heat capacity in (J
K−2m−3) (see, for instance, analyses by Orlando et al [17]
and Guritanu et al [33]). Thus, if this equation is applicable
towards the clean limit, then ( )m H 00 c2 is proportional to the
normal state resistivity, so that one may speculate that the
drop in ( )m H 00 c2 is due to the drop in rn. A problem with this
expression is that Nb3Sn is a intrinsic typeII superconductor,
which means that it exhibits type-II behavior without being in
the dirty limit (see for instance Fetter and Hohenberg [76]).
Indeed, while the calculation result matches the experimental
in the dirty limit (at Tc=7.2 K), ( )m H 00 c2 =16.2T is
found at Tc=16.2K which is highly inconsistent with the
experimental data (figure 11). Given the inapplicability of
equation (37) towards the clean limit, as well as the fact that

( )m H 00 c2 is no longer proportional to rn when the material is
not in the dirty limit, this argument appears to be incorrect.

A more recent argument is given by Zhou et al [30], in
which a detailed experimental investigation was undertaken
to show that Nb–Sn samples may contain tetragonal Nb3Sn
while simultaneously having an upper critical field of 29T, as
determined by resistive measurements. However, after a
subsequent thorough investigation which considered the
possibility of minor compositional inhomogeneity in the
samples, it was concluded that the observed ( )m H 00 c2 of 29 T
is likely due to a small fraction of cubic Nb–Sn in the
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samples, and that the drop in ( )m H 00 c2 does coincide with the
occurrence of tetragonal Nb3Sn [77].

5. Discussion

One of the starting assumptions taken in this paper is that
disorder is a major determinant for the occurrence of the
martensitic transformation, Tc and ( )H 0c2 , regardless whether
disorder is introduced through anti-site disorder, radiation
damage, or off-stoichiometry, as was previously argued by
Orlando et al [2]. The consistency between the various
calculation results and experimental observations is a strong
indication that this assumption is indeed reasonable.

One could further speculate that disorder uniquely
determines the microscopic properties (i.e. N (EF), vF, ( )wF ,
lmfp) of Nb3Sn, regardless of the manner in which disorder is
introduced. The validity of this statement was investigated by
performing supercell calculations at various niobium to tin
ratios for a given τ. The results of this investigation indicate
that the presence of excess niobium results in a reduced N
(EF) even when τ is fixed. For instance, fixing τ at
1.27×10−14s and comparing supercells with 25, 23.4 and
21.9 at% Sn, N (EF)=14.1, 11.2, and 9.7 states/(eV × unit
cell) are found, respectively. Thus, when off-stoichiometry is
considered, τ does not uniquely determine the microscopic
properties and electron-lifetime broadening should be con-
sidered a rather poor proxy for off-stoichiometry. The strong
link between rn, Tc and ( )m H 00 c2 as observed by Orlando
et al [2] may be attributed to the fact that rn is inversely
proportional to N (EF), Tc is roughly proportional to λ and
thus to N (EF), and ( )m H 00 c2 is strongly determined by Tc.
Noting that Tc versus rn is roughly inversely proportional to
rn (figure 10) it is clear that a reduction in N (EF) due to off-
stoichiometry leads to a similar Tc versus rn dependency as a
reduction in N (EF) resulting from an increase in τ. In sum-
mary, introducing an electron-lifetime broadening assumption
to investigate disorder is a reasonable approach for investi-
gating the influence of disorder in general, but further
research is needed to distinguish between different types of
disorder, for instance anti-site disorder and off-stoichiometry.

In this paper, the effective Coulomb repulsion term is
treated as a constant equal to 0.125. This statement is based
on experimental evidence, for instance the experimentally
observations of *m by Rudman in a series of Nb3Sn samples
over a wide disorder range (figure 2). In the paper by Ben-
nemann and Garland [78] two different estimates are provided
for transition metals, yielding 0.2 and 0.17 for Nb3Sn with a
critical temperature of 18K. Conversely, in other papers the
coupling constant is commonly held at about 0.1 for Nb3Sn
over a wide disorder range [17, 19, 20]. Given this uncertainty
in the literature and the availability of experimental data by
Rudman (figure 2), the constant *m used here seems reason-
able. To illustrate, an uncertainty in *m of 0.02 corresponds to
a Tc uncertainty of about 1K over the entire disorder range.

The calculated ( )m H 00 c2 versus Tc curve in figure 11 is
generally consistent with the experimental data within the
scatter of the experimental data. Previous published

investigations and reviews identify a host of potential phe-
nomena that may impact ( )m H 00 c2 (see section 4.2). For
instance, for a given Tc, ( )m H 00 c2 may be further increased
due to Fermi surface anisotropy as described by Schachinger
et al [16], leading to a reported 5% increase (i.e. another 1.3
T) in ( )m H 00 c2 at Tc =16K. It is clear from figure 11 that
incorporating this phenomenon would indeed result in greater
overlap between the experimental and calculated ( )m H 00 c2 . A
downside of Schachinger’s description and other similar
descriptions is that it does not directly relate the degree of
increase in ( )m H 00 c2 to properties of the Fermi surface but
rather relies on free parameters. This is undesirable as it
affects the reliability of the calculations, and as such, a less
accurate description of the upper critical field is used here.

6. Conclusions

A detailed investigation is performed to investigate the effects
of disorder on the normal state and superconducting proper-
ties of Nb3Sn. This investigation combines first-principles
calculations with microscopic theory. A comprehensive lit-
erature review is performed to accomplish this goal.

Evaluated properties include the occurrence of the mar-
tensitic transformation, the electron density of states, the
Fermi velocity, the phonon density of states, the Eliashberg
spectrum, the critical temperature, and the upper critical
magnetic field as a function of disorder. This investigation
provides a comprehensive review of how Nb3Sn may be
understood in terms of microscopic theory.

The calculation results are validated through comparisons
to experimental observations as well as previously published
calculation results. An excellent degree of consistency is
demonstrated.
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