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Abstract

IMPORTANCE—In the last 25 years, functional magnetic resonance imaging drug cue reactivity 

(FDCR) studies have characterized some core aspects in the neurobiology of drug addiction. 

However, no FDCR-derived biomarkers have been approved for treatment development or 

clinical adoption. Traversing this translational gap requires a systematic assessment of the FDCR 

literature evidence, its heterogeneity, and an evaluation of possible clinical uses of FDCR-derived 

biomarkers.

OBJECTIVE—To summarize the state of the field of FDCR, assess their potential for biomarker 

development, and outline a clear process for biomarker qualification to guide future research and 

validation efforts.

EVIDENCE REVIEW—The PubMed and Medline databases were searched for every original 

FDCR investigation published from database inception until December 2022. Collected data 

covered study design, participant characteristics, FDCR task design, and whether each study 

provided evidence that might potentially help develop susceptibility, diagnostic, response, 

prognostic, predictive, or severity biomarkers for 1 or more addictive disorders.
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FINDINGS—There were 415 FDCR studies published between 1998 and 2022. Most focused on 

nicotine (122 [29.6%]), alcohol (120 [29.2%]), or cocaine (46 [11.1%]), and most used visual 

cues (354 [85.3%]). Together, these studies recruited 19 311 participants, including 13 812 

individuals with past or current substance use disorders. Most studies could potentially support 

biomarker development, including diagnostic (143 [32.7%]), treatment response (141 [32.3%]), 

severity (84 [19.2%]), prognostic (30 [6.9%]), predictive (25 [5.7%]), monitoring (12 [2.7%]), and 

susceptibility (2 [0.5%]) biomarkers. A total of 155 interventional studies used FDCR, mostly 

to investigate pharmacological (67 [43.2%]) or cognitive/behavioral (51 [32.9%]) interventions; 

141 studies used FDCR as a response measure, of which 125 (88.7%) reported significant 

interventional FDCR alterations; and 25 studies used FDCR as an intervention outcome predictor, 

with 24 (96%) finding significant associations between FDCR markers and treatment outcomes.

CONCLUSIONS AND RELEVANCE—Based on this systematic review and the proposed 

biomarker development framework, there is a pathway for the development and regulatory 

qualification of FDCR-based biomarkers of addiction and recovery. Further validation could 

support the use of FDCR-derived measures, potentially accelerating treatment development and 

improving diagnostic, prognostic, and predictive clinical judgments.

The evaluation of substance use disorders (SUDs) is currently reliant on interviews, self-

reported measures, and biological assays of drug metabolites that mostly reflect substance 

use and confound the distinction between markers of substance use and the complex 

pathophysiology underlying SUDs.1 Growing recognition of this issue has led to recent 

interest in identifying the neurobiological underpinnings of SUDs2 and translating this 

knowledge to facilitate the development of novel treatment targets and interventions and 

theoretically grounded, empirically sound, and clinically relevant biomarkers for patient-

tailored care.3 A particularly impactful paradigm in addiction medicine has been functional 

magnetic resonance imaging (fMRI) drug cue reactivity (FDCR), where brain activation 

patterns during an individual’s exposure to addiction-related sensory stimuli are measured 

as a potential marker of underlying neuropathology.4 FDCR has consistently shown that 

SUDs are associated with remarkable aberrations in the neural circuitry underpinning 

incentive salience, reward evaluation, interoception, memory, habit formation, and executive 

control.5,6 The eBox in the Supplement shows a general overview of biomarkers in 

psychiatry and addiction medicine, and eFigure 1 in the Supplement shows an introduction 

to FDCR.

In the third decade of FDCR research, with consistently observed correlations between 

FDCR and important clinical outcomes,7,8 biomarkers derived from FDCR paradigms could 

inform intervention development or clinical care of people with SUDs. Given the expense 

and technical difficulty of qualifying biomarkers for use in regulatory decision-making, for 

example, to support the approval of specific interventions, frameworks have been developed 

to facilitate the validation of biomarkers. According to the biomarker validation frameworks 

developed by organizations such as the European Medicines Agency9 and the US Food 

and Drug Administration,10 an initial step in developing FDCR-derived biomarkers with 

regulatory approval would be the specification of precise contexts of use (COU). Different 

methods and standards of validation might be required, for example, for an FDCR-derived 

biomarker developed to classify individuals with SUDs into different subtypes compared 
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with one used to predict individual responses to a specific intervention. Just as crucially, 

the methodological details of any FDCR-derived biomarker would need to be carefully 

considered and clearly specified since they may influence the FDCR signal and the 

interpretation of the biomarker.11,12

In the next stage, the defined biomarker will need to be characterized and validated 

within the COU. A principal step is analytical validation, establishing appropriate 

accuracy, repeatability, and reproducibility of the biomarker within the proposed COU.13 

Demonstrating clinical validity requires elucidating the etiological link of an FDCR 

biomarker to SUD symptoms and establishing that the biomarker appropriately measures 

a clinical feature of a disease, disease outcome, or treatment outcome.14 Finally, the 

practical use of FDCR-derived biomarkers in clinical or drug development contexts 

requires demonstration of cost-effectiveness. These validation steps require a combination 

of systematic reviews, meta-analyses, and mega-analyses, expert consensus, and new 

studies to address potential evidentiary gaps. An overview of the overall FDCR biomarker 

development framework is provided in eFigure 2 in the Supplement.

Moving toward the development of clinically relevant FDCR-derived biomarkers 

necessitates taking stock of the current state and evolution of FDCR as a research field. 

While many useful systematic reviews and meta-analyses of cue reactivity fMRI studies are 

available,7,15–18 these efforts have largely focused on estimating neuroimaging effect sizes 

rather than systematically investigating the methodological characteristics of FDCR studies 

and the potential of FDCR for biomarker development. We present a systematic review and 

synthesis of the FDCR literature, covering basic study design features, studied substances 

and behaviors, and methodological parameters, to outline the degree of methodological 

heterogeneity and to identify outstanding gaps in the evidence. We then provide a systematic 

assessment of the potential of FDCR studies for biomarker development under the National 

Institutes of Health framework in translational addiction science and discuss exemplar 

FDCR indices. We finally highlight a set of concrete actions and future directions in the 

translation of FDCR-derived biomarkers from the bench to the bedside based on the outlined 

biomarker development framework and the systematic review.

Methods and Results

Detailed methods and results of the systematic review sections are presented in the 

eMethods and eResults in the Supplement, and the search terms and syntax can be found 

in eTables 1 and 2 in the Supplement. This study followed the Preferred Reporting Items 

for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline, and the protocol 

for this systematic review was preregistered.19 The annual update of this live systematic 

review can be found online.20 The PRISMA flowchart can be found in eFigure 3 in the 

Supplement. While we refer to fMRI drug cue reactivity (including alcohol) throughout the 

article, behavioral addiction studies focusing on gambling and gaming were not excluded 

as they constitute a small portion of the cue reactivity literature and involve cue reactivity 

paradigms similar to DCR studies. Separate analyses of substance and behavioral addictions 

can be found in eFigure 11 in the Supplement.
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The final database includes 415 studies from 19 countries (eFigure 4 in the Supplement) 

and will be continually updated, according to a registered protocol, to provide an up-to-

date repository of FDCR studies and facilitate future investigations. Our results indicate a 

growing interest in the FDCR paradigm, with 307 FDCR studies in our database published 

in the last 10 years (eFigure 5 in the Supplement). We will first consider the methodological 

aspects of reviewed studies.

Methodological Heterogeneity and Biomarker Specification

A central element of an FDCR experiment is the selection of cues used to elicit neural 

reactivity, with a wide array of options available; while 345 reviewed studies (85.3%) 

used visual cues, others used a variety of auditory, semantic, gustatory, olfactory, or tactile 

reminders of drugs or drug use, alone or in various combinations (Figure 1; eFigure 6 in 

the Supplement). The impact of cue sensory modality in FDCR remains underexplored, but 

cues in different sensory modalities likely induce markedly different neural activations21 

and multisensory cues or delivering drug cues together with other rewarding stimuli may 

improve ecological validity and FDCR signal.22,23

Basic task design elements also vary considerably between studies (Figure 1). A total of 

257 studies (61.9%) used blocked designs, which are popular since repeated presentations 

of drug-relevant stimuli may constitute more robust exposure and subsequent activation. 

However, event-related designs may be better able to optimally characterize the shape of 

the blood oxygen level–dependent response to drugcues,11 and more sophisticated mixed 

designs could model interactions between cue exposure and context. Furthermore, FDCR 

has been combined with other task modalities to probe the interaction of cue exposure and 

different cognitive processes (52 studies [12.5%]). Such combined paradigms are attempted 

to increase ecological validity since DCR engages with multiple neurocognitive processes. 

For example, FDCR during response inhibition was able to predict tobacco abstinence.24

Methodological parameters should ideally be chosen based on evidence from meta-

analyses and mega-analyses or at least empirical results, with alternative sources, such as 

structured expert opinion, used to address knowledge gaps.11 Such choices also involve 

trade-offs: for example, simple visual FDCR paradigms may be selected since they are 

relatively inexpensive and already widely used,25 while complex interactional designs and 

multisensory stimuli with greater ecological validity may be technically challenging and 

more difficult to standardize between studies.26 On the other hand, multisensory stimuli 

may improve signal-to-noise ratio to increase reliability at the same scanning duration.27 

Overall, since methodological heterogeneity between studies can hamper the comparison 

of findings28 and complicate meta-analyses for biomarker development,29 it is important to 

promote standardized best practices and methodological harmonization to the extent that is 

practical.

Appropriate reporting and explanation of key methodological elements and harmonized 

reporting standards is essential regardless of what choices are made, for example using 

the COBIDAS guideline30 and the recently developed Enhanced NeuroImaging Genetics 

through Meta-Analyses (ENIGMA) Addiction Cue-Reactivity Initiative (ACRI) reporting 

checklist.11 Due to a lack of generally recognized and implemented standards for the quality 
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report in publications, FDCR studies vary widely in terms of reporting quality,11 and there 

are likely substantial differences in methodological quality as well; these differences in 

quality, particularly in the size of study samples and appropriate correction for multiple 

comparisons, have been reported across fMRI studies previously31 and in part reflect 

rapid improvement in imaging and analysis methods.32 While the present study is a broad 

overview of FDCR research and we did not comprehensively assess methodological quality, 

this is important for future investigations and particularly meta-analyses for biomarker 

development.

Participant Characteristics

There is evidence that participant characteristics substantially impact the FDCR signal, 

highlighting the importance of specifying target populations for FDCR biomarkers and 

ensuring the diversity of populations used to develop such biomarkers. Overall, 19 311 

individuals participated in FDCR studies from 1998 to 2022, including 12 950 men (67.1%) 

and 5130 women (26.5%), with the sex of 1231 participants (6.4%) not explicitly specified 

(eFigure 7 in the Supplement). The fact that only 26.5% of participants in FDCR studies 

have been women raises questions about the generalizability of findings and potential 

biomarkers informed by this literature, since men and women may have markedly distinct 

neural activation patterns during drug cue exposure.33,34 While outside the scope of the 

present review, other demographic factors, such as age, socioeconomic status, and social 

determinants of health, medical and psychiatric comorbidities, and cultural background, 

likely impact the FDCR signal as well.11

Future studies would benefit from complex multivariate modeling techniques that can 

disambiguate the influence of various participant characteristics and other methodological 

choices and investigate complex FDCR patterns. Further, the median sample size of FDCR 

studies in our database is only 37, which may be too small to discover replicable FDCR 

markers.35 Larger samples as well as meta-analyses and mega-analyses are important for 

developing valid and generalizable biomarkers. This systematic review aims to provide a 

comprehensive overview of the entire FDCR field and the broad inclusion criteria for study 

participants included studies of individuals who met SUD diagnostic criteria and those who 

used substances without meeting such criteria and did not exclude studies of participants 

with various comorbidities. These and the methodological heterogeneities reported in this 

systematic review prevent us from performing a meta-analysis across studies, but future 

meta-analyses and mega-analyses of clusters of studies in the database are possible and 

facilitated by our ongoing effort to catalog and share FDCR studies.19

COU of FDCR Biomarkers

Another principal consideration when developing an FDCR biomarker is its COU. First, 

it should be clear for what SUD(s) the biomarker is developed. This choice hinges 

on considering both the burden of a disorder and the extent of the FDCR literature 

on that disorder. To provide 2 promising examples, nicotine and alcohol use disorders 

are both major contributors to morbidity and mortality worldwide5,36 and have been 

extensively investigated with FDCR paradigms, comprising 121 studies (29.6%) and 123 

studies (29.2%), respectively, of our database (eFigure 5 in the Supplement). Then, the 
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COU specification should clarify whether the FDCR-derived biomarker is to be used for 

diagnostic or prognostic purposes, to select or assess interventions, or as an intervention 

target (Table; eFigure 8 in the Supplement).23,37–52 This choice should guide the design and 

interpretation of the biomarker and, ultimately, its validation.

Studies with relevant evidence for developing diagnostic biomarkers constitute the largest 

category in our review with 143 examples, of which 134 (93.7%) have reported significant 

findings (Figure 2). These studies have mostly investigated differences in FDCR between 

individuals with SUDs and healthy controls, though some have assessed differences between 

clinically relevant SUD subtypes. The diagnostic studies in our database have all essentially 

conducted statistical comparisons of the FDCR signal between participant groups defined a 

priori, though in principle, researchers could start from the other end, ie, with data-driven 

identification of neurotypes using the fMRI data. While these provide insights into the 

neural correlates of SUDs, the diagnosis of SUDs currently relies on relatively inexpensive 

clinical interviews and drug tests, and it is unlikely that FDCR-derived biomarkers would 

find clinical use in identifying SUDs. Another noninterventional COU is susceptibility 

assessment, where there have been promising results, for example, in assessing adolescent 

susceptibility to SUDs based on FDCR in reward-related regions.6,53 The other 2, and 

likely most promising noninterventional COUs for FDCR biomarkers, constitute prognostic 

evaluation and monitoring of individuals diagnosed with SUDs: there is evidence that 

baseline nucleus accumbens DCR, for example, can statistically predict relapse better than 

conventional clinical measures.43 These latter classes of FDCR biomarkers could add to the 

limited repertoire of tools available to meaningfully predict the course of SUDs and monitor 

their progression, but their development requires expensive longitudinal studies. Only 88 

studies (21.2%) in our database include more than a single time point (Figure 1).

Using FDCR biomarkers to develop, select, implement, or monitor the impact of 

interventions may be more cost-effective. There are 155 interventional studies in our 

database, most using FDCR in the context of pharmacological (67 [43.2%]; most commonly 

naltrexone in 10 studies) or cognitive or behavioral interventions (51 [32.9%]). These studies 

form a sizable evidence base to support the development of multiple types of interventional 

biomarkers for some SUDs, particularly alcohol and nicotine use disorders, which constitute 

53 studies (34.2%) and 51 studies (32.9%), respectively, in our database (Figure 3). 

Individuals with SUDs are highly heterogeneous in their responses to different treatments,54 

partly since different interventions target distinct mechanisms of disease that vary between 

individuals. Predictive FDCR biomarkers could reflect underlying neural pathology and 

may predict treatment response, which could guide treatment planning and reduce poor 

outcomes. For example, higher ventral striatal FDCR may predict greater efficacy of 

naltrexone than acamprosate for alcohol use disorder, possibly since ventral striatal FDCR 

may reflect reward-related craving and naltrexone has craving-suppressing effects.48 Our 

review indicates that the predictive biomarker category is underinvestigated, however, with 

only 25 relevant studies. Much more common are response biomarker studies, where 

postintervention FDCR or intervention-induced changes in FDCR are thought to reflect 

an intervention’s neurophysiological effect. There are 141 supporting pieces of evidence for 

response biomarker development across the 155 interventional studies in our review, and 

growing evidence demonstrates the sensitivity of FDCR signals to detect intervention effects 
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in the striatum,46,47 amygdala55,56, prefrontal cortical regions,57,58 insula,58 and cingulate 

cortices59,60—all regions widely implicated in SUDs. Given the importance of interventional 

FDCR studies, a more detailed breakdown of intervention types is presented in eFigure 9 in 

the Supplement.

Finally, an FDCR biomarker could be validated as a surrogate end point if it can be 

shown that FDCR causally mediates the therapeutic impact of an intervention on clinical 

outcomes.10 Particularly salient examples from drug development are the use of blood 

pressure reduction to assess the effectiveness of antihypertensive medication or the reduction 

of hemoglobin A1c as a surrogate marker for the effectiveness of diabetes treatments.10 

Surrogate FDCR end points would accelerate drug development, as a candidate therapeutic 

could be approved based on its immediate impact on the FDCR signal without the need to 

measure clinical outcomes over much longer time spans. Such FDCR markers may at least 

serve in the rapid screening of candidate therapeutics, for example, in the context of fast-

failtrials, which only proceed if the intervention changes an FDCR response biomarker.61 

Relatedly, FDCR markers that are linked to clinically relevant outcomes, such as craving, 

may provide direct and personalized targets for direct intervention. A total of 10 studies 

(2.4%) in our database used neurofeedback where participants learned to directly reduce 

their cue reactivity in regions where they showed high FDCR, such as the striatum62 or 

highly reactive cortical areas.63 Our review includes only 12 neuromodulation studies that 

used FDCR. However, none used FDCR for target selection directly, which is possible in 

principle since the modulation of FDCR signal by brain stimulation has been shown to 

predict craving reduction after stimulation.51 Indeed, 1 retrospective analysis (published 

shortly after the period of coverage of this systematic review) suggests that transcranial 

magnetic stimulation might be more clinically effective in treating alcohol used is order if 

the transcranial magnetic stimulation–induced electric field overlaps with an individual’s 

endogenous alcohol cue reactivity map.64

Validation of FDCR Biomarkers

Specified FDCR biomarkers need validation for regulatory approval.9,14 Clinical validation 

requires demonstrating etiological links between the FDCR signal and an SUD. Our 

reviewed studies have investigated relationships between cue exposure–associated neural 

activation patterns and other facets of SUDs, and this converging evidence helps buttress 

the clinical validity of FDCR by showing that it is linked to self-reported measures of 

craving (128 studies; eFigure 10 in the Supplement) and behaviors such as attentional bias 

and reward responsiveness,65,66 physiological responses such as increased skin conductance 

during drug cue exposure,67 and variants in genes related to glutamate, opioid, and 

dopamine signaling17,68 thought to be involved in addiction. For example, neurogenetic 

studies suggest that the A118G single-nucleotide variant of the μ opioid receptor (OPRM1) 

gene and the 9R allele of the dopamine transporter gene (DAT1) may result in higher 

levels of FDCR,69,70 and a large clinical experiment showed subsequently that both alleles 

interact to influence both FDCR and its reduction following naltrexone administration in 

alcohol-dependent individuals.71 This body of literature can be leveraged together with 

future FDCR investigations using robust longitudinal designs and extensive phenotypic and 

clinical profiling to establish the clinical validity of an FDCR biomarker.
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Next, analytical validation requires establishing that an FDCR biomarker has appropriate 

accuracy and reliability within the proposed COU.13 While some recent evidence supports 

the reproducibility72 and predictive accuracy73 of certain FDCR patterns, many fMRI tasks 

experience low test-retest reliability,74,75 and recent findings point to a similar challenge 

for FDCR.76 This highlights the need to systematically improve FDCR measurement and 

identify signal patterns optimal for biomarker development. Further, moving from group-

level effects to biomarkers for individual-level decision-making requires the definition of 

normative signal ranges across contexts and groups; for example, some FDCR studies define 

individuals with high FDCR as those whose FDCR value is greater than the median of 

study participants.49 Such studies support further investigation to systematically establish 

a normative range to determine which individuals have abnormally high or low regional 

FDCR.

One way to establish normative FDCR bounds and design FDCR biomarkers with optimal 

analytic properties would be meta-analysis and mega-analysis across previous studies, 

exemplified by a meta-analysis that demonstrated that short-duration cues in event-related 

designs may induce more reliable FDCR than longer cue presentations in blocked designs.77 

However, meta-analyses of previous studies should account for publication bias, flexible 

reporting and interpretation of results, and the fact that published findings may be the result 

of posthoc, exploratory investigation. The very low rate of nonsignificant results in our 

database (Figure 2; eFigure 10 in the Supplement) is likely in part driven by these factors, 

which affect neuroscience research more broadly.78 More insight into the analytic properties 

of various FDCR-derived measures would also enable appropriate task design; for example, 

without estimates of effect size and power analysis, it is unclear whether the median FDCR 

task duration of 720 seconds in our database is sufficient given usual repetition times.

Finally, practical use of FDCR-derived biomarkers in clinical or drug development contexts 

requires that their cost-effectiveness be demonstrated. Given the costs of fMRI and potential 

harms of false-negative or false-positive results, FDCR-derived biomarkers should be 

capable of feasibly and meaningfully complementing indicators that are often less expensive 

to measure, such as self-reported addiction severity or behavioral phenotypes. This requires 

explicit cost-benefit modeling in future FDCR biomarker development studies and attempts 

to make FDCR more cost-effective by optimizing study designs for sample sizes, scanning 

procedures, and scan durations. It is also important to select biomarker types likely to offer 

the greatest utility. For example, diagnostic biomarker development may be foundational 

but unlikely to offer clinical utility outweighing the costs, and the criterion standard of 

diagnosis will likely remain clinical interviewing. FDCR biomarkers may be much more 

cost-effective for prognosis, treatment selection, and intervention development, for which 

alternative markers are less available.

We discuss 2 particularly promising FDCR markers in the Box,8,46–49,68,73,79–87 one 

reflecting global cue-related brain activity and the other local activation. Both examples 

demonstrate how validating evidence can converge across COU.
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Conclusions

A growing number of biomarkers are widely used in biomedical research and clinical 

practice, but their role remains mostly limited in addiction medicine and psychiatry more 

broadly.88 This article provides an overview of FDCR research, a promising paradigm 

for biomarker development for addictive disorders. FDCR biomarkers could classify 

patients, have prognostic value, improve treatment selection, and facilitate intervention 

development and personalized care. The field faces multiple important challenges, and 

while we have highlighted methodological heterogeneity, small sample sizes, and a lack of 

systematic biomarker development and validation efforts, a limitation of the present study 

that should be addressed in future work is that FDCR studies vary widely in reporting 

and methodological quality, particularly in terms of statistical practices, such as multiple 

comparison correction. Ultimately, biomarker specification and validation efforts will 

likely require moving beyond traditional single-site studies and may involve rigorous mega-

analyses using in frastructure developed by initiatives such as the ENIGMA International 

Consortium89 or multisite collaborations and harmonized, longitudinal assessment following 

examples such as the Human Connectome Project and the Adolescent Brain Cognitive 

Development project,90,91 with structured expert consensus to address remaining gaps 

(eFigure 12 in the Supplement). Toward this aim, several of us (A. R. C., R. Z. G., A. 

Heinz, J. E. J., F. J. M., M. P. P., L. A. R., R. S., R. R. W., A. C. J., H. K., A. Z., and H. E.) 

have formed the steering committee of the ENIGMA ACRI within the ENIGMA Addiction 

Working Group to facilitate consensus development, methodological harmonization, and 

data sharing for mega-analyses.92 Large-scale biomarker definition and validation studies 

would require substantial funding and resources often difficult to secure or justify for a 

single research institution or pharmaceutical company. This endeavor necessitates formation 

of diverse consortia to pool resources and guide validation efforts, develop best practices 

in study design and reporting, and engage in ongoing dialogue with commercial and public 

health stakeholders. Ultimately, there will be a need to form public-private partnerships that 

inform future biomarker development studies and systematically approach the arduous task 

of translating FDCR-derived biomarkers to clinical use.
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Key Points

Question

What is the current status of functional magnetic resonance imaging drug cue reactivity 

(FDCR) research, and how could it support the discovery of biomarkers to facilitate 

intervention development and clinical care for substance use disorders?

Findings

In this systematic review including 415 FDCR studies, results from 357 studies could 

potentially help develop diagnostic, prognostic, susceptibility, severity, monitoring, 

predictive, or response biomarkers. Substantial heterogeneity in task and study design 

was identified that can hinder biomarker development.

Meaning

A sizable literature supports the development of FDCR-derived biomarkers, but 

moving forward requires large-scale collaboration, methodological harmonization and 

optimization, and clinical and analytical validation.
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Box.

Local and Global Functional Magnetic Resonance Imaging Drug Cue 
Reactivity (FDCR): 2 Exemplar Cases

We highlight 2 examples of promising FDCR signals across contexts of use:

A robust FDCR biomarker would likely be useful across multiple contexts of use and 

would also be supported by converging avenues of validating evidence. A promising 

regional marker is striatal FDCR, which meets several important characteristics of a 

putative neural biomarker in AUD. In a diagnostic context, several studies have reported 

significant differences in striatal FDCR between individuals with and without AUD79,80 

and a ventral to dorsal striatum FDCR shift with more compulsive alcohol use.81 There is 

support for the prognostic potential of striatal FDCR, with several studies demonstrating 

significant associations with subsequent alcohol use and relapse in AUD8,47,68,82 and 

increases in relapse prediction accuracy of machine-learning models, over and above 

clinical variables.73 In addition, converging evidence indicates that striatal FDCR is 

sensitive to behavioral AUD treatments, such as cue exposure therapy or drugs such as 

naltrexone46,47 or nalmefene,83 illustrating that longitudinal assessment of striatal FDCR 

can monitor treatment effects. Further, acquiring striatal FDCR before treatment predicts 

naltrexone treatment response, such that individuals with high striatal FDCR benefited 

more from naltrexone,48 supporting the predictive potential of striatal FDCR. This 

finding was replicated in an independent sample49 and could be expanded to positive 

(ie, higher response to alcohol cues) vs negative (ie, higher response to neutral cues) 

FDCR in striatal regions,47 indicating that absolute levels of striatal FDCR can be used to 

predict treatment efficacy across datasets.

With the advent of machine learning techniques capable of discovering robust patterns 

of activity distributed across the brain, it is possible to develop FDCR biomarkers that 

reflect neural processes involved in FDCR beyond a single region. This would be in 

line with the growing understanding that neural processes are often under-girded by 

distributed brain networks84 and that multivariate brainwide association studies may 

require smaller samples to discover brain-behavior relationships.85 There have been a 

few attempts to date to use FDCR to create and validate a whole brain–based biomarker 

in SUDs.86 In a recent example, machine learning on FDCR data from individuals with 

alcohol, cocaine, and tobacco use disorders identified a multivariate whole-brain marker 

that was reliably associated with drug craving, accurately classified individuals with 

SUDs from healthy controls, detected responses to interventions, and mediated the effects 

of intrinsic visual craving features on craving ratings.87 While the authors noted that 

additional (ongoing) validation is required, current evidence supports the clinical and 

analytical validity of this multivariate marker as a diagnostic and response biomarker.

Abbreviations: AUD, alcohol use disorder; SUD, substance use disorder
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Figure 1. 
Task and Study Design Features of Functional Magnetic Resonance Imaging (fMRI) Drug 

Cue Reactivity (FDCR) Studies

A, Number of time points in FDCR studies. A total 327 studies scanned participants at 1 

time point, 81 studies at 2 time points, 6 studies at 3 time points, and 1 study at 4 time 

points. B, Boxplot representing the distribution of median interscan intervals (in days) for 

FDCR studies with more than 1 scanning session. Ten studies scanned individuals more 

than once within the same day (interval of 0 days). The midline indicates the median; the 
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box, first and third quartile; whiskers, 1.5-fold the IQR; and points, individual data. C, 

Main FDCR task design type. D, Boxplot of the distribution of FDCR task durations. E, 

Paradigms and FDCR tasks of 52 studies in the database. F, FDCR studies by stimulus 

and substance/behavior type. The multiple category includes studies including more than 1 

type of addictive substance/behavior. The other category includes inhalants and betel quid 

chewing.
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Figure 2. 
Seven Functional Magnetic Resonance Imaging Drug Cue Reactivity (FDCR) Study Types

A, FDCR studies that, by virtue of their study design, could theoretically support the 

development of each biomarker type by substance or behavior of interest. Note that all cells 

do not sum to 415 since some studies do not fit the biomarker framework and some studies 

fit multiple biomarker types. B, The number of significant and nonsignificant biomarker-

related findings. The other category includes inhalants and betel quid chewing.

et al. Page 23

JAMA Psychiatry. Author manuscript; available in PMC 2024 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Functional Magnetic Resonance Imaging Drug Cue Reactivity (FDCR) Studies With an 

Intervention or Manipulation

A, Types of interventional FDCR studies by year, including randomized clinical trials 

(RCTs), nonrandomized controlled trials, single-arm trials, and retrospective studies. B, 

FDCR studies intervention type. C, Role of FDCR in interventional studies. FDCR can 

be measured before an intervention to predict intervention results or measured after an 

intervention to assess impact with or without a comparison with baseline FDCR.
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