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ABSTRACT OF THE DISSERTATION 

 

Computational Imaging and Sensing 

in Diagnostics with Deep Learning 

 

by 

 

Calvin Clifford Brown 

Doctor of Philosophy in Electrical and Computer Engineering 

University of California, Los Angeles, 2020 

Professor Aydogan Ozcan, Chair 

 

Computational imaging and sensing aim to redesign optical systems from the ground up, 

jointly considering both hardware/sensors and software/reconstruction algorithms to enable new 

modalities with superior capabilities, speed, cost, and/or footprint. Often systems can be optimized 

with targeted applications in mind, such as low-light imaging or remote sensing in a specific 

spectral regime. For medical diagnostics in particular, computational sensing could enable more 

portable, cost-effective systems and in turn improve access to care. In the last decade, the increased 

availability of data and cost-effective computational resources coupled with the commodification 
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of neural networks has accelerated and expanded the potential for these computational sensing 

systems. 

First, I will present my work on a cost-effective system for quantifying antimicrobial 

resistance, which could be of particular use in resource-limited settings, where poverty, population 

density, and lack of healthcare infrastructure lead to the emergence of some of the most resistant 

strains of bacteria. The device uses optical fibers to spatially subsample all 96 wells of a standard 

microplate without any scanning components, and a neural network identifies bacterial growth 

from the optical intensity information captured by the fibers. Our accelerated antimicrobial 

susceptibility testing system can interface with the current laboratory workflow and, when blindly 

tested on patient bacteria at UCLA Health, was able to identify bacterial growth after an average 

of 5.72 h, as opposed to the gold standard method requiring 18–24 h. The system is completely 

automated, avoiding the need for a trained medical technologist to manually inspect each well of 

a standard 96-well microplate for growth. 

Second, I will discuss a deep learning-enabled spectrometer framework using localized 

surface plasmon resonance. By fabricating an array of periodic nanostructures with varying 

geometries, we created a “spectral encoder chip” whose spatial transmission intensity depends 

upon the incident spectrum of light. A neural network uses the transmitted intensities captured by 

a CMOS image sensor to faithfully reconstruct the underlying spectrum. Unlike conventional 

diffraction-based spectrometers, this framework is scalable to large areas through imprint 

lithography, conducive to compact, lightweight designs, and, crucially, does not suffer from the 

resolution–signal strength tradeoff inherent to grating-based designs.  
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Chapter 1 Introduction 
 

Here I will give a brief introduction to computational imaging and sensing, as well as an 

overview of my work. Chapters 2 and 3 will detail two systems that I have designed, fabricated, 

and tested: an automated antimicrobial susceptibility testing (AST) system and an on-chip deep 

learning-enabled spectroscopy framework, respectively. Chapter 4 will contain a brief conclusion. 

Computational imaging and sensing 
 

Computational imaging and computational sensing, as the names imply, take advantage of 

modern computational capabilities to improve the results from and expand the capabilities of 

classical imaging and sensing modalities.1–4 Furthermore, by redesigning hardware sensors and 

software algorithms in tandem, entirely new modalities can be designed.5 For instance, this 

approach can enable systems with any/all of the following characteristics: more compact, lower 

cost, higher fidelity or signal-to-noise ratio (SNR), lower power consumption, remote operation, 

etc. In this thesis, we demonstrate two novel sensing and imaging frameworks, present their 

performance in preliminary as well as clinical experiments, and propose potential further 

applications of the technologies. The first framework is an optical fiber-based system that 

autonomously monitors bacterial growth in real time using deep learning, with clinical results 

detecting antimicrobial resistance (AMR) faster than the gold standard method. The second 

framework is a method for designing deep learning-enabled on-chip spectrometers that can 

reconstruct arbitrary spectra. 

Overview of dissertation 
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The first framework (Chapter 2) uses LED illumination and bundles of plastic optical fibers 

to capture changes in turbidity in each well of a standard 96-well microplate. Due to the ubiquity 

of plate-based assays not only in diagnostics and clinical microbiology, but also research and 

development and pharmaceutical production among others. The primary application we have 

explored thus far is antimicrobial susceptibility testing (AST). Due to the global rise of 

antimicrobial resistance,6 clinicians increasingly depend on AST to inform the prescription of 

antibiotics to patients with bacterial infections. The gold standard AST method is broth 

microdilution (BMD), in which patient bacteria are incubated in the presence of candidate 

antibiotics and growth medium. After 18–24 h, the plate containing the bacteria is removed from 

the incubator and visually inspected for growth by a trained medical technologist. The 

presence/absence of growth in wells containing different concentrations of different antibiotics 

indicates which antibiotics may prove effective to treat the infection and which antibiotics the 

bacteria is resistant. The main drawbacks of the current gold standard method are that it requires 

waiting 18–24 h for incubation, it requires a trained technologist to manually read the plates to 

obtain results, and it is subject to variability due to human readout. The system we have 

demonstrated addresses these issues because it is can detect turbidity in an average of just 5.72 h 

of incubation, with 95.03% accuracy, and it is completely automated, eliminating the need for 

manual reading and human readout errors.7 The system is entirely composed of cost-effective 

components, namely LEDs, plastic optical fibers, singlet lenses, Raspberry Pi computers and 

camera modules, and 3D printed plastic housing. Unlike available commercial AST systems, it 

contains no expensive objective lenses or scanning components, and does not require specialized 

cartridges or consumables. In addition, because the system does not depend on microscopy, it is 

not limited to specific bacteria or specific types of samples (e.g. urine). 
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The LEDs illuminate a standard 96-well microplate from above and the optical fibers below 

the plate relay the transmitted light to the Raspberry Pi camera for imaging. A bundle of 21 fibers 

sits underneath each well to sample the spatial intensity distribution of the transmitted light. This 

spatial information is crucial for distinguishing e.g. weak growth from settling, condensation, or 

bubbles. To determine which wells contain growth/turbidity at what time, a neural network takes 

in the fiber intensities for a given well over time and outputs a probability of turbidity between 0 

and 1. We use a fully-connected network, with dropout and batch normalization for regularization 

and accelerating the training process, respectively. The system was validated with Staphylococcus 

aureus infection patients in the UCLA Health system. Our automated AST system was able to 

correctly identify turbidity in 95.03% of wells after an average incubation time of just 5.72 h (as 

opposed to the gold standard time of 18–24 h). 

Moving forward, we are interested in testing the system with many more species of 

bacteria, as each is known to shown different growth characteristics and drug resistance profiles. 

In addition, we would like to add a darkfield monitoring capability, such that the system can more 

sensitively detect scattered light, leading to detecting growth earlier during incubation. Finally, 

with more data from a broader distribution of growth, we can redesign the neural network to predict 

turbidity before it occurs. This can be accomplished by using adding fiber intensities from 

neighboring wells as inputs to the network. Because neighboring wells contain two-fold dilutions 

of the same antibiotic, the network can use knowledge that growth has/has not occurred in the 

neighboring concentrations to predict the probability that growth will occur at a given 

concentration. This system could also be adapted—or even used directly without modification—

for other plate-based tasks. For instance, viral plaque assays have long been used in vaccine 

development to quantify growth of viruses. These typically require much longer incubation (up to 
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several days) and the resulting number of plaque forming units (PFU) must be manually counted. 

We intend to explore viral plaque assays as another application of the system. In addition, 

fluorescence assays are of great importance for plate-based diagnostics. The optics of the system 

would of course need to be somewhat modified for a fluorescence test due to the need to excite 

fluorophores at a particular wavelength and then block that excitation light so that it does not 

drown out the fluorescent signal. We envision a system where the LED excitation passes through 

a bandpass filter before hitting the plate, and placing the fibers off to the side of the well, or even 

at an angle so that the excitation light cannot couple and propagate in the fibers. A bandpass 

emission filter can be placed after the imaging end of the fiber bundle. Finally, the fiber-based 

imaging modality could be used in situations beyond plate-based assays. We are working on a 

wearable glucose monitoring prototype, leveraging work by our collaborators on an implantable 

phosphorescence lifetime sensor, which correlates with glucose concentration. Using fiber bundle-

based imaging through the skin would allow for a compact imaging system that is robust to slight 

misalignments (e.g. on the wrist) to be used in tandem with the implantable sensor. Because the 

sensor is being imaged through scattering in the skin, and because intensity of the phosphorescence 

signal is the only value of concern, the relatively low-resolution imaging achieved by such a fiber 

bundle is of no concern. 

The second framework we have developed is an on-chip, deep learning-enabled 

spectrometer using plasmonic resonance, which could be scaled arbitrarily to perform imaging 

spectrometry.8 More generally, we have developed a toolset for creating chip-scale spectrometers 

for any desired application. The plasmonic chip is created by molding polydimethylsiloxane 

(PDMS) using a silicon master fabricated in a cleanroom via electron-beam lithography. 

Nanostructures of various periodicities and morphologies are created in the silicon. A single master 
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can be used to fabricate many PDMS chips, which need only undergo deposition of a thin layer of 

gold (10s of nm) in a cleanroom. The optical setup for the chip-based spectrometer is simply a 

bare CMOS imager sensor with the spectral encoder chip placed a small distance in front of it (e.g. 

<1 mm). When illuminated, each region of the chip demonstrates a different transmission spectrum 

based on the plasmonic resonance in the gold film. Thus, spectral information is encoded in the 

intensities captured by the image sensor for the different nanostructured regions. The intensity 

patterns on the chip vary over a wide dynamic range due to constructive/destructive interference, 

so images are captured at various exposure times to ensure that information can be obtained 

without over- or undersaturation. These multiple exposure images are combined into a single high 

dynamic range (HDR) image. Image processing is performed to extract the intensities for each 

nanopatterned region, which are fed into a fully-connected neural network that outputs the 

spectrum of the light shone on the chip. Our system was trained and tested using an eight-channel 

supercontinuum laser. A random number of channels between one and eight were each set to a 

random wavelength between 480 and 750 nm at a random power to represent arbitrary spectra. 

Tens of thousands of random spectra were captured, with the first ~80% being used to 

train/validate the neural network and the last 20% being used for blind testing. 

We believe this framework can be used to design spectrometers for various custom 

applications. Depending on the spectral regime of interest, different nanostructures could be used 

that have rich spectral features in the desired regime. In addition, because scaling the sensor only 

requires scaling the one-time e-beam lithographic step (the PDMS molding and gold-coating steps 

would not be affected), the chip could be scaled up as needed for larger field of view. And if 

repeating patterns of nanostructures are employed, a type of hyperspectral imaging sensor could 

be designed, where each “pixel” contains spectral information. Some of the clearest use cases for 
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this sort of hyperspectral large-FOV imaging are in remote sensing and astrophysics. For instance, 

monitoring soil/crop health and water content, as well as the makeup of more distant celestial 

objects could benefit from a more compact, lightweight imaging spectrometer that can be tailored 

for the spectral regime of the given application. 

References 
 

1. Duarte, M. F. et al. Single-pixel imaging via compressive sampling. IEEE Signal 

Processing Magazine 25, 83–91 (2008). 

2. Velten, A. et al. Femto-photography: capturing and visualizing the propagation of light. 

ACM Trans. Graph. 32, 44:1–44:8 (2013). 

3. Wang, Z. et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. 

Nature Communications 10, 1020 (2019). 

4. O’Toole, M., Lindell, D. B. & Wetzstein, G. Confocal non-line-of-sight imaging based 

on the light-cone transform. Nature 555, 338–341 (2018). 

5. Joung, H.-A. et al. Point-of-Care Serodiagnostic Test for Early-Stage Lyme Disease 

Using a Multiplexed Paper-Based Immunoassay and Machine Learning. ACS Nano 14, 

229–240 (2020). 

6. Antimicrobial resistance. https://www.who.int/news-room/fact-

sheets/detail/antimicrobial-resistance. 



7 
 

7. Brown, C. et al. Automated, Cost-Effective Optical System for Accelerated 

Antimicrobial Susceptibility Testing (AST) Using Deep Learning. ACS Photonics 7, 

2527–2538 (2020). 

8. Brown, C. et al. Neural network-based on-chip spectroscopy using a scalable plasmonic 

encoder. arXiv:2012.00878 [physics] (2020). 

  



8 
 

Chapter 2 Automated optical system for accelerated 

antimicrobial susceptibility testing 
 

This chapter contains material that has been published as follows: Calvin Brown, Derek 

Tseng, Paige M. K. Larkin, Susan Realegeno, Leanne Mortimer, Arjun Subramonian, Dino Di 

Carlo, Omai B. Garner, and Aydogan Ozcan. ACS Photonics 2020 7 (9), 2527-2538. DOI: 

10.1021/acsphotonics.0c00841 

Abstract 
 

Antimicrobial susceptibility testing (AST) is a standard clinical procedure used to quantify 

antimicrobial resistance (AMR). Currently, the gold standard method requires incubation for 18–

24 h and subsequent inspection for growth by a trained medical technologist. We demonstrate an 

automated, cost-effective optical system that delivers early AST results, minimizing incubation 

time and eliminating human errors, while remaining compatible with standard phenotypic assay 

workflow. The system is composed of cost-effective components and eliminates the need for 

optomechanical scanning. A neural network processes the captured optical intensity information 

from an array of fiber optic cables to determine whether bacterial growth has occurred in each well 

of a 96-well microplate. When the system was blindly tested on isolates from 33 patients with 

Staphylococcus aureus infections, 95.03% of all the wells containing growth were correctly 

identified using our neural network, with an average of 5.72 h of incubation time required to 

identify growth. 90% of all wells (growth and no-growth) were correctly classified after 7 h, and 

95% after 10.5 h. Our deep learning-based optical system met the FDA-defined criteria for 

essential and categorical agreements for all 14 antibiotics tested after an average of 6.13 h and 6.98 

h, respectively. Furthermore, our system met the FDA criteria for major and very major error rates 
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for 11 of 12 possible drugs after an average of 4.02 h, and 9 of 13 possible drugs after an average 

of 9.39 h, respectively. This system could enable faster, inexpensive, automated AST, especially 

in resource-limited settings, helping to mitigate the rise of global AMR. 

Introduction 
 

Antimicrobial resistance (AMR) is estimated to cause over 700,000 deaths annually, with 

2.8 million cases and 35,000 deaths in the United States alone.1,2 By 2050, the number of deaths 

due to AMR is projected to reach as many as 10 million per year.1 A host of factors are contributing 

to the global rise in AMR, such as over-prescription and abuse of antibiotics (e.g. for viral 

infections),3,4 use of medically important antibiotics in agriculture for e.g. promotion of growth in 

livestock5 and prevention of disease in citrus trees,6 as well as economic and regulatory barriers to 

the development of new drugs.7 

One of the most crucial tools to treat patients infected with resistant bacteria, as well as to 

stem the tide of global AMR, is antimicrobial susceptibility testing (AST). AST is a laboratory 

procedure used to determine which antibiotics will work most effectively against a given patient’s 

bacterial infection. The gold standard method is broth microdilution (BMD), in which isolated 

patient bacteria are inoculated in growth medium along with a candidate antibiotic and incubated 

for at least 18–24 h. BMD is usually performed in a 96-well microplate, with a different 

antibiotic/concentration combination in each well. Neighboring wells contain successive two-fold 

dilutions of the same drug. After incubation, each well is inspected visually by a trained medical 

technologist to determine whether growth has occurred, as indicated by the presence of turbidity 

in the well. The minimum inhibitory concentration (MIC) for a given antibiotic is defined as the 

lowest concentration of the drug that successfully prevents bacterial growth. The MIC is used to 
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determine the categorical susceptibility of the bacteria to the drug (susceptible, intermediate, or 

resistant) based on concentration cutoffs published by the Clinical & Laboratory Standards 

Institute (CLSI).8 

The lengthy incubation time (18–24 h or more) puts patients at risk because in the interim 

they may be prescribed powerful broad-spectrum antibiotics or antibiotics against which the 

organism is resistant. The need for a trained expert to manually read the plate strains laboratory 

resources and inevitably introduces human error/variability. Automated AST systems such as the 

bioMérieux Vitek 29 enable readings much earlier during incubation for certain bacteria and drugs, 

but these systems are relatively bulky, expensive (due to e.g. optomechanical scanning components 

and illumination sources), and often require the use of proprietary plates and drug panels, limiting 

their utility especially in resource-limited settings, where AMR is expected to take the largest 

toll.10 

Numerous alternative approaches have been investigated to address the shortcomings of 

conventional AST. The decreasing cost of whole-genome sequencing (WGS) has made it a 

potentially-viable option, and it has been shown to agree with BMD for certain bacteria-drug 

combinations.11–13 However, the cost remains prohibitive for most labs, even in developed 

countries, and there is a lack of standardization for AST protocols.14 In addition, unless all the 

resistance mechanisms in question for a given sample are linked to genes with well-characterized 

effects—such as the mecA gene in methicillin-resistant Staphylococcus aureus (MRSA)15—

WGS-based AST will provide an incomplete resistance profile, limiting its applications, especially 

for emerging forms of resistance.16–18 Due to its ability to enable rapid, low-cost diagnostics using 

small sample volumes, microfluidic technology has also been investigated for AST. By confining 

bacteria to microscale channels or droplets, the incubation time required to identify the impact of 
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antibiotics on bacterial growth can be shortened considerably.19–27 MICs can be determined 

straight from positive cultures (without the additional overnight isolation step) in the case of urine 

samples, but not for more complex samples such as blood or sputum.26,27 Additionally, these 

microfluidic approaches generally require new specialized consumables and a scanning 

microscopy system to monitor the sample during incubation, limiting their viability in resource-

limited settings.  Pure microscopy-based approaches have also been demonstrated for AST.28–34  

Commercially available systems such as the Pheno (Accelerate Diagnostics)35 and the 

oCelloScope (BioSense Solutions)36 have developed a more compact form factor compared to 

benchtop microscopes, but still require expensive objective lenses and optomechanical scanning 

components to read a 96-well plate. These systems also depend on knowledge of specific organism 

morphologies and growth characteristics, limiting their use to certain types of bacteria. As an 

alternative, lensfree microscopy37–39 eliminates the need for objective lenses, thus reducing costs 

and mitigating the spatial/focal drift these components can cause during time lapse imaging. 

Lensfree microscopy has been shown to detect bacteria over a wide field of view,40,41 but would 

still require mechanical scanning to image an entire well plate. In order to capture the spatial 

information from a well plate without any expensive objective lenses or scanning components, we 

have previously demonstrated an optical fiber-based smartphone reader for AST plates after the 

incubation period to determine turbidity results.42,43 These earlier works did not capture time lapse 

images of the samples and therefore were aimed to provide end-point readings, after the standard 

incubation period (e.g., 18–24 h). 

In this work, we demonstrate an automated, cost-effective optical system for the early 

detection and quantification of resistance in AST using deep learning. The device can be placed 

directly inside a standard benchtop incubator and automatically monitor growth in all 96 wells of 
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a standard microplate during incubation. The plate is periodically illuminated by red, green, and 

blue LEDs, and the transmitted light is relayed by an array of plastic optical fibers beneath the 

plate to two Raspberry Pi cameras for imaging. The optical fibers enable cost-effective spatial 

subsampling within each well to detect localized changes during the incubation period. A neural 

network uses the intensity information from the images to classify each well as either turbid or 

non-turbid over time. This system eliminates the need to wait 18–24 h or more and does not rely 

on a trained medical technologist for readings as is necessary for conventional AST, while also 

being compact and cost-effective compared to commercially available automated AST systems.  

Our system was blindly tested on 33 unique clinical Staphylococcus aureus isolates, using 

a panel containing varying concentrations of 14 antibiotics. 95.03% of all wells containing growth 

were correctly identified, with an average of 5.72 h of incubation required to identify growth. 90% 

of all wells were correctly classified after 7 h, and 95% after 10.5 h. The system met the FDA-

defined criteria44 for essential and categorical agreement for all 14 drugs tested after an average of 

6.13 h and 6.98 h, respectively. The system met FDA criteria for major and very major error rates 

for 11 of 12 possible drugs after an average of 4.02 h, and 9 of 13 possible drugs after an average 

of 9.39 h, respectively. For each one of the drugs that did not meet the FDA criteria, only a single 

major or very major error was made. Some of the major and very major errors may also be due to 

human errors in the ground truth reading. With additional training and testing samples, the FDA 

criteria could potentially be met for all drugs. This system could enable inexpensive, high-

throughput AST in resource-limited settings, helping treat infected patients while curbing the rise 

of drug-resistant bacteria. 

Results 
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Figure 2.1: Automated antimicrobial susceptibility testing (AST) system overview. (a) Schematic and (b) photo 

of the device. (c) Device inside an incubator. (d) 96-well plate being loaded. (e) Close-up of 21 fibers under one well. 

(f) Image of fibers captured by the system. (g) Normalized fiber intensity change after 18 h incubation for two 

neighboring wells. Fiber intensities and neural network predicted probability of turbidity for (h) a turbid well and (i) 

a non-turbid well. The colormap corresponds to the random arrangement of fibers in each well.  The predicted growth 

probability on the right axis corresponds to the gray curve in each plot, which is the output of the neural network as a 

function of the incubation time. 
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Imaging system design 
 

The AST system (Figure 2.1a,b) is composed of cost-effective components: LEDs, plastic 

optical fibers, singlet lenses, Raspberry Pi computers and camera modules, and 3D printed 

housing. It can be placed inside any standard laboratory incubator (Figure 2.1c) and has a slot for 

the insertion of a standard 96-well microplate loaded with bacterial isolates, growth medium, and 

candidate antibiotics at various concentrations (Figure 2.1d). Two adjacent 8x8 RGB LED arrays 

illuminate the entire plate from above, with one LED centered over each well. A plastic diffuser 

beneath the LEDs ensures spatial uniformity of illumination over the wells, and the brightness of 

each LED is controlled by pulse width modulation to compensate for the fact that wells near the 

center of the plate receive more light (due to neighboring LEDs) than those at the edge. Wells 

containing bacterial growth scatter the incident illumination, while the wells with no growth allow 

the light to pass through mostly unobstructed. Below each well, a bundle of 21 plastic optical fibers 

(Figure 2.1e) relays the transmitted light to one of two larger bundles, which are each imaged by 

the combination of a singlet lens and a CMOS camera connected to a Raspberry Pi computer. A 

sample image is shown in Figure 2.1f. Images are periodically captured over the course of an 18 h 

incubation, and examples of fiber intensity changes over time for wells with and without turbidity 

are shown in Figure 2.1g-i. 

In addition to capturing images, the two Raspberry Pis synchronously control the schedule 

of the illumination and image capture during incubation (Figure 2.2). Every five minutes, the LEDs 

are turned on and an image is captured, enabling temporal sampling of potential growth while 

ensuring that the bacteria are not exposed to phototoxic levels of light. The illumination cycles 

through the three LED colors, so that the time between images of the same color is 15 minutes. 
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While turbidity measurements are typically performed at a single wavelength (e.g., OD600), our 

system employed three illumination wavelengths to mitigate any wavelength-dependent 

absorbance of S. aureus in liquid growth medium45.  A quality control strain of S. aureus was run 

repeatedly in the system to ensure the MICs were in the expected ranges,46 indicating bacterial 

growth is not hampered by the periodic illumination (see Table 2.2). The fiber array functions to 

demagnify the plate area, enabling imaging of all 96 wells without any optomechanical scanning 

components, while maintaining a compact form factor.42,43 In this case, the fibers provide a 

demagnification factor of ~7, while capturing spatial information within each well, which is 

especially important for wells showing weak or atypical growth. The number of fibers per well 

(21) and the focal length of the singlet lenses (50 mm) were selected to maximize the amount of 

information captured per well. To address future manufacturability concerns, the locations of each 

of the 21 fibers within the wells were not manually recorded and tracked during assembly. Instead, 

the rough position of the fibers within each well (and thus, the information content) was 

empirically determined post hoc from the training data (further detailed below). 

The entire device measures 175 × 450 × 192 mm and the cost of the components (including 

all optics, electronics, and 3D printing) is under $500, which would drop significantly at higher 

manufacturing volume. Our system easily integrates with a typical clinical workflow, using any 

standard laboratory incubator and standard 96-well microplates. To operate our system, a user 

simply inserts a plate (Figure 2.1d), then starts the image acquisition program on one of the 

Raspberry Pi computers. Our system was successfully operated by five different clinical laboratory 

personnel. 
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Image processing and neural network design 
 

The data processing pipeline is shown in Figure 2.2. For each image, only the pixels 

corresponding to the illumination color are used (either red, green, or blue from the Bayer color 

filter array). For each plate, all subsequent images are aligned with the first image of the 

corresponding color using intensity-based registration, to account for any drift that may occur due 

to e.g. plate insertion, thermal effects, structural vibrations, etc. The first image of each color is 

also used to locate each fiber using the circular Hough transform, constrained by prior knowledge 

of the fiber grid layout. Using these fiber locations, the intensity of each fiber in each image is 

determined by averaging over a circular mask with a radius of 8 pixels, significantly smaller than 

Figure 2.2: Image processing pipeline. Images are captured every 5 min under either red, green, or blue illumination. 

Images are registered and fiber intensities are extracted. A neural network uses the fiber intensities from the previous 

1 h to predict the probability that each well is turbid at the current time point. 
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the radius of the fiber to avoid any edge effects due to e.g., defocus from aberrations of the singlet 

lens or drift over the course of the incubation period. Each temporal fiber intensity is denoised 

with a 30-minute moving averaging filter and normalized to its average value over the first 10 

images during incubation (2.5 h), during which time detectable turbidity is not expected to develop. 

These preprocessing steps mitigate the effect of fiber intensity variation due to illumination, fiber 

polishing defects, off-axis effects, etc. 

A turbidity prediction is made for each well after each image (every 5 min) starting after 

2.5 h of incubation. The normalized fiber intensities for all 3 illumination colors over the previous 

one hour are fed into a neural network that outputs a predicted probability of turbidity in the well 

at the current time. This is referred to as the window slicing method in the time series classification 

literature.47 Any value above 0.5 is interpreted as turbid, while values below 0.5 are interpreted as 

non-turbid. Examples of fiber intensity plots and blind testing network predictions are shown in 

Figure 2.3, Figure 2.7, and Figure 2.8. The turbidity classifications are then used to determine the 

MIC and susceptibility for each drug based on established clinical cutoffs.8 The neural network 

comprises 4 fully connected hidden layers of 128 neurons each, and a binary classification output 

layer (Figure 2.9). Batch normalization and dropout (probability 0.5) were used after each hidden 

layer to accelerate training and limit overfitting, respectively. The network was trained with the 

Adam optimizer at a starting learning rate of 1e-3, which was decreased after the validation loss 

failed to improve for 20 epochs. In total, the network has 83,073 trainable parameters. Note that 

the network does not employ any spatial convolutional layers because the information contained 

in the fiber bundle images is not shift-invariant: each fiber corresponds to a fixed region of the 

plate. This is the reason the extracted fiber intensities—as opposed to images— are used as the 

input to the network. The network does not receive any prior information about the well, drug, or 
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drug concentration; it makes predictions in a “well-blind” manner, which prevents it from 

overfitting to the specifics of the plates that were used in the experiments. 

Training neural networks via supervised learning requires ground truth labels for every 

training sample. Because a ground truth reading can only be performed via visual inspection by 

the trained medical technologist after incubation, ground truth labels were only available for the 

final time point of each patient plate (~18 h). Labels for the training plates at every other image 

time point during incubation were created manually by inspecting the fiber intensity plots for each 

well, such as those in Figure 2.3, Figure 2.7, and Figure 2.8. While these labels do not constitute 

a ground truth, they are the best available proxy and were used to train the network to identify 

turbidity effectively at an earlier time point within the incubation phase. Additionally, in certain 

instances where the ground truth label after 18 h disagreed with the manual label, the label was 

changed for network training. This type of data cleaning is acceptable (and common) for 

Figure 2.3: Network turbidity predictions on blind testing isolates. Fiber intensities and the panel of neural 

networks’ predicted probability of turbidity on blind testing patient isolates of Staphylococcus aureus for ground truth 

(a) turbid and (b) non-turbid wells. 
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training/validation data, especially when access to ground truth is not available, but certainly must 

not be (and was not) employed on blind testing data as it could bias results.  

As mentioned previously, the 21-fiber bundles under each well were assembled without 

precise control of the mapping of each fiber from the well to the image to make the device easier 

to potentially manufacture in large quantities. In the imaged fiber bundles (Figure 2.1f), the fibers 

are grouped by well, but the fibers within each well are randomly arranged. For each well, a “fiber 

order” was determined empirically, using the amount by which the fiber intensities dropped in the 

presence of turbidity, averaged over the entire training set. The fibers that showed the largest 

average intensity drop over the course of incubation can be assumed to be near the center of the 

well because the rounded bottoms of the wells eventually cause strong growth to pool in the center, 

although growth may begin anywhere in the well. Fibers that showed the smallest average intensity 

drop can be assumed to be near the edges of the well, where even strong growth has a limited 

effect on transmission at the end of incubation (due to the settling that occurs in the round-

bottomed wells for Gram-positive bacteria). The resulting fiber ordering was used for training and 

blind testing of the network and can be seen in all fiber intensity plots. This fiber ordering ensures 

that the network learns a general, robust model of turbidity over all wells, instead of overfitting to 

the individual characteristics of the fibers of each well.  

While the total number of training samples, each representing a single time point from a 

single well from a single patient plate, was large (263,019), the number of clinical isolates from 

which the training data was gathered was smaller (51). The variability among isolates accounted 

for much of the diversity of the dataset, both because each isolate had a unique resistance profile 

and because each plate was incubated on a different day by a set of rotating technicians. To ensure 

that the learned network model was robust to this isolate-to-isolate variability, we employed nine-
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fold cross-validation by randomly splitting the 51 clinical isolate plates into nine subsets and 

training nine models, where each model was trained on eight of the subsets and validated on the 

ninth. This process was repeated 50 times and the best model for each subset was selected to form 

a final composite “panel” of nine neural networks. This cross-validation/composite method (a type 

of model bagging)48,49 was employed to ensure that no single isolate plate exerted undue influence 

on the final model, as could have been the case if only a single validation set were used. 

Additionally, training in nine folds ensured each model was trained on a large number of dates 

(e.g., 45), which we found to improve performance on the validation data (Figure 2.10). Training 

many models was feasible because the number of layers and weights is small compared to many 

state-of-the-art image classification networks, which contain hundreds of millions of parameters. 

All training of the models was performed on a desktop computer in TensorFlow without a graphics 

processing unit (GPU), and in the future, due to improvements in computational power, could even 

be performed on the Raspberry Pi. 

Clinical testing results 
 

All experiments were performed at the UCLA Clinical Microbiology Laboratory by 

clinical staff, using 96-well microplates containing a Gram-positive antibiotic panel. 

Staphylococcus aureus isolates were prepared to a 0.5 McFarland standard in sterile water and 

then diluted in Mueller Hinton Broth. The diluted suspension was pipetted into all 96 wells and 

the plate was inserted into the AST system inside an incubator. 96-well microplates contained 

antibiotics in powder form pre-loaded into each well of the plate. Bacteria were pipetted into all 

96 wells along with growth medium and inserted into the AST system inside an incubator. The 

plate was removed and ground truth reading was performed after 18–19 h. Initial experiments were 
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performed on 47 plates, each with a quality control strain of S. aureus with a known resistance 

profile to ensure the system was functioning properly and the bacteria were not experiencing 

phototoxicity (Table 2.2). The MICs obtained from these control runs showed that the antibiotic 

linezolid used in the plates did not perform as expected and failed the quality control assessment, 

so its wells were excluded from the study. Any wells containing antimicrobials that do not have 

interpretive criteria for S. aureus and are not routinely used for clinical management (e.g. 

ceftriaxone) were also excluded from the study. Next, 51 plates, each containing a S. aureus isolate 

from a unique patient, were used to generate training and validation data for the neural network. 

33 additional patient plates were used for blind testing data. The blind testing plates were read 

after 18–19 h by two trained technologists and wells with discrepant readings between the 

technologists were not used for testing the system (Table 2.3). A single technologist was used to 

determine the turbidity ground truth for the training/validation data. 

Examples of fiber intensities and neural network turbidity predictions for blindly tested 

patient plates are shown in Figure 2.3, Figure 2.7, and Figure 2.8. The average incubation time 

required to obtain a correct turbid prediction for each drug is shown in Figure 2.4a. 95.03% of all 

turbid wells were correctly identified by the network, with the average turbid well requiring just 

5.72h of incubation to detect. The system detected turbidity for oxacillin in an average of 4.5 h, 

while it required 9 h on average for trimethoprim/sulfamethoxazole (Bactrim). Figure 2.4b shows 

the turbidity detection accuracy over time for all drugs. 90% of all wells were correctly classified 

after 7 h and 95% after 10.5 h. The MIC and susceptibility predictions for each drug were 

compared to the FDA-defined criteria for automated AST systems, namely essential agreement 

(EA), categorical agreement (CA), major error (maj) rate, and very major error (vmj) rate.44 EA is 

the percentage of patients for which a drug’s predicted MIC is within plus or minus one two-fold 
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dilution of the ground truth. CA is the percentage of patients for which the predicted susceptibility 

category (susceptible/intermediate/resistant) matches the ground truth. Maj rate is the percentage 

Figure 2.4: Time savings for turbidity detection. (a) Average time required for the panel of neural networks to make 

a correct turbidity prediction for each drug on blind testing isolates of Staphylococcus aureus. 95.03% of all turbid 

wells were correctly identified by the network, with the average turbid well requiring 5.72 h of incubation for 

automated detection. (b) Average well accuracy over the course of incubation. 90% of all wells were correctly 

classified after 7 h, and 95% after 10.5 h of incubation. 
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of all susceptible infections misclassified as resistant (i.e. false positive) and vmj rate is the 

percentage of all resistant infections misclassified as susceptible (i.e. false negative). The FDA 

requires automated AST systems to demonstrate EA and CA greater than 90%, and maj rate and 

vmj rate of no more than 3%. 

Figure 2.5 shows the blind testing results for EA, CA, maj rate, and vmj rate for each of 

the 14 drugs over the course of incubation. The legend in each plot indicates the number of valid 

samples in the denominator of the calculation for each drug. For EA/CA this is the number of blind 

testing patient plates for which there was agreement between the two human readers (out of a 

possible 33), and for maj/vmj rate it is the number of susceptible and resistant patient infections 

for which the two readers agreed, respectively. EA and CA surpassed the FDA limit of 90% for 

all 14 drugs before the end of incubation (18–19 h), in many cases as early as 4–6 h. Note that 

EA/CA began near 0% at the beginning of incubation for drugs against which growth/resistance 

was common such as daptomycin, whereas EA/CA began higher for drugs against which 

growth/resistance was rare, such as rifampin. 

Maj rate remained below the FDA limit of 3% for 11 of 12 possible drugs, and the drug for 

which it exceeded 3% (trimethoprim/sulfamethoxazole or Bactrim) was due to a single major error. 

It was not possible to calculate maj rate for two drugs (gatifloxacin and erythromycin) because 

resistance to these drugs was not observed for any clinical isolates. The maj rate for each of the 

other 12 drugs is plotted, but those that never move above 0% obscure one another. Vmj rate 

dropped below the FDA-permitted maximum of 3% before the end of incubation for 9 of 13 

possible drugs. Again, the four drugs for which the system did not meet the FDA limit 

(levofloxacin, ciprofloxacin, trimethoprim/sulfamethoxazole, and quinupristin/dalfopristin) each 
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experienced only a single very major error. It was not possible to calculate vmj rate for vancomycin 

because no clinical isolates exhibited resistance to it. Using the data from Figure 2.5, the incubation 

times required to meet/surpass the FDA limits for EA/CA/maj/vmj rate are listed in Table 2.1. The 

system met the FDA-defined criteria for EA/CA for all 14 drugs after an average of 6.13 h and 

6.98 h, respectively. The system met FDA criteria for major and very major error rates for 11 of 

Figure 2.5: Performance metrics over time for each antimicrobial agent. Essential agreement (EA), categorical 

agreement (CA), major error (maj) rate, and very major error (vmj) rate as a function of the incubation time for 

different antibiotics on blind testing isolates of Staphylococcus aureus. The second column in each plot legend 

indicates the number of samples for the corresponding metric (total number of valid samples for EA/CA, number of 

susceptible samples for maj rate, and number of resistant samples for vmj rate). EA and CA surpass the FDA limit of 

90% for all 14 drugs before the end of incubation. Maj rate remained below the FDA-permitted maximum of 3% for 

11 of 12 possible drugs and vmj rate dropped below the FDA maximum of 3% before the end of incubation for 9 of 

13 possible drugs. 
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12 possible drugs after an average of 4.02 h, and 9 of 13 possible drugs after an average of 9.39 h, 

respectively. These results are in line with the performance on the validation data, demonstrating 

that the panel of networks is not overfit (Figure 2.11, Figure 2.12, and Table 2.4). 

 

Drug 
Essential 

Agreement 

Categorical 

Agreement 
𝒏total Major error rate 𝒏susceptible Very major error rate 𝒏resistant 

Oxacillin + 2% NaCl 4.25 4.25 29 3.5 21 9.25 8 

Levofloxacin 5.5 5.25 29 2.5 17 N/A 12 

Tetracycline 5 5 28 2.5 23 5.75 5 

Gatifloxacin 5 4.5 30 - 0 10.5 13 

Daptomycin 5.5 10.25 32 2.5 3 16 29 

Gentamicin 2.5 2.5 33 18.25 31 5 2 

Ciprofloxacin 5.25 5.25 29 2.5 17 N/A 12 

Penicillin 9.5 5.5 33 2.5 7 16.75 26 

Erythromycin 8.75 8.75 30 - 0 9.25 10 

Vancomycin 5 14 32 2.5 19 - 0 

Rifampin 2.5 2.5 30 2.5 28 4.75 2 

Quinupristin/ 

dalfopristin 
6.75 14 26 2.5 23 N/A 1 

Clindamycin 8.25 4 25 2.5 21 7.25 3 

Trimethoprim/ 

sulfamethoxazole 
12 12 28 N/A 27 N/A 1 

AVERAGE 6.13 6.98  4.02  9.39  

Table 2.1: Incubation time (h) required to meet FDA criteria by drug for blind testing isolates of S. aureus.
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To investigate the performance benefits from using the composite panel of neural networks, 

Figure 2.6 shows the EA/CA/maj/vmj rates for the blind testing patient data averaged over all 14 

drugs for several alternative approaches. The curve labeled “panel of networks” corresponds to the 

composite panel of neural networks, whereas “single network” refers to the best individual 

network (by validation loss) from the panel. Three additional panels of networks were also 

generated (from a sample size of 50 nine-fold cross-validations as before) using only images of a 

single illumination color (red, green, or blue). Finally, a logistic regression model was tested, as 

Figure 2.6: Aggregate performance metrics for different computational models. Essential agreement (EA), 

categorical agreement (CA), major error (maj) rate, and very major error (vmj) rate averaged over all the drugs for 

various models for blind testing data. “Panel of networks” refers to the panel of nine neural networks trained via cross-

validation. “Single network” is only the best of the nine networks (by validation loss). “Panel (red/green/blue)” is a 

panel of networks that only uses images of the specified color. “Threshold” is a simple threshold-based approach in 

which a well is classified as turbid if fiber intensities fall below a specified threshold (see Methods section). 
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well as a simple threshold-based model, which classifies the well as turbid if at least two of the 

three most recent images have at least one fiber intensity lower than the threshold of 0.8876. This 

threshold value was determined by optimizing accuracy over the training patient plates. 

The panel of networks showed the best performance across all four metrics, but there was 

only a slight penalty in EA and maj rate by using a single network. The networks that used only 

images of a single color fared considerably worse than the network or panel of networks using all 

three colors. Among the three colors we would not expect a large difference, but green did perform 

the best, possibly since it used twice the number of pixels per fiber due to the Bayer filter array on 

the CMOS image sensor. The logistic regression performed better than the single-color networks, 

but not as well as the three-color network or panel of networks. The threshold-based simple 

approach was the worst performer, with under 90% CA and over 10% vmj rate. Figure 2.7 and 

Figure 2.8 show many examples of wells with predictions from the panel of networks, logistic 

regression, and threshold approach, demonstrating where the simpler models both failed to identify 

weak growth and falsely identified growth in non-turbid wells. Figure 2.13a,b show additional 

fiber intensities and network predictions for instances of a “skipped” well and wells with bubbles, 

respectively. These are well-known phenomena in AST and the network gave correct turbidity 

predictions in each case. 

Discussion 
 

Our system demonstrates the ability to detect turbidity and quantify resistance much sooner 

than the gold standard method, which requires at least 18–24 h. On the blind testing data, the 

system made only one major error and four very major errors across all 33 patients with 14 drugs 

each. The fiber intensities and network predictions for the wells corresponding to each of these 
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errors are shown in Figure 2.14–Figure 2.16 along with an image of the wells captured with a 

smartphone camera at the end of incubation. Each drug for which our system exceeded the FDA-

defined limit of 3% for maj or vmj rate only experienced a single error. With additional testing 

samples, the maj/vmj rates may drop below 3% for all drugs. In addition, the FDA defines major 

and very major errors as misclassification of a susceptible/resistant organism as 

resistant/susceptible. However, the one major error and one of the four very major errors from the 

network’s predictions did not include a predicted susceptibility because the predicted MIC was 

undefined (known as a “skipped well”). We report these instances as major/very major errors, but 

they can be thought of as inconclusive results, for which a human could be notified to read the 

MIC manually or decide to repeat the test. 

The performance of the system demonstrates the potential to enable automated, cost-

effective susceptibility testing with early results in resource-limited laboratories. Unlike the gold 

standard BMD method, our system does not require a full 18–24 h incubation or a trained 

technologist for plate readout and, unlike microscopy-based solutions, it requires no mechanical 

scanning components or bulky, costly hardware. Cost and access to trained personnel are primary 

factors that currently limit the reach of AST in developing regions. Our system also uses standard 

96-well plates, which would allow it to more rapidly integrate with typical clinical workflow. It 

should be noted that other cost-effective optical monitoring systems could be imagined (e.g. a 

single large-core fiber under each well or an array of photodiodes underneath the entire well plate), 

but these would sacrifice the spatial information obtained by the fibers within each well, which is 

necessary to accurately identify turbidity, as evidenced by the various fiber intensity patterns 

shown in e.g., Figure 2.3, Figure 2.7, and Figure 2.8. While the fibers add relative complexity to 

the system, the manufacturing process was simplified because the approximate layout of the fiber 
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bundles under each well was determined empirically post hoc as detailed earlier. Because the 

system autonomously captures images during incubation without the need to remove the plate from 

the incubator, early results for drugs showing strong resistance can be sent to the physician as soon 

as they are available, while the device continues to monitor growth in the wells with the remaining 

drugs. Due to the phenotypic nature of our sensing mechanism, we believe it can be extended to 

almost any type of bacteria, or other plate-based tasks such as enzyme-linked immunosorbent 

assays (ELISA), virus quantification assays, and culture samples. The fiber-based subsampling of 

the wells could enable the streamlining of daily laboratory tasks with robust, automated readout in 

a compact form factor. 

From Figure 2.6, it is clear that the panel of neural networks gave the best performance on 

the blind testing data, demonstrating an ability to discern nuanced patterns in fiber intensities. 

While a desktop computer was used to train the panel of networks, due to the rapidly decreasing 

cost of computation in embedded systems, future training could be performed on the Raspberry Pi 

or other compact device. In addition, a single network showed only a modest drop in performance, 

which could shorten computation time. Because the networks were not given knowledge of the 

well, drug, or concentration when making predictions, they also learned a model of turbidity that 

is quite general, instead of overfitting to the specifics of the plate or drugs used in the experiments. 

Because the second technologist who made ground truth readings for the testing data was not used 

for the training/validation data, the system demonstrated an ability to generalize beyond the 

specific patterns of an individual human reader. 

Conclusion 
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The presented system demonstrates the ability to conduct AST much faster than the gold 

standard method of incubation for 18–24 h followed by visual inspection. The time savings is 

critical to ensuring patients receive the most effective, targeted antibiotics and to limit the global 

rise in antimicrobial resistance. Our system also removes the need for a trained medical 

technologist and integrates with the standard clinical workflow using an incubator and 96-well 

microplates. The system is cost-effective due to the use of off-the-shelf components and could be 

particularly suited to resource-limited laboratories in developing regions, where antimicrobial 

resistance is predicted to cause the most deaths and access to trained personnel is limited. 

Methods 
 

Imaging system 
 

The AST system illumination is composed of two 8x8 arrays of individually addressable 

RGB LEDs (Adafruit Industries) whose pulse width modulation brightness is set by 2 Trinket 

microcontrollers (Adafruit Industries). The system contains 2016 0.75 mm plastic optical fibers 

(CK-30, Industrial Fiber Optics Inc.), which were epoxied and polished with a handheld polishing 

tool. Ferrules of appropriate dimensions were 3D printed for both the input and output bundles so 

that the fibers could be inserted easily and would naturally take the proper arrangement without 

precision handling (circular for the input end and rectangular for the output end, as shown in Figure 

2.1e and f, respectively). Fiber bundles were assembled and epoxied one well at a time, then these 

well bundles were further combined using a larger 3D printed rectangular ferrule to create two 

imaging bundles, each containing fibers for half of the 96-well plate (Figure 2.1f). Each 48-well 

bundle is imaged by the combination of a 10.0 mm diameter × 50.0 mm focal length plano-convex 

lens (Edmund Optics) and a Raspberry Pi Camera Module V2 (Newark) with 1.12 µm × 1.12 µm 
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pixel size. The two cameras are controlled by two Raspberry Pi 3 Model B computers. Images are 

captured in raw 10-bit format at 8.1 MP. 

Image processing and neural network 
 

Image processing was performed in MATLAB (MathWorks) and neural network 

training/testing was performed in Python using TensorFlow 1.14 (Google). The logistic regression 

model was created in Python with the scikit-learn library (David Cournapeau), using the saga 

solver, the elasticnet penalty with an L1 ratio of 0.9, and an inverse regularization strength of C = 

2. 

Clinical testing 
 

All experiments were performed at the UCLA Clinical Microbiology Laboratory. The AST 

system was placed inside a 2-cubic foot incubator (Binder) for the duration of the experiments. 

Initial experiments were performed using the ATCC43300 strain of MRSA in 47 plates. Confirmed 

clinical S. aureus isolates collected at the UCLA Clinical Microbiology Laboratory were tested on 

the platform for the remainder of the experiments. S. aureus isolates were prepared to a 0.5 

McFarland standard in sterile water and 50 µL of this suspension was transferred into 11 mL of 

Mueller Hinton Broth. The dilution was inoculated into 96-well microplates (100 μL of bacterial 

suspension per well) containing a commercially available Gram-positive antibiotic panel 

(Sensititre Gram Positive MIC plates, ThermoFisher Scientific) shown in Table 2.5. Following 

bacterial inoculation, single plates were loaded into the incubator for 18–19 h. At the end of 

incubation, plates were removed and turbidity was manually assessed by trained personnel. For 

training/validation data (51 clinical plates), plates were read by a single reader. For testing data 

(33 clinical plates), plates were read by two readers to assess and mitigate interpersonal variances 
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among readers. MIC was determined by identification of the first well without turbidity for 

increasing drug concentrations. Interpretation of susceptibility was determined in accordance to 

Clinical & Laboratory Institute Standards 2019.8 

Appendix 
 

Supplementary figures 
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Figure 2.7: Further examples of model predictions for turbid wells. Fiber intensities for turbid wells and our 

automated turbidity predictions from the panel of neural networks (gray), logistic regression (orange), and simple 

threshold-based approach (purple). The signature of turbidity varies considerably from well to well, often fooling the 

logistic regression and threshold approaches, especially for weak growth signals. The panel of neural networks 

generally provides the best accuracy and the most time savings by reaching more than 50% probability of turbidity 

(gray dashed line) after a shorter incubation time than the other models. The threshold-based model predicts a well to 

be turbid when at least one fiber drops below 0.8876 intensity (purple dashed line) in two of the previous three images. 
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Figure 2.8: Further examples of model predictions for non-turbid wells. Fiber intensities for non-turbid wells and 

our automated turbidity predictions from the panel of neural networks (gray), logistic regression (orange), and simple 

threshold-based approach (purple). The signature of non-turbid well varies considerably due to drift, condensation, 

bubble formation, and settling, often fooling the logistic regression and threshold approaches. The panel of neural 

networks generally provides the best accuracy, remaining below 50% probability of turbidity (gray dashed line) 

throughout incubation. The threshold-based model predicts a well to be turbid when at least one fiber drops below 

0.8876 intensity (purple dashed line) in two of the previous three images. 
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Figure 2.9: Neural network architecture. All layers are fully connected (no convolutional layers). The network was 

trained with additional batch normalization and dropout layers after each 128-neuron hidden layer. 
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Figure 2.10: Neural network validation loss as a function of the epoch number during training. Standard 

deviations were calculated over 10 repetitions for each curve. The validation data was the same for all four networks 

plotted, but the size of the training data ranged from 10 to 40 plates containing patient isolates of S. aureus. With 

additional training data, the minimum validation loss that is achieved decreases. 
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Figure 2.11: Time savings for turbidity detection on validation isolates. (a) Average time required for the panel 

of neural networks to make a correct turbidity prediction for each drug on validation isolates of Staphylococcus aureus. 

99.33% of all turbid wells were correctly identified by the network, with the average turbid well requiring 5.60 h of 

incubation to detect. (b) Average well accuracy over the course of incubation. 90% of all wells were correctly classified 

after 5.75 h, and 95% after 8.75 h. 
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Figure 2.12: Aggregate performance metrics over time on validation isolates for each drug. Essential agreement 

(EA), categorical agreement (CA), major error (maj) rate, and very major error (vmj) rate as a function of different 

antibiotics over the course of incubation for validation isolates of Staphylococcus aureus. The second column in each 

plot legend indicates the number of samples for the corresponding metric (total number of valid samples for EA/CA, 

number of susceptible samples for maj rate, and number of resistant samples for vmj rate). EA and CA surpass the 

FDA limit of 90% for all 14 drugs well before the end of the incubation period. Maj rate remained below the FDA 

maximum of 3% for 12 of 13 possible drugs and vmj rate dropped below the FDA maximum of 3% before the end of 

incubation for 10 of 11 possible drugs. 
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Figure 2.13: Examples of drugs with unusual behavior. (a) Drug for which growth occurs at a higher concentration 

than wells with no growth. “Skipped wells” of this nature may be due to problems with the drug or pipetting. The 

panel of networks correctly predicted each well and did not return an MIC as it is undefined. (b) Drug for which many 

bubbles formed in the wells. This unpredictable bubble formation can cause drops in fiber intensities, but the panel of 

networks correctly ignores the bubble artifacts when making its predictions. 
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Figure 2.14: Examples of two drugs for which the panel of neural networks made very major errors. Wells for 

which the panel made an incorrect turbidity prediction at the end of incubation have pink shading. Images of the wells 

captured by a smartphone are included in the inset of each plot. (a) Drug for which every well was labeled turbid by 

the ground truth, but the panel of networks only classified the first well as turbid. From the images, it is clear that the 

remaining wells contained very weak growth. (b) Drug for which every well was again labeled turbid by the ground 

truth, but the panel of networks only classified the first well as turbid. Once again, the photos show that growth was 

weak in the wells that were predicted to be non-turbid. 
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Figure 2.15: Examples of two drugs for which the panel of neural networks made very major errors. In 

combination with the previous figure (Figure 2.14), these wells constitute the only four very major errors on the blind 

testing isolates. Wells for which the panel made an incorrect turbidity prediction at the end of incubation have pink 

shading. Images of the wells captured by a smartphone are included in the inset of each plot. (a) Drug for which the 

panel of networks predicts a “skipped well,” i.e. a well with no growth followed by a well with strong growth at a 

higher concentration of drug. In this case, the panel of networks raised an error because the MIC was undefined. (b) 

Drug for which every well was again labeled turbid by the ground truth, but the panel of networks classified all wells 

as non-turbid. The photos show that growth was weak in all wells. 
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Figure 2.16: Fiber intensities and panel of networks’ predictions for the drug that caused the one major error 

in the blind testing isolates. Wells for which the panel made an incorrect turbidity prediction at the end of incubation 

have pink shading. Images of the wells captured by a smartphone are included in the inset of each plot. There appears 

to be weak growth in the second, third, and fourth wells. 
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1 8+ 4+ 1 1 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

2 8+ 4+ 2 1 4 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

3 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

4 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

5 8+ 4+ 2 2 4 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

6 8+ 4+ 2 2 2 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

7 8+ 4+ 2 1 4 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

8 8+ 4+ 2 2 2 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

9 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

10 8+ 4+ 2 2 4 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

11 8+ 4+ 2 2 4 2- 32+ 0.5- 0.25- 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

12 8+ 4+ 2 1 4 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

13 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

14 8+ 4+ 1 1 4 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

15 8+ 4+ 2 1 4 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

16 8+ 4+ 2 2 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

17 8+ 4+ 2 1 4 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

18 8+ 4+ 2 2 4 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

19 8+ 4+ 2 1 4 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

20 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

21 8+ 4+ 2 1 4 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

22 8+ 4+ 2 2 4 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

23 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

24 8+ 4+ 2 2 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

25 8+ 4+ 2 1 4 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

26 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

27 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 4 16+ 0.5- 0.5/9.5- 1 16+ - + 

28 8+ 4+ 2 2 4 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

29 8+ 4+ 2 2 2 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

30 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

31 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

32 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

33 8+ 4+ 2 1 4 2- 32+ N/A 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

34 8+ 4+ 2 2 4 2- 32+ 0.5- 0.5 8 16+ 1 N/A 1 16+ - + 

35 8+ 4+ 2 4 2 N/A 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

36 8+ 4+ 2 2 8 2- 32+ 0.5- 1 8 16+ 2 N/A 1 16+ - + 

37 8+ 4+ 2 2 4 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

38 8+ 4+ 2 2 2 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

39 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

40 8+ 4+ 2 1 4 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

41 8+ 4+ 2 1 2 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

42 8+ 4+ 2 2 4 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 2 16+ - + 

43 8+ 4+ 1 1 4 2- 32+ 0.5- 0.5 8 16+ 1 0.5/9.5- 1 16+ - + 

44 8+ 4+ 2 2 2 2- 32+ N/A 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

45 8+ 4+ 2 2 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

46 8+ 4+ 1 1 4 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

47 8+ 4+ 2 2 2 2- 32+ 0.5- 0.5 8 16+ 0.5- 0.5/9.5- 1 16+ - + 

 

  



46 
 

Table 2.2: Minimum inhibitory concentrations (MICs) for each 96-well plate run with the quality control strain 

of Staphylococcus aureus. The MICs were repeatable across the 47 plates that were run with the quality control strain 

of S. aureus in our AST system. Neighboring wells contain twofold dilutions of the drugs, so MICs are always a power 

of 2. With the exception of the drug linezolid, the MICs fell within the expected ranges for the quality control strain, 

confirming that the periodic illumination of the plate does not cause the bacteria to undergo phototoxicity. Because 

linezolid consistently showed MICs outside the expected range (possibly due to a manufacturing defect), those wells 

were not used in this study.  
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15 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
16 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
17 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 - 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
19 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
20 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
21 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
22 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
23 1 1 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
24 1 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
25 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
26 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
27 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
28 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
29 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
30 1 1 1 1 1 1 1 1 - - 0 0 1 1 1 - 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 - 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 
31 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 - - - 1 1 1 1 1 1 1 1 0 0 0 0 0 
32 1 1 1 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 
33 1 1 1 - 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 
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3 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 
4 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 - 1 1 0 1 1 1 0 0 0 0 1 1 1 0 0 1 - 0 0 0 0 0 0 1 1 1 
5 0 1 0 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 - 1 - 0 0 0 1 0 0 0 0 0 0 1 1 1 
6 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 - 0 1 1 1 0 0 1 1 1 1 1 1 - 0 1 1 1 
7 0 1 - - - - - 1 1 1 1 - 0 1 1 1 1 1 1 1 1 - 0 - 0 - - - 0 0 0 0 - - - 0 0 - 1 0 0 0 0 0 0 1 1 1 
8 0 1 1 1 1 1 - 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0 0 0 - 1 0 0 0 0 0 0 1 1 1 
9 0 1 1 1 1 1 1 1 1 1 1 - 0 1 1 1 0 0 0 0 0 1 1 1 0 - - - 1 1 0 0 1 1 1 1 0 - 1 1 1 1 1 1 0 1 1 1 

10 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 
11 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 - - 0 0 0 0 0 1 1 1 
12 - 1 - 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 
13 0 1 0 0 0 0 0 1 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 
14 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 
15 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 
16 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 
17 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 
18 0 1 1 0 0 0 0 1 1 1 1 - 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 
19 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 
20 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 
21 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 1 1 1 
22 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 
23 1 1 1 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 1 
24 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 
25 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 
26 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 
27 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 
28 0 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 
29 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 
30 0 1 1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 0 0 0 - - - 0 0 0 0 - - - 0 0 0 1 - 1 0 0 0 0 1 1 1 
31 0 1 1 1 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 1 1 
32 0 1 1 1 1 1 1 1 1 1 - 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 
33 0 1 0 0 0 0 0 1 1 1 1 - 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 
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Table 2.3: Ground truth labels for all 96 wells for 33 blind testing isolates of S. aureus. 1 corresponds to a turbid 

label from both human readers, 0 corresponds to a non-turbid reading from both human readers, and – corresponds to 

a discrepancy between the two labels. The two medical technologists’ turbidity readings differed for 86 of 3168 wells 

(2.7%). Interestingly, many of the discrepancies span several neighboring wells, which would cause a large change in 

the resulting minimum inhibitory concentration (MIC). An automated readout such as that of our system could enable 

more consistent readings across human readers/staff and laboratories. 
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Table 2.4: Incubation time (h) required to meet FDA criteria by drug for validation isolates of S. aureus.

Drug 
Essential 

Agreement 

Categorical 

Agreement 
n 

Major error  

rate 
n 

Very major error  

rate 
n 

Oxacillin + 2% NaCl 4.25 4 51 5.25 34 N/A 17 

Levofloxacin 4.5 4.5 50 18.75 35 15.25 15 

Tetracycline 5.5 5.5 50 2.5 43 8 4 

Gatifloxacin 4.25 3.75 51 - 0 2.5 15 

Daptomycin 5.25 13.5 49 16.25 6 17.25 43 

Gentamicin 2.5 2.5 50 2.5 45 16 5 

Ciprofloxacin 4.75 4.75 51 2.5 36 13 15 

Penicillin 8.25 4.5 50 2.5 12 5.75 38 

Erythromycin 8.5 8.5 51 N/A 1 9.75 24 

Vancomycin 4.75 13.5 51 2.5 38 - 0 

Rifampin 2.5 2.5 49 2.5 49 - 0 

Quinupristin/ 

dalfopristin 
5.5 6.25 50 2.5 44 - 0 

Clindamycin 7 4.5 51 2.5 45 6.25 6 

Trimethoprim/ 

sulfamethoxazole 
2.5 2.5 51 8.75 50 4.5 1 

AVERAGE 5 5.77  5.75  9.83  
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Table 2.5: 96-well plate layout of antibiotics and concentrations used in this work.
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Chapter 3 Deep learning-based on-chip spectroscopy framework 
 

This chapter contains material that is currently under peer review and has been submitted 

in pre-print as follows: Calvin Brown, Artem Goncharov, Zachary Ballard, Mason Fordham, 

Ashley Clemens, Yunzhe Qiu, Yair Rivenson, Aydogan Ozcan. arXiv:2012.00878 

Conventional spectrometers are limited by trade-offs set by size, cost, signal-to-noise ratio 

(SNR), and spectral resolution. Here, we demonstrate a deep learning-based spectral 

reconstruction framework, using a compact and low-cost on-chip sensing scheme that is not 

constrained by the design trade-offs inherent to grating-based spectroscopy. The system employs 

a plasmonic spectral encoder chip containing 252 different tiles of nanohole arrays fabricated using 

a scalable and low-cost imprint lithography method where each tile has a unique geometry and, 

thus, a unique optical transmission spectrum. The illumination spectrum of interest directly 

impinges upon the plasmonic encoder, and a CMOS image sensor captures the transmitted light, 

without any lenses, gratings, or other optical components in between, making the entire hardware 

highly compact, light-weight and field-portable. A trained neural network then reconstructs the 

unknown spectrum using the transmitted intensity information from the spectral encoder in a feed-

forward and non-iterative manner. Benefiting from the parallelization of neural networks, the 

average inference time per spectrum is ~28 µs, which is orders of magnitude faster compared to 

other computational spectroscopy approaches. When blindly tested on unseen new spectra (N = 

14,648) with varying complexity, our deep learning-based system identified 96.86% of the spectral 

peaks with an average peak localization error, bandwidth error, and height error of 0.19 nm, 0.18 

nm, and 7.60%, respectively. This system is also highly tolerant to fabrication defects that may 

https://arxiv.org/abs/2012.00878
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arise during the imprint lithography process, which further makes it ideal for applications that 

demand cost-effective, field-portable and sensitive high-resolution spectroscopy tools. 

Introduction 
 

Spectral analysis is used in a wide array of applications in the fields of chemistry, physics, 

and biomedical sensing, among others. Optical spectra are conventionally recorded with 

spectrometers that separate light into its spectral components via a diffraction grating. The 

intensity of each component is recorded by a photodetector array, e.g., a complementary metal–

oxide–semiconductor (CMOS) imager, to translate these intensities into the optical spectrum of 

the illumination beam (covering e.g., 400–750 nm). The Czerny-Turner configuration, for 

example, is one of the most commonly used methods for optical spectroscopy, employing two 

collimating mirrors to fold the optical path while partially compensating for optical aberrations1. 

Though elegant and robust, grating-based designs present two key performance trade-offs. Firstly, 

increasing the spectral resolution generally comes at the cost of decreasing the signal-to-noise ratio 

(SNR). For example, narrowing the entrance slit width, decreasing the period of the grating, or 

decreasing the pixel size of the sensor all improve spectral resolution at the expense of signal 

strength2. These methods also necessitate more expensive components and more precise 

instrument alignment. Such trade-offs can be prohibitive for low-light, low-cost, or field-based 

applications that still demand high spectral resolution. Secondly, increasing the spectral resolution 

may require a longer optical path between the grating and the photosensor array3. This is typically 

achieved with physically larger instruments (benchtop-sized), which are less suitable for mobile 

spectroscopy applications. In addition, a longer path length can degrade performance due to even 

minor ambient temperature fluctuations2. Therefore, traditional spectrometer designs present a 

compromise among resolution, cost, size, and SNR.  
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Computational sensing schemes have been proposed as a promising alternative to 

conventional grating-based spectrometers, presenting a variety of hardware and software 

solutions4–11. Instead of relying on diffraction gratings, some of these earlier systems work by 

encoding the incident spectra over a set of unique filter functions. The encoded information is then 

interpreted by a spectral reconstruction algorithm that employs precise a priori knowledge of the 

filter functions or leverages some calibration data to map the encoding operation to the target 

spectral measurement. Benefiting from the computational sensing paradigm, these emerging 

designs do not share the same size, throughput, and resolution trade-offs inherent to grating-based 

spectrometers. The quality of the spectral reconstruction is not explicitly linked to the optical path 

length or the spectral resolution of the detection scheme since the encoding operation does not 

divide the incident light into its narrowband spectral components, instead samples the input spectra 

with filters that can exhibit broadband transmission5,12,13. Performance of these computational 

schemes for spectroscopy therefore depends on the robustness and spectral diversity of the 

encoding operation as well as on the accuracy and speed of the employed algorithm to solve the 

underdetermined reconstruction problem4,12,14,15.  

A number of different hardware approaches have been proposed for the spectral encoding 

operation including variable filters in the form of liquid crystals and Fabry-Perot cavities as well 

as fixed filter configurations like ring resonators, Mach-Zehnder Interferometers (MZIs), photonic 

crystals and plasmonic filters7–9,16–25. Each encoding element, which may range from a narrowband 

spectral filter to a broadband filter function with multiple local extrema, samples the input 

spectrum 𝐼(𝜆) using the filter functions of the spectral encoder. Reconstruction algorithms are 

therefore tasked to recover the incident spectrum from the raw data sampled by each encoder. The 

most common approach to algorithmic reconstruction is to use a priori information of the encoding 
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operation and spectral sensitivity of the photodetectors to define a transformation, 𝑇𝑖(𝜆), between 

the target spectrum, 𝐼(𝜆), and raw measurements, 𝑆𝑖, i.e. 𝑆𝑖 =  𝑇𝑖(𝜆)𝐼(𝜆)  for each ith encoding 

operation. By expressing this transformation operation over all the encoding elements, a least-

squares problem can be defined, and a solution for 𝐼(𝜆) can be obtained by minimizing e.g., 

‖𝑆 − 𝑇𝐼‖2
2. Regularization terms based on the L1 norm (least absolute shrinkage operator, 

LASSO26) and the L2 norm (Tikhonov regularization27), among others, are also commonly used 

to solve this minimization problem, necessitating iterative reconstruction algorithms that 

overcome the limitations of the standard least-square solution to this underdetermined problem5–

7,9,10,15,16,18,19,24,28,29. However, given this body of work, a data-driven non-iterative spectral 

reconstruction approach, without the need for a priori knowledge of the specific filter functions, 

has yet to be demonstrated.  

Here we report a deep learning-based on-chip spectrometer (Figure 3.1) that utilizes a flat 

spectral encoding chip (fabricated through a scalable and low-cost imprint lithography process) to 

filter the incident light using an array of 252 nanostructured plasmonic tiles, where each tile has a 

unique transmission spectrum. The transmitted light through all these tiles is acquired in parallel 

using a conventional CMOS image sensor that is axially positioned at ~3mm away from the 

plasmonic encoder, recording the free-space diffraction patterns of the plasmonic encoder without 

any lenses or optical components, using a compact and field-portable design (Figure 3.1b). A 

trained neural network is used to reconstruct the unknown input spectra from the lensfree 

diffraction images in a feed-forward (i.e. non-iterative) manner without the need for a priori 

information on the encoding operation or the input illumination (Figure 3.1d,e). The network 

generates spectral reconstructions in ~28 µs per spectrum—orders-of-magnitude faster than other 

computational spectroscopy methods—by leveraging batch computation. When blindly tested on 
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new input spectra of varying complexity (N = 14,648) captured after the training phase, the deep 

Figure 3.1: Neural network-based on-chip spectroscopy. a Schematic of the optical setup. Plasmonic encoder is 

located between a CMOS image sensor and the input aperture. b Photo of optical setup. c Brightfield microscope 

image of the plasmonic encoder chip showing example transmission spectra T(λ) below. d Workflow of spectral 

reconstructions. Regions of the HDR image corresponding to each tile are used as inputs to the spectral reconstruction 

neural network. e Spectra reconstructed during blind testing. Error is shown above each plot on the same y-scale. The 

network was trained only on spectra with up to 8 peaks, yet it successfully reconstructs a spectrum with 14 peaks. 
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learning-based on-chip spectrometer correctly identified 96.86% of the spectral peaks with a peak 

localization error of 0.19 nm, a peak height error of 7.60%, and a peak bandwidth error of 0.18 

nm. These performance metrics demonstrate significant improvements compared to earlier 

generations of computational spectrometers and were achieved despite visible fabrication defects 

in the plasmonic encoder chip, illustrating the robustness of our neural network-based spectral 

reconstruction method.  

Taken together, the presented on-chip plasmonic spectroscopy design is highly cost-

effective, compact, field-portable and requires no mechanical scanning components (Figure 3.1). 

The methods and the device design that are at the heart of this computational on-chip spectrometer 

can find unique applications in various fields that demand compact and sensitive high-resolution 

spectroscopy tools. 

Results 
 

On-chip spectroscopy framework and experimental setup 
 

Our deep learning-based spectral reconstruction framework (Figure 3.1a,b) uses a spectral 

encoding chip comprising 14 × 18 = 252 unique plasmonic ‘tiles’, where each tile covers a region 

of 100 × 100 µm, defined by a unique nanohole array structure (Figure 3.2). Importantly, the 

encoder chip is fabricated through a scalable imprint lithography process (Figure 3.2a) that can 

replicate nanostructures indefinitely from a silicon ‘master’ chip (see Methods). As a result, our 

encoding chip is low-cost and with the exception of a metal deposition step, can be fabricated 

without the need for clean room instrumentation or processes. Each plasmonic tile, i, serves as a 

unique spectral filter described by a transmission function, 𝑇𝑖(𝜆), where the local maxima and their 
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corresponding bandwidths result from the plasmonic modes supported by the dielectric and metal 

nanostructures (see Figure 3.2d,e).  

For each illumination spectrum under test, the lensfree diffraction images of the input 

radiation were captured at multiple exposures to create a high dynamic range (HDR) image to limit 

Figure 3.2: Spectral encoder chip.  a Soft lithography process for molding low-cost replica 

of nano structures from a silicon master. Steps i-ii show the initial molding process with the 

silicon master and the initial UV curable polymer. Steps iii-iv show the secondary molding 

process followed by the metal deposition in v. The b Period and c Aspect Ratio of the nanohole 

array for each tile in the encoder are shown using a heatmap. d SEM images of example 

plasmonic nanohole arrays, corresponding to the outlined white boxes in b and c and example 

spectra in Figure 3.1c. e Example transmission spectra, where the blue lines correspond to the 

plasmonic tiles shown in the SEM images and in Fig 1c. Other example transmission spectra 

are shown in grey.  
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pixel saturation effects. Lensfree images of the encoder chip corresponding to spectral peaks from 

480–750 nm are shown in Supplementary Movie 1. Each of the 252 tiles is automatically 

segmented and further subdivided into a 9 × 9 grid of 81 sub-tiles. The average pixel intensities of 

all 252 × 81 = 20,412 sub-tiles serve as the input to a trained neural network, which rapidly 

reconstructs the unknown illumination spectrum without any iterations, in a single feed-forward 

manner (Figure 3.1c,d). The spectral reconstruction neural network comprises three fully-

connected layers of 2,048 neurons each, and an output layer with 1,185 nodes, representing the 

spectral intensities over a target spectral range of 480–750 nm, with a spectral spacing of 0.229 

nm. The network was trained using a mean squared error (MSE) loss function between the 

reconstructed spectra (network output) and the ground truth spectra, measured by a commercially 

available spectrometer (see Methods). To train the network, 50,352 random spectra were generated 

by a programmable supercontinuum laser, with an additional 8,824 spectra used for validation data 

(see Methods). The resulting neural network was blindly tested on 14,648 unseen new spectra 

generated by the same experimental set-up. Because the network requires no further training or 

iterations, it is able to reconstruct a new, unseen spectrum in ~28 µs in a single feedforward manner 

using a desktop computer (see the Methods section). 

Blindly tested spectral reconstructions 
 

Figure 3.3 illustrates the success of the trained reconstruction network to accurately recover 

unknown spectra using lensfree diffracted images that are acquired by our compact set-up (Figure 

3.1). The average MSE, peak localization error, peak intensity error, and bandwidth estimation 

error on the blindly tested spectra were 7.77e-5, 0.19 nm, 7.60%, and 0.18 nm, respectively. 

Overall, our experimental results reveal that 96.86% of the peaks in the ground truth spectra were 

correctly reconstructed by the network. Figure 3.3e-j further show reconstructed spectra and 
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ground truth spectra for both lower complexity (one peak) and higher complexity (4–8 peaks) 

spectra for various performance percentiles. These percentiles refer to the MSE loss of the network 

output reconstruction, where 10th percentile implies a relatively good fit (best 10% loss), 50th 

percentile implies the median fit, and 90th percentile implies a poor fit (worst 10%). Even for higher 
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complexity spectra, the 90th percentile network output results are rather accurate, closely matching 

the ground truth spectra acquired with a benchtop spectrometer. Additional examples of blind 

spectral reconstructions obtained at the network output are shown in Figure 3.7–Figure 3.14 to 

demonstrate the repeatability and success of this blind spectral inference process.  

We also evaluated the peak localization and bandwidth estimation error, on blindly tested 

new spectra, each with a 3 nm-bandwidth peak, ranging from 480–750 nm with a step size of 1 

nm. For these 271 new spectra, all the peak localization errors were within ± 0.32 nm, and all the 

bandwidth estimation errors were within ± 0.178 nm, significantly surpassing the performance of 

earlier on-chip spectroscopy results. 

Spectral inference stability as a function of time 
 

Because the training spectra were captured before the blind testing, one would expect some 

level of performance degradation in spectral inference due to e.g., temperature fluctuations, 

illumination source stability/coupling changes, or mechanical vibrations, especially as the time 

period between the capture of the training and testing data increases. The performance stability of 

the inference of the trained network over the course of the blind testing data capture (~15 h of 

continuous operation) is evaluated in Figure 3.4. All performance metrics remained fairly stable, 

with no significant difference between their values at the start and end of the 15 h continuous 

testing period (Figure 3.4).  

Figure 3.3 (previous page): Blind testing performance. a Average MSE, b peak shift/localization error, c peak 

height error, and d peak bandwidth error for spectra containing 1-8 peaks. Average over all spectra is shown as a 

horizontal line in each plot. Reconstructions for lower complexity (1 peak) spectra in the e 10th, f 50th, and g 90th 

percentile of MSE. Reconstructions for higher complexity (4-8 peaks) spectra in the h 10th, i 50th, and j 90th percentile 

of MSE. 10th, 50th, and 90th percentiles correspond to best 10%, median, and worst 10% fits, respectively. Error is 

shown above each plot on the same y-scale. 
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To further investigate the performance stability over time, an additional 21,296 new spectra 

were captured ~5.8 days after the last training/validation spectrum. Compared with the earlier 

blind inference results, the performance relatively degraded on these new spectra, as shown in 

Figure 3.5 (green curves). The average MSE, peak localization error, peak intensity error, and 

bandwidth estimation error on these later-acquired unknown spectra were 6.89e-4, 0.53 nm, 

Figure 3.4: Stability of inference performance over 

time. a Average MSE, b peak shift/localization error, c 

peak height error, and d peak bandwidth error for 

spectra over the course of blind testing data capture. 

14,648 blind testing spectra are represented in the plots, 

captured over ~15 h of continuous operation of the 

system. 
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14.06%, and 0.29 nm, respectively, with 94.97% of spectral peaks correctly identified. As a means 

to re-calibrate the reconstruction network and overcome this relative performance degradation over 

time, we implemented a transfer learning approach, where the weights of the previously-trained 
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neural network were adjusted through further training on a small fraction of the spectra captured 

at the start of the new measurement period (i.e., ~5.8 days after the last training phase). The 

performance metrics and spectral reconstructions after this transfer learning step are shown 

alongside those of the original network in Figure 3.5. All performance metrics are significantly 

improved after the transfer learning step: average MSE, peak localization error, peak intensity 

error, and bandwidth estimation error improve to 3.68e-4, 0.42 nm, 10.83%, and 0.23 nm, 

respectively, with 96.37% of the peaks correctly identified. Figure 3.5 further illustrates that, in 

addition to these considerable improvements in spectral inference metrics, background spectral 

noise and erroneous peaks are also suppressed well, after the transfer learning step. 

It is important to emphasize that the amount of data and the computation time required for 

this transfer learning step are rather small; even using just 100 new spectra (requiring ~6 min to 

capture) and training the existing neural network for 100 epochs (requiring < 1 min on a desktop 

computer) shows marked improvements in the blind spectral reconstructions after 5.8 days (Figure 

3.18). Therefore, transfer learning can be an effective software-based calibration tool for our data-

driven computational on-chip spectrometer, as demonstrated here. 

Speed of spectral reconstructions 
 

Unlike optimization-based approaches to spectral reconstruction5,7,9,10,15,16,18,19,24,28,29, our 

neural network-based inference does not require iterative computation to predict each unknown 

Figure 3.5 (previous page): Performance on blind testing spectra captured ~5.8 days after training. a Average 

MSE, b peak shift/localization error, c peak height error, and d peak bandwidth error for spectra containing 1-8 peaks. 

Average over all spectra is shown as a horizontal line in each plot. Transfer learning considerably improves the 

inference performance, for all metrics. Reconstruction for lower complexity (1 peak) spectrum in the e 50 th percentile 

of MSE. Reconstructions for higher complexity (4-8 peaks) spectra in the f 10th, g 50th, and h 90th percentile of MSE. 

Error is shown above each plot on the same y-scale. 



70 
 

spectrum. Once the network has been trained, it can perform reconstruction of unseen spectra 

rapidly and in parallel. The average prediction time per spectrum for different batch sizes are 

shown in Figure 3.6. All calculations were performed on a desktop computer (see Methods). For 

a batch size of 4096 spectra, the network is able to reconstruct an unknown spectrum in ~28 µs on 

average, providing orders of magnitude inference speed advantage compared to optimization-

based iterative reconstruction methods. This parallel computation capability could be particularly 

beneficial for e.g., significantly increasing the speed of hyperspectral imaging systems, where a 

unique spectrum needs to be reconstructed for each hyperspectral pixel. 

Compared to other state of the art neural networks used for image processing and 

enhancement tasks30–35, the spectral reconstruction network employed in this work is compact and 

Figure 3.6: Prediction speed vs. batch size for blind 

testing spectra. Inference time per spectrum considerably 

decreases with increasing batch size due to the highly 

parallelizable nature of the neural network computation. An 

average inference time of ~28 µs is obtained for a batch 

sizes of 4096 or more spectra. Error bars were generated 

from 7 repeated trials. All predictions were performed on a 

desktop computer (see Methods). 
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shallow, comprising three hidden layers and no convolutional layers. This enabled rapid prediction 

on an unseen spectrum in ~ 43 µs, without requiring an iterative minimization in the blind inference 

phase. To further increase the speed of prediction, we investigated subsampling each tile into a 7 

× 7 sub-grid instead of 9 × 9 (Figure 3.19). While the coarser subsampling (7 × 7) causes a modest 

degradation in prediction performance, the network inference time further decreased to ~18 µs per 

spectrum. It is also important to note that the spectral reconstruction network yielded the best 

performance when trained with a dropout probability of 3%, much lower than the typical values 

(10–50%) used in many common neural networks employed in other applications30–32,36. Because 

the neural network does not use convolutional layers and is relatively shallow and wide, even a 

small dropout probability gave us a strong regularization effect. 

Network generalization to new spectral distributions not included in the training 
 

In addition to investigating the spectral reconstruction network’s ability to generalize over 

time, we also tested its ability to generalize to new spectral distributions that were not included in 

the training phase. While the network was trained on random spectral distributions containing 1–

8 peaks, we synthesized more complex spectra that had more number of peaks, not represented 

within the training phase. The network was tested on these synthesized spectra without any 

retraining or transfer learning, and some examples of the synthesized spectra and the 

corresponding spectral reconstructions are shown in Figure 3.1e and Figure 3.15. Despite using 

spectral distributions that were never represented during the training phase, the reconstructions 

still identify 90.54% of all peaks and do not suffer from any obvious artifacts or noise. These 

results demonstrate the presented framework’s ability to generalize to more complex spectral 

distributions that were not included in the training data. Additionally, we tested the same neural 

network with new spectra that had larger bandwidths per peak compared to the training spectra. 
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These new test spectra with broader bandwidths therefore serve as another example of new spectral 

distributions that are successfully reconstructed using the network (Figure 3.16) even though they 

were not represented during the training. 

Discussion 
 

The performance of the presented spectral reconstruction framework demonstrates its 

potential to enable new modalities of spectroscopy and hyperspectral imaging. When our deep 

learning-based spectrometer was blindly tested on unseen spectra, it correctly identified 96.86% 

of the spectral peaks, with a peak localization error of 0.19 nm, a peak height error of 7.60%, and 

a peak bandwidth error of 0.18 nm. The presented spectral reconstructions (Figure 3.3, Figure 3.7–

Figure 3.14) match the ground truth spectra quite well, both quantitatively and qualitatively, with 

the peak localization error and the peak bandwidth error on the order of the resolution (0.229 nm) 

of the spectrometer used to capture the ground truth training data. Additionally, there is no 

observed bias in these performance metrics over the operational range (480 nm – 750 nm) which 

can be partly attributed to (1) the lack of wavelength dependency in the MSE loss function, and 

(2) the spectral diversity of the filter functions, 𝑇𝑖(𝜆), of the plasmonic encoder chip (see Figure 

3.2e). It is also important to emphasize that as a unique aspect of this work, successful 

reconstruction performance was demonstrated over a large blind testing dataset (14,648 unique 

spectra) containing varying degrees of complexity, including non-sparse examples with 

overlapping spectral features (e.g., Figure 3.3h,j). When compared to a linear regression model 

with L2-norm regularization trained on the same data set, the trained neural network achieved 

nearly a 5-fold reduction in average MSE (from 3.85e-4 to 7.77e-5). The predicted spectra 

resulting from the regularized linear model contain significant noise artefacts (see Figure 3.17) not 

seen in our deep-learning based reconstructions, suggesting that the hidden layers and the inherent 
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nonlinearities within the neural network play an important role in de-noising the spectral features 

identified through linear operations, yielding robust performance over complex and non-sparse 

inputs. 

Avoiding overfitting of the spectral reconstruction algorithm is critical for any 

computational spectrometer that uses a data-driven approach. This is especially important for 

complex models such as neural networks that contain a large number of trainable parameters and 

non-linear activation functions. Reconstruction algorithms that exhibit overfitting to a particular 

training set, can fail to appropriately interpret minute changes in experimental system alignment, 

temperature, vibrations, or other unforeseen noise sources, potentially leading to significant 

changes in the output and overall reconstruction performance. The presented system showed very 

good stability over the course of ~15h continuous experimentation during which the 14,648 blind 

testing spectra were captured (Figure 3.4); however its blind inference performance relatively 

degraded after ~5.8 days, likely due to uncontrolled factors, e.g., temperature, vibrations. These 

spectral reconstructions after ~5.8 days were improved considerably by transfer learning on newly-

captured data, which amounts to a simple calibration step, similar to what is typically used for 

some other measurement instruments.  

Another important aspect of this spectral reconstruction framework is the use of a spectral 

encoder chip, fabricated through scalable imprint lithography. The fabrication of the encoding chip 

does not require cleanroom-based lithography or other processes that require an advanced 

fabrication infrastructure, except the metal deposition step, which is relatively much simpler and 

cheaper. While this low-cost and rapid imprint lithography process can introduce point 

imperfections in the encoder chip, as evident in Supplementary Movie 1, the data-driven spectral 

reconstruction network demonstrates robustness to these defects. Due to the minimal cost and 
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scalability of the imprint lithography, large area encoders for hyperspectral imaging could be 

fabricated, in which an ensemble of optimal filter functions could be grouped into a single 

hyperspectral pixel that is tiled across the encoder chip. While the present encoder contains 252 

spectrally overlapping broadband filters, further optimization in its design can be achieved: 

application-specific feature reduction approaches can be used to select, in a data-driven manner, a 

statistically optimal sub-set of tiles13,37. In Figure 3.20, we explored network performance when 

using random subsets of the 252 tiles, demonstrating that blind spectral reconstructions using just 

49 plasmonic tiles are still quite competitive. This trade-off between reconstruction performance 

and the number of encoder elements would be critical for designing future computational 

spectrometers. 

Compared to traditional grating-based spectrometer designs, the presented spectral 

reconstruction framework offers several unique features. First, the compact nature of the on-chip 

spectroscopy system (Figure 3.1a,b) could enable inexpensive, lightweight designs with large 

fields-of-view for, e.g. remote, airborne, or even disposable sensing needs in field settings. 

Because the encoder chip can be manufactured at low cost over large areas with the imprinting 

process, an array of spectrometers or a hyperspectral imaging grid could be fabricated without the 

need for cleanroom-based lithography tools. Since the presented device bins the neighbouring 

pixels, spectrometers using large-pixel size sensors or, conversely, spectrometers with even a 

smaller footprint (via less pixel binning) could be designed as well. Second, the traditional trade-

off between the spectral resolution and SNR that is common in grating-based spectrometers is now 

pushed to a different optimum point: the resolution of our spectral reconstruction network is 

primarily limited by the spectral resolution of the instrument used for ground truth measurements 
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of the training data, and the individual filters of the encoder chip do not need to be narrowband to 

match the ground truth resolution as demonstrated in this work.  

The data-driven approach utilized in this work also offers key advantages when compared 

to common spectral reconstruction algorithms based on e.g., least-squares minimization employed 

in other computational spectrometer systems. Although the training process requires a large 

amount of measurements to be obtained, this is a one-time effort, and it yields a forward model 

that can blindly recover unknown spectra from raw sensing signals in ~28 µs, orders of magnitude 

shorter than the time required to solve iterative minimization problems, employed in earlier 

spectral reconstruction methods. Spectral reconstruction timing can be important for various 

applications such as hyperspectral imaging, that may demand a spectral recovery across a large 

sequence of images each with a large number of individual pixels. Additionally, some of the 

iterative reconstruction algorithms used earlier employ a ‘smoothness’ constraint in their 

optimization process, based on the second derivative of the target spectra5. Although this may 

improve some spectral reconstructions, the selection of a singular weighting parameter on this 

constraint introduces a trade-off in performance between narrow-band and broad-band spectral 

reconstructions. Lastly, instead of using training data, these iterative reconstruction methods rely 

on precise measurements of the encoding operation and the spectral response of the underlying 

photosensors, which are both used as a priori information. This presents a separate array of 

challenges, because the reconstruction performance relies on how precisely one can characterize 

the underlying hardware. All of these challenges are considerably mitigated or eliminated using 

the presented deep learning-based spectroscopy approach, which also lends itself to a highly 

compact, field-portable, sensitive and high-resolution spectrometer design that can be used in 

various targeted applications, in both sensing and imaging. 
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Methods 
 

Plasmonic encoder 
 

The plasmonic encoder measures 4.8 × 3.6 mm and consists of 252 (14 × 18) tiles, with 

each tile covering 100 × 100 µm. Each one of these tiles consists of a nanohole array with a unique 

combination of periodicity (square or hexagonal), period (280–650 nm), and aspect ratio (period 

divided by hole diameter, spanning 1.5–3.0) (Figure 3.2b,c). As a result, the 252 plasmonic tiles 

support distinctive plasmon resonances in the visible range of optical spectrum, manifesting as 

unique filter functions for the incident light. 

The embedded nanostructures in the encoder are molded from a silicon ‘master’ chip that 

contains the desired nanohole array designs. The silicon master was fabricated using Electron-

beam lithography (Raith EBPG5000 ES) with a ZEP520A resist (Figure 3.21). After the resist was 

exposed and developed, a Chlorine etcher (ULVAC NE 500 with 5 sccm Ar, 20 sccm Cl2) was 

used to create the nanohole arrays in the silicon. After the production of the master, plasmonic 

encoder chips were then fabricated using an imprint molding process described earlier38. The final 

encoder chip is comprised of a UV-curable polymer NoA-81 (Norland Products, Inc.) backed by 

a standard microscope slide, with 50 nm of gold and 5 nm Titanium adhesion layer deposited via 

Electron Beam Evaporation (CHA Solution). 

Experimental procedures 
 

Optical spectra were generated by a programmable supercontinuum laser (~3 nm 

bandwidth) with up to eight independent emission channels (Fianium, United Kingdom). Random 

spectra were created by turning on a random number of channels between 1 and 8. For each 
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channel, the center wavelength was set randomly between 480 and 750 nm, and the power was set 

randomly between 0.1 and 0.7 (a.u.). All experiments were performed with random spectra, with 

the exception of the spectra with broader bandwidths (Figure 3.16), which were manually created 

by overlapping the 8 channels to form a single, broader peak. The output from the laser was 

coupled to a 50/50 2 × 1 fiber splitter (OZ Optics), with one arm coupled to the input aperture of 

our device and the other arm coupled to a conventional spectrometer (Ocean Optics HR+) to 

capture a ground truth spectrum for each measurement. For each spectrum, images were captured 

by the CMOS image sensor (daA1280-54um by Basler AG, Germany) at ten different exposure 

times (increasing in length by a factor of two each time) and the resulting images were combined 

into a single HDR image. Each spectrum was captured by the ground truth spectrometer five times 

and the resulting spectra were averaged to minimize the effects of noise. Spectra that were over- 

or under-saturated (in either the ground truth spectrum or the captured HDR image) due to 

randomness of peak location and power were removed from the dataset. 

Training and validation spectra were captured over the course of ~3.75 days. The training 

dataset consisted of 50,352 spectra, while the validation dataset consisted of 8,824 spectra. Data 

for blind testing were captured immediately afterward, consisting of 14,648 spectra captured over 

15 h of continuous operation of the system. Additionally, another blind testing dataset was 

captured starting ~5.8 days after the last training/validation spectra were captured. 

Spectral reconstruction network 
 

All images were registered to an orthogonal grid to account for gradual drift of the encoder 

chip relative to the CMOS active area. The 252 × 9 × 9 = 20,412 sub-tile intensities were combined 

into a vector to serve as the input to the neural network. The spectral reconstruction network 
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comprises three fully-connected layers of 2,048 neurons each, and an output layer with 1,185 nodes 

(shown in Figure 3.22). Batch normalization and dropout layers (with a dropout probability of 3%) 

were used after each fully-connected layer to prevent overfitting to the training spectra. The 

network was trained using the Adam optimizer39 with a learning rate of 1e-5. 

Appendix 
 

Supplementary figures 
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Figure 3.7: Blind reconstructions for spectra with one peak. Spectral reconstructions for a 10th, b 50th, and c 90th 

percentile of MSE. 10th, 50th, and 90th percentiles correspond to best 10%, median, and worst 10% fits, respectively. 

Error is shown above each plot on the same y-scale.   
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Figure 3.8: Blind reconstructions for spectra with two peaks. Spectral reconstructions for a 10th, b 50th, and c 90th 

percentile of MSE. 10th, 50th, and 90th percentiles correspond to best 10%, median, and worst 10% fits, respectively. 

Error is shown above each plot on the same y-scale. 
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Figure 3.9: Blind reconstructions for spectra with three peaks.   Spectral reconstructions for a 10th, b 50th, and c 

90th percentile of MSE. 10th, 50th, and 90th percentiles correspond to best 10%, median, and worst 10% fits, 

respectively. Error is shown above each plot on the same y-scale.   
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Figure 3.10: Blind reconstructions for spectra with four peaks.  Spectral reconstructions for a 10th, b 50th, and c 

90th percentile of MSE. 10th, 50th, and 90th percentiles correspond to best 10%, median, and worst 10% fits, 

respectively. Error is shown above each plot on the same y-scale.   
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Figure 3.11: Blind reconstructions for spectra with five peaks. Spectral reconstructions for a 10th, b 50th, and c 90th 

percentile of MSE. 10th, 50th, and 90th percentiles correspond to best 10%, median, and worst 10% fits, respectively. 

Error is shown above each plot on the same y-scale.   
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Figure 3.12: Blind reconstructions for spectra with six peaks. Spectral reconstructions for a 10th, b 50th, and c 90th 

percentile of MSE. 10th, 50th, and 90th percentiles correspond to best 10%, median, and worst 10% fits, respectively. 

Error is shown above each plot on the same y-scale. 
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Figure 3.13: Blind reconstructions for spectra with seven peaks. Spectral reconstructions for a 10th, b 50th, and c 

90th percentile of MSE. 10th, 50th, and 90th percentiles correspond to best 10%, median, and worst 10% fits, 

respectively. Error is shown above each plot on the same y-scale. 
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Figure 3.14: Blind reconstructions for spectra with eight peaks. Spectral reconstructions for a 10th, b 50th, and c 

90th percentile of MSE. 10th, 50th, and 90th percentiles correspond to best 10%, median, and worst 10% fits, 

respectively. Error is shown above each plot on the same y-scale. 
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Figure 3.15: Performance on synthesized spectra. Reconstructions for synthesized spectra with 12 or more peaks 

in the a 10th percentile, b 50th, and c 90th percentile of MSE. While the network was only trained on spectra with up 

to 8 peaks, it faithfully reconstructs spectra with more peaks. Error is shown above each plot on the same y-scale. 
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Figure 3.16: Blind reconstruction of spectra with larger bandwidths (never seen during the training phase). a-

d Reconstructions of 4 different spectra. These broader-bandwidth spectra were generated by aligning 8 channels of 

the supercontinuum laser to adjacent wavelengths.   
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Figure 3.17: Blind reconstructions for spectra using Tikhonov (L2-norm) regularization (used for comparison 

to neural network-based reconstructions). Spectral reconstructions for a 10th, b 50th, and c 90th percentile of MSE. 

10th, 50th, and 90th percentiles correspond to best 10%, median, and worst 10% fits, respectively. Error is shown above 

each plot on the same y-scale. 
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Figure 3.19 (previous page): Comparison of 9x9 and 7x7 tile subdivisions.  a Average MSE, b peak 

shift/localization error, c peak height error, and d peak bandwidth error for spectra containing 1-8 peaks. Average over 

all spectra shown as horizontal line in each plot. The 9x9 tile subdivision improves over the 7x7 for all metrics. 

Reconstruction for low complexity (1 peak) spectrum in the e 50th percentile of MSE. Reconstructions for high 

complexity (4-8 peaks) spectra in the f 10th, g 50th, and h 90th percentile of MSE. Error is shown above each plot on 

the same y-scale.   

Figure 3.18 (next page): Performance on blind testing spectra captured 5.8 days after training with limited 

transfer learning. a Average MSE, b peak shift/localization error, c peak height error, and d peak bandwidth error 

for spectra containing 1-8 peaks. Transfer learning on just 100 spectra (~0.2% of initial training spectra, requiring just 

~6 min to capture) improves MSE, peak localization error, and peak height error, and suppresses noise/spurious peaks. 

Reconstruction for low complexity (1 peak) spectrum in the e 50th percentile of MSE. Reconstructions for high 

complexity (4-8 peaks) spectra in the f 10th, g 50th, and h 90th percentile of MSE. Error is shown above each plot on 

the same y-scale.  
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Figure 3.20 (previous page): Comparison between models using different numbers of plasmonic tiles. a Average 

MSE, b peak shift/localization error, c peak height error, and d peak bandwidth error for spectra containing 1-8 peaks. 

Average over all spectra shown as horizontal line in each plot. Using more tiles improves performance, but even using 

a fraction of the tiles allows reconstruction of most peaks. It must be noted that the networks shown here were of 

simplified architecture to speed training of many models. Reconstruction for low complexity (1 peak) spectrum in the 

e 50th percentile of MSE. Reconstructions for high complexity (4-8 peaks) spectra in the f 10th, g 50th, and h 90th 

percentile of MSE. Error is shown above each plot on the same y-scale.  

Figure 3.21: Spectral encoder fabrication process.  
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Figure 3.22: Spectral reconstruction network architecture. All layers are dense/fully-connected 

layers. The network was trained with additional batch normalization and dropout layers after each 

2048-neuron hidden layer. Additional networks were trained with fewer than 252 tiles or fewer than 

9 × 9 sub-tiles, in which case the input layer was scaled accordingly while the rest of the network 

remained unchanged. 
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Chapter 4 Conclusion 
 

In this dissertation, I have presented two novel frameworks for computational sensing in 

two markedly different applications: a deep learning-enabled, automated AST system and an on-

chip framework for designing custom, compact spectrometers. Both systems were designed from 

the ground up with both hardware sensing and software reconstruction algorithms in mind, leading 

to novel architectures with unique capabilities that are not available in the systems conventionally 

used for these tasks. 

The AST framework uses cost-effective components and machine learning to address the 

primary drawbacks of the gold standard method of testing for resistance: the need to wait 18–24 h 

for incubation and the need for a trained medical technologist (who inevitably is susceptible to 

human error). Conventional imaging approaches, such as scanning microscopy over the entire 96-

well plate, are not well suited to the task and would require bulkier, more expensive hardware, as 

well as calibration and most likely a trained technician. Similarly, the on-chip plasmonic 

spectroscopy framework also avoids many of the pitfalls that plague conventional system design 

(in this case, grating-based spectrometers). By partially avoiding the trade-off between spectral 

resolution and signal strength as well as employing a neural network to drastically improve 

reconstruction speed compared to other computational spectroscopy approaches, the plasmonic 

approach demonstrates the potential for the design of sensitive, high resolution spectrometers for 

various applications. 

Rethinking conventional sensing and imaging systems—armed with the tools of machine 

learning and compressive sensing—has already led to new designs in applications beyond those I 

have mentioned, in which more compact, lower cost, higher sensitivity, lower power consumption, 
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remote operation, or other characteristics are needed. I believe new designs will continue to 

emerge, and crucially, those that have already emerged will continue to mature and improve due 

to the ease of iterative design and testing cycles. We have only just begun down the road of 

computational system design, and there remains much work to do in combining these newfound 

computational tools with established optical systems. 

 




