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†University of California, San Diego ⋆ Cisco Systems

ABSTRACT

As single TCP flows approach 10 Gbps, static hash ECMP

load balancing — used by routers today– does a poor job

of balancing load in data centers. We describe a new load

balancing algorithm, Flame, that is implementable at 480

Gbps with small memory and uses two novel mechanisms.

First, Flame uses a Discounting Rate Estimator (DRE); un-

like exponential averaging, DRE quickly measures bursts

and yet retains memory of recent bursts. Second, Flame

binds flows to hash functions and not to paths. We show

Flame is more resilient and efficient than the earlier Flare

scheme, and provides better load balancing and is more de-

ployable than Hedera. Flame also allows rebalancing of

flows in hardware at rapid rates. This is interesting be-

cause we show TCP experiments at 1 and 10 Gbps that

demonstrate that recent Linux stacks after 2.6.14 can toler-

ate rebalancing once every 10 packets with negligible loss of

throughput. On the other hand, Windows 2008 stacks have

degraded TCP throughput if rebalancing is done more often

than 1 in 32,000 packets.

1. INTRODUCTION

To support growth in cloud applications, data centers of-

fer higher aggregate bandwidth by utilizing multiple paths in

the network [7, 1, 4]. For example, in the standard fat-tree

topology, edge switches load balance across a set of paths to

multiple core switches. Effective network load balancing is

crucial to allow core network bandwidth beyond that allow-

able by link technology. For example, today 10 Gbps core

links are reasonably priced and 40 Gbps links are expensive.

The only way to economically scale large data centers is to

load balance traffic across multiple 10 Gbps core links.

While this is a classic trend in networks, the problem is

more difficult today because of high-bandwidth edge flows.

10 Gbps has reached the edge; with fast CPUs and adap-

tors, single TCP flows can approach 10 Gbps. As the num-

ber of high-bandwidth edge flows increases, customers are

finding that load balancing performance is unsatisfactory for

reasons we explain below. Far from being an academic cu-

riosity, router vendors are actively looking to improve the

state-of-the-art.

In this paper, we investigate this load balancing problem.

In particular, our goal is to spread network load across all

available paths 1 in order to realize bandwidth equal to the

sum of the paths. However, it is traditionally required that

packets within a flow 2 be delivered to the TCP stack in or-

der. If they are not, performance of that connection can suf-

fer, as we quantify in Section 5.4, due to TCP sender con-

gestion window reduction triggered by the reordering.

The standard load balancing algorithm used in routers is

equal-cost multi-path routing (ECMP) using a static hash.

ECMP implies that load balancing is done only over equal

cost paths, while static hash assigns a flow to a path by hash-

ing the TCP/IP 5-tuple with a single hash function 3. Static

hashing is computationally fast and requires no state. It also

guarantees no reordering of TCP flows as long as paths do

not change. While static hash ECMP is universally imple-

mented, it has poor load balancing performance when there

are large edge flows, as the following examples demonstrate.

Example 1: Assume we wish to balance 4 flows each with

6 Gbps of bandwidth across 4 equal cost paths of 10 Gbps.

The offered load (24 Gbps) is smaller than the network ca-

pacity (40 Gbps). Assuming a static hash that distributes

uniformly, the probability that all 4 flows will pick distinct

paths is only 24/256, less than 10%. Thus with 90% prob-

ability, at least two 6 Gbps flows will be assigned to the

same 10 Gbps link and thus will be throttled to 5 Gbps each,

though one expensive 10 Gbps link is unused! If n flows

are uniformly randomly assigned to p paths, each flow is as-

signed a path with probability 1

p
. The mean number of flows

per path is n
p

and the standard deviation is
√

n
p
(1 − 1

p
).

1While port aggregation and multi-pathing are distinct switch fea-
tures, the forwarding hardware is nearly the same. In this paper, we
will refer to them both as multi-pathing. A path refers to a physical
port in port aggregation and a physical path in true multi-pathing.
2A flow refers to all the packets of a single TCP connection and is
identified by a unique 5-tuple.
35-tuple is IP source and destination addresses, TCP source and
destination port numbers, and the protocol field.
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Figure 1: Network topology for Example 2 showing

the need to rebalance flows.

As n grows large, the deviation grows as the square root

while the mean grows linearly; thus the deviation becomes

insignificant as the number of flows increases. But the de-

viation is significant when there are a small number of large

flows as in Example 1. Beside random assignment, a second

culprit is fixing a flow assignment indefinitely.

Example 2: Assume an edge router (Figure 1) with two

input links I1 and I2 of 10 Gbps, and paths to two different

core routers C1 and C2 via output links O1 and O2 of 10

Gbps each. Consider three flows, F1, F2, and F3 where

F1 arrives first on I1 and sends at 5 Gbps. A short time

later F2 arrives on I1 and sends at 4 Gbps. Some time later,

F3 arrives on I2 and sends at 8 Gbps. This is a feasible

traffic pattern because there is no more than 10 Gbps arriv-

ing on any input link. Assume that static hash ECMP gets

“lucky” and assigns F1 to O1 and F2 to O2. At this point

in time, traffic is well balanced. However, when F3 arrives,

static hash can only assign F3 to either O1 or O2. In ei-

ther case, we have at most 5 Gbps on one output link and at

least 13 Gbps on the other output link. For instance, if F3
is assigned to O1, then 13 Gbps cannot be sustained on a 10

Gbps output and so queues will build on O2 or downstream

in core router C1. The “right packing” would be to move

F2 back to O1 along with F2 and then to assign F3 to O2.

Related work: Flare [8] goes beyond static hash using

two ideas. First, long flows are broken into multiple flowlets

based on a packet gap timeout. Second, the first packet of

each flowlet is allocated to the least loaded link and the re-

sult is stored in a flowlet table and used to route subsequent

flowlet packets. A gap timeout larger than the network la-

tency ensures no reordering will occur. In Example 2, if F1
and F2 are sufficiently spaced apart, F2 is guaranteed to

be assigned to a different link by Flare unlike static hash.

Flare does no repacking and will not address the imbalance

in Example 2 when F3 arrives — unless F1 or F2 have a

sufficiently long gap and are timed out.

Hedera [2] does not attempt to optimally place flows ini-

tially. After flows are measured as “heavy-hitters” they are

reassigned by a heuristic implemented in software on a cen-

tralized switch controller. Hedera thus assumes Open Flow [11]

or MPLS to control flow routes via software. Hedera allows

entire paths to be rebalanced which goes beyond link-by-

link balancing as in Flare. However, it not immediately de-

ployable in today’s networks by changes to single routers.

Further, Hedera rebalances in the order of seconds, imply-

ing a few seconds worth of imbalance when a new flow such

as F3 arrives in Figure 1.

Finally, a reordering-resilient TCP (or an implementation

that reorders packets in the destination network adaptor) can

allow packet-by-packet load balancing to get near-optimal

load balancing. A more approximate alternative is to split

large TCP flows into multiple TCP subflows at the source

as in Multipath TCP [15]. However, both Hedera and Mul-

tipath TCP are clean slate approaches while Flare only re-

quires implementation changes within a single switch. We

choose to work in the Flare setting but to go beyond Flare as

follows.

Paper contributions: Our contributions include:

1. New bandwidth estimator: We propose a new Dis-

counting Rate Estimator (DRE) for link bandwidth that

responds faster to new bursts than an exponential weighted

moving average (EWMA) while retaining memory of

past bursts.

2. Remembering hash functions not paths: We use stan-

dard power-of-choice hashing to pick the least loaded

link which reduces hardware comparison overhead. Un-

like Flare, however, we remember the hash correspond-

ing to the least loaded link and not the path. We show

this is more memory-efficient and robust to hash colli-

sions (no worse than ECMP).

3. Hardware for 48-port 10 Gbps switch: We use a hash

table instead of a per-flow state table to deal with mem-

ory overflow; we integrate heavy-hitter detection to

maximize efficiency; and (most importantly) how to

incorporate periodic load balancing at any parameter-

ized value (even 1 in 10 packets) in hardware (Fig-

ure 4).

4. New load balancing metrics: We introduce new mea-

sures for comparing load balancing schemes (Section 4.2

and 5.1).

5. Updated experiments on the effect of rebalancing on

TCP: In Section 5.4, we describe new experiments

with various combinations of Windows and Linux stacks.

While Windows stacks degrade considerably in through-

put, we show that the latest Linux stacks (after 2.6.14)

allow load balancing as often as 1 in 10 packets with

at most 10% loss in throughput!
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Algorithm 1 Discounting Rate Estimator (DRE)

Parameters:

TP : DRE timer period

RP : DRE discount ratio

for each path i do

initialize shallow counter Q[i] = 0

end for

loop
if packet D sent to path i then

Q[i] = Q[i] + D.size

end if

if proxy queue timer TP expires then

for each path i do

Q[i] = Q[i] − Q[i] · RP

end for

end if

if f is new flow then

assign f to path of smallest Q

end if

end loop

2. MECHANISMS

In this section, we describe the essential ingredients of

our dynamic load balancing scheme. We first describe a

Discounting Rate Estimator to measure link loads. We then

describe our flow table design that enforces packet ordering,

show how heavy-hitter detection can improve performance,

and finally show how to rebalance flows. These mechanisms

are combined in Figure 4.

2.1 Discounting Rate Estimator (DRE)

We start with the Flare approach. Thus, we need a link

bandwidth estimator to assign new flows to the least loaded

link. Two requirements for a bandwidth estimator are:

Quick reaction to new bursts: In Example 2, if F2 arrives

a short time after F1 and F1 has been assigned to output

link O1, we would like the link estimator for O1 to quickly

ramp up so that O1 looks “more loaded” than O2 and F2 is

(correctly) assigned to O2.

Remembering old bursts: In Example 2 again, suppose

that F2 arrives 100 usec after F1 has finished sending at 5

Gbps for a few seconds. At this moment assume that O1’s

queue is empty and so is that of O2. However, the effect of

F1’s burst may still remain downstream at core router C1 in

Figure 1. Thus, we would like the path estimator at the edge

router to “remember” the fact that F1 has sent a burst for

a small period equal to the network latency (say 300 usec).

Otherwise, F2 could wrongly be assigned to O1 causing

unnecessary congestion at core router C1.

Let us see how four standard estimators do with respect

to these requirements:

1. Epoch estimator: Bandwidth is traditionally measured

by counting how many bytes are sent in a fixed epoch in-

terval (e.g., 1 msec, or 1 second). Then, the counter value

is reset and bytes are counted for the next epoch interval.

New flows are assigned to the link with the smallest current

epoch counter. Unfortunately, the epoch estimator keeps no

memory after an epoch. For example, in Example 2, if F1
ends just before the end of an epoch, and F2 arrives soon

after the epoch ends, there will be no memory of F1’s burst

and F2 could be wrongly be assigned to O2. One could use

the epoch estimator of the last epoch; but such an estimator

will not react fast if F1 and F2 start in the same epoch.

2. Token estimator: The Flare paper [8] uses a token

counting approach of subtracting the ideal bytes to be sent

on each link from the actual bytes and sending packets to

the link with the least tokens. To avoid keeping memory for-

ever, the token counters are periodically reset to zero. This

is identical to the epoch estimator in the case of whole flow

load balancing and keeps no memory of past bursts across

measurement intervals.

3. Exponentially weighted moving average (EWMA): If

an EWMA estimator uses a small weight for new informa-

tion and a large weight for past information, EWMA will

keep memory of old bursts but react quite slowly to new ar-

rivals. On the other hand, if we make the weight for recent

information to be high and the weight for the past to be low,

then the past is forgotten very quickly.

4. Physical queue size: In Figure 1, using the physical

queue size of output link O1 and output link O2 to deter-

mine the least loaded link does not work. In Example 2,

after flow F1 has been assigned to output link O1, the phys-

ical queue at the edge router is likely to be zero because F1
is 5 Gbps and the link is 10 Gbps. But F1 can cause conges-

tion at the upper core router C1 because of a fourth flow F4
that wishes to go on the same path downstream from C1.

This congestion is invisible at the edge router. Fundamen-

tally, physical queue size does not work because it does not

reflect past traffic sent at a rate smaller than the link band-

width.

To reconcile the simultaneous demands of fast reaction to

new bursts while retaining memory of old bursts, we were

led to invent a new Discounting rate estimator (DRE) that,

to the best of our knowledge, we have not seen before in

the literature on estimators. Pseudocode for DRE is shown

in Algorithm 1. DRE keeps a counter Qi for each switch

port output link i which is incremented by the packet size

when a packet is transmitted on that output link. However,

the counter for path i is not periodically reset to zero. In-

stead, every period say Tp, the counter is decreased by an

amount proportional to the current counter value. We call

the proportionality factor the discount factor Rp. If Rp is

chosen to be a power of 2, discounting can be implemented

in hardware using a shifter and a subtractor. For example, in

Section 5 we use very small values of DRE parameters such

as TP = 100us and RP = 1/512.

DRE will quickly react to new bursts because it simply
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Figure 2: Overview of Flame state table design. A

new table entry is set up by comparing k paths as

specified by k independent hash functions h1, h2, . . . ,

hk. The period aging timer is triggered every time

interval Ta to age out inactive table entries.

adds the packet bytes. DRE also remember old bursts be-

cause every period, the DRE counter is merely discounted

by Rp and not reset. The DRE counter will also not di-

verge to infinity because the higher the counter, the greater

the discounting effect. We prove formally in Section 4.1

that the DRE counter stays bounded, is a scaled rate es-

timator, and balances rise and fall times for new and old

bursts. DRE is almost identical to EWMA except that while

EWMA weights both old and new information, DRE only

weights past information. While this is a simple change, it

makes a great difference to rate estimation.

2.2 Choosing the least loaded link

Figure 2 illustrates the key components of the design. In

this section, we describe how to choose the least loaded link.

This seems trivial. When a new flow F arrives, the forward-

ing table yields the set of equal cost paths P for F . Next,

simply read the DRE counters of all links in P and assign F
to the path with the smallest DRE counter. This is unwork-

able for three reasons:

1. Large number of potential paths: In data centers today,

8 and 16-way multipathing are common but there is growing

interest in multi-pathing as high as 32 or even 64. More

concretely, consider a fat-tree topology that is maximal in

diameter and a top-of-rack switch with 96 ports. With 40
servers in the rack, there will be 40 uplinks which results in

40 ECMP paths

2. Rising traffic rates: 48-ports 10 Gbps Ethernet switches

are already in the market. These require a lookup rate of

approximately 750 million lookups per second, implying a

clock rate of 750MHz. This gives us 1.3nsec per clock cycle

which is near the limit of ASIC technology. This allows for

only a small number of register reads.

3. Exponential numbers of potential ECMP path sets: If

there were 64 ECMP paths used by all flows, one could do

incremental computation by keeping a pointer to the least

loaded link; when a DRE counter is updated, if it is lower

than the current lowest the pointer is updated. Unfortu-

nately, each flow can use a different subset of the 40 out-

put links, leading to 240 possible subsets, too many to keep

state for, let alone update. Consider the case when an edge

router E has 32 outlinks to 32 core routers. One of the core

routers, say C, has a failed downlink to an edge router E′.

Then, flows from E to E′ cannot be routed by the output link

to C but the remaining flows can. Similar patterns of failure

can result in every possible subset of paths being chosen by

some flow.

We cope with the small time budget and the small num-

ber of register reads possible using power-of-choice hash-

ing [12]. When a flow first starts, we hash it with k indepen-

dent hash functions h1, h2, . . . , hk function to get k paths,

say P1, P2, . . . , Pk. If Pi is the least loaded path, we as-

sign the new flow to Pi. So far this is standard power of

choice for load balancing as has been proposed for server

load balancing [12].

What is new in our setting is the need to maintain flow

order to avoid TCP throughput degradation. Instead of re-

membering the path Pi in a hash table, we remember the

hash hi that generated the least loaded path index. This is a

good idea for two reasons. First, we can remember more

flows if the state is smaller: the state needed to remem-

ber a hash is log2 k (2 bits for 4 hash functions!) is much

smaller than the 128 bits required to remember a TCP flow.

Second, since we do not store the flow ID, then we have to

deal with hash collisions. Remembering a hash function is

more robust than remembering a path because if two flows

collide, the second flow will not use the path of the ear-

lier flow but the hash of the earlier flow. Thus the collided

flow has a significant chance of being assigned to a different

link, no worse than static hash ECMP; on the other hand,

we show examples later where remembering paths is much

worse than ECMP.

Note that in the special case k = 2, we further enhance

the computation of two-hash choices so as to guarantee no

hash collision as follows. (Otherwise, done independently,

there is a 1/4 probability that the two will pick the same link

to sample which is wasteful.) Despite this coupling, the two

hash functions are "sufficiently independent" to guarantee

good sampling, based on some recent unpublished work by

Mitzenmacher.

Let p be the number of equal cost paths. Then given a

flow f , we compute its two path choices by the following

formulas.

P1 = h1(f) mod p (1)

P2 = (h2(f) mod (p − 1) + 1 + h1(f)) mod p
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2.3 State table design

Figure 2 shows how we keep and update flow state. In

particular, when a packet arrives, if the packet’s flow is not

in the state table, we use the power-of-choice method in Sec-

tion 2.2 to assign it to the optimal path and insert the chosen

hash into the table. The packet is also sent to the path just

selected. On the other hand, if the packet’s flow is already in

the table, then we just send the packet to the path indicated

by the stored hash applied to the packet’s flow ID.

While the Flare paper [8] indicates that the number of

concurrent flowlets is small, their traces were wide-area traces.

For large data center traces, we see no reason why the num-

ber of concurrent flowlets cannot be much larger. In order

to reduce the amount of state to a more affordable level, we

use a hash of the flow (instead of exact-matching on the flow

ID) to index into the state table. If the flows are hashed into

a state table of, say, 1024 buckets, then each bucket can be

dynamically assigned a path just as a flow was assigned a

path dynamically. To free up state entries as soon as pos-

sible, we use a simple and efficient aging mechanism akin

to LRU page eviction. We associate an aging field (typi-

cally a one-bit flag, but could be larger for finer granularity)

with each state table entry and update it when a packet ar-

rives. A complete design of the Flame state table with the

aging mechanism is shown in Figure 2. Each table entry is a

record with three fields: 1. valid flag: indicates whether the

table entry is valid and contains the state of an active flow;

2. aging flag: marks inactive or idle flows. 3. hash function:

points to one of the k hash functions h1, h2, . . . , hk.

When a packet arrives, its flowID is hashed to map the

packet to a table entry. If the table entry is valid, the packet

is dispatched according to the hash function stored in the

state entry. The aging flag is also cleared to indicate that the

flow entry is active. On the other hand, if the state entry is

invalid, we make the table entry valid by comparing k paths

as specified by k independent hash functions h1, h2, . . . , hk

as in Section 2.2. The hash function resulting in the optimal

path is saved in the table entry. Subsequent packets of the

same flow are guaranteed to use the same hash function and

the same path.

Further, a timer process visits every table entry every ag-

ing timeout Ta. When it visits a table entry, it either turns

on the aging flag or invalidates the entry if the aging flag

is already on. In other words, Ta is the timeout threshold

to age out inactive flows. Note that with this aging timer

process, the aging interval is in the range between Ta and

2Ta. As suggested in [8], our timing mechanism will split a

long flow into several much smaller flowlets. While [8] sug-

gests a flowlet timeout of 60 ms based on wide area traces,

we suggest that this be a parameter; even numbers like 300

usec may be reasonable in a modern data center.

2.4 Handling heavy-hitters

Heavy-hitter  

multi-stage filter  

In Flame heavy-

hitter table? 

Is new  

heavy-hitter? 

Insert new entry in Flame 

heavy-hitter table 

with optimal path 

Route packet by 

Flame heavy-

hitter table 

Route packet  

by ECMP 

or hash table 

Is Flame 

heavy-hitter 

table full? 

packet 

Y 

N 

N 

Y 

Y 

N 

Figure 3: Overview of Flame scheme with an exact-

matching heavy-hitter table. A flow is routed accord-

ing to the Flame heavy-hitter table once it is classified

as heavy-hitter. Each entry in the Flame heavy-hitter

table is also periodically aged out with an aging flag

and aging timeout. Non heavy-hitters can use hash

state table in Section 2.3.

The hash scheme allows collisions and a flow F2 can

reuse the state set up by an earlier flow F1. If F1 is a low

rate flow, while F2 sends at 5 Gbps, F2 will be routed by a

static hash but this is not optimal. If F1 or F2 keep send-

ing, F1’s entry will never be timed out and F2 will keep

using essentially ECMP instead of a more optimal assign-

ment. In this section, we seek to combat this problem by

applying the load-balancing algorithm only to heavy-hitters

since only a small number of heavy-hitters are responsible

for a large fraction of traffic in the network [7, 3]. Non-

heavy-hitters (i.e. mice flows) can be forwarded using hash

state table in Section 2.3 or ECMP.

We also want to allow hardware rebalancing unlike the

Hedera paper [2] which only allows rebalancing in software.

Since heavy-hitter admission and eviction can introduce an-

other form of TCP packet reordering, we need a parameter

F (reordering parameter) to decide how often a flow can be

reordered without causing undue harm to TCP. For exam-

ple, a prior experimental study [9] suggests that TCP per-

formance will not be adversely effected if the number of

reorderings is less than 0.1%, i.e. F = 1000. Our updated

study reported in Section 5.4 suggests that F can be much

worse (32, 000) for Windows Server destinations and much

better (even F = 10) for recent Linux versions. Thus we

leave F as a parameter. We keep a packet counter for each

5



heavy-hitter in the heavy-hitter table. Every time the packet

counter reaches multiple of F , we set up a rebalancing flag

which allows the heavy-hitter to be reassigned.

We employ a heavy-hitter multistage filter algorithm with

conservative update of counters as in [6]. There are four

heavy-hitter detection tables. Each table consists of 1024
counters. A packet is indexed into these tables by four dif-

ferent hash functions. The counters are updated with the

packet size according to the conservative update rule. If the

counters at all four tables exceed a threshold BH , the flow

is classified as a heavy-hitter. Typically BH = 3 KBytes in

our experiments. The counters are reset to zero every TH

interval. Typically TH = 30 msec in our experiments.

If a flow passes the heavy-hitter filter, it will be admitted

into the heavy-hitter table and switch the load balancing pol-

icy from ECMP/hash-table to heavy-hitter based Flame. We

can choose graceful insertion by initially setting the path

to be the same as ECMP and not that of the least loaded

path. Alternately, as in our experiments, we can choose to

use the least loaded path when the heavy-hitter is first in-

serted. Such abrupt insertion can cause a reordering when

the the heavy-hitter is first detected while graceful insertion

will not.

We propose the following eviction policy: evict a flow if

it sends less than BH bytes in ke consecutive periods of TH .

In our experiments, typically ke = 3. When a heavy-hitter is

evicted, its state can be immediately deleted from the heavy-

hitter table (abrupt eviction), and subsequent packets of that

flow routed under ECMP. Clearly abrupt eviction can result

in packet reordering. Instead, in graceful eviction, when

the heavy-hitter traffic is below a threshold, we turn on an

eviction-ready flag and start counting the remaining pack-

ets. Then we only physically delete it from the heavy-hitter

table upon either i) next flowlet aging expiry or ii) packet

count > F . Graceful eviction avoids reordering and is ef-

fective against both inactive and slow heavy-hitters. We can

tune to accept fewer heavy-hitters by increasing BH and/or

decreasing TH .

2.5 Profile-based rebalancing

Rebalancing a heavy-hitter by greedily selecting the least

utilized path is vulnerable to the following greedy flash crowd

effect. Consider ten heavy-hitter flows and three paths P1,

P2, and P3. The best path assignment is by having three

flows to path P1 and P2 each and four flows to path P3. Let’s

denote this path assignment by a triple (3, 3, 4), i.e. each

number in the triple denotes the number of heavy-hitters be-

ing assigned to the respective path. Since our greedy method

in Section 2.2 is not perfect, typically we only get a near-

optimal assignment such as (2, 4, 4). Now if the heavy-

hitters are rebalanced frequently, with the initial path as-

signment (2, 4, 4), they all will be reassigned to path P1,

leading to the subsequent path assignment (10, 0, 0). Next,
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Figure 4: Flame hardware schematic

they all will move away from path P1, leading to the path

assignment (0, 10, 0), and so on. Clearly, such oscillation is

undesirable.

We propose the following traffic profiling approach to

mitigate this problem. First, we profile heavy-hitter traffic

by having a counter per heavy-hitter that counts heavy-hitter

bytes in the previous epoch. Second, we also maintain a path

profile, which is initialized to the path traffic in the previous

epoch. Third, if we need to rebalance a heavy-hitter, we will

rely on both the heavy-hitter profile and the path profile. We

ensure that the heavy-hitter reassignment only improves the

path profile. Finally, we also adjust the path profile by the

amount of the flow profile at the rebalancing moment.

As an example, suppose we have three paths with path

profile (P1, P2, P3) = (8 KBytes, 9 KBytes, 11 KBytes). If

the heavy-hitter were from path P3 with heavy-hitter profile

2 KBytes, we would rebalance it to path P1 and update the

path profile to (10 KBytes, 9 KBytes, 9 KBytes). However,

if the heavy-hitter were from path P2 with heavy-hitter pro-

file 2 KBytes, we would still keep it at path P2 since moving

to path P1 would lead to an even worse state.

3. HARDWARE IMPLEMENTATION

Figure 4 describes a hardware block diagram for a chip

we are building that puts together all the mechanisms we

described earlier including hardware rebalancing every F
packets.

Start at the top of Figure 4. The forwarding logic provides

a base address into the path table and the number of paths p.

The flow ID f is hashed using a hash function F1 but that

is modified (see Equation 1) in the lower path to essentially

compute a second hash function. This produces two offsets

p1 and p2 that are added to the base address and used to in-

dex in parallel into a dual-ported memory using addresses
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A1 and A2. The two addresses A1 and A2 yield two link

IDs D1 and D2 from the path table. (This level of indi-

rection allows graceful handling of path failures). The two

link IDs are used to index into the DRE registers to produce

two DRE values Q1 and Q2. Comparator C picks the least

loaded link of the two and outputs the result to multiplexor

(mux) M2.

Now move to the bottom of the figure. Concurrently, the

flow ID f is also fed to the Flame table whose output is four

values: a valid flag v, a hash select flag h (since we use only

two hashes for power of choice, 1-bit suffices), and age bit

a, and a count c (an integer of at least 17 bits capable of

counting to 32, 000). If the valid flag is “false” (the flow has

no valid entry), the mux M3 will select the input 1 and pass

it as the selection value for mux M1, (note that when the

selection bit shown at the bottom of a mux is 1, the output

corresponds to the input labeled 1, and vice versa). In this

case, mux M1 picks the output link D1 and the forwarding

is exactly as in static hash ECMP. This is correct because

when there is no state for f we should use ECMP.

If the valid flag is “true” (the flow entry is valid), the mux

M3 will select the input 0 which is the output of mux M2.

This value from M2 is then fed to M1 to select the proper

output link, either D1 or D2.

When the “re-balance” signal is 0, the M2 mux will select

as its output the hash select signal coming from the Flame

table. On the other hand, if the re-balance signal is a 1, the

mux M2 selects as output the least loaded link from the out-

put of comparator C as we described above. This is fed via

mux M3 to set the select signal for M1 which now actually

selects the least loaded path as the output of mux M1, The

rebalance signal is computed by the (simple) Flame logic. If

either the age is 0 or the count > F , the rebalance signal is

asserted. At the same time, the least loaded link output of

comparator C1 is fed back via the Flame logic to be stored

in the Flame Table.

Note that unlike the Hedera paper in which software pe-

riodically identifies heavy-hitters and moves flows to paths,

the entire rebalancing process is done in hardware. This

is essential if one wishes to do fine-grain rebalancing say

once every 10 or 100 packets which is possible without sig-

nificant TCP degradation for Linux servers as we show in

Section 5.4.

4. ANALYSIS

We analyze the Discounting Rate Estimator (DRE) in Sec-

tion 2.1. and then present simple theorems about the robust-

ness of Flame in Section 2.3.

4.1 DRE analysis

Let TP and RP be the timer period and discount ratio

parameters for DRE. Let q(t) denote the value of the DRE

counter at time t. Our DRE model is described by the fol-
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Figure 5: Convergence of DRE counter under con-

stant traffic arrival rate α followed by an abrupt stop

to traffic. κ denotes the instantaneous DRE decay

rate. τ is the intersection point of the two scenarios.

lowing differential equations:

dq(t)

dt
= α − κ · q(t) (2)

where α is the instantaneous traffic arrival rate and κ is the

instantaneous DRE decay rate.

Note that with very small value of TP , we compute the

instantaneous decay rate as κ ≈ RP /TP . Suppose α is a

constant for all time t, we can solve equation (2) as follows.

d(α − κq(t))

α − κq(t)
= −κdt

ln(α − κq(t)) = −κt + γ′

q(t) =
α − γe−κt

κ
(3)

where γ and γ′ are constants determined by initial condi-

tions

Equation (3) indicates that when a flow has been send-

ing at rate α for a while and stops sending, its DRE counter

starts from the stabilized value α/κ and then decays expo-

nentially to 0. On the other hand, when a fresh flow starts

sending at rate α, its DRE counter starts from 0 and in-

creases exponentially to the stabilized value α/κ. The exact

equations for these two scenarios are as follows.

DRE counter building-up: Suppose a flow has not been

sending before time 0− and then starts sending at time 0+

with a rate α. Then the boundary conditions are q(0) = 0
and γ = α. Hence, its DRE counter value can be described

by:

q1(t) =
α − αe−κt

κ
(4)

DRE counter draining: Suppose a flow has been sending

at rate α up to time 0− and then it stops at time 0+. The

boundary conditions are q(0) = α/κ and γ = −α. Hence,
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its DRE counter can be described by:

q2(t) =
αe−κt

κ
(5)

Stabilizing point of DRE counter: Figure 5 illustrates the

DRE counter building-up and draining scenarios. Let τ de-

note the intersection time. By solving q1(τ) = q2(τ), we

get

τ = ln(2)/κ (6)

Since network traffic is not continuous but consists of

discrete datagram packets, we also verified our model us-

ing Matlab simulations with practical data center settings

(e.g. bandwidth 10 Gbps and 20 Gbps). In particular, we

validated two important properties of the DRE design: the

cross point τ is independent of the arrival rate α and τ =
ln(2)/κ. From Figure 5, we observe that DRE counters are

bounded and eventually converge as long as the arrival rate

is bounded. Further, the DRE counters converge quickly

as measured by the metric τ and so the DRE timer period

should be larger than τ .

Note the important property that the parameter κ itself

defines where the cross point is, and is independent of the

arrival rate α. In the context of load balancing flows, we

believe that τ should be in the order of the queuing delay

in the network. In particular, we can set the DRE parame-

ters according to the formula TP × RP = d where d is the

network delay.

4.2 Analysis of Flame state table design

In this section, we analyze Flame, particularly the hash-

table based approach of Section 2.3. We argue that Flame

is robust and outperforms Flare in general and yet there are

certain circumstances in which Flame degenerates to ECMP

but in which Flare does poorly.

Our notation is as follows. Let k be the number of hash

functions in Flame (Section 2.2). Let p be an upper bound

on the number of equal paths individually denoted as P1,

P2, . . . , Pp. Let n be the number of heavy-hitters, individ-

ually denoted as H1, H2, . . . , Hn. Let m be the number of

entries in the state table. Let Ta be the aging timeout. We

assume the finite memory versions of Flame and Flare. Re-

call that Flame remembers one of k hash functions, while

Flare one of p paths. Any state table entry is timed out af-

ter at most 2Ta because of the LRU approximation. When

Flare or Flame insert a flow into a hitherto invalid entry, the

algorithm measures the current state of all paths and places

the flow in the least loaded path: we sometimes refer to this

as “sensing” in what follows.

First, observe trivially that if k = 1, Flame behaves ex-

actly like ECMP. Next, our first theorem shows that while

sensing and assigning to the least loaded path appears to be

a good idea it can sometimes backfire when there are bursts.

That means least loaded path schemes do not always outper-

form ECMP.

THEOREM 1. (Burst vulnerability) Under bursty ar-

rivals of heavy-hitters, any scheme that allocates a new flow

to the least loaded path and preserves flow packet order can

perform much worse than ECMP for arbitrary time periods.

Proof: Consider the following traffic scenario for Flare.

Suppose the amount of memory m is much larger than the

number of heavy-hitters n so that all heavy-hitters hash to

distinct entries in the hash table, with no hash collisions.

Without loss of generality, suppose the first heavy-hitter H1

is assigned to path P1. Then bring on the second heavy-

hitter H2 after enough time for our load measuring algo-

rithm to “sense” H1. Without loss of generality, suppose H2

is assigned to path P2. Repeat until H1 through Hp−1 have

been assigned to paths P1 to Pp−1 respectively. Now bring

on simultaneously Hp , Hp+1, . . . , Hn. Since at the start

the new heavy-hitters have not sent any traffic, this last burst

of heavy-hitters will be assigned to path Pp. Now suppose

each of the heavy-hitters continue to send traffic for arbitrary

time. Then none of the entries assigned to the heavy-hitters

will time out. Thus all will have valid entries, and the sys-

tem will never sense the links for the least loaded link and

reassign because no new flows arrive. However, that means

for an unbounded period of time, (n − p + 1) heavy-hitters

are assigned to path Pp and one heavy-hitter apiece of P1

through Pp−1, leading to an unbounded load discrepancy

over any time scale. |n− p| can be made arbitrarily large by

increasing n).

Flame is susceptible to the same "flash crowd" scenario

but its imperfect sensing actually makes it somewhat more

likely to spread flows out better. For example, if k = 2 and

p is large, when a later heavy-hitter comes, the probability

that neither of the two hash functions picks path Pp is (1 −
1

p
)(1 − 1

p−1
) = 1 − 2

p
, i.e. = 75% with p = 8. So Flame

places 25% of the heavy-hitters on Pp. On the other hand,

ECMP would put roughly 1/8 = 12.5%. ✷

The flash crowd scenario of this theorem has two impli-

cations. First, it shows all sensing schemes are vulnerable to

flash crowds where flows arrive simultaneously and can do

worse than ECMP though Flame is better than Flare. This

and Example 2 in the introduction suggests that periodic re-

balancing is not merely a desirable but a requirement. Sec-

ond, it shows why heavy-hitter detection can help even in

the case of flash crowds if there is sufficient memory to keep

state for each heavy-hitter. Note that if there are more than

1000 flows, static hash ECMP should work well because the

standard deviation falls with the square root of the number

of flows. Thus keeping state for around 1000 heavy-hitters

should alleviate this scenario for either Flare or Flame.

Next, we show that remembering paths in Flare can cause

robustness problems for Flare but not for Flame. The prob-
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lem can arise due to spoilers, small flows that capture hash

table entries early.

THEOREM 2. (Spoiler resilience) Flame is resilient to

the presence of spoilers and is no worse than ECMP. How-

ever, Flare can be arbitrarily worse than ECMP.

Proof: Flame resorts to one more level of hashing within a

table entry, so degrades gracefully to ECMP in the presence

of spoilers. Now consider Flare in the following scenario.

We first bring on the first p − 1 heavy-hitters, well-spaced

out in time so as to get assignment in paths P1 through Pp−1.

Then, we bring on O(m) spoilers that capture all remaining

entries that are left invalid. Since the spoilers are small, they

are all assigned to path Pp. Thus, all state table entries are

marked as valid, in which p−1 entries are assigned to paths

P1 through Pp−1 and the remaining m − p + 1 cells are

assigned to path Pp. In fact, the system is reasonably load

balanced at this time.

Next, we bring on the remaining heavy-hitters Hp, Hp+1,

. . . , Hn nicely spaced in time so that none is bursty. If m
is large, the majority of the state table is filled with path Pp

and valid bit set. Thus, the later heavy-hitter will likely pick

such a “spoiler entry” and be then assigned to path Pp. Thus

with high probability, all later heavy-hitters will be assigned

to path Pp. If all heavy-hitters continue sending for an arbi-

trary period of time, the situation will persist and no further

sensing will take place because no entry times out. In other

words, we now have (n − p + 1) heavy-hitters to path Pp

and only one each assigned to paths P1 through Pp−1. So

by increasing n without bound, we have arbitrarily bad av-

erage and worst case load discrepancy. Even if the spoilers

stop sending traffic completely after a heavy-hitter arrives

in their cell, the heavy-hitter will keep the cell from timing

out even though the recorded path information is prehistoric.

✷

Doing no worse than ECMP is a good robustness guaran-

tee for Flame. However, since we aspire to do better than

ECMP, it is better to avoid collisions for large flows (as far

as possible) using heavy-hitter filters.

5. EVALUATION

In this section, we experimentally study how Flame does

with respect to ECMP and Flare. Unfortunately, we have

no access to data center traces; hence, we enhance realis-

tic Internet traces with artificial heavy-hitters, the number,

duration, and intensity of which we can control for. This

is because realistic and available Internet traces do not have

the heavy-hitters required for load balancing to be an in-

teresting; at the same time, purely synthetic traffic appears

to be too contrived. We also show results of benchmark-

ing TCP performance under packet reordering at 1 and 10

Gbps which inform the choice of the hardware rebalancing

parameter F in Figure 4.

5.1 Load balancing goodness metrics

We start with metrics for load balancing effectiveness.

Denote by Ts the measurement time scale parameter. First,

fix a value of Ts and divide the traffic trace into disjoint and

contiguous time intervals of length Ts. Then for each inter-

val, measure the path traffic vector accumulated during the

interval and compute the balancing quality within the inter-

val using a load balancing goodness metric as shown below.

Let p be the number of paths and P1, . . . , Pp be paths. For

path Pi (1 ≤ i ≤ p), denote Pi.load as the network traffic

on path Pi during the current time interval. We denote av-

erage load on all paths as P.load = 1

p

∑p

i=1
Pi.load. We

consider P .load to be the ideal balance in the current time

interval. Then we propose three goodness metrics:

1. Absolute deviation: worst case bandwidth difference

of one path from the ideal balance

Gd , max
P∈{P1,...,Pp}

|P.load − P.load|
Ts

2. Normalized deviation: percent of bandwidth difference

from the ideal

Gn , max
P∈{P1,...,Pp}

|P.load − P .load|
P .load

3. Jain’s fairness index: standard fairness metric for a set

of p load values

GJ ,
(
∑p

i=1
Pi.load)2

p ·
∑p

i=1
(Pi.load)2

Note that load balancing quality is better with smaller de-

viation value and higher Jain’s fairness index. Next, the

goodness values in all intervals of size Ts form a time se-

ries for which we can calculate statistics such as max, aver-

age, and 99−th percentile. One final complication remains:

what is a good choice of Ts?

Flare [8] picks Ts = 300ms since that is about the amount

of data that a router can buffer. However, in recent data cen-

ter routers at 10G, even 10 ms worth of buffering is large

and the amount of buffering per link may actually decrease

further at 40 Gbps. Further, load balancing goodness met-

rics appear better with larger Ts. As an example, suppose

with Ts = 1 ms and p = 3 paths, we have the following

path traffic vectors for (P1, P2, P3) in three successive mea-

surement intervals (100, 0, 0) KBytes, (0, 100, 0) KBytes,

and (0, 0, 100) KBytes. Clearly, load balancing performance

is poor with absolute deviation = 67 MBytes/s. However,

by enlarging Ts to 3ms, we have a single path traffic vec-

tor (100, 100, 100) KBytes, which apparently has perfect

performance and an absolute deviation = 0.
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Therefore, we visualize load balancing quality across all

measurement time scales by plotting a graph with the good-

ness statistic on the y-axis versus time scale choice on the

x-axis. Since computing goodness for all choices of Ts is in-

feasible computationally, we limit Ts to powers of 2 beyond

one packet transmission. In particular, in our experiments

we only use Ts = 1, 2, 4, 8, 10, 20, 40, 80 msec.

5.2 Simulation setup

We use an Internet backbone trace provided by CAIDA [16].

The trace is collected at a San Jose monitor point in 2008

with bandwidth about 1.8 Gbps and length about one minute.

We simulate load balancing schemes (ECMP, Flare, and Flame).

in Perl using the CoralReef software suite [5]. To impose

synthetic traffic on top of any real pcap trace, we augment

the software to support synthetic events (such as enqueuing

and dequeuing synthetic packets at synthetic timestamps)

The synthetic events are managed by an efficient implemen-

tation of a heap-based discrete-event simulation engine.

The number of heavy-hitters is an input parameter. Each

heavy hitter comprises of start time, end time, and traffic

pattern. We simulate a heavy-hitter as a large constant-bit-

rate FTP file transfer of 50-128 MB. based on the default

Hadoop block size [3, 7]. The start time of each parameter

is a parameter that can be controlled. For example, we can

simulate simultaneous arrival of flows to or have the start

time be sampled from a specified distribution.. The end time

is either determined by fixing the duration of heavy-hitter

(say, 10 seconds) or by randomizing either the duration (e.g.

as a Gaussian distribution with mean 10 seconds) or the rate

of a heavy-hitter.

Each heavy-hitter is represented by a random TCP 5-tuple.

Static hash ECMP does badly when the heavy-hitters have

the same source and destination IP address. Finally, our

framework allows the simulation of sophisticated heavy-hitter

traffic patterns to exhibit several burstiness and flowlet be-

haviors including ON-OFF heavy-hitters with a Pareto dis-

tribution for the OFF period. Such patterns exercise the load

balancing algorithms ability to continually admit and evict

flows. The flowlet behavior can be controlled; even when

a heavy-hitter is OFF, it can send at least one packet every

flowlet timeout so that eviction only occurs under the "once

every F packets rule". We also allow the introduction of

spoilers that capture a hash table bucket and send at a slow

rate.

5.3 Simulation results

In the following set of experiments, we impose 8 syn-

thetic flows on the CAIDA Internet trace. The full CAIDA

trace lasts for 52 seconds. Each synthetic flow sends at

100 Mbps by dispatching packets of size 1250 bytes at 100
us intervals. The starting times are staggered at 1 second

apart, but added random noise up to ±100 ms. We let the

synthetic flows run until experiment completion so that we

can observe their full impact. We limit the Flame table to

2048 and overflow to ECMP if the table is full. Our Flame

scheme use the heavy-hitter abrupt admission and graceful

eviction policies as discussed in Section 2.4. Unless oth-

erwise stated, the default parameters are as follows: num-

ber of paths p = 3, heavy-hitter filter threshold BH = 3
KBytes, heavy-hitter filter timeout TH = 30 msec, flowlet

aging timeout Ta = 30 msec.

Figure 6 and 7 compare the load balancing performance

of ECMP, Flare, and Flame load balancing schemes. Note

that higher Jain’s fairness index means better fairness qual-

ity, which is opposite to other deviation metrics. We also

tease apart the effect of each individual Flame mechanisms.

For example, we illustrate how the performance changes

with the addition of each Flame mechanisms, i.e. a heavy-

hitter filter to track heavy-hitters, periodic rebalancing with

"1 every 1000 packets rule" and profiling to prevent greedily

rebalancing.

We observe that the synthetic heavy-hitters have a sig-

nificant effect on ECMP and Flare but much less on Flame

with a heavy-hitter filter. To be sure, Flare would also im-

prove with a heavy-hitter filter: the real reason for Flame

over Flare is the robustness and memory efficiency caused

by remembering the hash and not the path. In the figures, we

call the "1 in 1000" packets rule the TCP 0.1% rule. Note

that Flame with the “HH + TCP 0.1%” curves can be worse

than the“HH” only curves because of rebalancing oscilla-

tion which is removed by the “HH + TCP 0.1% + profiling”

rule.

In Figure 6, there is little difference between static hash

and Flare while the results of Flame algorithm are better at

all time scales. The relatively poor performance of the Flare

algorithm is likely due to its state table becoming saturated.

Note that while our analytical results went further and sug-

gested that Flare can do worse than ECMP, the experimental

scenario seems more plausible. Again, the difference is the

heavy-hitter filter which, to be fair, would improve Flare as

well. However, the experiments do point to the crucial need

for robustness and graceful degradation when the memory

does not suffice.

Figure 7 shows performance when synthetic traffic is added

to the real trace. Here we see a large difference at all time

scales between static hash, Flare and Flame with static hash

much worse than shown in Figure 6. The Flare results are

somewhat worse than without the synthetic traffic although

noticeably better than static hash.

While Flare (without heavy-hitters) performs better than

static hash because it is breaking the synthetic flows into

flowlets and balancing each one, by separating heavy-hitters

Flame does not suffer from table saturation the way Flare

does. This allows Flame to intelligently balance a much

larger fraction of traffic. These results clearly show that
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Figure 6: Comparison of load balancing schemes with goodness metrics across all measurement time scales.

HH denotes inclusion of a heavy-hitter table. Simulation on the CAIDA trace

Client C Middle-box M Server S 

Figure 8: Test-bed for TCP packet reordering

Flame outperforms both static hash and Flare with the amount

of state being about the same as Flare. We also evaluated

other synthetic heavy-hitter pattern (larger number of heavy-

hitters, simultaneous heavy-hitter launch, and rate-varying

heavy-hitters) which showed that Flame is resilient to all

such combinations. We do not include these graphs due to

space constraints.

5.4 Impact of packet reordering on TCP

Recall that Figure 4 has a parameter F that controls the

frequency of reordering. While earlier studies have sug-

gested F = 1000 we felt it was essential to update these

studies to see the effects of operating system changes, higher

link speeds, and the subtle difference in reordering patterns

caused by load balancing compared to arbitrary reordering.

To evaluate the impact of packet reordering on TCP per-

formance at 1 Gbps and 10 Gbps, we set up two hardware

test-beds, each consisting of three nodes connected serially

as shown in Figure 8. The middle-box M controls the for-

warding of all traffic between the client C and the server

S.

Results from the 1 Gbps test-bed:

In the 1 Gbps experiments, the middle-box M was a 2-

processor Intel Xeon 2.4 GHz machine running Ubuntu 10.10

32-bit server with Linux kernel 2.6.35. The kernel was re-

compiled after applying the Trace Control for Netem patch [13,

17] which enables the flexible addition of latency to pack-

ets needed for our experiments. The client and server used

the same model of machines as the middle-box. For Linux

client and server experiments, they were running Ubuntu

8.10 32-bit server with Linux kernel 2.6.27. For Windows

experiments, they were running Windows Server Standard

2008, 32-bit, SP2. All machines had two Intel PRO/1000

MT Desktop Ethernet interfaces, but only one was enabled

on the client and server machines.

In the 1 Gbps experiments, the middle-box was config-

ured to reorder packets by selecting a number of packets F .

The first F/2 packets sent out of a network interface had 0.9

msec of extra latency added to the normal time required to

forward the packet. The next F/2 packets sent had 1.1 msec

of extra latency added. This pattern repeats every F pack-

ets, so when the latency changes from 1.1 msec to 0.9 msec,

one or more packets can be transmitted out of order. This

emulates the situation where a flow’s packets are switched

from a low to high latency path, then switched from a high

to low latency path, every F packets.

The exact pattern in which the packets are reordered by

this method varies with the timing that packets arrive at, and
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Figure 7: Comparison of load balancing schemes with goodness metrics across all measurement time scales.

HH denotes inclusion of a heavy-hitter table. Simulation on CAIDA trace augmented with synthetic heavy-hitters

are processed by, the middle-box’s kernel. From examina-

tion of the netem code, the packets are time stamped when

they begin their processing in the kernel. These time stamps

are maintained with a resolution of 64 nanoseconds. The

latency of 0.9 msec or 1.1 msec is added to the packet’s ar-

rival time to get its scheduled departure time. The packet

is then placed in an output queue for the target network in-

terface, inserted at the appropriate place so that the queue is

maintained in order of scheduled departure time.

The typical pattern of reordering seen during experiments

that achieve high throughput is the same as if N consecutive

in-order packets arrive at the middle-box and are buffered,

then the next M packets are allowed through, passing the N
buffered packets on their way to the receiver. Then the N
buffered packets are forwarded. For example, with N = 9
and M = 7, if the sender sent packets D1 through D19 in

that order, the packets would arrive at the receiver in the or-

der D1, D11, D12, ...D17, D2, D3, ...D10, D18, D19, ..., and

would then be in order until the next time the latency went

from high to low. Examples of pairs of value (N, M) ob-

served in actual packet traces recorded at the receiver are

(10, 12), (4, 18), (6, 20), and (17, 3).
This pattern of adding latency was done for packets in

the forward (i.e. client-to-server) and backward directions,

with an independent state machine counting packets in each

direction.

Figure 9 shows the throughput achieved by a single TCP
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Figure 9: TCP throughput experiments at 1 Gbps.

Latency differentiation values in msec.

connection for a Linux client and server, and for a Windows

Server 2008 client and server. The throughput measure-

ment was made using iperf with data transmission only in

the client-to-server direction, and is the average rate over 10

seconds. Each data point plotted is the median throughput of

11 runs with the same conditions. We also repeat the Linux

experiments with two other pairs of latency values, [0.5, 1.5]
msec (i.e. latency drops by 1.0 msec when it decreases) and

[0.25, 1.75] msec (i.e. latency drops by 1.5 msec). With

wider latency difference range, we expect worse through-
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put because there is more reordering that can be introduced

when the drop from high latency to low latency is by a larger

quantity of latency. Figure 9 shows that the Linux through-

put is still high in all cases, especially when F is no less

than about 128.

The “Formula” curve is the TCP throughput predicted by

the 1/
√

p model of TCP performance [10]. It is the value of

(MSS · C)/(RTT
√

p) for p = 1/F , MSS = 1460 bytes,

RTT = 2.2 msec, and C = 1.22.

Linux achieves remarkably good throughput even with

very frequent reordering. Wu et al [19] ran similar exper-

iments with a middle-box that added normally-distributed

random latencies to each forwarded packet. They found

similarly good throughput, as long as the standard devia-

tion of the normal distribution was small compared to the

mean. They attribute this resilience against reordering to:

“an adaptive TCP reordering threshold mechanism. Under

Linux, dupthresh is adaptively adjusted in the sender to re-

duce unnecessary retransmissions and spurious congestion

window reductions. Some network stacks [ ... ] still imple-

ment a static TCP reordering threshold mechanism with a

default dupthresh value of 3.”

Our experiments confirm this. We ran additional exper-

iments where the middle-box dropped a single packet ev-

ery F packets, and added 1 msec of latency to all packets

(thus no reordering). Under these conditions the throughput

graphs for both Windows and Linux were nearly identical to

the Windows throughput graph of Figure 9, where reorder-

ing but no loss is introduced.

We also recorded packet traces on the sender in a few

experiments (not used to create the graphs) and used tcp-

trace [18] to estimate the sender’s congestion window. This

estimate is called “outstanding data” in tcptrace. It is calcu-

lated as the largest data sequence number transmitted by the

sender, minus the largest cumulative ACK sequence num-

ber it has received so far. These graphs showed the Linux

sender’s congestion window increasing steadily despite packet

reordering events, whereas the Windows sender’s conges-

tion window dropped every time it received 3 or more du-

plicate ACKs in a row. Thus the Windows sender is mis-

interpreting the kinds of reordering we introduce as packet

loss, as was also the case with older versions of Linux (circa

kernel version 2.6.14 and earlier).

We also ran Linux client to Windows server experiments,

and vice versa. Although not identical, they are substantially

similar to the Windows throughput graph presented here. It

is not enough that Linux is the sender in order to achieve

high throughput during reordering. The receiver TCP im-

plementation is also important.

The results here make a strong case that for Linux-to-

Linux TCP traffic, per-packet load balancing such as DRR

may be acceptable to increase overall application through-

put, if the gain in throughput from the more even load bal-

ancing is greater than the small throughput reduction caused

by packet reordering. For the common case where multiple

TCP connections share the network capacity, their competi-

tion for bandwidth is likely to be the limiting factor before

packet reordering effects are noticeable. For TCP traffic that

is not Linux-to-Linux, reordering that causes the sender to

react as if there were a packet loss (i.e. 3 or more dupli-

cate ACKs in a row) as often as once every 1024 packets

cuts throughput by a factor of 4, according to the results in

Figure 9.

Results from the 10 Gbps test-bed:

NetBump [14] allows modification to packets between C
and S at 10 Gbps by software (e.g. changing packet head-

ers, adding delay, dropping packets, and crafting packet re-

ordering). We set up a NetBump test-bed with fast machines

equipped with Myricom 10 GigE so that packet processing

can be done in real time at full 10 Gbps by NetBump tech-

niques to offload work on multiple CPU cores [14]. Since

our NetBump test-bed is only Linux-based , we show only

the result for Linux TCP in this part.

We consider a common pattern of packet reordering caused

by load balancing in data center networks. As an exam-

ple, assume packets D1 through D5 go on path P1 and then

packets D6 onward switch to path P2 with lower latency.

Thus although D1 through D5 have left the switch, packet

D6 may overtake some of them. A possible scenario at the

receiver (in terms of received packets, assume no loss) is

D1, D2,D6, D3,D7, D4,D8, D5,D9,D10,D11, . . . back to

normal. In other words, it is not a complete burst of packets

that are delayed but the delayed burst interleaves with the

burst switched onto the lower latency path.

We emulate this reordering situation according to the fol-

lowing two parameters.

• Reordering frequency F : we do packet reordering once

every F dispatched packets.

• Interleaving burst b: the amount of interleaved packets

(b = 3 in our example)

Our method to craft the interleaving burst is by buffer-

ing upto b packets and alternating them with the subsequent

packets accordingly. To avoid infinite packet delay (espe-

cially for SYN packets), we hold each packet in the inter-

leaving buffer for at most 1 ms.

Figure 10 plots our TCP throughput benchmark with the

iperf tool for one minute. Note that we use the default TCP

implementation of the Linux operating system installed on

the servers (64-bit Debian on Linux kernel 2.6.32). The

bandwidth measurement granularity is 0.5 sec. In our test-

bed, the round-trip-time (RTT) between the client and server

varies in the range 0.2 − 0.5 ms. From Figure 10, we con-

clude that the TCP stack on our Linux kernel is highly tol-

erant to packet reordering. Indeed, we also get consistent
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Figure 10: Throughput experiments with one TCP flow at 10 Gbps with interleaving reordering burst by load

balancing. F is reordering frequency and b is length of interleaving burst.

results with Figure 10 for several other patterns such as in-

terleaving of short bursts (instead of packets) and per-packet

delay differentiation (not shown due to space limit).

6. CONCLUSIONS

Our test-bed results surprised us. They suggest that rather

than deploy new transport protocols such as Multipath TCP

[15], TCP modifications to recent Linux stacks may allow

packet-by-packet rebalancing with only nominal performance

loss. This is a bold claim and must be investigated. Do these

mechanisms have other side-effects that arise in some sce-

narios? Is there a fundamental reason why Windows stacks

cannot be upgraded with the same mechanisms?

In the interim, at least for Windows machines that are

very common, the situation is neatly reversed. We cannot

afford to rebalance more than once every 32, 000 packets.

Given the uncertainty, load balancing chips today would be

wise to have a controllable parameter F . We assert that

hardware load balancing such as shown in Figure 4 will

be crucial. Software load balancing such as [2] (where the

optimal flow assignments for heavy flows is computed by

software) will be too slow to allow values of F below 1000
and hence miss balancing opportunities in the future. The

Flame hardware described in Figure 4 can also be deployed

one router at a time compared to the deployment issues for

Hedera [2].

Unlike Hedera, Flame also attempts to initially do a good

flow assignment by stealing the basic "place new flow on

least loaded link" paradigm from Flare. However, Flame

goes beyond Flare by having a more robust link bandwidth

estimator (DRE), a more resilient and memory-efficient method

to remember flow state by memorizing one of multiple hash

functions, and by integrating periodic rebalancing in hard-

ware. In conclusion, while Flame is deeply influenced by

Hedera and Flare, we believe it adds significant new mech-

anisms (summarized in Figure 4) that will be essential for

deployable and robust data center routers at 10 Gbps and be-

yond. While our paper appears to be narrowly about "load

balancing", the broader issue at stake is cheaply providing

bandwidth for cluster computation in data centers, which in

turn underlies the promise and effectiveness of cloud com-

puting.

7. REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. In

SIGCOMM, 2010.

[2] Al-Fares et. al. Hedera: Dynamic Flow Scheduling for

Data Center Networks. In NSDI, 2010.

[3] Alizadehzy et. al. . Data Center TCP (DCTCP). In

SIGCOMM, 2010.

[4] C. Guo et. al. Bcube: a high performance,

server-centric network architecture for modular data

centers. In SIGCOMM, 2009.

[5] CAIDA. CoralReef Software Suite.

http://www.caida.org/tools/

measurement/coralreef/.

[6] C. Estan and G. Varghese. New Directions in Traffic

Measurement and Accounting. In SIGCOMM, 2002.

[7] Greenberg et. al. VL2: a scalable and flexible data

center network. In SIGCOMM, 2009.

[8] S. Kandula, D. Katabi, S. Sinha, and A. Berger. Flare:

Responsive Load Balancing Without Packet

Reordering. In ACM CCR, 2007.

[9] M. Laor and L. Gendel. The Effect of Packet

Reordering in a Backbone Link on Application

Throughput. In IEEE Network, 2002.

[10] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The

macroscopic behavior of the TCP congestion

avoidance algorithm. In SIGCOMM CCR, 1997.

[11] McKeown et. al. OpenFlow: Enabling Innovation in

College Networks. In White paper, 2008.

[12] M. Mitzenmacher. The Power of Two Choices in

Randomized Load Balancing. In PhD thesis, 1996.

[13] netem. The Linux Foundation. http://www.

linuxfoundation.org/collaborate/

workgroups/networking/netem.

[14] Porter et. al. User-extensible Active Queue

Management with Bumps on the Wire. In UCSD Tech

Report, 2011.

[15] Raiciu et. al. Improving Datacenter Performance and

Robustness with Multipath TCP. In SIGCOMM, 2011.

14



[16] C. Shannon, E. Aben, kc claffy, and D. Andersen. The

CAIDA Anonymized 2008 Internet Traces.

http://www.caida.org/data/passive/

passive_2008_dataset.xml.

[17] tcn. Trace Control for Netem.

http://tcn.hypert.net.

[18] tcptrace. . http://www.tcptrace.org.

[19] W. Wu, P. Demar, and M. Crawford. Sorting

Reordered Packets with Interrupt Coalescing. In

Comput. Netw., 2009.

15




