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This paper presents new methods for an automated analysis of the double InterTropical Convergence Zone
(dITCZ) phenomena on a daily time scale over the east Pacific. Long-term Geostationary Operational Environ-
mental Satellite (GOES) visible and infrared data are used to spatially identify and segment the convection
zones over the east Pacific basin on both sides of the equator and to track the temporal variability of the
ITCZ, specifically to identify cases of dITCZs, northern or southern ITCZ, or non-presence events. For the
segmentation approach, image processing techniques are developed to extract information about the spatial
features of the ITCZ in both hemispheres for each satellite image. These features serve as input to a temporal
classification algorithm that is based on a combination of hidden semi Markov model (HsMM) and support
vector machine (SVM)methods. The performance of the proposedmethod is competitive with human experts
and the methodology can thus be used to conduct an in-depth analysis of the dITCZ. Such an analysis could
provide precise information for refining existing weather and climate models over the sparsely observed
east Pacific where the dITCZ is greatly over-represented in most models.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

The InterTropical Convergence Zone (ITCZ) is a zonally elongated,
rather narrow zone of convection over the tropical oceans, playing a
key role in the general circulation of the atmosphere. Understanding
its variability is essential for improving global climate models. The
ITCZ is frequently observed north of the equator in the east Pacific
(hereafter referred to as the northern ITCZ (nITCZ)) especially during
the boreal summer half-year. Even inwinter, the ITCZmay be detected
north of the equator as seen in cloud fields. Only in the boreal spring
(especiallyMarch to April) is the ITCZ also observed south of the equa-
tor, which we will refer to as the southern ITCZ (sITCZ). At times this
leads to two convergence zones, strong enough to be revealed in
cloud fields, simultaneously existing on both sides of the equator in
the tropical east Pacific. This phenomenon has been named the double
ITCZ (dITCZ) (Hubert et al., 1969). Fig. 1 illustrates representative
images from the visible channel on geostationary satellites for all
four possible combinations of east Pacific ITCZ occurrences in the
boreal spring, i.e. (a) dITCZ, (b) nITCZ, (c) sITCZ and (d) with no ITCZ
signal present on either side of the equator. In this paper we reserve
the symbol dITCZ to describe the occurrence of simultaneous convection
).

rights reserved.
zones on both sides of the equator in the east Pacific in instantaneous
data. Most previous studies have examined time-averaged and/or area-
averaged fields and upon detecting convection both north and south of
the equator refer to the phenomenon as a double ITCZ— this is different
from our definition of dITCZ above.

Most current global climate models grossly over-represent the
dITCZ during the boreal spring (active season). Some of the models
even show a dITCZ outside of its active season. This leads to serious
model misrepresentations of surface energy fluxes and radiative
heating in the east Pacific with global consequences. Previous studies
of the double ITCZ have focused on monthly (e.g. Liu & Xie, 2002;
Zhang, 2001) or at most weekly time scales (e.g. Gu et al., 2005;
Lietzke et al., 2001). Magnusdottir andWang (2008) examined double
ITCZ occurrence in daily data but used reanalysis data that by design
include numerical model assumptions that may not be valid in the
tropics. Masunaga and L'Ecuyer (2010) examined seasonal evolution
of the southern branch of the ITCZ in eight years of daily satellite data
(2000–2007) and the associated seasonal evolution of surface energy
fluxes and the ocean mixed layer.

We are interested in characterizing the occurrence of each of the
configurations (or states) of ITCZ on both sides of the equator in the
east Pacific on the daily time scale. This requires an approach that
relies only on instantaneous meteorological satellite images, avoiding
potential corruption frommeteorological analyses thatmaymisrepre-
sent the state of the tropical atmosphere in data sparse regions, such

http://dx.doi.org/10.1016/j.rse.2012.03.022
mailto:daniel.henke@geo.uzh.ch
http://dx.doi.org/10.1016/j.rse.2012.03.022
http://www.sciencedirect.com/science/journal/00344257
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a) Double ITCZ (05.April.2002) b) Northern ITCZ (17.May.2000)

c) Southern ITCZ (13.March.2000) d) No ITCZ present (11.February.2000)

Fig. 1. Examples of the four possible ITCZ states in GOES VS images. The green lines indicate the equator.

1 The files stored in GRISAT-B1 beta netCDF-4 format were provided by Dr. Ken
Knapp and are precisely described in Knapp et al. (2011). They were generated for
the boreal spring (i.e. February–May) of the years 2000–2004 and the specific region
of interest (i.e. east Pacific).
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as the tropical east Pacific. In addition, the approach shouldwork in an
automatedmanner to the extent possible in order to handle large data
sets for long-term analyses that are impractical formanual annotation.

The algorithm we propose for this task consists of two major parts:
first, we spatially localize the ITCZ in both hemispheres in single
images (detection); and second, we use time-series analysis to identify
different ITCZ states for later statistical analyses. For the first task, we
rely on finding a backbone path to indicate the elongated ITCZ cloud
band and use a subsequent region-growing algorithm to extract the
connected ITCZ cloudfield. An alternative approach to this unsupervised
methodology would be to use spatio-temporal Markov random fields as
described in Bain et al. (2011)— however, this requires time-consuming
labeling of images at the pixel level, whereas in the approach proposed
here no labeling is required for the spatial segmentation.

For the second task, features extracted from the spatial segmenta-
tion are used to classify each image into one of four discrete states
(dITCZ, nITCZ, sITCZ and no presence). We make use of an extended
hidden semi Markov model/support vector machine (HsMM/SVM)
approach, leveraging HMM modeling techniques to integrate infor-
mation over time (Rabiner, 1989), adapting hybrid HMM methods
that traditionally have been applied to speech recognition (Bourlard
& Morgan, 1994).

Our results in this paper demonstrate that the proposed method
can extract extensive information about the ITCZ phenomenon –

about its current state as well as characteristics such as extent and
location – at a high temporal resolution and in a fully automatic
manner. The method is competitive in accuracy when compared to
human experts and it significantly reduces the amount of human
effort involved in annotation since only an initial set of training
images need to be labeled and not the whole data set.

In the following, we first briefly describe the satellite data that
we use and the ground truth acquisition by human experts. Then
the method is described in detail. Beginning with localization of the
ITCZ, we will focus on the temporal classification of the dITCZ states.
We evaluate the performance of the proposed algorithm and present
first basic climate statistics based on a five-season sample case. Finally,
we conclude with potential future research directions.

2. Methods

2.1. Dataset and ground truth

The visible (VS) and infrared (IR) data of the GridSat data set from
Knapp et al. (2011) are used in this paper.1 In GridSat, raw data from
multiple geostationary satellites are remapped to a standard map
projection, recalibrated to optimize temporal homogeneity (especially
optimized for the IR data), and stitched together from different satel-
lite instruments to provide a standardized data set for the years 1980
to present. The spatial resolution of the data is approximately 8 km
which allows accurate identification of large-scale ITCZ phenomena.
VS images are available daily at 21:00 GMT (daylight) while IR images
are available every 3 hours since they are independent of the position
of the sun. High reflectivity values in VS images correspond to optical-
ly thick cloud cover and low IR temperature corresponds to cold cloud
tops or cloud tops high in the troposphere. These characteristics are
useful indicators for the presence of the ITCZ which, in general, is
associated with deep as well as shallow convection (see also Bain
et al., 2011). For detecting the dITCZ, nITCZ, and sITCZ states, we
restrict the area of interest to longitudinal and latitudinal ranges of
180° W to 90° W and 20° N to 20° S and the period of potential occur-
rence to February until May of each year. In subsequent analysis of the



10οN

0ο

10οS

20οS
180οW 150οW 120οW 90οW

Longitude

La
tit

ud
e

20οN

Fig. 2. The red line indicates the location of the estimated backbone path (in both the
northern and southern hemispheres), and correspondingly, the estimate of the dITCZ
location. From VS data.

2 When we display or refer to IR images in what follows we use inverted IR images
(i.e., bright pixels correspond to lower intensity values) since this improves readability
and understanding.
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imageswe rescaled the [0…1] reflectivity values of the VS data and the
temperature-normalized IR data to 256-integer images.

Human experts (atmospheric scientists familiar with the ITCZ
process) manually generated image labels using a graphical user
interface. To assist the human experts three different satellite fields
(VS, IR and Total Precipitable Water (TPW)) were displayed in the
interface. TPW was obtained from Remote Sensing Systems and is a
composite from variousmicrowave sensors. Two atmospheric scientists
(Experts I and II) each independently labeled two seasons of data (2000
and 2002), and two more experts (Expert III and IV) each labeled a
sequence for March 2000. The sequence labeled by Expert I was used
for training and testing of the model; the accuracy of Expert I was mea-
sured using the labels from Experts II, III and IV. The scientists assigned
each day to one of four stage tags, where the mutually exclusive stage
tags were (a) dITCZ, (b) nITCZ, (c) sITCZ, or (d) a non-presence event.
The purpose of collecting labels in this manner was to provide ground
truth data for training pattern recognition algorithms, as well as for
systematically evaluating the quality of such algorithms by comparing
algorithm and human accuracy on held-out data.

2.2. Locating the ITCZ — the backbone algorithm

The first challenge for automatic tracking of the dITCZ phenomena
is to locate the ITCZ position (if present) and its spatial extent, on
both sides of the equator. As a preprocessing step, the data are filtered
by a standard Gaussian spatial filter. A latitude-dependent weighting
(a mixture of two smooth Gaussian functions with maxima at 8° N
and 8° S, see Appendix A) is used to add prior knowledge about the
most likely ITCZ location in order to bias the path-finding algorithm
toward these regions. Thereafter, we estimate the location of the
ITCZ by finding a path (or “backbone”) that is optimal in the sense
that it maximizes the intensity value of the summed pixels from
the west to the east. Dynamic programming is used to compute the
optimal path as outlined below.

Let I be a two-dimensional N×M array of intensity values
corresponding to the satellite image with N referring to the number
of columns and M to the number of rows. Let P be the matrix storing
the estimated backbone path from left to right and PA an auxiliary
variable containing the path positions:

Initiation : P 1;mð Þ ¼ I 1;mð Þ ∀m : 1≤m≤M
Recursion :
P n;mð Þ ¼ I n;mð Þþ max

m−1bkbmþ1
P n−1; kð Þ ∀n : 2≤n≤N;∀m : 1≤m≤M

P A n;mð Þ¼ argmaxm−1bkbmþ1P n−1; kð Þ ∀n : 2≤n≤N;∀m : 1≤m≤M

ð1:1Þ

To estimate the backbone path positions PO the maximum of P in
column N is chosen and backtracked using the auxiliary variable PA.

Initiation : PO Nð Þ ¼ argmax1bkbM P N; kð Þ
Recursion : PO nð Þ ¼ PA nþ 1; PO nþ 1ð Þ

� �
with n ¼ N−1; N−2;…;1

ð1:2Þ

We apply this algorithm to both sides of the equator, i.e. 20° N to
0° for the northern ITCZ and 0° to 20° S for the southern ITCZ. Fig. 2
shows a typical result from this algorithm, illustrating the estimated
backbone paths (and corresponding ITCZ locations) obtained from
VS data.

Given the estimated path we extract the spatial extent of the ITCZ
as follows. Morphological reconstruction by dilation is used to find a
spatial segmentation. To avoid the computationally-intensive process
of iterative geodesic dilation we use a downhill filter which relies on
a random access queue and is initialized via seed points defined by
the backbone path — this approach was suggested by Robinson and
Whelan (2004) in the context of medical image analysis. The spatial
segmentation algorithm is as follows:

Initialize:
The mask image C is defined by the original satellite image

I pð Þ ¼ C pð Þ if p is a pixel of the backbone path
0 otherwise

�
ð2:1Þ

The access list L is defined as: ∀p : I(p)≠0:Append p to L(I(p))
The auxiliary variable m is set to the maximum value of I.

Loop over all n ¼ m…1 :
While L nð Þ≠fg do
Take first element pout of L nð Þ and do ∀q∈Neighborhood pð Þ

and q not already visited :
I qð Þ ¼ min n; C qð Þð Þ and append q to L I qð Þð Þ

ð2:2Þ

After the loop is completed the pixels in I belonging to the ITCZ signal
are preserved while non-ITCZ pixels are suppressed (see Appendix A).

This type of region-growing algorithm tends to preserve the main
cloud band of the ITCZ while simultaneously suppressing cloud for-
mations which are not connected to the ITCZ complex. The resulting
image I is thresholded to produce a mask — this mask corresponds
to our estimate of the spatial location and extent of the ITCZ (see
Appendix A). The method is not particularly sensitive to the choice
of threshold as long as it is above a minimum value — a value of
60 (using a scaled VS image with a reflectivity range [0…255]) was
used in the experiments. Finally, we use morphologic open and close
operations to connect nearby segments and to filter out small regions.
For the close operation we use an elliptically shaped mask with an
east–west orientation of the principal axis to favor elongated east–
west oriented cloud bands (see Appendix A for details). The method
is applicable to both the VS and inverted IR images.2 Fig. 3 illustrates
the estimated mask for the example from Fig. 2.

2.3. Time series analysis of the dITCZ phenomena

The second primary challenge in analyzing the dITCZ phenomena is
to track and classify ITCZ presence over time in both the northern and
southern hemisphere. Our approach to this temporal classification
problem is to first estimate features from the satellite images, and to
then use these features as observations for a hidden state-space
model, from which we can estimate the most probable state sequence,
i.e. presence or non-presence over time of ITCZ north and south of
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Fig. 3. Result from automatic spatial segmentation of the ITCZ corresponding to the
image in Fig. 2.
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the equator. As mentioned earlier, and as illustrated in Fig. 1, we dis-
tinguish between four categorical and mutually-exclusive states:

• The dITCZ state where an ITCZ signal is visible (consisting of at least
a roughly 90° longitudinal stretch of a connected cloud band3) on
both sides of the equator;

• The northern state, where only one ITCZ is formed in the northern
hemisphere (nITCZ);

• The southern state, where only one ITCZ is formed in the southern
hemisphere (sITCZ);

• The state of non-presence, i.e. no significant ITCZ signal in the area
of interest.

In preliminary experiments (not described here) we found that
the 4-state model described in this paper outperformed two indepen-
dent 2-state models that analyze the northern and southern ITCZ
separately. This is suggestive of correlations in the dITCZ phenome-
non which we will comment on again later in the paper. In what
follows below, we will first describe the feature extraction and then
give a detailed overview of the temporal classification methods.
2.3.1. Feature extraction
We use a large number of different image-based features in our

temporal classification approach (34 for VS and 37 for IR) – here we
present only an overview – the complete list of features is defined
in Appendix B. The features can be sub-divided into three different
classes: those based on the backbone path, those based on the seg-
mentationmask, and those based on general image statistics. Features
are calculated separately for the northern part (20° N to 0°), the south-
ern part (0° to 20° S), or in some cases for the complete image (20° N
to 20° S). The features are calculated in the same manner for the VS
and IR images, the only difference being in the threshold used for
the segmentation mask.
2.3.1.1. Features based on the location of the backbone path. We extract
features from the backbone path such as the slope or spatial variance
of the path with respect to a linear best-fit regression. We find that
this variance is typically lower when the ITCZ is present due to the
typical elongated linear form of an ITCZ. Additionally, we derive
statistics from the pixel intensities along the backbone path. For
example, the mean of the intensity values as well as the distance of
local minima from each other tend to be higher when the ITCZ is
present since the ITCZ tends to be associated with elongated high-
intensity cloud cover.
3 Note: A 90° longitudinal connected cloud band is our working definition of the
ITCZ being present but the interpretation of a “connected cloud band” is subjective.
This subjectivity naturally leads to variations among the labels assigned by the atmo-
spheric scientists.
2.3.1.2. Shape-based features. Shape-based features are derived from
the binary mask that is calculated by morphological reconstruction
described in Section 2.2. We use border tracing as described in
Klette and Rosenfeld (2004) to extract all connected objects. Subse-
quent features that can be computed include for example the width
of the object that has the largest east–west extent. This width is
often quite large when the ITCZ is present relative to images without
the ITCZ. For the object with the widest east–west extent additional
characteristics such as area, perimeter, center of mass and compact-
ness are also computed and used as features.

Shape-based features are also derived from Fourier descriptors
(Arbter et al., 1990) computed on the border. The Fourier coeffi-
cient c0 defines the balance point of the border line. Using the
Fourier coefficient c1, and the corresponding negative coefficient
c−1, an ellipse is fitted to the extracted object, as described in
Appendix B. The major axis (which for the ITCZ is related to the
maximal east–west width), the minor axis, and its ratio and orien-
tation all provide useful features. The higher order Fourier coeffi-
cients are indicative of the smoothness of the object's border and
thus the energy spectrum of the Fourier coefficients also serves
as an additional feature.

2.3.1.3. Features based on general image statistics. As basic features
we calculate the mean intensity of the complete image, for both the
northern and southern parts of the image separately, as well as for
the areas 12.5° N to 2.5° N and 2.5° S to 12.5° S (as defined for the
double ITCZ phenomenon over the western Pacific in Chen et al.,
2008). Central and invariant moments of the intensity distribution
can also provide useful information and a number of such moments
are used as features.

2.3.2. Temporal classification of the dITCZ phenomena with hidden state
space models

Our aim is to classify each time snapshot into one of four states,
conditioned on the observed features. Since the features are some-
what noisy, we use a temporal classifier to model the persistence of
the dITCZ states. Specifically, we use a hidden Markov model
(HMM) to incorporate knowledge about the temporal behavior of
the dITCZ phenomena. In an HMM the probability distribution over
the hidden state of the system at a particular time depends only on
(a) the previous state of the system (the Markov property) and (b)
the current observation.

As described in Rabiner (1989) an HMM is formally defined as

(1) a set of N discrete states {q1,q2,…,qN}

(2) a state transition matrix A ¼
a11 ⋯ a1N
⋮ ⋮

aN1 ⋯
⋮

aNN

0
@

1
A with aij=

P(qt= j|qt−1= i) being the probability that state j follows
state i under the conditions aij≥0 and ∀ i :∑ j=1

n aij=1.
(3) a set of emission probability distributions or densities: B=

{b1,…,bn}; where bi(x)=P(ot=x|qt= i) is the probability of
generating observation x in state i.

(4) a feature or observation space Owhich is the domain of the bi's.
(5) an initial probability distribution πwhere π(i) is the probability

of starting in state i.

For modeling the dITCZ phenomena the states consist of {dITCZ,
nITCZ, sITCZ, non-presence} and the observations O correspond to
the set of features described earlier.

In a typical application of the HMM approach, the model param-
eters θ=(A,B,π) are learned in an unsupervised manner by maxi-
mizing the probability P(O|θ) for a given realization O={o1,…,oT}
(the training data) via the Baum–Welch algorithm, which is a spe-
cific case of the more general expectation maximization (EM) proce-
dure (e.g., see Rabiner, 1989). For a new set of images whose states
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are unknown, given the features of the image sequence O and the
trained model parameters θ, the computation of the optimal state
sequence Q={q1,q2,…,qT} – here, the temporal tracking of the
dITCZ phenomena – is carried out using the Viterbi-algorithm
(based on dynamic programming similar to the optimal path algo-
rithm in Eqs. (1.1)–(1.2) of Section 2.2) by maximizing the probabil-
ity P(Q|O,θ).

To improve the performance of the model for the purpose of dITCZ
tracking we make three changes to the standard HMM framework.
These modifications have been investigated independently in the
past and proven to be useful in general but to our knowledge have
never been used in combination:

We begin by relaxing the strict Markov property for the transition
matrix A by introducing a time-dependent self-transition function to
the transition matrix, also known as a hidden semi-Markov model
(HsMM) (e.g. Murphy, 2002). This modification allows for explicit
modeling of the distribution of state durations.

Second, instead of modeling the emission probabilities B via a con-
ditional (generative) model of the probability of the observations
given the states (e.g., via a Gaussian distribution) we instead model
the conditional distribution of the states given the observations using
support vector machines (SVMs). The latter approach is generally
less sensitive to parametric distributional assumptions than the for-
mer, particularly in high-dimensional observation spaces. The general
approach is discussed for example in Bourlard and Morgan (1994) —
here we specifically use SVMs and logistic regression (as in Platt,
1999) to model the conditional distribution of states given observa-
tions, as described later in this paper.

Finally, since training on known expert labels can improve themod-
el's performance significantly (compared to unsupervised learning
without any labeled data), we replace unsupervised parameter estima-
tionwith both supervised (all labels known) or semi-supervised (partly
known and partly unknown labels) learning, as described for example
by Zhong (2005).

2.3.2.1. Relaxing the strict Markov property: the HsMM. The standard
HMM implies a geometric distribution for the state transition proba-
bility due to the constant self-transition coefficients (the aii's in the
transition matrix A). The state duration probability density pi(d) for
staying in state i for exactly d time-steps is

pi dð Þ ¼ aiið Þd−1 � 1−aiið Þ ð3Þ

This geometric distribution is inconsistent with prior knowledge
about ITCZ persistence. For example, in Wang and Magnusdottir
(2006), where the durations of northern ITCZs in the summer
months were manually identified for the years 1999–2003, typical
durations were found to be 9 days in length and non-geometric in
terms of distribution. Furthermore, based on the human-generated
labels used in this present study, we found that the state duration
for the ITCZ in either hemisphere tends to have a mode that is cen-
tered between 5 and 15 days, rather than at 0 days as required by a
geometric distribution. For these reasons we model the state dura-
tion explicitly by introducing a time-dependent component in the
state transition matrix A.

Let L be a contiguous (in time) labeled training sequence obtained
from a human labeler. We define dk(i) as the duration of the kth con-
nected occurrence of state i in L. The state duration distribution Di(t)
over time for each state can be calculated as

Di tð Þ ¼ ∑k1 dk ið Þ≤tð Þ;

with 1 dk ið Þ≤tð Þ ¼ 1 if dk ið Þ≤t
0 else ∀t : 1≤t≤max dk ið Þð Þ

� ð4:1Þ
We can approximate the state duration probability by fitting a
logistic regression model of the following form:

Di tð Þ ¼ eβ0þβ1t

1þ eβ0þβ1t
ð4:2Þ

where theβk's are estimated bymaximum likelihood estimation (MLE).
Since the training data for learning the state duration is relatively small,
outliers can have a severe impact on the fitting of the βk coefficients. To
overcome this we use a scaled, interpolated and smoothed version of
Di(t) as a look-up table for finite amounts of training data, recovering
the logistic regression form for t≫max(dk(i)). Additional details,
including an example of such fitted duration models, are provided in
Appendix C.

The constant aii's in the transition matrix A can now be replaced
by the time-dependent aii(t)'s which are defined as the scaled, inter-
polated and smoothed version of the Di(t) values described above. To
satisfy the criteria ∀ i :∑ j=1

n aij=1 for each row of A(t), we normalize
the aijwith i≠ j.

As mentioned earlier, the training data for learning the state
duration is often relatively small since there are a limited number of
ITCZ transition events per season. Thus, we found it useful to use a
transition matrix that is a combination of purely dynamic and static
transition matrices, i.e., Anew(t)=λ∗Adynamic(t)+(1−λ)∗Astatic

where λ is a weighting factor. Astatic is more robust since it depends
on fewer parameters than Adynamic(t). As the number of training
samples increases, Adynamic(t) contributes more information, and
the weighting factor λ can be increased. In our dITCZ experiments,
for the supervised VS model with 1 image per day, and relatively little
training data, we rely mainly on the static matrix with λ=0.1. For the
semi-supervised IR model with 8 images per day (thus 8 times as
much training data) we use a purely dynamic transition matrix
(λ=1). Furthermore, as discussed below, λ=1 is also necessary for
robust semi-supervised learning. Finally, we use modified forms of
the alpha-beta and Viterbi-algorithms by introducing an auxiliary
variable that keeps track of the time spent in the current state making
it possible to update the self-transition probability of Adynamic(t) at a
given time step t in the classification step.

2.3.2.2. Modeling the state-observation probabilities by SVMs: the
HsMM/SVM hybrid. In the typical application of HMMs the bi's are
defined as bi(x)=P(ot = x |qt= i), the probability of generating
observation x in state i. However, common parametric forms for the
bi's (such as the multivariate Gaussian distribution) are often not
well-matched to real data distributions. As discussed earlier, the
alternative parametrization we pursue here is to model P(qt= i |
ot=x) by an SVM or by logistic regression. The necessary conditional
probabilities for learning and classification for this parametrization
can be derived using Bayes' rule:

P xjqt ¼ ið Þ ¼ P qt ¼ ijxð Þ �P xð Þ
P qt ¼ ið Þ ð5Þ

P(qt= i) can be estimated via the labeled training set and P(x) is a
scaling factor since it is independent of the state s. It can be shown
that the parameters of the H(s)MM are invariant with respect to
scaling and thus one can convert any classifier which satisfies the
maximum a posteriori (MAP) criterion (i.e., it estimates P(qt= i |x))
into an estimator of the emission densities B of the HsMM (e.g. see
Bourlard & Morgan, 1994).

When using SVMs some additional adjustments need to be made
to implement this parametrization. Firstly, standard binary SVMs
can only discriminate between two classes. Since we deal with four
different classes (dITCZ, northern, southern, not present), we use
“one-versus-all” SVMs for all classes, i.e., we use four binary classifiers,
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one per state. Given our labeled state sequence L, we set up the l train-
ing data pairs (xt, yi,t) for the SVM as follows:

yi;t ¼ 1 if the state at time t is i
−1 otherwise

�
ð6:1Þ

with a corresponding feature vector xt.
With these l training data pairs the support vectors are learned by

maximizing:

L αð Þ ¼ ∑l
k¼1αk−

1
2
∑l

k¼1∑
l
m¼1ykymαkαm xk; xmh i

under the constraints 0≤ αk≤ C and ∑l
k¼1ykαk ¼ 0

ð6:2Þ

The cost parameter, C, controls the trade-off between allowing
training errors and forcing rigidmargins, andwas set to a fixed default
value C=1 in all of our experiments.

Given the α's, the hyperplane parameters of the SVM are defined
as:

w ¼ ∑l
k¼1αkykxk and

u ¼ −1
2

maxk;yk¼−1 w; xkh ið Þ þmink;yk¼þ1 w; xkh ið Þ
� � ð6:3Þ

A second issue is that SVMs only calculate the distance of a new
sample xnew to the optimal hyperplane bwi,xnew>+ui but do not
directly compute the probability P(q= i |x). However, the distance
to the optimal hyperplane implies a measurement of certainty about
the classification decision (small distances imply low certainty, large
distances imply high certainty). One can approximate the probability
of P(yi,t=1 |xt) by a sigmoid function (Platt, 1999):

P yi;t ¼ 1
� ��xtÞ≈ 1

1þ e−εi� bwi ;xt>þuið Þþγi
ð6:4Þ

where wi and ui are the parameters learned by the SVM and εi and γi

are estimated iteratively with respect to the training data. To fit the
SVM models in our experiments we used a non-linear least square
SVM (LS-SVM) with a radial basis function (RBF) kernel, as imple-
mented in the LS-SVM MATLAB toolbox by De Brabanter et al.
(2010). The width parameter of the RBF was set to 110 based on
preliminary experiments with the dITCZ training data.

2.3.2.3. Supervised and semi-supervised learning approaches. For learn-
ing the model parameters θ we use both supervised and semi-
supervised approaches depending on the particular data set used for
the classification. Both data sets, VS and IR, have their advantages
and disadvantages. The VS imagery (which is also the main source
for the atmospheric scientists to visually detect the ITCZ signal)
achieves the better results for classifying the dITCZ phenomena. One
of the main reasons for this is that the ITCZ phenomena in the east
Pacific in spring (Feb–May) can be weak, and thus, there are numer-
ous shallow ITCZ events which are only detectable in VS data but are
not seen in IR images. Including IR features in the VS model down-
grades the model's accuracy. These facts in general favor VS data
over IR data. On the other hand, IR data are available at a higher
temporal resolution (8 per day vs. only 1 per day for VS), and more
importantly, the time series for analyzing the long-term behavior is
more reliable for the IR data since VS data are less temporally homo-
geneous. Furthermore, the VS data prior to 1995 can be corrupt or
non-existent as discussed in previous investigations (e.g. Bain et al.,
2011).

These differences between IR and VS motivated our investigation
of two different learning approaches. For the VS model with only
daily images, we have labels for each image and thus, the model
parameters θ can be learned in a completely supervised manner, i.e.
we have an expert labeled sequence L (which yields by definition a
most probable (with probability 1) state sequence Q) and an associated
observation sequenceO. A and π can be estimated directly from L, and B
can be trained by the SVMs using the (O,L)-tuples.

In contrast, the IR images are available every 3 hours, i.e. 8 per day.
In principle, these additional images (7 of which are unlabeled) pro-
vide the opportunity to improve the model's performance via a
semi-supervised learning approach as follows. We make the reason-
able assumption that the state duration for a specific ITCZ phase
spans at least 1 day. We enforce this by making the self-transition du-
ration of Eq. (4.1) be 1 for the first 8 time steps (8 IR images per day):
∀ i, 0b tb8:Di(t)=1 and we use a purely dynamic transition matrix,
i.e. λ=1. Given an observation sequence O={o1,o2…,oN} and the
corresponding labels Lknown={l8 ∗k+m} with 0≤8∗k≤N−m, 0b
mb8, m fixed, we wish to maximize P(O|θ) under the constraint
that the state sequence Q={q1, q2,…, qN} at times 8∗k+m equals ex-
actly the supervised labels Lknown, i.e. ∀k : l8 ∗ k+m=q8 ∗ k+m. We first
initialize our model parameters θ=(A,π,w,u) as follows:

• Train parameters wi and ui of the SVMs by using the labels Lknown

and the corresponding observation sub-set O={o8 ∗ k+m} with
0≤8∗k≤N−m, 0bmb8, m fixed as for the VS model (Eqs. 6.1–6.4).

• Define new labels Lr=0 for the missing labels via the following
simple heuristic: between two labels l8 ∗ k+m and l8 ∗ (k+1)+m,
where l8 ∗ k+m= l8 ∗ (k+1)+m, set all labels between, i.e. l8 ∗ k+m+1,
l8 ∗ k+m+2,…, l8 ∗ k+m+7, equal to l8 ∗ k+m. If a state transition exists
between two labels, i.e. l8 ∗ k+m≠ l8 ∗ (k+ 1)+m, we set all values
l8 ∗ k+m+ 1,…, l8 ∗ k+m+ 4 equal to l8 ∗ k+m and all labels l8 ∗ k+m+ 5,
…, l8 ∗ k+m+ 7 equal to l8 ∗ (k+ 1)+m:

For j ¼ 1;2 3;4f g : l8�kþmþj ¼ l8�kþm
For j ¼ 5;6;7f g : l8�kþmþj ¼ l8� kþ1ð Þþm

ð7Þ

• Finally, the dynamic transition matrix A, derived from L0 and
Eqs. (4.1)–(4.2), as well as the prior distribution π, are learned in
a manner equivalent to the VS model case, except for forcing the
minimum self-transition time to be at least 8 steps.

We use a quasi-EM algorithm for semi-supervised learning of
HsMM/SVM models on the IR data. The aim is to obtain the optimal
model parameters θ⁎ by maximizing the marginal likelihood function
L θ;Oð Þ ¼ P Ojθð Þ ¼ ∑Q P O;Qð jθÞ given the observation sequence O:
θ*=arg maxθP(O|θ). For our semi-supervised approach we include
the additional constraint that the state sequence Q has to traverse
the given labels Lknown. Since there is no closed analytic solution to
the problem, we solve it iteratively. In the estimation (E) step of the
EM algorithm, the expected value of the log likelihood function
under the current estimate of the parameters θr is calculated with
respect to the conditional distribution Q given O using the following
auxiliary function: Aux(θ|θr)=EQ[log P(O,Q|θ)|O,θr]. For our model
this is simply equivalent to computing the most probable state
sequence Qr given O and θr under the constraint that Qr traverses
Lknown. In the maximization (M) step we seek the parameters maxi-
mizing the auxiliary function: θr+1=arg maxθAux(θ|θr). Thus, the
estimate of the parameters θr+1 is updated according to the state
sequence Qr of the E-step and the observation sequence O.

A more detailed description of the algorithm can be found in
Appendix D.

We repeat the EM algorithm until no changes between the labels
at r and r+1 occur, i.e. Lr=Lr+1, and thus, convergence is reached.
It is possible (although it did not happen in any of our experiments)
that the algorithm might not converge — to avoid this one can define
a maximum number of iterations and then select the maximum over
all parameter estimates Θ={θ0, θ1,…, θR}, thus, guaranteeing that
the semi-supervised case has at least as high a likelihood as the
supervised IR model: P(O|θsemi− supervised)≥P(O|θsupervised).

Since we use a semi-supervised SVM/HsMM hybrid approach
the strict EM-criterion, that P(O|θr+1)≥P(O|θr), is not necessarily



Table 1
ITCZ State distribution of expert I.

dITCZ nITCZ sITCZ not present

Expert I
(241 days labeled)

27.8%
(67 days)

55.6%
(134 days)

11.6%
(28 days)

5.0%
(12 days)

Table 2
Classification accuracy of human experts.

Expert II Expert III Expert IV

Expert I 77.2%
(241 common days)

80.7%
(31 common days)

74.2%
(31 common days)

Table 3
Confusion matrix of the VS model on the test set.

– Expert I

Double Northern Southern None

Model Double 20 2 3 2
Northern 10 71 0 1
Southern 0 0 8 0
None 0 1 0 2

Classification accuracy 101 of 120 (84.2%)

Table 4
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guaranteed — but the method appears to work well empirically as
illustrated below.

3. Experimental results

We applied the methods described in Section 2 to the VS and IR
satellite data and discuss below the results in terms of model perfor-
mance relative to human labeling. We also discuss a number of
insights gained about the temporal behavior of the dITCZ phenomena.

3.1. Performance of the models

As described in Section 2.1, to train and evaluate the models,
four atmospheric scientists (Experts I–IV) independently labeled a
sequence of satellite images using VS, IR and TPW images of the
area of interest for each day. Two of the scientists labeled two seasons
(Feb–May of 2000 and 2002, 241 days total). The other two scientists
labeled 31 days in March 2000. The labels of Expert I were used for
training and validating the model. The three additional expert labels
provided information about typical subjective variability across
human experts for the ITCZ-labeling task.

Table 1 shows the distribution of the fraction of days per label for
the four disjunctive dITCZ states, using the labels of Expert I. We see
that the nITCZ state dominates (55.6% of days).

Table 2 shows the classification accuracy of the labels of Experts II,
III, and IV, relative to Expert I, i.e., treating Expert I's labels as ground
truth. The accuracy ranges from 74% to 81%, indicating that there is a
relatively high degree of subjectivity for this task. Measuring the
inter-labeler accuracy is useful because it allows us to calibrate an
automated algorithm's performance relative to human performance
on the same task.

To evaluate the performance of our models, we divided the images
(and labels from Expert 1) into a training and test set of equal size,
such that the distribution of state occurrences in the training set
and test set is approximately the same. The training set used for the
statistics in the paper comprises 121 days (dITCZ: 37 (30.6%), nITCZ:
60 (49.6%), sITCZ: 17 (14.0%), no ITCZ: 7 (5.8%)) the test set
120 days (dITCZ: 30 (25.0%), nITCZ: 74 (61.7%), sITCZ: 11 (9.2%), no
ITCZ: 5 (4.2%)).4

The performance of the VS model on the test data is shown in
Table 3. The model achieved an overall classification accuracy of
84.2%, broken down into classification errors between specific pairs
of states via the confusion matrix. The majority of errors (10 days)
4 The partitioning of the training and test set is not straightforward, partially caused
by the relatively low amount of labeled data. To robustly learn the parameters of the
proposed model, the training set has to be temporally contiguous (to train the transi-
tionmatrix of the HMM) and have enough days for each state to have sufficient training
samples for the SVMs of the four different ITCZ states. Only a few of such train/test splits
exist, and these are shifted only by a few days from each other and consequently highly
correlated. These different train/test set partitions with similar state distributions have
little influence on the model's performance (varying not more than +/−1.5%).
occurred when the model predicted an nITCZ and the expert labeled
it as a dITCZ. The model's classification accuracy of 84.2% is compara-
ble with that of human experts among each other (Table 2). That the
model accuracy is slightly higher than that of the best expert (the best
human accuracy was 80.7%) could be explained by the fact that
the model was trained on labels from Expert I, and thus, the model
more closely mimics the labeling behavior of Expert I compared to
the other experts who may be using slightly different heuristics for
image labeling.

It is also informative to compare the full VS model (using the
HsMM/SVM approach, with all features) to simpler variants. Table 4
shows the classification accuracies for various models trained on
Expert I's labels, using the same training and test setup as in Table 3.
The closest-performing model is an SVM-only model, which classifies
each day separately without any temporal (HsMM) component— it is
5% less accurate overall than the HsMM/SVM approach, indicating
that including temporal information in the classification approach
leads to higher accuracy. Two approaches that each only use a single
feature achieve accuracies of 70% and 73%, indicating that the full set
of features provide an improvement of 11 to 14% in accuracy. Finally,
the standard HMM approach with a multivariate Gaussian for model-
ing observations given states (using a full covariance matrix) is about
12% less accurate than the HsMM/SVM method.

We focus next on the performance of IR-based models, using the
same training and test data from Expert I as used for the VS model.
It is important to keep in mind that Expert I considered VS and TPW
images as well as IR images when determining the ITCZ state but
the IR model only considers IR data. This means that the expert
can identify regions of shallow convection while the model cannot.
Therefore we expect a decrease in accuracy when the IR model is
compared to Expert I's ground truth, particularly when there are
weak ITCZ cases present that are visible to the human eye in VS and
TPW, but that are not visible in IR imagery alone. The best perfor-
mance was obtained with a semi-supervised IR model – its perfor-
mance is 75.8% in terms of classification accuracy on the daily time-
scale (Table 5) – this is 8.4% lower than the accuracy of 84.2%
obtained by VS model. It is reasonable to assume that the IR model
would be more accurate if it were compared to a human expert
who identified ITCZ states based only on IR images (see also
Table 8). Despite this lower accuracy, given that the IR data records
are available for a much longer time-span than VS data, and have
fewer data quality issues, the use of the IR model is worth exploring.
Furthermore, results from the IR model provide times when a deep
convective ITCZ is present, adding additional useful information to
the analysis.
Classification accuracy of different models.

HsMM/SVM as in paper 84.2%
SVM only 79.2%
HsMM/SVM only with the east–west extent feature for the longest
object in the northern and southern image (see appendix)

73.3%

Standard HMM 72.5%
HsMM/SVM only with the average of 12.5° N to 2° N and 2° S to
12.5° S feature (see appendix)

70.0%



Table 7
Performance improvement by including expert labels for classification (Accuracy on
unlabeled days).

– No expert
labels

Expert labels
every 8th day

Expert labels
every 2nd day

Semi-supervised HsMM/SVM 75.8% 76.0% 80.0%
SVM only 72.5% 71.2% 73.3%

Table 5
Confusion matrix of the IR model on the test set.

– Expert I

Double Northern Southern None

Model Double 9 0 1 1
Northern 14 71 1 1
Southern 2 0 8 0
None 5 3 1 3

Classification accuracy 91 of 120 (75.8%)
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Table 6 shows how the semi-supervised HsMM/SVM IR model
performed relative to other variants. As with the VS model, these
other approaches have lower accuracy. In particular, the supervised
HsMM/SVM approach (which does not take advantage of 7 of the
8 IR images available each day) is 5% less accurate than the semi-
supervised approach, indicating that the addition of the unlabeled
IR images leads to a more accurate classifier. We conjecture that the
reason the SVM only model is more accurate than the version with
an HMM is that the HMM propagates some of the incorrect label
decisions of the SVM to neighboring states (especially for rare non-
present case where experts labeled an ITCZ presence but IR-only
features indicate non-presence due to shallow ITCZ occurrences),
increasing the error rather than reducing it.

A useful feature of the semi-supervised approach is its ability to
incorporate partially labeled data at prediction time (on the test
data). For example, the IR model could be used as part of a semi-
automated tool whereby a human user labels every kth image and
the model infers the rest of the labels. To illustrate this concept, we
trained both a semi-supervised HsMM/SVM model and an SVM-only
model on fully labeled data (at the daily scale), and thenmade predic-
tions with each on partially labeled data (again at the daily scale). At
prediction time the models were provided with the labels on a subset
of images, and then predicted the labels for the rest. The predictions
on the rest of the images were then compared to the actual human
expert labels from Expert I for these images. The resulting accuracies
on the predicted test images are shown in Table 7. The addition of
partially labeled data significantly improves the accuracy of the
HsMM/SVM approach, from 75.8% with fully unlabeled test data, to
80% with every 2nd day labeled — this increase is because the
HsMM component of the model can “propagate” information from
the labeled to the unlabeled images at prediction time. In contrast,
the supervised SVM-only method cannot leverage these temporal
dependencies, and its prediction accuracies remain largely the same
(the variation across the columns for SVMs in Table 7 is due only to
sampling noise in the training data, i.e., due to predictions being
made on different subsets of unlabeled images in each case).

As a final test of our methodology, we applied the supervised VS
model and the semi-supervised IR model, both trained on Expert I's
labels, to a completely unlabeled image sequence from 2001. We
then provided the predictions from each model to Expert I for inter-
pretation. The expert looked at the images using all three image fields
(VS, IR, and TPW) and identified which classification decisions from
each model were correct or incorrect in the context of the expert's
visual inspection. The expert then repeated this analysis, but this
time only using the IR images for visual reference, and identified
which classifications from the IR model were correct or incorrect rel-
ative to visual inspection of the IR images. (We did not ask the expert
to examine the VS model prediction relative to IR-only images).
Table 6
Classification accuracy of different models.

Semi-supervised HsMM/SVM as in paper 75.8%
SVM only 72.5%
Supervised HsMM/SVM 70.8%
Standard HMM 65.8%
Table 8 shows the results. On this test, each of the models (VS and
IR) was able to achieve 86.7% accuracy relative to Expert I's inspection
of the same data (VS or IR). These accuracies may be slightly optimis-
tically biased since the human labeler was shown both the model
predictions and the raw images at the same time (whereas previously
the labeling was done independently of any model predictions),
allowing for the possibility that the models' predictions could bias
the human's decisions. Nonetheless the general trend is clear, namely
that both VS and IR models can achieve relatively high accuracy
(86.7%) when compared to a human looking at the same data that
the algorithm has available. When comparing the expert's labels
that include the additional information of VS and TPW data with the
IR model (IR-only information) less ITCZ cases (11.7%) are detected
because of shallow ITCZ cases that show no ITCZ signal in IR images.

3.2. Using the model to study dITCZ climatology over five active seasons

For the purposes of this discussion we focus on the classification
labels produced by the VS model over a relatively short illustrative
period of 5 seasons (2000–2004). The statistics calculated here are
mainly intended to demonstrate the potential of the model rather
than an in-depth climatological analysis.

Fig. 4 shows the distribution of the occurrences of the ITCZ states
from the model's predictions during the 2000–2004 time period.
Red indicates dITCZ days, blue indicates nITCZ days, green indicates
sITCZ days, and yellow indicates days with no ITCZ signal. Seasonal
totals are shown in the last column and monthly totals (over all
5 years) are shown in the bottom row. Overall, the nITCZ is dominant
during this period, accounting for 64% of the days. This is followed by
dITCZ (27%), sITCZ (6%) and non-present days (3%).

The bottom row in Fig. 4 provides a general idea of the seasonal
evolution of the east Pacific ITCZ through the boreal spring. In Febru-
ary, the dITCZ is present approximately 26% of the time, but this
month is dominated by the nITCZ. By March, the occurrence of a
dITCZ has increased to 49% and it is now more dominant than the
nITCZ. The sITCZ is more present in March than February. The number
of dITCZs decreases in April and, by May the ITCZ is located almost ex-
clusively in the north (nITCZ). Based on these five seasons, the peak in
dITCZ occurrence happens in March. When considered individually,
all years follow this pattern except 2003. In this year the highest
number of dITCZs occurs in February and this was the only year
where a dITCZ was detected in May. In future studies it would be
interesting to see if this general picture holds true or if there are
more seasons similar to 2003. It would also be of interest to extend
the analysis to January to see if any cases of dITCZ are detected earlier
than February.

The last column in Fig. 4 gives an indication of interannual vari-
ability. The 2000 season is an outlier compared to the other years.
While the number of dITCZ is similar to that in other years (especially
2001 and 2004) the number of nITCZs is greatly reduced and the
number of sITCZs is greatly increased. This is the only year in which
Table 8
Model classification accuracy for season 2001 as determined by Expert I.

– VS model IR model

Expert I; decision based on all data (VS, IR, TPW) 86.7% 75.0%
Expert I; decision based on IR-only – 86.7%



Fig. 4. Intra- and inter-annual occurrences of ITCZ states (red ❶: dITCZ; blue ❷: nITCZ; green ❸: sITCZ; yellow ❹: not present). Values on the right of each chart indicate number of
days for each ITCZ state.
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there are more dITCZs than nITCZs. The 2000 season also has the
largest number of days when the ITCZ was labeled ‘not present’. The
2003 season has the fewest dITCZs and sITCZs out of all five seasons.
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Fig. 5. Average VS images for each dITCZ state: double, top left; n
It is possible that the large number of dITCZs and sITCZs seen in 2000
(and maybe even 2001) are due to a somewhat strong La Niña during
the 1999/2000 winter. A longer time series analysis could better
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Fig. 7. dITCZ cases for Feb–May, 2000–2004. Mean location of the centers of mass of the
north part and south part of the dITCZ is depicted for all cases (purple), for positive offset
cases (blue,when north part iswest of south part) and for negative offset cases (red, when
north part is east of south part).
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clarify this hypothesis and indicate the effects of El Niño — Southern
Oscillation (ENSO) on the different states of the east Pacific ITCZ.

Fig. 5 shows composite VS satellite images for each of the four
states, showing the average of the VS intensity. The top left plot
shows the dITCZ with two zonally elongated cloud bands on each
side of the equator. From this composite plot one can observe a longi-
tudinal offset between the northern and southern parts of the dITCZ
such that the northern part appears to be located west of the southern
part. The top right panel shows the typical nITCZ. The bottom left
panel shows the sITCZ. It is interesting to note that the composite
sITCZ shown here looks spatially different from the southern part
of the dITCZ in the top left panel. This introduces the question of
whether there is asymmetry in ITCZ structure in one hemisphere
depending on presence or absence of a simultaneous ITCZ structure
in the other hemisphere. Finally the bottom right panel shows the
average VS field when no ITCZ is present. The output images are
generally consistent with the limited prior climatological knowledge
we have for each state, providing additional validation of the model.

In Fig. 6 the average VS images after themorphologic reconstruction
step are displayed, filtering out non-ITCZ clouds and emphasizing the
ITCZ signal. In both Figs. 5 and 6 some vertical artifacts are visible at
the location where measurements from two different GOES satellites
are combined. This type of artifact has been cleaned up in themore con-
sistent IR output in theGridSat dataset (Knapp et al., 2011). Suppressing
such artifacts is not of direct relevance to the results presented here; for
the interested reader, additional information on this topic can be found
in Minnis (1989) and Govaerts et al. (2008).

Furthermore, we briefly demonstrate the benefits of the individual
features discussed in Section 2 by examining the geometry of the
dITCZ, using the northern and southern centers of mass of dITCZ struc-
tures. Specifically, given the ITCZ states as classified by the model, we
investigate if the shift between the northern and southern dITCZ,
human experts observed while labeling the data (and rudimentary
visible in the composite images of Figs. 5 and 6, top left), also appears
in the feature statistics. Out of the 165 dITCZ days during the five
seasons, in 109 cases (66%) the center of mass of the southern dITCZ
was located to the east of the northern dITCZ (we define this as a
‘positive offset’) and the two centers were, on average, 23.4° apart in
longitude. The other 56 cases (34%) have the southern part of dITCZ
10οN

0ο

10οS

20οS
180οW 150οW 120οW 90οW

Longitude

La
tit

ud
e

20οN

10οN

0ο

10οS

20οS
180οW 150οW 120οW 90οW

Longitude

La
tit

ud
e

20οN

Fig. 6. Average VS morphologic reconstructed images for each dITCZ state: doub
located to the west of the northern part with an 18.9° mean longitudi-
nal difference in their centers of mass (‘negative offset’). Fig. 7 illus-
trates the mean center of mass in each hemisphere for all of the
dITCZ cases and the positive and negative offset cases. Note that
the mean location of the northern dITCZ does not change drastically
between the positive and negative offset cases (change in longitude:
10°). It is the southern dITCZ location that shifts widely between
positive and negative offset cases (change in longitude: 32°).

4. Conclusion

We have introduced an algorithm to extract the spatial location
and expansion of the dITCZ phenomenon and to track its temporal
behavior. For spatial segmentation, we developed a fully automatic
unsupervised method based on the backbone path method. The
extracted ITCZ regions are consistent and robust, and form – with
additional derived features – the observation set for the temporal seg-
mentation. The HsMM/SVM hybrid approach performed best in our
experiments for this temporal task. We showed that the classification
labels from this model are comparable in reliability to those from
human experts. A VS model was developed that identifies ITCZ states
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even when there is only shallow convection present. A corresponding
IR model performs the same task but only identifies the ITCZ states
when deep convection is present. Both models proved very accurate
(well within the range of human labeling variability) when compared
to expert opinion using the appropriate field (either VS or IR).

The model's output for the period of 2000–2004 shows clear
evidence that this method would be useful in classifying the east
Pacific ITCZ states. The results suggest that it is worth conducting an
in-depth long-term analysis of dITCZ phenomena, using both of the
models developed here with VS and IR data available (with some
gaps) since 1980. Recent studies dealing with the temporal behavior
of the dITCZ phenomenon used either (a) a larger temporal time
scale (Gu et al., 2005), (b) rather general image statistics (Chen
et al., 2008) neglecting the ITCZ signal itself and the temporal depen-
dencies, or (c) manual identification (Wang & Magnusdottir, 2006).
In contrast, with the model proposed in this paper, it is now feasible
to automatically detect the dITCZ phenomenon and track its signal
on a daily time scale, in turn computing meaningful statistics about
location, extent and temporal distribution of the dITCZ phenomenon.
Furthermore, this type of analysis can help us better understand the
mechanisms causing the dITCZ phenomena and thus to improve exist-
ing weather and climate models for the tropical circulation system.

Future work may include fine tuning of the model in terms of
feature selection, improved methods for classification of rare cases
(such as ‘no ITCZ’), as well as a detailed comparison of the unsuper-
vised backbone method developed in this work with the Markov ran-
dom field in Bain et al. (2011). The results achieved with the proposed
HMM-based method for detecting and characterizing the ITCZ signals
on both hemispheres encourage an in-depth analysis to investigate if
initial hypotheses derived from the five season analysis can be proven
on long-term data. Initial hypotheses include the accumulation of
sITCZ events in La Niña years and the asymmetry in spatial structure
of the dITCZ depending on relative longitudinal offset across the equa-
tor. With a longer time series we will be able to study the effects of
ENSO in general on the four different classes of double ITCZ variability.
We will examine the effects of propagation of the Madden Julian
Oscillation (MJO) on the double ITCZ variability. Furthermore, with
the temporally finer resolution IR channel we can examine whether
the results of Bain et al. (2010) for the diurnal cycle of the boreal
summer ITCZ hold up for the weaker boreal spring convergence zones.
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Appendix A. Image segmentation

Pre-processing
Processing chain for the feature extraction:
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Appendix B. Feature calculation

Details on the calculation of selected features:

• Border tracing (Klette & Rosenfeld, 2004)
Let (p,r) be the first edge where a 0/1 switch occurs:

Bt pð Þ ¼ 0→ Bt rð Þ ¼ 1 ðA:1:1Þ

Let ξ (p) be the 4-neigborhood of p in circular order:

ξ pð Þ ¼ ρ0;ρ1;ρ2;ρ3 ¼ rf g ðA:1:2Þ

With the 4-neigborhood being defined as follows:

� ρ0 �
ρ3 p ρ1
� ρ2 �

Find the first r� :¼ ρk in ξ pð Þ
where ρk ¼ 1 holds :min0 ≤k≤3 ρk ¼ 1
and add r�to the list of border points:

ðA:1:3Þ

If r⁎ is equal to the initial point of Eq. (A.1.1) the complete object
border was traced and the next 0/1 switch in the image needs to be
found to extract the next object starting from Eq. (A.1.1). Otherwise
set r=p and p=r⁎ and repeat steps (A.1.2) and (A.1.3) until r⁎ equals
the initial point of Eq. (A.1.1)

r�¼ initial p? yes → algorithm finished; object border traced
no → r :¼ p; p :¼ r� and proceed with Eq: A:1:2ð Þ

�
ðA:1:4Þ

The image is scanned from left-top to right-bottom until all ob-
jects are traced.

Result of border tracing:
• Fourier descriptors

The extracted object borders are interpreted as closed-form con-
tours of periodic functions x(t) in the complex plane. For a continuous
line in the complex space the Fourier coefficients cn are defined as:

cn ¼ 1
T
∫
T

0

x tð Þe−2iπnt=Tdt ðA:2:1Þ

with T being the perimeter of the continuous line
Due to the discrete character of the border line, we obtain a set of

nodes {x1, x2,…,xN=x0} in the complex plane connected by section-wise
straight lines instead. Thus, an explicit calculation of the section-wise
straight lines has to be conducted and it can be shown (e.g. Arbter et al.,
1990) that the Fourier coefficients cn can be efficiently computed by:

c0 ¼ 1
2T

∑
N−1

k¼0
xk þ xkþ1
� �

xkþ1−xk
�� ��

cn ¼ T
2πnð Þ2 ∑

N−1

k¼0

xk−xk−1

xk−xk−1j j−
xkþ1−xk
xkþ1−xk
�� ��

 !
e−2iπntk=T

with tk ¼ ∑k−1
l¼0 xkþ1−xk
�� �� f or k > 0; t0 ¼ 0

ðA:2:2Þ

Fourier descriptors:
• Moments

Central and invariant moments can provide useful information. The
first order moment corresponds to the center of mass of the image I:

�x ¼ ∑x∑yx I x; yð Þ
∑x∑yI x; yð Þ and �y ¼ ∑x∑yy I x; yð Þ

∑x∑yI x; yð Þ ðA:3:1Þ

Higher order moments are less easy to interpret geometrically but
nevertheless contain valuable information about the current state of
the ITCZ.

μpq ¼ ∑x∑y x−�xð Þp y−�yð ÞqI x; yð Þ ðA:3:2Þ

To achieve invariance to scale and translation the central mo-
ments are scaled:

ηpq ¼
μpq

μ00
1þ pþqð Þ=2 ðA:3:3Þ

Furthermore by combining the scale invariant moments a set of
rotationally invariant moments – the Hu set of moments (Hu, 1962) –
can be computed. A subset of these moments is used for classification
in this paper.

List of features used for the models:
The table below defines the lists of features used for each of the VS

and IR models used in the paper. The final set of features was selected
from an initial set of 177 features based on the following simple step-
wise algorithm.

– Build a classifier with all of the features
– For each feature

○ Deselect the feature
○ If the classification on the training set improves exclude the feature
○ Otherwise include the feature in the list again

– Proceed until the last feature in the list is reached

This greedy feature selection method is certainly not optimal, but
provided a simple method for feature selection for our problem. More
sophisticated feature selection methods could likely be used to further
improve the performance of the algorithms described in this paper.
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Definition. Complete image: 20° N to 20° S; northern image: 20° N to 0°; southern image: 0° to 20° S
VS model feature list:

ID Feature description Trend north vs. not-north Trend south vs. not-south

(General image statistics)
1 Average pixel value of 12.5° N to 2° N ↑ ↓
2 Average pixel value of 2° S to 12.5° S ↓ ↑
3 Latitude of the center of mass of the complete image ↓ ↑
4 η03 of Eq. (A.3.3) for the complete image ↑ ↓
5 Latitude of the center of mass of the northern image ↑ ↑
6 η02 for the southern image ↑ ↓
7 η20 for the southern image ↑ ↓

(Based on the backbone path)
8 Regression line parameters of the optimal path (complete image): linreg(PO) with PO result of Eq. (1.2) ↓ ↑
9 Mean of pixel intensities along the optimal path (northern image) ↑ ↓
10 Variance of pixel intensities along the optimal path (northern image) ↑ ↓
11 Mean of pixel intensities along the optimal path (southern image) ↑ ↓

(Based on the extracted binary mask, with two different thresholds: 60 and 100 on the scaled reconstructed image with values in the interval [0 255])
Definition of “longest object”: The object with the largest east–west extent of all extracted objects

Features 12–17: Northern image with threshold 100
12 East–west extent of the longest object ↑ ↓
13 Area (in pixels) of the longest object ↑ ↓
14 Perimeter (in pixels along the border line) of the longest object ↑ ↓
15 Number of direction changes in the border line of the longest object ↑ ↓
16 Length of the major axis of the ellipse of the longest object derived by the first Fourier descriptors c0, c−1, c1 ↑ ↓
17 Sum of the east–west extent of all objects with an area larger than 500 pixels ↑ ↓

Features 18–26: Southern image with threshold 100
18 Compactness of the longest object ↑ ↓
19 Perimeter of the longest object ↓ ↑
20 Number of direction changes in the border line of the longest object ↓ ↑
21 Length of the major axis of the ellipse of the longest object derived by the first Fourier descriptors c0, c−1, c1 ↓ ↑
22 Ratio of major/minor axis of the ellipse of the longest object (Fourier descriptor) ↓ ↑
23 Major axis' inclination of the ellipse of the longest object (Fourier descriptor) ↓ ↑
24 Number of objects with an area larger than 500 pixels ↑ ↓
25 Sum of the perimeter of all objects with an area larger than 500 pixels ↓ ↑
26 Sum of the east–west extent of all objects with an area larger than 500 pixels ↓ ↑

Features 27–32: Northern image with threshold 60
27 Area of the longest object ↑ ↓
28 Compactness of the longest object ↓ ↑
29 Perimeter of the longest object ↑ ↓
30 Sum of the area of all objects with an area larger than 500 pixels ↑ ↓
31 Sum of the perimeter of all objects with an area larger than 500 pixels ↑ ↓
32 Sum of the east–west extent of all objects with an area larger than 500 pixels ↑ ↓

Features 33–34: Southern image with threshold 60
33 Sum of the area of all objects with an area larger than 500 pixels ↓ ↑
34 Sum of the east–west extent of all objects with an area larger than 500 pixels ↓ ↑
IR model feature list:

ID Feature description Trend north vs. not-north Trend south vs. not-south

(General image statistics)
1 Average pixel value of 2° S to 12.5° S ↓ ↑
2 Latitude of the center of mass of the complete image ↓ ↑
3 η02 of Eq. (A.3.3) for the complete image ↓ ↑
4 Latitude of the center of mass of the northern image ↑ ↓
5 η12 for the northern image ↓ ↑
6 η03 for the northern image ↓ ↑
7 Hu moment J1=η02+η20 (northern image) ↓ ↑
8 Hu moment J2=(η20−η02)2+(2η11)2 (northern image) ↓ ↑
9 Hu moment J4=(η30+η12)2+(η21+η03)2 (northern image) ↑ ↓
10 Latitude of the center of mass of the southern image ↑ ↓
11 η02 for the southern image ↑ ↓
12 η20 for the southern image ↑ ↓
13 Hu moment J1=η02+η20 (southern image) ↑ ↓

(Based on the backbone path)
14 Mean of pixel intensities along the optimal path (northern image) ↑ ↓
15 Variance of pixel intensities along the optimal path (northern image) ↑ ↓



(continued)

ID Feature description Trend north vs. not-north Trend south vs. not-south

(Based on the extracted binary mask, with two different thresholds: 30 and 18 on the scaled reconstructed inverted IR image with values in the interval [0 255])
Definition of “longest object”: The object with the largest east–west extent of all extracted objects

Features 16–20: Northern image with threshold 30
16 East–west extent of the longest object ↑ ↓
17 Area (in pixels) of the longest object ↑ ↓
18 Perimeter (in pixels along the border line) of the longest object ↑ ↓
19 Major axis' inclination of the ellipse of the longest object (Fourier descriptor) ↑ ↓
20 Sum of the area of all objects with an area larger than 500 pixels ↑ ↓

Features 21–28: Southern image with threshold 30
21 Compactness of the longest object ↑ ↓
22 Perimeter of the longest object ↓ ↑
23 Number of direction changes in the border line of the longest object ↓ ↑
24 Length of the major axis of the ellipse of the longest object derived by the first Fourier descriptors c0, c−1, c1 ↓ ↑
25 Major axis' inclination of the ellipse of the longest object (Fourier descriptor) ↓ ↓
26 Sum of the area of all objects with an area larger than 500 pixels ↓ ↑
27 Sum of the perimeter of all objects with an area larger than 500 pixels ↓ ↑
28 Sum of the east–west extent of all objects with an area larger than 500 pixels ↓ ↑

Features 29–34: Northern image with threshold 18
29 Perimeter of the longest object ↑ ↓
30 Length of the major axis of the ellipse of the longest object derived by the first Fourier descriptors c0, c−1, c1 ↑ ↓
31 Major axis' inclination of the ellipse of the longest object (Fourier descriptor) ↑ ↓
32 Sum of the perimeter of all objects with an area larger than 500 pixels ↑ ↓
33 Sum of the east–west extent of all objects with an area larger than 500 pixels ↑ ↓
34 Ratio of the sum of the east–west to the north–south extent of all objects with an area larger than 500 pixels ↑ ↓

Features 35–37: Southern image with threshold 18
35 East–west extent of the longest object ↓ ↑
36 Sum of the area of all objects with an area larger than 500 pixels ↓ ↑
37 Sum of the east–west extent of all objects with an area larger than 500 pixels ↓ ↑

Appendix B (continued)

εDITCZ=10.48 εnorth=4.84 εsouth=9.85 εnone=1.49
γDITCZ=−1.31 γnorth=−0.04 γsouth=−1.66 γnone=1.51

431D. Henke et al. / Remote Sensing of Environment 123 (2012) 418–433
Appendix C. HsMM details

Description of the models:
Self-transition duration estimate (simple example, 2 states only, 46 labels):
Top: training sequence L, Bottom: dk(i)'s

1 1 1 1 1 2 2 1 1 1 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1
d1(1)=5 d1(2)=2 d2(1)=3 d2(2)=9 d3(1)=2 d3(2)=6 d4(1)=1 d4(2)=12 d5(1)=6
For the example above the differences between the fitted logistic regression and the look-up table are rather small since there are no out-
liers in the example — for the real data with few training examples, the look-up table provides robustness against outliers.

VS model parameters used in the experiments:

• π ¼ 0:3058 0:4959 0:1405 0:0579½ �

• Astatic ¼
0:6389 0:0833
0:0833 0:9000

0:2222 0:0556
0:0000 0:0167

0:4706 0:0000
0:1429 0:4286

0:4118 0:1176
0:1429 0:2857

2
64

3
75; λ ¼ 0:1

• Emission probabilities by SVMs (parameters for each state are learned by the toolbox by De Brabanter et al., 2010)
• Logistic regression parameters of Eq. (6.4):
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• Self-transition look-up tables:
• Self-transition look-up tables:

εDITCZ=5.92 εnorth=6.45
γDITCZ=−0.22 γnorth=−0.46
IR model parameters used in the experiments:

• π ¼ 0:3337 0:4898 0:1163 0:0602½ �

• Astatic ¼
0:9572 0:0122
0:0104 0:9875

0:0245 0:0061
0:0000 0:0021

0:0702 0:0000
0:0169 0:0508

0:9123 0:0175
0:0169 0:9153

2
64

3
75; λ ¼ 1

• Emission probabilities by SVMs (parameters for each state are learned by the toolbox by De Brabanter et al., 2010)
• Logistic regression parameters of Eq. (6.4):
εsouth=4.92 εnone=1.03
γsouth=−0.56 γnone=1.96
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Appendix D. Detailed description of the semi-supervised
EM algorithm

E-Step (Find Qr given O and θr under the constraint: Qr traverses
Lknown)
• Calculate the observation probabilities bi(x)=P(ot=x |q= i) for
all time steps t and all states i using the SVMs.

• Force the state sequence Q to traverse the supervised labels Lknown,
by setting the transition probabilities at given labeling times to 1 for
the transition into the labeled state and to 0 otherwise:

∀j; k : aj;l8�kþm
¼ P q8�kþm ¼ l8�kþm

� ��q8�kþm−1 ¼ j Þ ¼ 1

aj;other ¼ P q8�kþm≠l8�kþm

� ��q8�kþm−1 ¼ jÞ ¼ 0

ðA:4:1Þ

• By doing so, the probabilities P(O,Q|θ) are 0 for all sequences Q not
fulfilling the supervised label constraint. Another interpretation is
that for our likelihood maximization problemwe actually marginal-
ize only over the possible state sequences Qsupervised, i.e.:

∀Q≠Qsupervised
: P O;Q jθð Þ ¼ 0⇒L θ;Oð Þ ¼ ∑

∀Q
P O;Qð jθÞ

¼ ∑
∀Qsupervised

P O;Qð jθÞ
ðA:4:2Þ

• Now either the alpha-beta or the Viterbi algorithm can be used to
estimate the most probable state sequence Q which satisfies the
condition of traversing all supervised labels Lknown. Since for the
Viterbi algorithm the constraint that a minimum of 8 consecutive
steps in the same state can be guaranteed, in our application we
use it instead of the alpha-beta algorithm (which does not enforce
this constraint) and we can obtain directly from the state sequence
Q a new training sequence Lr+1=Q for the M-Step.

M-step:
• Update the model parameters θr+1 as follows:
– Train the SVM parameterswi and ui by using the labels Lr+1 from

the E-Step and the corresponding complete observation set O.
Set up the training pairs and learn the SVMs as for the VS case
(Eqs. 6.1–6.4).

– Learn A and π using the labels Lr+1 equivalent to the supervised
VS case (Eqs. 4.1–4.2).

– Force the minimum self-transition time to be at least 8 time
steps: ∀ i, 0b tb8:Di(t)=1
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