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Abstract

Class IA phosphoinositide 3-kinase (PI3K) is essential for clonal expansion, differentiation, and effector
function of B and T lymphocytes. The p110δ catalytic isoform of PI3K is highly expressed in lymphocytes
and plays a prominent role in B and T cell responses. Another class IA PI3K catalytic isoform, p110α, is a
promising drug target in cancer but little is known about its function in lymphocytes. Here we used highly
selective inhibitors to probe the function of p110α in lymphocyte responses in vitro and in vivo. p110α
inhibition partially reduced B cell receptor (BCR)-dependent AKT activation and proliferation, and diminished
survival supported by the cytokines BAFF and IL-4. Selective p110δ inhibition suppressed B cell responses
much more strongly, yet maximal suppression was achieved by targeting multiple PI3K isoforms. In mouse
and human T cells, inhibition of single class IA isoforms had little effect on proliferation, whereas pan-class
I inhibition did suppress T cell expansion. In mice, selective p110α inhibition using the investigational agent
MLN1117 (previously known as INK1117) did not disrupt the marginal zone B cell compartment and did not
block T cell-dependent germinal center formation. In contrast, the selective p110δ inhibitor IC87114
strongly suppressed germinal center formation and reduced marginal zone B cell numbers, similar to a pan-
class I inhibitor. These findings show that although acute p110α inhibition partially diminishes AKT
activation, selective p110α inhibitors are likely to be less immunosuppressive in vivo compared with p110δ
or pan-class I inhibitors.

Keywords: Cancer, Drug Discovery, Lymphocyte, PI 3-Kinase (PI3K), Signal Transduction
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Introduction

PI3Ks are a family of eight lipid kinase enzymes that produce 3-phosphorylated phosphoinositides in cellular
membranes (1). Four of these (p110α, p110β, p110γ, and p110δ) are categorized as class I PI3Ks based on
their ability to use phosphatidylinositol 4,5-bisphosphate as a substrate to generate phosphatidylinositol
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3,4,5-trisphosphate (PIP3).2 The production of PIP3 leads to recruitment of selected proteins to the
membrane and coordinates the assembly of signaling complexes that drive cellular responses to receptor
engagement. A hallmark of cancer cells is an elevation in PIP3, and targeting class I PI3K is a priority in
cancer drug discovery (2–5). Each of the class I PI3K catalytic isoforms has been implicated in
tumorigenesis and/or maintenance. Of these, p110α has received the most attention because gain-of-
function mutations in the PIK3CA gene encoding this enzyme are very common in human cancer (6). Mouse
models have shown that PIK3CA mutations can be drivers of tumorigenesis (7, 8) and cell line studies have
shown that the PIK3CA mutation status correlates with sensitivity to inhibitors of p110α (9, 10). A distinct
PI3K isoform p110β has been suggested to control basal PIP3 production and drive cancer cells when PTEN,
the major PIP3 phosphatase, is inactivated (11, 12). p110α and p110β are categorized as class IA enzymes
because the catalytic subunit forms a dimer with a regulatory subunit containing SH2 domains (p85α, p55α,
p50α, p85β, or p55γ). A third class IA catalytic isoform, p110δ, has an emerging role in cancers derived
from B lymphoid cells (3). The other class I PI3K catalytic isoform, p110γ, is categorized as class IB
because it associates with distinct regulatory subunits (p101 or p84).

It is now appreciated that tumor growth and survival can be either restrained or promoted by cells of the
immune system (4, 14, 15). Consequently, it is important to understand how novel anti-cancer drugs
impact immune cells. The ideal targeted therapy would enhance anti-tumor immunity while preserving
patient immunity to infection. Two class I PI3K isoforms that are highly expressed in leukocytes, p110γ and
p110δ, are known to have pleiotropic functions in a variety of immune cells (1, 16). For years there have
been useful reagents to study p110γ and p110δ, including selective small molecule inhibitors and mouse
strains with null mutations, conditional alleles, and kinase-inactive knock-in alleles. By contrast, little is
known about p110α function in the immune system even though this isoform is expressed ubiquitously.
Mice with null or kinase-inactive alleles of Pik3ca die during embryonic development (17–19). B cell-specific
deletion of Pik3ca did not reveal a unique function of p110α, but suggested a redundant function with
p110δ in peripheral B cell survival (20). p110α deletion in B cells was accompanied by increased p110β
expression, potentially compensating for p110α loss (20). Identifying the acute effects of p110α inhibition
has been hindered by the absence of highly selective small molecule inhibitors.

In this study, we made use of rationally designed compounds with high selectivity for p110α relative to
other PI3Ks and to other cellular kinases. We compared two investigational agents, A66 and MLN1117,
along with a set of inhibitors targeting p110β, p110α/p110β, p110δ, or all class I isoforms. The results
provide the first evidence that p110α has a measurable quantitative input to AKT phosphorylation and B
cell proliferation following BCR cross-linking. However, selective p110α inhibition has a minimal effect
overall on B cell and CD4 T cell function, especially when compared with p110δ inhibition. These findings
support the hypothesis that p110α inhibitors in clinical trials will not strongly suppress adaptive immune
function.

Go to:

EXPERIMENTAL PROCEDURES

Antibodies

For phospho-flow staining, rabbit antibodies specific for phosphorylated proteins were from Cell Signaling
Technologies: Akt (# 4060) and rS6 (# 5364). For flow cytometry and immunohistochemistry, anti-mouse
antibodies were: CD4-PE, B220-PE, IgD-eFluor405, IgM-FITC, CD21-FITC, CD23-PE, CD24-PE, CD11d-APC,
MOMA-FITC, GL7-Alexa Fluor 647, hCD3-APC, hCD19-PE, DyLight604-conjugated goat anti-rabbit antibody,
and streptavidin-conjugated PE or APC (SA-PE/SA-APC). All flow cytometry antibody reagents were
purchased from eBioscience and Biolegend. Succinimidyl ester 5-(and -6) carboxyfluorescein diacetate
(CFSE), 7-aminoactinomycin D, Fluo-3, and Fura Red were obtained from Invitrogen.

Intracellular Phosphostaining

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#FN2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B6
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B7
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B9
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B10
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B11
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B12
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B4
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B15
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B16
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B17
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B19
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B20
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#B20
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3581375/?report=printable#


Selective Inhibition of Phosphoinositide 3-Kinase p110α Preserves Lymphocyte Function

file:////C|/...tions PDF-PMC Version/Selective Inhibition of Phosphoinositide 3-Kinase p110α Preserves Lymphocyte Function.htm[5/9/2014 3:59:28 PM]

Intracellular phosphorylation of Akt (S473) and S6 (S240/44) was performed as previously described (21).
Briefly, single-cell suspensions of murine splenocytes from 8–12-week-old Balb/c mice were first treated
with ACK lysis buffer to remove RBCs. A total of 106 cells were treated with different inhibitors for 15 min
prior to stimulation using 10 μg/ml of anti-IgM F(ab′)2 (Jackson ImmunoResearch) for 15 min in a 37 °C
water bath. Cells were immediately fixed with 16% paraformaldehyde stock solutions for a final 1.6%
concentration for 10 min at RT. Cells were subsequently washed, then permeabilized with ice-cold methanol
for 20 min on ice. Before staining, cells were washed twice in FACS buffer (PBS containing 0.5% BSA and
0.02% sodium azide). Unconjugated primary antibodies were added (pAkt (S473) 1:50, pS6 (S240/44)
1:200) for 1 h at RT. Samples were washed once with FACS buffer and an antibody mixture containing
DyLight604-conjugated goat anti-rabbit antibody (1:300) and B220-PE antibody (1:200) was added for 30
min on ice. Specifically for pAkt (S473) analysis, the signal was amplified by using a biotin-conjugated
donkey anti-rabbit antibody (1:300; Southern Biotech) for 30 min at RT before adding B220-PE and SA-
APC. After staining, cells were washed once with FACS buffer and analyzed on a FACS Calibur equipped
with 488- and 635-nm laser lines.

In Vitro Cell Proliferation

SK-OV-3 and U87MG cell lines were obtained from ATCC. A total of 5000 cells/well in low serum media
(0.2% FBS) were seeded in triplicate wells of a 96-well flat bottom culture plate for 18 h to adhere. Media
was aspirated and inhibitors in 0.2% FBS media were added to each well at the indicated concentrations.
After 48 h, cell viability was determined using the MTS assay (Cell Titer 96 Aqueous One solution cell
proliferation assay kit; Promega) with absorbance (490 nm) measured in a microplate spectrophotometer.

B Cell Culture

B cells were purified by negative selection using the B cell isolation kit (Miltenyi). For CFSE proliferation
assays, purified B cells were labeled with 5 μm CFSE in PBS containing 2% FBS for 5 min at RT. CFSE-
labeled B cells were cultured for 3 days in the presence of the indicated inhibitors at a density of 106

cells/ml either in 24- or 48-well plates in lymphocyte media (LCM; RPMI medium supplemented with 10%
FBS, 100 units/ml of penicillin-streptomycin, 2 mm l-glutamine, 5 mm HEPES buffer, and 50 mm 2-
mercaptoethanol). For activation, 10 μg/ml of anti-mouse IgM F(ab′)2 (Jackson) with/without IL-4 (10
ng/ml) (R&D Systems) or 10 μg/ml of LPS (Sigma) was used. For survival assays, purified B cells were
cultured with either IL-4 (20 ng/ml) or BAFF (60 ng/ml) (Peprotech) for 2 days in culture. Cells were
harvested and stained for 7-aminoactinomycin D to analyze cell death by flow cytometry. For human B
cells, peripheral blood mononuclear cells were isolated using Ficoll separation from whole blood obtained
from the Institute for Clinical and Translational Science at the University of California, Irvine. Peripheral
blood mononuclear cells were labeled with CFSE as described above and were activated with anti-IgD
dextran (400 ng/ml) and human IL-4 (20 ng/ml) (R&D Systems). After 3 days, cells were harvested and
stained with human CD19-PE antibody to gate on B cells.

T Cell Culture

RBC lysed total splenocytes from DO11.10 TCR transgenic mice were labeled with CFSE at a final
concentration of 5 μm as described above. After 15 min pre-treatment with the indicated inhibitors, cells
were subsequently activated using 10 nm OVA peptide 323–339 (Anaspec) for 3 days in lymphocyte media.
After 24 h, 100 μl of supernatants from each sample were collected for cytokine ELISAs. After 3 days, cells
were harvested and stained with a CD4-PE antibody to gate on TCR transgenic CD4 T cells. For human T
cells, peripheral blood mononuclear cells were isolated from whole blood obtained from the Institute for
Clinical and Translational Science, University of California, Irvine. Monocytes and lymphocytes were then
purified using a countercurrent elutriation method. On average, 80–90% of the cells were human CD3+
based on flow cytometry. Cells were labeled with CFSE as described above and activated with 1 μg/ml of
PHA (Sigma) for 3 days in lymphocyte media. After 3 days, cells were harvested and stained with human
CD3-APC antibody to gate on total T cells.
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Cytokine ELISA

Supernatants from 24-h activated DO11.10 CD4 T cells were used to detect both mouse IL-2 and IFNγ
levels using the Ready-Set-Go ELISA kit (eBioscience). Supernatants from 24-h PHA activated human T cells
were used to detect human IL-2 using the Ready-Set-Go ELISA kit (eBioscience) and human IFNg (gamma)
using an ELISA kit from BioLegend.

Calcium Flux Assay

Splenocytes were stained with CD1d-biotin, SA-APC, and CD24-PE antibodies prior to loading with the
calcium indicator dyes Fluo-3 and Fura Red as described previously (22). Cells were pretreated with the
indicated inhibitors for 15 min at 37 ºC. The baseline level of Fluo-3/Fura Red was collected for 1 min on a
FACS Calibur before cells were stimulated with 10 μg/ml of anti-IgM for 7 min. Cells were then stimulated
with 50 ng/ml of ionomycin and acquired for an additional 1 min as a positive control.

In Vivo Dosing of PI3K Inhibitors

Wild-type 8-week-old Balb/cJ mice (Jackson Labs) were used for all experiments. MLN1117 and GDC-0941
were given by oral gavage using a sterile disposable 20-guage 1.5′ feeding needle (Fisher). IC87114 was
delivered via intraperitoneal injection. For the non-immunization experiment, 2 mice per group (Vehicle,
GDC-0941, and MLN1117) were given the indicated drugs for 9 days before sacrificing on day 10. For the
immunization experiment, 4 mice per group were used to perform two independent studies comparing
GDC-0941 or IC87114 to MLN1117 as described in the text. In all cases, the vehicle group received both
vehicles used to formulate the two different drugs. Mice were treated with the drugs throughout day −1 to
day 13. On day 0, all mice were immunized with NP-OVA precipitated in alum (Imject; Pierce). Drug
treatment was stopped on day 13 and mice were sacrificed for collection of serum and spleens. Spleens
were immediately made into single-cell suspensions for flow cytometric analysis and the rest were quickly
frozen in an OCT compound (VWR) for sectioning. For TI-2 immunization, mice were immunized with TNP-
Ficoll and serum was collected on day 7.

Serum ELISA

96-Well NUNC MaxiSorp plates (Nalgene) were coated with 50 μl of either NP(30)BSA or NP(3)BSA
(Biosearch Technologies) at 50 μg/ml overnight at 4 °C. Serum Ig was detected with HRP-conjugated rabbit
anti-mouse secondary antibodies against IgM and IgG1 (Invitrogen). Plates were developed with TMB
peroxidase (eBioscience) for colorimetric detection after which the reaction was stopped with 1 n sulfuric
acid and read on a plate reader at 450 nm. For TNP-Ficoll immunization, plates were coated with 100 μl of
TNP-BSA at a concentration of 10 μg/ml for 1½ h at room temperature. Serum Ig was detected with HRP-
conjugated goat anti-mouse secondary antibodies against IgG3 (Southern Biotech). Plates were developed
as described above.

Immunohistochemistry

Mouse spleens embedded in OCT medium were frozen and 8-μm sections were cut and mounted on
Superfrost Plus slides (Fisher Scientific). Slides were fixed in acetone at −20 ºC for 20 min and blocked with
FACS buffer for 30 min at room temperature. Immunohistochemical staining was done with anti-mouse
antibodies against IgD-eFluor405, IgM-FITC, and GL7-Alexa Fluor647 (all 1:100 dilution) for 1 h at room
temperature, followed by three 5-min washes in PBS. Marginal zone (MZ) B cells were identified as IgM-
bright, IgD-dim cells surrounding IgM-dim, IgD-bright follicles. Germinal center B cells were identified as
IgD-negative, GL7-positive. For some sections, antibodies against B220-PE and metallophilic macrophage
(MOMA-1)-FITC were used as an alternative method to identify MZ B cells (B220-positive cells outside the
MOMA-1 border). All images shown were acquired at either ×10 or 20 magnification using Olympus
Fluoview FV1000 Laser Scanning Confocal Microscope.
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RESULTS

PI3K Inhibitor Validation

The inhibitors used in this study are listed in Table 1 along with their isoform selectivity defined by in vitro
kinase activity assays using recombinant enzymes. We used two p110α-selective inhibitors with distinct
chemical structure, to minimize possible off-target effects. A66 has been studied previously in preclinical
cancer models (9, 23). MLN1117, originally described by Intellikine as INK1117 (24), is currently in phase I
trials for patients with advanced solid tumors (clinical trials identifier NCT01449370). To inhibit p110β we
used TGX-221 (25, 26). This compound has some activity against p110δ (IC50 100 versus 5 nm for p110β;
Table 1). As another means to inhibit p110β, we used the compound MLN1316, a dual p110α/p110β
inhibitor that is highly selective relative to p110δ and p110γ (Table 1). We used IC87114 as a p110δ
inhibitor (27–29). To inhibit all class I isoforms, we used the two compounds GDC-0941 (11, 30, 31) and
ZSTK474 (32, 33). In vitro, both compounds inhibit all class I isoforms with IC50 values between 3 and 75
nm with some preference for p110α and p110δ (Table 1). ZSTK474 is more selective than GDC-0941 with
respect to mammalian target of rapamycin (Table 1). The selectivity of MLN1117 compared with GDC-0941
is supported by studies of breast cancer cell lines (Fig. 1, A and B). MLN1117 inhibits AKT phosphorylation
and growth in PIK3CA mutant breast cancer cells with IC50 values around 2 μm, yet has no effect on cells
lacking PTEN. In contrast, GDC-0941 has similar effects on cell lines with PI3KCA mutation or PTEN loss.

We further validated the selectivity of the inhibitor panel using cancer cell lines previously shown to be
driven primarily by p110α or p110β. SK-OV-3 (KRAS wild-type) has an activating PIK3CA mutation and was
shown previously to be sensitive to A66 (9). The cancer cell line U87MG lacks PTEN and is preferentially
sensitive to p110β inhibition (34). Cells were cultured for 2 days with titrated amounts of inhibitors before
measurement of viable cell number by M3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium assay (MTS) (Fig. 1C). Low serum conditions were used to increase cell
dependence on endogenous PI3K activation. As expected, A66 and MLN1117 reduced growth of SK-OV-3
over a concentration range from 125 nm to 2 μm. Statistically significant effects were seen from 500 nm to
2 μm. In U87MG cells, A66 and MLN1117 had no effect at these concentrations. MLN1316 at concentrations
of 500 nm to 2 μm reduced viable cell number of both SK-OV-3 and U87MG cells. Together these data
show that 1 μm concentrations of each inhibitor selectively inhibit growth and/or survival of cancer cells
driven by the appropriate target, p110α or p110β. Previous studies have shown that IC87114 is specific for
p110δ when cells are treated with 1 μm of this compound (29). TGX-221 did not cause a significant effect
in these experiments but showed a trend toward inhibiting the cell number of U87MG at 500 nm to 2 μm.
Based on these considerations we used a maximum concentration of 0.5–1 μm of each inhibitor for most
experiments.

B Cell Signaling

Genetic or pharmacological inactivation of p110δ strongly blocks BCR-mediated AKT activation and
proliferation (16, 35). These observations support the model that p110δ is the primary PI3K catalytic
isoform engaged by BCR signalosomes. We confirmed that IC87114 blocks pAKT induction nearly to the
same extent as the pan-class I inhibitor, GDC-0941 (Fig. 2). However, BCR-stimulated B cells treated with 1
μm A66 or MLN1117 displayed a significant reduction (up to 50%) in the magnitude of the phosphorylated
AKT (pAKT) signal measured by intracellular flow cytometry (Fig. 2). The effect of MLN1117 was dose-
dependent. The p110β inhibitor TGX221 and the dual p110α/β inhibitor MLN1316 also significantly reduced
the pAKT detected. We assessed AKT activity indirectly by measuring BCR-mediated phosphorylation of
ribosomal protein S6 (pS6), a readout of S6 kinase activity downstream of PI3K/AKT/mTORC1 (22). Again
we observed that inhibitors of p110α and/or p110β partially reduced pS6, whereas IC87114 strongly
suppressed pS6 to a degree similar as GDC-0941. A plausible interpretation of these data is that p110δ,
p110α, and p110β each contribute to PIP3 production by BCR cross-linking, but that p110δ inhibition
reduces PIP3 below a threshold required to sustain AKT activation.
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A major function of class IA PI3K in BCR signaling is to promote activation of PLCγ to drive Ca2+

mobilization (16, 36). As reported previously (27), IC87114 significantly suppressed the Ca2+ response of B
cells stimulated with anti-IgM (Fig. 3). The effect of IC87114 appeared less complete than GDC-0941, but
the difference in peak intracellular Ca2+ was not significant. The Ca2+ peak in cells treated with MLN1117
did not show a statistically significant difference compared with diluent control. These observations confirm
that p110δ is the dominant isoform linking BCR engagement to Ca2+ mobilization.

B Cell Proliferation and Survival

We compared the effects of inhibitors on the proliferation of purified, CFSE-labeled B cells. In cells
stimulated through the BCR with anti-IgM, p110δ inhibition blocked cell division nearly to the same extent
as pan-class I PI3K inhibition. Fig. 4A shows a graph of the average proliferation over multiple experiments,
expressed as the percent of divided (CFSE-low) cells. Statistical analysis of normalized data showed that the
effects of GDC-0941 and IC87114 were highly significant, yet there was no significant effect of 1 μm A66,
MLN1117, or TGX-221. At a higher concentration (2 μm), A66 or MLN1117 did significantly suppress B cell
proliferation driven by anti-IgM alone but not by anti-IgM plus IL-4 (Fig. 4, A and B). Notably, CFSE
histograms for three independent experiments did show a consistent, dose-dependent reduction in the
extent of B cell division by each of the isoform-selective PI3K inhibitors (data not shown). We obtained
similar results using human peripheral blood B cells stimulated with anti-human IgD and IL-4 (Fig. 4C).

GDC-0941 caused a marked increase in B cell death, as suggested by the reduced cell recovery (data not
shown) and confirmed by measuring the percentage of cells staining with DAPI nuclear dye (anti-IgM;
untreated: versus GDC-0941 0.5 μm: 38 versus 95%). IC87114 had an intermediate effect on B cell death
(75%) and there was only a minor effect of p110α inhibitors at the selective concentration of 1 μm.

The bacterial cell wall component lipopolysaccharide (LPS) causes polyclonal B cell proliferation through a
TLR4-dependent pathway. In LPS-stimulated mouse B cells, IC87114 was the only isoform-selective
inhibitor to significantly reduce the percent of divided cells (Fig. 4D). However, under these conditions
IC87114 did not block proliferation to the same degree as GDC-0941 nor did IC87114 cause death of LPS-
stimulated cells (GDC-0941 versus IC87114: 77 versus 33%). Examination of the CFSE dilution data
suggested that MLN1316 measurably reduced cell division, and combining IC87114 with MLN1316 blocked
cell division more fully (data not shown). These data suggest that each class IA isoform contributes to LPS-
driven B cell proliferation. However, selective p110α inhibition had a negligible effect.

Next we tested the effects of PI3K inhibitors on survival of purified B cells cultured in the presence of the
cytokines BAFF or IL-4. Both GDC-0941 and IC87114 blocked cytokine-dependent survival even at the low
concentration of 250 nm, and GDC-0941 reduced viability below the level observed in cells cultured without
cytokines or inhibitors (Fig. 5). In contrast, even at higher concentrations (1 μm) both A66 and MLN1117
caused only a minor decrease in survival. When p110α inhibitors were combined with IC87114 there was a
trend toward additive suppression of survival, but this was not statistically significant. TGX-221 partially
reduced B cell survival, and the dual p110α/β inhibitor MLN1316 appeared to have a greater effect
especially in BAFF-treated cells.

In summary, our studies of B cells in vitro indicate that acute p110α inhibition measurably reduces BCR-
mediated AKT phosphorylation but causes only incremental decreases in Ca2+ flux, proliferation, and
survival. Likewise, the B cell response to LPS and survival cytokines is mediated predominantly through
p110δ with lesser contributions of p110α and p110β.

T Cell Proliferation

Initial studies of p110δ-deficient mice showed a profound block of BCR-mediated proliferation, whereas T
cells from these mice proliferated relatively normally in response to co-clustering of the T cell receptor
(TCR) with the costimulatory molecule CD28 (37). Subsequent experiments using TCR transgenic T cells
showed that p110δ plays a more prominent role in clonal expansion of antigen-specific CD4 T cells (38). In
addition, the p110δ-selective inhibitor IC87114 was reported to inhibit proliferation of both mouse and
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human T cells (29). An important caveat is that when present at concentrations above 1 μm, IC87114
inhibits proliferation of T cells with inactive p110δ (29). Therefore, cellular effects of IC87114 above 1 μm
might result from achieving a more pan-PI3K inhibition profile. Here we compared the effects of 1 μm
IC87114 and other PI3K inhibitors on T cell proliferation. For murine cells, we measured the proliferation of
DO11.10 transgenic T cells stimulated with cognate OVA peptide in the presence of autologous splenocytes.
For human cells, we used peripheral blood T cells stimulated with the polyclonal activator PHA.

As shown in Fig. 6A, the proliferation of DO11.10 T cells in the presence of 10 nm OVA peptide was only
marginally reduced by individual inhibitors of class I isoforms. 1 μm A66, MLN1117, TGX-221, or IC87114
did not significantly decrease the percentage of divided cells, but CFSE histogram overlays showed that
each inhibitor mildly restrained cell division (data not shown). Increasing the concentration of MLN1117 or
A66 to 2 μm did not cause greater inhibition of cell division. Combining IC87114 with A66, MLN1117, or
MLN1316 did significantly reduce the proliferative response although the overall percentage of divided cells
was diminished less than 50%. The pan-class I inhibitor GDC-0941 significantly blocked proliferation in T
cells stimulated with 10 nm OVA, although in most experiments the inhibition was incomplete (Fig. 6A and
data not shown). The compound ZSTK474 was a more effective inhibitor of antigen-driven T cell
proliferation (Fig. 6A and data not shown). Whether the greater efficacy of ZSTK474 is attributable to
slightly greater inhibition of p110γ (Table 1) or other pharmacological differences is unclear. Together these
findings indicate that multiple class I PI3K isoforms contribute to the overall function of PI3K signaling
during T cell expansion. Very similar results were obtained using PHA-stimulated human T cells (Fig. 6, B
and C).

The cytokine interleukin-2 (IL-2) is produced by activated T cells and acts as an autocrine and paracrine
growth factor to drive proliferation. Consistent with the cell division data, selective blockade of individual
PI3K isoforms partially reduced IL-2 production, whereas the response was inhibited almost completely by
drug combinations or by the pan-PI3K inhibitors GDC-0941 and ZSTK474 (Fig. 7, A and B). T cell secretion
of the cytokine interferon-γ (IFNγ) seemed generally more sensitive to PI3K inhibition, with p110α and
p110β inhibitors having significant effects in mouse T cells (Fig. 7C). Nevertheless, the overall pattern for
mouse IFNγ and IL-2 was comparable with IC87114 having stronger effects especially when combined with
p110α and p110β inhibitors. Secretion of IFNγ by human T cells stimulated with PHA showed variability
among donors but the overall pattern was similar (Fig. 7D).

Lymphocyte Function in Vivo

Last we evaluated the effects of different PI3K inhibitors on lymphocyte subsets and function in vivo. For
treatments with GDC-0941 or MLN1117, we used doses and formulations shown to provide anti-cancer
efficacy in solid tumor xenograft models (31).3 For treatment with IC87114, we used a dose and treatment
protocol previously shown to reduce MZ B cell numbers in mice (28). Daily treatment with MLN1117,
IC87114, or GDC-0941 did not alter the percentages or numbers of T cells, and did not affect the ratio of
CD4 and CD8 T cells relative to vehicle-treated controls (data not shown).

Genetic inactivation of p110δ causes a large reduction in the number of MZ B cells, a specialized B cell
subset in the mouse spleen that responds mainly to T cell-independent antigens (37). Similarly,
pharmacological inhibition of p110δ with IC87114 in vivo causes aberrant localization of MZ B cells (28). In
accord, we detected fewer MZ B cells (IgMhiIgDlo) in spleen sections of mice treated with IC87114 or the
pan class I inhibitor GDC-0941 (Fig. 8A). Based on FACS-based discrimination of splenic B cell subsets, we
also found that IC87114 and GDC-0941 reduced the overall percentage of MZ B cells (Fig. 8B; MZ cells are
identified as CD21hiCD23lo by FACS). In contrast, mice treated with MLN1117 displayed no change in the
percentage or localization of MZ B cells (Fig. 8, A and B). These results are consistent with a required role
for p110δ but not p110α in the MZ B cell compartment. These experiments were carried out in mice
immunized with NP-OVA (see below), but similar effects on MZ B cells were observed in non-immunized
mice as well (data not shown).

To compare the effects of PI3K inhibitors on B cell and T cell-mediated immune responses in vivo, we
measured antibody production in mice vaccinated with hapten-carrier conjugates. To model T cell-
independent antibody responses driven by BCR cross-linking, we used TNP-Ficoll as the immunogen. GDC-
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0941 treatment abrogated TNP-specific IgG3 production (Fig. 9A). This indicates that the T cell-
independent IgG3 response is completely PI3K dependent. Treatment with MLN1117 at 30 and 60 mg/kg
caused little reduction of TNP-specific IgG3 (Fig. 9A). Notably, we did observe reduction of TNP-specific
IgG3 at higher doses of MLN1117 (120 mg/kg), consistent with the partial reduction in cell division in B
cells treated with MLN1117 before anti-IgM stimulation in vitro. However, 120 mg/kg is above the effective
dose of MLN1117 for tumor growth inhibition (30–60 mg/kg).

To model a T cell-dependent antibody response, we used NP-OVA as the immunogen. In this case,
treatment with MLN1117 (60 mg/kg) did not diminish the NP-specific IgM or IgG1 responses (Fig. 9B). This
is consistent with the minimal effect of MLN1117 on T cell proliferation in vitro and on B cells stimulated
with anti-IgM plus IL-4. To our surprise, mice treated with IC87114 or GDC-0941 also produced normal NP-
specific antibody titers and affinity (Fig. 9B and data not shown). The absence of drug effects was not likely
due to poor pharmacokinetics as both IC87114 and GDC-0941 impacted the MZ B cell compartment at
these doses (Fig. 8). Furthermore, as reported previously (39), selective p110δ inhibition with IC87114
augmented the antigen-specific IgE response (Fig. 9B, lower right graph). Staining of spleen sections
revealed that both IC87114 and GDC-0941, but not MLN1117, reduced the appearance of B cells with a
germinal center (GC) phenotype (IgDloGL7+) in NP-OVA-immunized mice (Fig. 9, C and D). The distinct
effects of MLN1117 and GDC-0941 on GC B cell numbers were confirmed by flow cytometry (data not
shown). Thus, selective pharmacological inhibition of p110α does not noticeably alter B cell survival,
localization, or antibody production in vivo.

Go to:

DISCUSSION

In this study we have used novel PI3K isoform-selective inhibitors to probe the function of p110α in B and
T cells. The results show for the first time that this isoform has a measureable contribution to PI3K
signaling output and lymphocyte function. Nevertheless, selective inhibition of p110α (and/or p110β) does
not strongly impair lymphocyte proliferation or survival in vitro. Moreover, treating mice with the p110α
inhibitor MLN1117 at doses with anti-tumor activity in preclinical models does not interfere with T cell-
dependent antibody responses. In contrast, the pan-class I inhibitor GDC-0941 and the selective p110δ
inhibitor IC87114 strongly uppress B cell proliferation and survival in vitro and impairs germinal center
responses in vivo.

Our observation that p110α inhibition reduces BCR-dependent AKT phosphorylation and proliferation
contrasts with a study showing normal responses in B cells with conditional deletion of the Pik3ca gene
encoding p110α (CD2Cre-p110αfl) (20). Notably, B cells from CD2Cre-p110αfl mice display marked up-
regulation of the p110β isoform (20). Our data indicate that p110β functions in BCR-mediated proliferation
and survival. Hence, p110β up-regulation might compensate for loss of p110α, masking the function that is
revealed by acute pharmacological inhibition of p110α in mature B cells. Interestingly, the substantial loss of
pAKT and pS6 in BCR-stimulated cells pretreated with p110α inhibitors did not correlate with a strong block
in proliferation. Rather, these compounds caused only a modest reduction in BCR-mediated cell division that
matched more closely with the Ca2+ flux response. This fits with the model that the most important
function of PI3K in BCR signaling is to promote Ca2+ mobilization and suggests that maximal AKT activity is
not required to sustain B cell proliferation in response to antigen.

Our data indicate that the p110δ inhibitor IC87114 suppresses B cell survival in response to anti-IgM or
BAFF, but to a lesser extent than the more broad-spectrum PI3K inhibitor GDC-0941. The finding that GDC-
0941 has cytotoxic effects on B cells in vitro is consistent with the observation of Ramadani et al. (20) that
inactivation of both p110α and p110δ causes a nearly complete loss of mature B cells in vivo. The apparent
redundancy of p110α and p110δ in supporting B cell survival is noteworthy in light of the clinical success of
the investigational agent CAL-101 (now GS-1101). This selective p110δ inhibitor has shown impressive
efficacy in human patients with chronic lymphocytic leukemia, yet its primary mechanism of action seems to
be disruption of the tumor microenvironment rather than direct cytotoxic effects on malignant B cells (3). It
is possible that a combined inhibitor of p110α and p110δ would have more potent anti-tumor effects in
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chronic lymphocytic leukemia and other lymphoid malignancies.

Disruption of the MZ B cell subset is now recognized as a biomarker of p110δ inhibition in mice (28, 40).
Genetic studies in mice suggest that a central signaling pathway governing MZ B cell development is
initiated by CD19 on the cell surface, which signals via PI3K-p110δ and AKT to suppress the transcription
factor Foxo1 (40). Pharmacological inhibition of p110δ using IC87114 reduces MZ B cell numbers but also
disrupts their localization, with IgMhi/IgDlo B cells moving into the follicles (28). This is consistent with
other data showing that chemokine responses in MZ B cells are largely dependent on the p110δ isoform
(28). We confirmed that IC87114 suppresses AKT phosphorylation induced in B cells by the chemokine
CXCL13, to a greater extent than in cells treated with p110α or p110β inhibitors (data not shown).

The p110δ isoform has important functions in T cell clonal expansion, differentiation, and trafficking (16).
However, PI3K activation is not fully abrogated in p110δ-deficient T cells and some functional capacity is
retained (38). It is likely, therefore, that other PI3K catalytic isoforms contribute to T cell function. Some
studies have suggested that the class IB isoform p110γ has overlapping functions in T cells, whereas others
have disputed this claim (16). In this study we focused on class IA isoforms, in part because available
inhibitors are not sufficiently selective for p110γ. Using antigen-specific mouse T cells and PHA-activated
human T cells, we found that proliferative expansion is not significantly reduced by selective inhibition of
individual class IA isoforms. Moreover, the pan-class I inhibitors suppressed T cell proliferation to a greater
extent than the combination of IC87114 and MLN1316. Together these findings suggest that all four class I
isoforms might be engaged during the course of antigen-specific T cell activation. Interesting questions to
resolve are whether the isoforms act downstream of different receptors (i.e. TCR, costimulatory, cytokine,
chemokine receptors) and whether they function in a temporal order.

An apparent paradox in our data is the observation that GDC-0941 and IC87114 suppress formation of
germinal centers yet they have no effect on titers of high affinity, class-switched antibodies whose
production is thought to be dependent on the germinal center reaction. The absence of GCs in IC87114-
treated mice is consistent with previous work identifying a specific role for p110δ in the differentiation and
function of T follicular-helper (Tfh) cells, a subset of CD4 T cells required for GC formation (41). In
addition, our data on NP-specific Ig production agree with previous studies showing that IC87114 does not
impair class-switched antibody responses in mice (39). Indeed, p110δ inhibition enhances IgE production
(39), a finding reproduced here. One possibility is that an extrafollicular (non-GC-based) B cell response
that is Tfh-independent might be sufficient to produce antigen-specific antibody responses to protein
antigens in mice treated with IC87114 or GDC-0941. Regardless, a key point is that p110α inhibition using
MLN1117 in vivo has no measurable effect on antibody responses or GC formation. This suggests that
p110α is not required for Tfh differentiation or help to B cells in general.

Many years of medicinal chemistry efforts have resulted in an expanded toolkit for probing the function of
specific PI3K catalytic isoforms (42). In this study we set out to determine how selective inhibitors of p110α
impact the function of T and B cells, key components of the adaptive immune system. The most important
conclusion is that p110α inhibition does not significantly impair mouse and human lymphocyte proliferation
in vitro, nor antibody responses in vivo, at doses demonstrating potent anti-tumor activity in preclinical
models. A key implication is that selective p110α inhibitors that are in clinical trials for cancer are likely to
be less immunosuppressive than pan-class I or p110δ-selective agents. The combined p110α/β inhibitor
MLN1316 also had only modest effects on lymphocyte function, suggesting that anti-cancer compounds with
this profile would likewise show minimal immunosuppression. Our results do not rule out the possibility that
p110α and/or p110β inhibition can modulate lymphocyte differentiation and effector function in certain
contexts. This possibility warrants further investigation using the growing assortment of PI3K isoform-
selective compounds. Compounds targeting two isoforms (e.g. p110α/δ and p110γ/δ) might also have
unique effects in lymphocytes. The ability of PI3K inhibitors to enhance innate immune responses (43) also
requires further investigation. A better understanding of PI3K isoforms in the immune system will improve
our ability to predict and manage immunosuppression and to potentially manipulate the immune
components of the tumor microenvironment.
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Figures and Tables

TABLE 1

IC50 values for inhibition of class I PI3K isoforms and mammalian target of rapamycin (mTOR)

Compound

IC50

PI3K class I

mTOR Refs.p110α p110β p110γ p110δ
nm nm

A66 32 >12,500 3,450 >1,250 >5000 9
MLN1117 15 4,500 1,900 13,900 1,670
TGX-221 5,000 5 >10,000 100 ND

a 26

MLN1316 10 8 780 2,200 2,100
IC87114 >10,000 1,820 1,240 70 ND 27
GDC-0941 3 33 75 3 580 28
ZSTK474 16 44 49 4.6 >10,000 29

a ND, not determined.

FIGURE 1.

Validation of novel PI3K class IA isoform-selective inhibitors. A, growth IC50 values for MLN1117
and GDC-0941 in a panel of breast cancer cell lines harboring a PTEN-null mutation, compared with lines
with either a p110α mutation or HER2 overexpression. B, phosphorylation status of Akt in response to either
MLN1117 or GDC-0941 in three different cell lines harboring the mutations described above. C, cell lines
(5000 cells/well) either harboring a constitutively activating p110α H1047R mutation (SK-OV-3) or PTEN
deletion (U87MG) were cultured under low serum (0.2% FBS) conditions for 48 h in the presence of the
indicated inhibitors (2-fold dilution series from right to left: 2, 1, 0.5, 0.25, and 0.125 μm). MTS conversion
assay was used to measure viable cell numbers relative to vehicle-treated control (100%) (background-
subtracted). Data represent mean ± S.E. of n = 3 to 5 experiments (*, p < 0.05; **, p < 0.01; #, p <
0.001, repeated-measures analysis of variance, measured versus the vehicle-treated control).

FIGURE 2.
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Both p110α and p110β contribute to BCR-mediated PI3K activation in B cells. A, whole
splenocytes were incubated with the indicated inhibitors for 15 min and stimulated with 10 μg/ml of anti-
IgM for 15 min. Intracellular phosphorylation of pAkt(S473) and pS6(S240/244) were measured at a single
cell level by flow cytometry. B cells were distinguished by B220. Selective phosphorylation of Akt and S6 is
only observed in the B220+ population (black). B, data between experiments were normalized by setting
the control response as the difference in median fluorescence intensity between the stimulated sample
treated with vehicle and the stimulated sample treated with GDC-0941. The % control was averaged from
multiple but varying number of experiments for each condition (except pAkt with MLN1117 250 nm (n = 2),
all conditions were repeated at least three times up to seven times) (*, p < 0.05; **, p < 0.005; ***, p <
0.001, repeated-measures analysis of variance, measured versus the vehicle control).

FIGURE 3.

BCR-mediated Ca2+ mobilization is mainly p110δ-dependent. A, kinetics of calcium mobilization
was monitored using ratiometric measurement of Fluo-3 and Fura Red fluorescence. FO B cell population
was distinguished by flow cytometry (CD24 and CD1d). Data are representative of three independent
experiments. B, the peak Ca2+ response after anti-IgM-mediated BCR cross-linking was plotted for three
independent experiments (**, p < 0.005; ***, p < 0.001, repeated-measures analysis of variance,
measured versus the untreated control).

FIGURE 4.

p110δ is the primary PI3K isoform that contributes to B cell proliferation. A, anti-IgM-mediated B
cell proliferation from three independent experiments was normalized to a percentage scale. Concentrations
used were MLN1117 and A66 (0.25, 0.5, 1, and 2 μm), TGX-221 (0.25, 0.5 μm), MLN1316 (0.25, 0.5, and
1 μm), GDC-0941 (0.25 and 0.5 μm), and IC87114 (0.5 and 1 μm). B, anti-IgM + IL4-mediated B cell
proliferation from three independent experiments was normalized to a percentage scale. Concentrations
used were MLN1117, A66, and MLN1316 (0.5, 1, and 2 μm), TGX-221 (0.5 μm), GDC-0941 (0.5 μm), and
IC87114 (1 μm). C, anti-IgD + IL-4-mediated human B cell proliferation from three independent
experiments was normalized to a percentage scale. Concentrations used were MLN1117 (0.5, 1, and 2 μm),
GDC-0941 (0.5 μm), and IC87114 (1 μm). D, three independent experiments of LPS-mediated B cell
proliferation were analyzed in a similar manner to B. 1 μm concentration was used for all inhibitors except
GDC-0941 (0.5 μm) and TGX-221 (0.5 μm). In the combination treatments, IC87114 (1 μm) with 1 μm of
the indicated inhibitors was used. All data represent results from at least three independent experiments (*,
p < 0.05; **, p < 0.005; ***, p < 0.001, repeated-measures analysis of variance, measured versus the
untreated control).

FIGURE 5.

Inhibition of p110α does not significantly reduce IL-4 or BAFF-mediated B cell survival. Purified
B cells were cultured in B cell media containing either IL-4 (A) or BAFF (B) for 48 h and cell viability was
measured using 7-aminoactinomycin D exclusion. Viable cells (%7-aminoactinomycin D negative) were
normalized for three independent experiments. For each indicated inhibitor, the three concentrations used
were 0.25, 0.5, and 1 μm. B, for BAFF survival experiments, single concentrations of GDC-0941 (0.5 μm)
and IC87114 (1 μm) were used. In the combination treatments (bottom right), IC87114 (1 μm) with 1 μm
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of the indicated inhibitors were used. Normalized data of the combination treatments are from the same
experiments of single treatments (bottom left). All data represent results from at least three independent
experiments (*, p < 0.05; **, p < 0.005; ***, p < 0.001, repeated-measures analysis of variance,
measured versus the untreated control).

FIGURE 6.

PI3K class IA isoforms have redundant functions in antigen-mediated T cell proliferation. A,
CFSE labeled whole splenocytes from DO11.10 TCR transgenic mouse were activated with 10 nm OVA323–

329 peptide for 3 days. CD4+ T cells were gated and proliferation was normalized to a percentage scale
(gating scheme is presented in the top left of figure). 1 μm concentration was used for all inhibitors except
for MLN1117 and A66 (1 and 2 μm). In the combination treatments (depicted by the lighter color next to
MLN1117, A66, and MLN1316), IC87114 (1 μm) with 1 μm of the indicated inhibitors was used. B, human T
cells were activated with 1 μg/ml of PHA for 3 days. CD3+ total T cells were gated and proliferation was
normalized to a percentage scale (gating scheme is presented in the top left of figure). Concentrations used
were MLN1117, A66 and MLN1316 (0.5, 1, nd 2 μm), TGX-221 (1 μm), GDC-0941 (0.5 μm), and IC87114 1
μm. C, same experiment as in B with combination treatments. 1 μm concentration was used for all
inhibitors except for GDC-0941 (0.5 μm) and TGX-221 (0.5 μm). In the combination treatments (depicted
by the lighter color next to MLN1117, A66, TGX-221, and MLN1316), IC87114 (1 μm) with each indicated
inhibitor was used. All data represent results from at least three independent experiments (*, p < 0.05; **,
p < 0.005; ***, p < 0.001, repeated-measures analysis of variance, measured versus the untreated
control).

FIGURE 7.

PI3K class IA isoforms have redundant functions in T cell cytokine production. IL-2 (A and B)
and IFNγ (C and D) levels were measured by ELISA from the supernatants in Fig. 6 after 24 h activation
with OVA323–329 peptide or PHA. Cytokine levels were normalized to a percentage scale from three
independent experiments. 1 μm concentration for all inhibitors except GDC-0941, ZSTK474, and TGX-221
(0.5 μm) are shown.

FIGURE 8.

GDC-0941 and IC87114, but not MLN1117, decrease the MZ B cell compartment in vivo. Two
independent experiments (top right) were conducted where the in vivo effects of GDC-0941 and IC87114
compared with MLN1117 were assessed. Mice (n = 4 mice per group) were given the drugs daily for 11
days and were immunized on day 2 with a T-dependent antigen NP-OVA. A, mouse spleen sections from
each treated mouse were stained with anti-IgM-FITC and anti-IgD-eFluor405 to distinguish MZ B cells
(IgMhiIgDlo) from FO B cells (IgMloIgDhi). All images are representative of multiple spleen sections from
different mice (n = 4 mice per group). B, total splenocytes harvested on day 12 were stained with CD21-
FITC and CD23-PE to identify MZ B cells (CD21hiCD23lo) by flow cytometry. Flow plots are representative
splenocyte staining data from multiple mice (data not shown per group). MZ B cell frequency from four
different mice is shown as a bar graph (***, p < 0.001, analysis of variance, measured versus the vehicle-
treated mice, except where indicated by brackets). The MZ B cell compartment was also assessed in non-
immunized mice treated with MLN1117 or GDC-0941 (data not shown).
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FIGURE 9.

MLN1117 does not diminish the germinal center (GC) response or production of NP-specific
antibody in vivo. A, mice (n = 6 per group) were immunized with TNP-Ficoll and given the drugs at the
indicated doses for 7 days. Quantification of TNP-specific IgG3 in serum was done by ELISA using TNP-BSA-
coated plates (**, p < 0.01; ***, p < 0.001, analysis of variance, measured versus the vehicle-treated
mice, except where indicated by brackets: N.S., non-significant). The dotted line indicates the lower limit of
linearity of detection. B, mice (n = 4) per group were immunized with NP-OVA and treated for 13 days.
Quantification of nitrophenyl (NP)-specific IgM, IgG1, and IgE in serum by ELISA was done using NP(30)-
BSA coated plates. S, sham immunized. C, spleen sections from each treated mouse were stained with anti-
IgD-eFluor405 and anti-GL7-Alexa Fluor647 to distinguish GCs (IgDlowGL7+) within the follicles. T cell
zones were distinguished by a separate CD4-FITC staining (data not shown) and were concentrated outside
the follicles. D, quantification of GC numbers per mouse. Two random areas from each slide (spleen
sections from one mouse on each slide, n = 4 mice per group) were observed for GCs (IgDlowGL7+) and
counted by two different lab members in blinded fashion (slide labels were hidden). The total GC counts per
treatment group were divided by the number of mice (n = 4) to achieve the observed GC numbers per
mouse for each treatment (*, p < 0.05; **, p < 0.01, analysis of variance, measured versus vehicle-
treated, NP-OVA-immunized mice, except where indicated by brackets). As each slide had only some
sections of the spleen, the actual number of GCs per mouse would be proportionally higher.
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