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Abstract 

Evapotranspiration (ET) is a critical variable in understanding soil-plant-atmosphere 

interactions and has been widely used as a parameter to inform irrigation. Common 

micrometeorological approaches to measuring ET are the Eddy Covariance (EC) and Surface 

Renewal (SR) methods; however, these methods are either not affordable, inaccessible, or rely 

on instrumentation that is too fragile to withstand environmental conditions and hinder 

agricultural operations. Like air temperature high-frequency time-series data, water vapor shows 

ramp-like patterns that can be used to estimate latent heat (LE) fluxes more directly. We applied 

a novel wavelet analysis to high-frequency (20 Hz) and semi-high frequency (1 Hz) water vapor 

data using a multilevel one-dimension wavelet decomposition based on the symlet wavelet to 

detect the amplitude and duration of ramp-like features over 30-minute intervals. The ET was 

computed based on this new method and compared to the EC and SR methods. ET estimates 

using the wavelet analysis approach strongly correlate with the estimates derived from EC and 

SR. Additionally, a more robust response at lower frequencies when using the wavelet analysis 

method suggests a more affordable, accessible, and direct method for estimating ET and offering 

growers a more cost-efficient and effective way to manage irrigation. 
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1. Introduction  

Evapotranspiration (ET) is a critical component of the hydrological cycle. ET is the 

combined process of transpiration through plant canopies and evaporation from soil, plants, and 

open water surfaces (Irmak, 2008; Miralles et al., 2020). Accurate estimation of ET, especially in 

irrigated agricultural systems, holds significant importance in facilitating efficient irrigation and 

water allocation plans while conserving the quantity and quality of available water sources 

worldwide (Irmak, 2008). Over the last century, remarkable progress in biometeorology has led 

to the development of reliable and precise methods for estimating ET, such as the eddy 

covariance (EC) and surface renewal (SR) methods (Paw U et al., 1992, 1995; Snyder et al., 

1996; Baldocchi et al., 2001; Spano et al., 1997, 2002; Suvocarev et al., 2019). In this paper, we 

explore the development of these methods and observe a new alternative that can lead to a more 

affordable and reliable option for estimating ET.  

1.1 The Fundamentals and Applications of EC  

The EC methods rely on the movement of gaseous molecules driven by vortices called 

"eddies" in turbulent winds above the canopy, as shown in Figure 1 (Aubinet et al., 2012). The 

concentration of gaseous molecules (e.g., carbon dioxide or water vapor) and the wind speed are 

measured using a gas analyzer and a sonic anemometer, respectively. These instruments are 

mounted on a tower above the canopy. Ideally, the EC method works best under the following 

assumptions/conditions: (1) the ecosystem being studied is flat, (2) the environmental conditions 

are steady, and (3) the underlying vegetation of the ecosystem extends upwind for an extended 

distance (Baldocchi, 2003). Typically, the minimum surface area required for the EC method is 

approximately 50 to 100 times the effective measurement height (Aubinet et al., 2012). This 

ensures that EC measurements are taken in a well-adjusted boundary layer and are not affected 
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by any advection effects. In non-ideal ecosystems or very complex terrains, EC needs to account 

for atmospheric storage, flux divergence/convergence, and advection to minimize systematic 

errors (Baldocchi, 2003). 

 

Figure 1 Illustration adapted from Aubinet et al. (2012) depicting a Schematic of vortices called 
“eddies” that are produced in turbulent winds above a canopy system.  
 

Figure 2 illustrates the gas analyzer tracking the concentration changes of gas molecules 

as they are transported by eddies, while the sonic anemometer monitors fluctuations in vertical 

wind speeds. At time 1, eddy 1 moves air downwards with a concentration of gas, c1, at a vertical 

wind speed of w1. At time 2, eddy 2 moves air with a different concentration of gas, c2, upwards 

at a vertical wind speed of w2. The difference in gas concentration between these time periods 

indicates the flux of the gas of interest. Over time, the variations in upward and downward 

concentration changes allow us to determine the amount of that gas leaving the system. 
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Figure 2 Theoretical depiction of eddies moving air parcels at two different time points (Burba, 
2013).  
 

Fundamentally, the EC method measures the instantaneous covariance between upward 

and downward motions of air and the concentration of gases contained within air parcels above 

the ecosystem of study (Aubinet et al., 2012). This is advantageous because measurements 

through this system can be representative of the entire canopy system instead of an individual 

plant. Additionally, the EC method can provide hourly, daily, seasonal, and/or annual flux data. 

The mathematical basis of EC is derived from the conservation of mass (Baldocchi, 1988). The 

rate of change of the mixing ratio of a gas molecule of interest (I) is balanced by the sum of the 

mean horizontal and vertical advection (II), the divergent and convergent turbulent fluxes (III), 

molecular diffusion (D), and the source or sink (S) (Baldocchi, 1988).  

𝝏𝝏𝝌𝝌�
𝝏𝝏𝝏𝝏

= �−𝒖𝒖�
𝝏𝝏𝝌𝝌�
𝝏𝝏𝝏𝝏

− 𝒗𝒗�
𝝏𝝏𝝌𝝌�
𝝏𝝏𝝏𝝏

− 𝒘𝒘�
𝝏𝝏𝝌𝝌�
𝝏𝝏𝝏𝝏
� + � −

𝝏𝝏𝒖𝒖′𝝌𝝌′������
𝝏𝝏𝝏𝝏

−
𝝏𝝏𝒗𝒗′𝝌𝝌′������
𝝏𝝏𝝏𝝏

−
𝝏𝝏𝒘𝒘′𝝌𝝌′������
𝝏𝝏𝝏𝝏

� + 𝑫𝑫 + 𝑺𝑺             (1) 

(𝑰𝑰)                        (𝑰𝑰𝑰𝑰)                                              (𝑰𝑰𝑰𝑰𝑰𝑰)                                                        

 The u, v, and w terms represent the three-directional components of wind speed. The bar 

represents the mean of the corresponding variable while the apostrophe denotes the fluctuation of 

the corresponding variable. In the EC method, certain assumptions simplify equation 1. First, it is 

assumed that the ecosystem being studied is flat, horizontal, and homogenous, meaning no 

advection effects. Second, it is assumed that there is no source or sink that would significantly 
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influence the flux within the observed controlled area. Lastly, the divergence or convergence of 

turbulent fluxes is assumed to be negligible. Applying these assumptions to equation (1) 

eliminates (I), (II), the x and y components of (III), and S, leading to equation (2). 

𝝏𝝏𝒘𝒘′𝝌𝝌′������
𝝏𝝏𝝏𝝏

= 𝑫𝑫                                                                             (2) 

Through integration with respect to height, z, and application of Reynolds decomposition, 

equation (2) turns into equation (3), which is the generalized form of the EC equation.  

𝑭𝑭 =  −(𝝆𝝆𝒂𝒂 )(𝒘𝒘′𝝌𝝌′������)                                                                      (3) 

Here, F is the flux of the gas molecule of interest, 𝝆𝝆𝒂𝒂 is the density of air, and 𝒘𝒘′𝝌𝝌′������ is the 

covariance between the fluctuation of the vertical wind speed, 𝒘𝒘′, and the fluctuation of the 

mixing ratio of the gas, 𝝌𝝌′. 

Despite this method being widely used to measure the flux between the ecosystem and 

the atmosphere, there are limitations in its application. Because the EC relies on the covariance 

between the vertical wind fluctuations and the concentration of the gas molecules, it is 

imperative to prevent any rotational distortions. Typically, sonic anemometers track wind speed 

in three dimensions (Verma, 1990). However, these instrumentations are quite expensive and 

require a lot of expertise to use and maintain (Paw U et al., 2005). High-frequency sensors that 

measure certain scalars, such as carbon dioxide and water vapor, can also be expensive, making 

EC less accessible and affordable (Spano et al., 2000).  These limitations were the driving factors 

that led to the development of SR. 

1.2 The Rise of Surface Renewal  

The concept of surface renewal is based on the temperature changes of moving air parcels 

between the canopy/ecosystem of interest and the atmosphere (Paw U and Brunet, 1991; Paw U 

et al., 1992; Snyder and Paw U, 1993; Paw U et al., 1995). As shown in Figure 3, an air parcel 
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first moves down simultaneously into the canopy. This is followed by a gradual increase in the 

temperature of the air parcel. Once the air parcel reaches a certain temperature, it is ejected out 

of the canopy and replaced by another air parcel. This pattern repeats, showing coherent 

structures of asymmetric triangular patterns in the temperature data. Taylor (1958) was the first 

to observe the asymmetrical triangular patterns in the temperature scalar that illustrated a gradual 

increase followed by a sudden drop in temperature (Figure 3). Since then, these "saw-tooth" like 

patterns have been shown to be a common feature of temperature measurements in turbulent 

shear flows (Antonia et al., 1979).  

 

Figure 3. Schematic of the surface renewal method, illustrating the movement of air parcels and 
there corresponding changes in temperature over time measured at a single point above the 
canopy (Paw U et al., 2005). 
 

 The coherent structures' overall pattern can vary depending on the canopy and 

atmospheric conditions. In unstable conditions, the air above the canopy is cooler than within the 

canopy, leading to a warming effect as air parcels move down into the canopy, resulting in a 

rising ramp in the temperature data. Conversely, in stable conditions, the temperature patterns are 

reversed, with hotter air originating above the canopy and cooling as it moves down into the 

canopy, causing a decreasing ramp in the temperature data. Figure 4 illustrates stable and 

unstable conditions, represented by 'a' for amplitude, 's' for the quiescent period, and 'l' for the 
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period of gradually increasing (unstable conditions) or decreasing (stable conditions) temperature 

(Snyder et al., 1995). 

 

 

Figure 4. Illustration of the ramp-like features in temperature data for unstable and stable 
conditions over time. Here, the variable a represents the amplitude of the ramp, s represents the 
quiescent period, and l represents the period of gradual temperature increase (Snyder et al., 
1995). 

 

Despite the advantages of the SR method, there are certain limitations to this method. SR 

estimates have been shown to be inaccurate due to the uneven heating of air parcels (Paw U et al. 

1995). To address the spatial temperature variations within air parcels, a calibration factor, α, is 

often calculated and applied to uncalibrated data obtained from SR. Various studies have 

demonstrated that α can vary depending on the crop being studied. Spano et al. (1997) indicated 

that α for grapevine canopies can range from 0.65 to 0.87, whereas for almond canopies, it can 

range from 0.27 to 0.59. Duce et al. (1997) found that grass, wheat, and sorghum may have α 

values around 1.0. This calibration is often achieved through linear regression forced at the 

origin between EC estimates and uncalibrated SR estimates (Paw U et al. 1995). As a result, SR 



7 
 

cannot function as a stand-alone method. It relies on EC estimations to provide more accurate 

and reliable data (McElrone, 2013). As previously mentioned, EC utilizes costly equipment that 

poses an economic barrier to estimating ET values.  

 Furthermore, commonly used equipment associated with SR, such as fine-wire 

thermocouples, poses a high risk of breakage. Research by Shapland et al. (2014) has shown that 

estimating ET using SR often involves the use of 13 μm and 76 μm diameter wires. However, 

these thin wires are susceptible to damage from natural elements like wind, rain, and even spider 

webs. Regular maintenance of the thermocouples is essential to prevent such damage and to 

ensure the reliability of temperature data above the canopy (McElrone, 2013). Replacing these 

delicate thermocouples can be challenging and might require specialized training due to the 

intricacies of working with extremely fragile sensors. While thermocouples themselves are not 

expensive, the frequent need for replacement can lead to a substantial long-term cost that may be 

difficult to manage. Thus, there is a need for other approaches to estimating ET.  

1.3 Wavelet (WL) Analysis – An Alternative Method  

 The fundamental of the WL analysis is based on the Fourier Transform and windowed 

Fourier Transform (Chui, 1992). At its core, the Fourier Transform processes signals and 

decomposes them into a function of sines and cosines.  It has practical uses in analyzing cellular 

signal communication, image processing, sound processing and filtering, electrical circuit 

designs, and many more (Kumar and Foufoula-Georgiou, 1994). However, the Fourier 

Transform has a huge disadvantage in providing only global information of an entire time series 

signal. With the Fourier Transform, frequency information can be extracted from time-series 

data, but the location and time information are lost. The windowed Fourier Transform observes a 

fixed time-frequency window, which offers more information on time-localization than the 
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Fourier Transform. However, the disadvantage to the windowed Fourier Transform is that it 

often overrepresents high-frequency information and underestimates low-frequency information 

(Lau and Weng, 1995).   

The advantage of WL analysis is that it can obtain both localized frequency and time 

information of a given time-series. Mathematically, WL decomposes a signal in terms of some 

elementary function that can be stretched and translated to better fit the frequency patterns of the 

original signal of study (Lau and Weng, 1995). This flexibility allows WL to be scaled in such a 

way where extracting information on both high and low frequency signals is optimized. 

Generally, the decomposition of a signal using “daughter wavelets” from the translation and 

stretching of the “mother wavelet”. Equation (4) is the general form of the product of this 

decomposition, where 𝜓𝜓𝑏𝑏,𝑎𝑎(𝑡𝑡) is the resulting “daughter wavelet”, 𝑎𝑎 is the scaling factor, 𝑏𝑏 is the 

translation factor, and 𝜓𝜓(𝑡𝑡) is the “mother wavelet” (Lau and Weng, 1995, Chui, 1992). As 

shown by Figure 5, there are many wavelet families that can act as the “mother wavelet” for WL 

of a signal.  

𝜓𝜓𝑏𝑏,𝑎𝑎(𝑡𝑡) =
1

(𝑎𝑎)
1
2

 𝜓𝜓 �
𝑡𝑡 − 𝑏𝑏
𝑎𝑎

�                                                           (4) 
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Figure 5. Illustration of different types of wavelet families (e.g., Haar, Daubechies, 
Biorthogonal, Coiflet, Symlet, Gaussian, etc.) and their general shape (López et al. 2017). 

  

Decomposition of a signal utilizing WL requires convolution to produce wavelet 

coefficients, which involves taking the integral of the signal function multiplied by the wavelet 

of choice. This is as shown by equation (5), where 𝑇𝑇(𝑎𝑎, 𝑏𝑏) is the wavelet coefficient, 𝑓𝑓(𝑡𝑡) is the 

signal of study, and  𝜓𝜓𝑏𝑏,𝑎𝑎(𝑡𝑡) is the “daughter wavelet” as represented by equation (4). With this 

decomposition using scalable daughter wavelets, the WL method could potentially more 

accurately capture the characteristics of ramp-like features as shown in temperature scalar data. 

𝑇𝑇(𝑎𝑎, 𝑏𝑏) =  � 𝑓𝑓(𝑡𝑡) 𝜓𝜓𝑏𝑏,𝑎𝑎(𝑡𝑡) 𝑑𝑑𝑡𝑡
+∞

−∞
                                            (5) 

 There are not many research studies that have applied WL in the field of bio 

micrometeorology, specifically in continuously processing surface turbulent fluxes. Multiple 

studies have used WL in observing coherent structures of turbulent motions above canopy 

systems like maize corn and forests (Brunet and Collineau, 1994; Thomas and Foken, 2005; Gao 

and Li, 1993). However, those studies have not been performed in long-term research monitoring 

surface turbulent fluxes from agricultural crops.  
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1.4 Purpose of Study 

 To increase the efficient use of water resources, it is imperative to have methods of 

measuring ET that are more accessible and affordable. Currently, many usages of the standard 

methods of estimating ET have been in the realm of academia and research. However, expanding 

the application of meteorological methods to estimate ET to common growers could increase 

efficient water usage and better preserve the limited water resources in many regions worldwide. 

As previously discussed, EC requires the use of sonic anemometer wind data, while SR requires 

calibration (often with EC data) and uses fragile thermocouples. These disadvantages can lead to 

financial barriers that prevent common growers from having the option to estimate ET within 

their own vineyards. Thus, this thesis explores WL as a new alternative method to estimating ET 

that circumvents these advantages (i.e., eliminate the necessity of wind data and a calibration 

factor). Additionally, this study also investigates the possibility of using water vapor data as the 

chosen scalar for ET estimations. Instrumentation for collecting water vapor data can be more 

durable and less expensive than thermal and sonic anemometer data; thus, supporting a more 

cost-effective option.  

2. Materials and Methods 

2.1 Vineyard Site Characteristics and Locations 

This experiment centers around data from two vineyards that are part of the Grape 

Remote Sensing Atmospheric Profile and ET eXperiment (GRAPEX). The study focuses on a 

vineyard near Cloverdale, California, and a vineyard located near Madera, California, as 

illustrated in Figure 6. As detailed in Table 1, these vineyards differ in several aspects, including 

trellising systems, grape varieties, soil types, cover crops, and climatic profiles. Barrelli (BAR), 

established in 2010, mainly cultivates Cabernet Sauvignon. Its rows are oriented northeast-
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southwest with approximately 3.35 meters of spacing between them. Situated in Sonoma County, 

the vineyard near Cloverdale experiences generally cooler temperatures due to its proximity to 

coastal regions, in contrast to the San Joaquin Valley vineyard (Madera). At Ripperdan (RIP), 

Chardonnay is the predominant variety grown. This site features narrower row spacing (2.74 

meters apart) with an east-west orientation, distinguishing it from BAR. A detailed site 

description and agrometeorological conditions for these sites can be found in Bambach et al. 

2022. 

 

 
Table 1. Vineyard characteristics of Barrelli (BAR) and Ripperdan (RIP) that were studied. 

 Barrelli Vineyard (BAR) Ripperdan Vineyard (RIP) 

Location Sonoma County San Joaquin Valley 

Grape Variety Grown Cabernet Sauvignon Chardonnay and Merlot 

Soil Type Gravelly Loam Sandy Loam 

Figure 6. General Geographical Locations of Barrelli and Ripperdan 
vineyards near Cloverdale, CA and Madera, CA, respectively. 



12 
 

Trellising System Elk Horn (Split Canopy) Double Vertical 

Cover Crop Annual Mixed Grasses Perennial Grasses 

Row Spacing 3.35 meters 2.74 meters 

Row Orientation Northeast-Southwest East-West 

Canopy Height 2.2 meters 1.5-2.2 meters 

 

 The diverse array of trellising systems, climatic profiles, grape varieties, soil types, cover 

crops, and other factors represented by these two vineyard sites presents an invaluable 

opportunity for analyzing the robustness of the methods. Ensuring dependable ET estimation 

across a range of vineyards is significant. Therefore, by implementing EC, SR, and WL at these 

two distinct vineyard sites, we can gain valuable insights into their performance across various 

vineyard environments.   

2.2 Instrumentation and Data Collection  

Semi-high frequency water vapor tracers were measured above the canopy at each of the 

vineyard sites using Campbell Scientific's IRGASON®. The IRGASON® includes a sonic 

anemometer for wind speed and direction measurements (Ux (m/s), Uy (m/s), and Uw (m/s)) 

with a precision of 1 mm/s for Ux and Uy, and 0.5 mm/s for Uw. Additionally, it features an 

infrared gas analyzer for measuring H2O Density (g/m3). The open-path analyzer has a path 

length of 15.37 cm, providing a precision of 0.004 g/m3. This instrument was mounted onto a 

flux tower at a height of approximately 4.8 meters from the ground and collected data at a 

frequency of 20 Hz throughout the year 2022. All data are stored in a CR6 Campbell Scientific 

Datalogger. 
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2.3 Data Processing 

2.3.1 Data Cleaning 

Raw water vapor density data, recorded at 20 Hz, underwent a quality control and spike 

removal process prior to applying EC, WL, and SR analyses. To mitigate spikes in water vapor 

density measurements, a rolling average method was performed using a window size of 600 

observations. Further preprocessing involved identifying spurious data within the raw water 

vapor density data by calculating the difference between consecutive data points. Any 

observations with a difference exceeding 1.5 g/m3 were deemed to be spurious data and 

subsequently eliminated from the raw dataset. 

2.3.2 Methods of Estimating ET 

EC, SR, and WL models were all applied to the cleaned water vapor density tracers at 20 

Hz to produce ET estimations at every 30-minute interval. It is important to acknowledge that all 

the methods of estimation are applied to the same data collected using the infrared gas analyzer 

and sonic anemometer. ET estimated using EC at every 30-minute interval were calculated using 

equation (6), where 𝑤𝑤′ and 𝜌𝜌𝐻𝐻2𝑂𝑂′ represents the variance of vertical wind speed and water vapor 

density, respectively. The SR method estimates ET as defined by equation (7), where 𝑑𝑑𝜌𝜌𝑊𝑊𝑊𝑊
𝑑𝑑𝑑𝑑

 is the 

water vapor density over time and V/A is the volume of air per unit area under the canopy 

height. 

𝐸𝐸𝑇𝑇𝐸𝐸𝐸𝐸 =  𝑤𝑤′𝜌𝜌𝐻𝐻2𝑂𝑂′ �����������                                                                 (6) 

 

𝐸𝐸𝑇𝑇 =  
𝑑𝑑𝜌𝜌𝑊𝑊𝑊𝑊

𝑑𝑑𝑡𝑡
𝑉𝑉
𝐴𝐴

                                                                    (7) 
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It is assumed that the water vapor change over time (𝑑𝑑𝜌𝜌𝑊𝑊𝑊𝑊
𝑑𝑑𝑑𝑑

) can be replaced by the slope of the 

ramp-like features (a/l) in the water vapor data. Multiplying the expression by the relative time 

for heating (l/(l+s)), 𝑑𝑑𝜌𝜌𝑊𝑊𝑊𝑊
𝑑𝑑𝑑𝑑

 gets replaced by 𝑎𝑎
𝑙𝑙+𝑠𝑠

. The volume of air per unit area simplifies to 𝑧𝑧𝑐𝑐, 

the height of the canopy. Snyder et al. (1996), included an alpha term, 𝛼𝛼, to represent the 

calibration factor that accounts for the uneven heating from the bottom of the air parcel to the 

top. Applying all the modifications yields equation (8), where 𝛼𝛼 is the calibration factor, 𝑎𝑎
𝑙𝑙+𝑠𝑠

 is 

the slope of the ramp-like structures, and 𝑧𝑧𝑐𝑐 is the height of the canopy.  

𝐸𝐸𝑇𝑇 =  𝛼𝛼
𝑎𝑎

𝑙𝑙 + 𝑠𝑠
𝑧𝑧𝑐𝑐                                                                   (8) 

Empirical calculations of the calibration factor follow the same method as found in Paw U et al. 

(1995) and Snyder et al. (1996), where 𝛼𝛼 is the slope of the linear regression forced at the origin 

between EC estimates and uncalibrated SR estimates.  

 The slope ( 𝑎𝑎
𝑙𝑙+𝑠𝑠

) is estimated using the structure functions as outlined by Van Atta (1977). 

These structure functions capture the second, third, and fifth moments of the temperature data as 

shown by equations (9), (10), and (11), respectively. 
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Utilizing these structure functions, a and l+s can be calculated by using equations (12) and (13), 

respectively.  

0 = 𝑎𝑎3 + �10 𝑆𝑆2(𝑟𝑟)𝑐𝑐��������� −  
𝑆𝑆5(𝑟𝑟)𝑐𝑐���������

𝑆𝑆3(𝑟𝑟)𝑐𝑐���������� 𝑎𝑎 + 10 𝑆𝑆3(𝑟𝑟)𝑐𝑐���������                                    (12) 

 

(𝑙𝑙 + 𝑠𝑠) =  −
𝑎𝑎3𝑟𝑟

𝑆𝑆3(𝑟𝑟)𝑐𝑐���������                                                                   (13) 

 

The Wavelet Transform (WL) method employs Discrete Wavelet Transform (DWT) to 

estimate ET. In the application of DWT, a set of discrete functions is convolved to modify the 

translational and dilation parameters in the mother wavelet, as represented by equation (4). This 

process generates daughter signals that are subsequently applied to the data. A multilevel 1D 

decomposition was executed using the "wavedec" function from the "pywavelet" package on the 

20 Hz water vapor density time-series. This decomposition yields both approximation and detail 

coefficients, which are used to compute the duration and amplitude, respectively, of the ramp-

like features within the water vapor density time-series over 30-minute intervals. As previously 

shown in Figure 5, there are many wavelet families that can be used to execute this 

decomposition for the approximate and detail coefficients; however, for this study, families that 

are good representation of the ramp-like features in the water vapor data are chosen. The 

Daubechies and Symlet wavelet families exhibit great representation based on visual 

observations. Despite their similarities, there was greater alignment with the Symlet family, 

particularly symlet 3, resulting in the implementation of WL using symlet 3 with five 

coefficients. 
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2.3.3 Surface Renewal Calibration Factor  

 The calibration factor, α, is often calculated by performing a linear regression forced at 

the origin between the uncalibrated estimations from SR and estimations from EC as outlined in 

multiple studies (Paw U et al., 1995; Spano et al., 1997).  Adjusted SR estimations were obtained 

by multiplying α by the uncalibrated estimations from SR yields, as shown in equation (14).  

𝐸𝐸𝑇𝑇𝑆𝑆𝑆𝑆 =  𝛼𝛼 𝐸𝐸𝑇𝑇𝑆𝑆𝑆𝑆(𝑢𝑢𝑢𝑢𝑐𝑐𝑎𝑎𝑙𝑙𝑢𝑢𝑏𝑏𝑢𝑢𝑎𝑎𝑑𝑑𝑢𝑢𝑑𝑑)                                                  (14) 

 

2.3.4 Software 

All data processing was conducted using Jupyter Notebook version 6.4.8, using a range 

of packages as summarized in Table 2. To derive ET estimates, functions corresponding to EC, 

WL, and SR were established within Jupyter Notebook, aligning with the equations presented in 

the theory section. After their formulation, these functions were then applied to the water vapor 

data to generate ET estimates for 30-minute intervals across each day of the year. 

 

Table 2 List of Jupyter Notebook packages that were used to process and analyze semi-high 
frequency water vapor tracers. 

Jupyter Notebook Package Description 

Datetime Converted the datetime format from the raw data into a more 
useful format.  

Csv Read CSV files and transformed the raw data into a workable 
dataframe. Allowed to safe processed data into a CSV file.  

NumPy Used for multi-dimensional arrays and matrices and 
mathematical functions.   

Pandas Used for data manipulation and analysis  
Matplotlib Used for data plotting and visualization 

pywt Used for wavelet transforms and wavelet analysis 
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2.4 Data Analysis 

The data analysis aims to assess the correlations between ET estimates obtained from EC, 

SR, and WL. This examination will provide insights into the performance of WL in comparison 

to EC (considered the benchmark research method) and SR. Furthermore, the data analysis also 

seeks to evaluate the robustness of these methods. As previously mentioned, the selection of 

vineyards characterized by diverse growth and climatic conditions serves to investigate the 

methods' efficacy under challenging circumstances. The overarching schematic of the data 

analysis is illustrated in Figure 7. 

 

                  Figure 7. Schematic of data analysis. 
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2.4.1 Cook’s Distance - Outlier Determination  

Cook’s Distance was used to identify data point that are potential outliers when 

performing a least-squares linear regression analysis (Cook, 1977). Cook’s distance was 

calculated using equation (15), where 𝐷𝐷𝑢𝑢 represents the sum of all changes in the regression when 

observation 𝑖𝑖 is removed, 𝑦𝑦�𝑗𝑗 is the original regression, 𝑦𝑦�𝑗𝑗(𝑢𝑢) is the regression with observation 𝑖𝑖 

removed, 𝑝𝑝 is the rank of the model, and 𝑠𝑠2 is the mean squared error of the model. A point was 

identified as a potential outlier if  𝐷𝐷𝑢𝑢 was above the threshold as shown in equation (16), where 𝑛𝑛 

is the total number of data points in the least-squared linear regression. While Cook’s Distance is 

a useful tool at identifying potential outliers, it does not provide enough information to determine 

if the data point is valid (Fox, 1991). Further investigation of the data point was needed to 

determine if the data point is influenced by spurious data. Any spurious data were removed and 

not considered in the data analysis.  

𝐷𝐷𝑢𝑢 =  
∑ �𝑦𝑦�𝑗𝑗 −  𝑦𝑦�𝑗𝑗(𝑢𝑢)�

2
 𝑢𝑢

𝑗𝑗=1

𝑝𝑝𝑠𝑠2
                                                           (15) 

𝑇𝑇ℎ𝑟𝑟𝑟𝑟𝑠𝑠ℎ𝑜𝑜𝑙𝑙𝑑𝑑 =
4
𝑛𝑛

                                                               (16) 

 

2.4.2 Least-Squares Linear Regression – Method Comparisons  

Linear regressions were performed to compare ET estimations derived from each of the 

methods (EC, WL, and SR) at the sub-daily and daily levels. ETWL was compared to ETEC to 

determine the performance and validity of WL. ETSR were compared to ETEC to determine the 

efficacy of the SR method applied to water vapor data. ETWL estimations were compared to ETSR 

to verify if these two methods produce similar results. For each linear regression plot, the 

coefficient of determination, R2, the slope of the linear equation, and the root mean squared error 
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(RMSE) were analyzed to determine the strength and direction of the correlation between the 

comparisons.  

2.4.3 Frequency Sensitivity Analysis 

The instruments used in this study gather data at a frequency of 20 Hz. Equipment 

operating at this frequency is generally more expensive than those collecting data at half or a 

quarter of that frequency. Given the study's focus on exploring a cost-effective alternative 

method, it becomes pivotal to apply WL and SR to lower frequency data and assess their 

performance. To achieve this, water vapor data at frequencies of 10 Hz, 5 Hz, and 1 Hz were 

extracted from the original 20 Hz dataset. These subsets were then utilized to estimate ET using 

WL and SR. Linear regressions were conducted to analyze the correlations in the following 

comparisons: 20 Hz vs 10 Hz, 20 Hz vs 5 Hz, and 20 Hz vs 1 Hz. Like previous analyses, the 

strength and direction of correlation were determined based on the coefficient of determination, 

R2, the slope of the linear equation, and the root mean squared error (RMSE). 

2.4.4 Root Mean Square Error Analysis 

Root Mean Square Error (RMSE) was used to further evaluate the regression model 

within the least-squares linear regression, comparing the ET values obtained through the three 

estimation methods with those of the least-squares linear regressions in the frequency sensitivity 

analysis. RMSE values indicate the average difference between the predicted values from the 

regression model and the observed values and is calculated using equation (18), where 𝑃𝑃𝑢𝑢 is the 

predicted value from the regression model, 𝑂𝑂𝑢𝑢 is the observed value, and 𝑛𝑛 is the total number of 

data points.   

𝑅𝑅𝑅𝑅𝑆𝑆𝐸𝐸 =  �
∑(𝑃𝑃𝑢𝑢 −  𝑂𝑂𝑢𝑢)2

𝑛𝑛
                                                          (18) 
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Higher RMSE values in regression models indicate that, on average, the observed values are 

further from the predicted values of the model. Conversely, lower RMSE values in regression 

models indicate that, on average, the observed values are closer to the predicted values of the 

model. 

3. Results 

3.1 SR Alpha Calibration 

 Calibration was applied to the ET measurements from SR to address the nonuniform 

heating within the air parcel. As depicted in Figure 8, performing a least squares regression of 

ETSR (uncalibrated) against ETEC resulted in α values of 0.631 and 0.504 for BAR and RIP, 

respectively. Notably, these α values for both vineyards are within range to those reported for 

grapevines studied by Spano et al. (1997) and for grass, wheat, and sorghum studied by Duce et 

al. (1997). Despite the higher average distance from the regression line for RIP's linear 

regression (RMSE = 0.036) in contrast to BAR’s linear regression (RMSE = 0.047), the R2 value 

show a strong correlation between ETSR (uncalibrated) and ETEC. 
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Figure 8. Linear regression between ETSR (uncalibrated) and ETEC through the origin for the 
determination of the calibration factor, α. Blue points represent the 2022 data from BAR 
Vineyards. Pink points represent the 2022 data from RIP. 

3.2 Comparison between ETWL, ETEC, and ETSR 

Sub-daily ET comparisons among EC, SR, and WL exhibited strong agreement in 

measuring evapotranspiration through 20 Hz water vapor density tracers at both the BAR and 

RIP sites. Cook’s Distance outlier detection resulted in the removal of 8.57%, 10.90%, 10.87%, 

8.89%, 10.33%, and 11.85% of data from ETEC vs ETWL (BAR), ETEC vs ETSR (BAR), ETWL vs 

ETSR (BAR), ETEC vs ETWL (RIP), ETEC vs ETSR (RIP), and ETWL vs ETSR (RIP), respectively. 

Further investigation confirmed these potential outliers as anomalies caused by condensation, 

adverse weather conditions, or human error during maintenance, warranting their exclusion from 

the data analysis. The removal of outliers resulted in enhanced R2 values in the linear regression. 

Specifically, for the BAR vineyard site, the least-squares regression indicated a weaker 

correlation between ETEC vs ETSR (R2 = 0.775) compared to the other two models – ETEC vs 

ETWL (R2 = 0.861) and ETWL vs ETSR (R2 = 0.832). Similarly, for RIP, ETEC vs ETSR also 

displayed a weaker correlation (R2 = 0.748) compared to the other two models. Nevertheless, the 
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differences in R2 between the comparisons for both vineyards were marginal. Looking at the 

RMSE (as presented in Table 3), estimations derived in each of the comparisons were not 

significantly different from each other. There were greater deviations among the BAR vineyard 

compared to the RIP vineyard, but the values are still comparable. 

Based on the slopes of the linear regressions, the linear relationships between WL, SR, 

and EC are close to 1, demonstrating close estimations between the three methods. For RIP 

vineyards, WL slightly overestimates the ET values when compared to EC estimations, where 

the slope is equal is 1.2305. SR appears to underestimate the ET values when compared to EC 

estimations, where the slope is equal to 0.8287 and 0.9144, respectively.  

Table 3. R-squared and root mean square error (RMSE) values for Linear Regression Models 
comparing sub- daily evapotranspiration estimations using Eddy covariance (EC), Surface 
Renewal (SR), and Wavelet Analysis (WL). 

Vineyard Site  Comparison  R2 RMSE 

BAR 
EC vs WL 0.861 0.021 
EC vs SR 0.775 0.023 
WL vs SR 0.832 0.023 

RIP 
EC vs WL 0.849 0.035 
EC vs SR 0.748 0.035 
WL vs SR 0.909 0.028 
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Figure 9. Least-squared linear regression plots comparing sub-daily evapotranspiration 
estimations for ETEC vs ETWL, ETEC vs ETSR, and ETWL vs ETSR for BAR (blue data points) and 
RIP (pink data points). 

  



24 
 

 There was also strong agreement between the daily estimations derived from the three 

different methods as shown in Figure 10. While ETSR and ETWL are strongly correlated with 

ETEC, it is interesting to note that there was weaker correlation when comparing ETSR to ETWL. 

As seen shown in Table 4, the lowest R2 values were 0.787 for ETEC vs ETSR in BAR vineyard.  

The way the SR and WL methods analyze ramp characteristics can lead to different estimates of 

ET. However, this is the only instance where there is a noticeable difference. RIP did not show 

weaker correlation for ETSR vs ETWL. 

Like sub-daily values, daily estimations of ET derived from these models were screened 

for any potential outliers due to weather conditions and human interventions that may have led to 

overestimations and/or erroneous measurements. The Cook’s Distance outlier detection method 

was performed, where any data points resulting in a cook’s distance greater than the threshold 

value of 0.011 were deemed potential outliers. As a result, 5.32%, 6.72%, 8.86%, 8.30%, 

10.92%, and 12.23% of data were removed from EC vs WL (BAR), EC vs SR (BAR), WL vs SR 

(BAR), EC vs WL (RIP), EC vs SR (RIP), and WL vs SR (RIP), respectively, due to values that 

were found to affected by weather adversity and human interventions. 

The slopes of the linear regression for the BAR vineyard are consistent between each 

comparison. This is significant in showing the potential of WL, SR, and EC in producing similar 

estimations when applying them to water vapor density data. Like the sub-daily plots, WL also 

yields higher values of ET estimations compared to those from EC in the RIP vineyard. Despite 

this overestimation, the values are not much greater than those of the EC results.  
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Table 4. R-squared and root mean square error (RMSE) values for Linear Regression Models 
comparing daily evapotranspiration estimations using three mathematical models: EC (EC), 
Surface Renewal (SR), and Wavelet Analysis (WL). 

Vineyard Site  Comparison  R2 RMSE 

BAR 
EC vs WL 0.845 0.445 
EC vs SR 0.845 0.409 
WL vs SR 0.787 0.456 

RIP 
EC vs WL 0.926 0.367 
EC vs SR 0.921 0.299 
WL vs SR 0.915 0.371 

 

Daily ET estimations were graphed against the day of the year (DOY) to observe annual 

trends. As depicted in Figure 11, the daily value trends for EC and WL overlap significantly 

throughout the year 2022 in both the BAR and RIP vineyards, which further demonstrates the 

agreement between the two methods. It is important to note that gaps within the yearly trend 

reflect the removal of spurious data based on Cook’s Distance that were observed in both the 

sub-daily and daily results. There are some disparities between the two models that emerged 

between days 160 and 250, where WL produced values lower than those of EC. When 

comparing the two sites, it's noteworthy that the ET values in RIP nearly double those of BAR 

during the spring and summer months. This discrepancy might be attributed to their distinct 

climatic profiles and varying vineyard characteristics.  
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Figure 10. Least-squared linear regression plots comparing daily evapotranspiration estimations 
for ETEC vs ETWL, ETEC vs ETSR, and ETWL vs ETSR for BAR (blue data points) and RIP (pink 
data points). 
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Figure 11. Daily evapotranspiration estimations using Wavelet Analysis (red) and Eddy 
Covariance (gray) depicted across 2022 for BAR and RIP.  

 

3.3 Sensitivity Analysis Plots 

 To further understand the robustness of both the WL and SR methods, a sensitivity 

analysis on frequency was performed. The frequency at which an instrument can measure is a 

factor in the cost of that instrument. Those that measure at higher frequencies tend to be more 

expensive than those that measure at lower frequencies. Thus, performing this sensitivity 

analysis is important in determining if these methods can still reliably estimate ET at lower 



28 
 

frequencies. The main instrument that is used in this study measured the data at 20 Hz. From this 

dataset, 10 Hz, 5 Hz, and 1 Hz datasets were extracted. Daily ET values were obtained utilizing 

each of these lower frequency data sets and then compared to the daily ET values obtained with 

the original 20 Hz data.  

 Figure 12 illustrates the frequency sensitivity analysis for the BAR vineyard site, where 

linear regression models were made to compare estimations based on 10 Hz, 5 Hz, and 1 Hz 

datasets to estimations based on the original 20 Hz data for WL and SR. Visually, there is greater 

deviation from the linear regression model for SR compared to WL. As frequency decreased, 

WL showed insignificant changes in both R2 and RMSE values (Table 5) from 10 Hz (R2 = 

0.995, RMSE = 0.090) to 1 Hz (R2 = 0.899, RMSE = 0.442). SR also showed insignificant 

changes, but slightly less changes compared to WL in both R2 and RMSE values (Table 5) from 

10 Hz (R2 = 0.958, RMSE = 0.201) to 1 Hz (R2 = 0.912, RMSE = 0.303). Overall, ET 

estimations at lower frequency show strong correlations with that of higher frequencies for both 

WL and SR.  

Table 5. R-squared and root mean square error (RMSE) values for Linear Regression Models 
comparing evapotranspiration estimations derived from BAR vineyard's 20 Hz, 10 Hz, 5 Hz, and 
1 Hz datasets for Surface Renewal (SR) and Wavelet Analysis (WL).  

Method  Comparison  R2 RMSE 

Wavelet Analysis 
20 Hz vs 10 Hz 0.995 0.090 
20 Hz vs 5 Hz 0.982 0.189 
20 Hz vs 1 Hz 0.899 0.442 

Surface Renewal 
20 Hz vs 10 Hz 0.958 0.201 
20 Hz vs 5 Hz 0.961 0.191 
20 Hz vs 1 Hz 0.912 0.303 
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Figure 12. A frequency sensitivity analysis comparing evapotranspiration values derived from 
wavelet analysis and surface renewal models at different frequencies (20 Hz, 10 Hz, 5 Hz, and 1 
Hz) for BAR Vineyard.   
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Figure 13 illustrates the frequency sensitivity analysis for the RIP vineyard site. Like the 

BAR vineyard, both SR and WL showed marginal changes in correlation when the frequency 

decreased from 20 Hz to 1 Hz. WL showed insignificant changes in both R2 and RMSE values 

(Table 6) from 10 Hz (R2 = 0.998, RMSE = 0.077) to 1 Hz (R2 = 0.956, RMSE = 0.358). While 

SR showed slightly greater changes in both R2 and RMSE values (Table 6) from 10 Hz (R2 = 

0.959, RMSE = 0.255) to 1 Hz (R2 = 0.915, RMSE = 0.368), the estimation yielded between the 

higher frequency and the lower frequency are very close in value.  

 

Table 6. R-squared and root mean square error (RMSE) values for Linear Regression Models 
comparing evapotranspiration estimations derived from RIP vineyard's 20 Hz, 10 Hz, 5 Hz, and 
1 Hz datasets for Surface Renewal (SR) and Wavelet Analysis (WL). 

Method  Comparison  R2 RMSE 

Wavelet Analysis 
20 Hz vs 10 Hz 0.998 0.077 
20 Hz vs 5 Hz 0.993 0.157 
20 Hz vs 1 Hz 0.956 0.358 

Surface Renewal 
20 Hz vs 10 Hz 0.959 0.255 
20 Hz vs 5 Hz 0.963 0.243 
20 Hz vs 1 Hz 0.915 0.368 
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Figure 13. A frequency sensitivity analysis comparing evapotranspiration values derived from 
wavelet analysis and surface renewal models at different frequencies (20 Hz, 10 Hz, 5 Hz, and 1 
Hz) for RIP Vineyard.  
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4. Discussion 

4.1 Alpha Calibration  

The α calibration factors can showcase a spectrum of variability depending on a range of 

diverse factors such as the crop of study, the experimental design, the scalar being measured, the 

positioning of sensors, and among other considerations (Qui et al., 1995; Snyder et al., 1996; 

Spano et al., 2000). Regarding factors influencing α values, it is noteworthy to highlight that Paw 

U et al. (1995) primarily encompassed the application of SR to temperature scalar data proximal 

to the top of the canopy height. This contrasts with the current study where the observed scalar is 

water vapor density. Paw U et al. (1995) explained that the role of the α value is to compensate 

for the nonuniform thermal conditions encountered by air parcels during their traversal within 

and beyond the canopy. Similarly, this assumption may also be applicable to water vapor 

density, owing to its inherent non-uniformity within the canopy. In the review by Shapland et al. 

(2014) that looked at numerous studies involving SR calibration, it was observed that α values 

may be affected by the canopy's height and the height of measurement. In the present study, the 

IRGASON® instrument was sited approximately 2.2 meters above the top of the canopy. Based 

on this observation, our alpha calibration factors may deviate from the expected values. 

However, the obtained α calibration factors as shown in Figure 8 fall within the expected range 

for grapevines as derived from a previous study (Spano et al., 2000). The similarity in alpha 

values between results derived from temperature scalar time series and results derived from 

water vapor density time series show the potential of water vapor density as an alternative scalar.  

The alpha calibration is important for the SR method, as the ET estimations are adjusted 

using EC results to account for the uneven heating of the air parcels (Paw U et al. 1995). 

However, the need to calibrate the SR estimations using EC data does not eliminate the use of 
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the sonic anemometer. Requiring EC data means the necessity of wind data from costly 

equipment (e.g., sonic anemometer). With the WL method having more flexibility to fit the 

daughter wavelets to the water vapor data, it was expected that WL would not require the need 

for an alpha calibration. In this study, WL estimations for ET were not adjusted like the SR 

estimations before comparing them to EC results. Because WL yielded similar results as that of 

EC results, it is reasonable to conclude that WL does not require the need to be calibrated and 

can be a stand-alone method for estimating ET.  

4.2 Data Cleaning and Cook’s Distance Outlier Determination  

 The semi-high frequency water vapor density data, collected at a 20 Hz from both BAR 

and RIP vineyards, contained measurements that were either spurious or missing throughout the 

entire year. As shown by rolling averages and the Cook’s Distance Outlier Determination 

method, these extreme values (positive or negative), were a result of (1) weather adversities or 

(2) human interference. Adverse weather conditions, such as wind and rain, played a substantial 

role, which was expected as previous research done by Castellví et al. (2008) showed that the 

performance of SR can be compromised due to high humidity. Wind directions ranging from 0° 

to 90° resulted in winds blowing against the CSAT3S Campbell Scientific Sonic Anemometer's 

sensor, leading to a reduction in water vapor density data despite the presence of peak daytime 

temperatures. Conversely, the trend shifted with rainfall. Instances of substantial rainfall or 

condensation led to an overestimation due to excess water accumulating on the sonic 

anemometer's surface, often leading to spurious data. Consequently, both the severely 

underestimated and overestimated data points were disregarded to ensure the accuracy of the 

final evapotranspiration (ET) estimation. 
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Human interference, too, emerged as a significant factor. Maintenance of the sonic 

anemometer requires periodic cleaning, involving distilled water to eliminate dust and dirt from 

the gas analyzer. However, this intervention occasionally introduced spurious values in the water 

vapor density data, contributing to inaccuracies. The application of Cook's Distance Outlier 

Determination highlighted specific days within the year when ET measurements obtained from 

mathematical methods were disproportionately influenced by strong winds and heavy rain. 

Predominantly concentrated in the fall and winter months, these outliers aligned with 

expectations given the elevated levels of precipitation and wind during this period. On the other 

hand, outliers encountered in the spring and summer months were commonly related to 

unanticipated wind or rain events and instances of instrument cleaning and maintenance. 

Furthermore, instances of missing data could be attributed to power outages or systematic sensor 

issues.  

4.3 Agreement between ETWL, ETEC, and ETSR 

The sub-daily and daily ET estimations, as presented in Figures 9 and 10, validate the 

reliability of the Surface Renewal (SR) method for ET measurement. Across all sub-daily and 

daily estimations, SR exhibited strong agreement with measurements obtained through the EC 

method, as expected. Numerous studies conducted on various crops, including grass, wheat, 

sorghum, almonds, and grapevines, have shown analogous agreement between SR and EC 

methodologies (Spano et al., 2000; Duce et al., 2000). Once more, it is important to acknowledge 

the distinction in the data being measured. Prior research like Nassar (2021) applied SR onto 

temperature data, while the current study applied it on water vapor density data. Nevertheless, a 

noteworthy discovery arises from this this distinction – the proficiency of SR in accurately 

estimating ET using water vapor density. This achievement may be attributed to the similarity 
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between "saw-tooth" patterns exhibited by water vapor tracers and those found in temperature 

data, as observed by Antonia et al. (1979). As previously stated, the core principle of SR, as 

explained by Paw U et al. (1995), revolves around leveraging these distinct patterns. For 

temperature data, SR would often rely on the energy balance equation (LE = Rn – G – H; where 

LE is latent energy, Rn is the net radiation, G is soil heat flux, and H is sensible heat) to calculate 

the residual energy, which is then converted into ET (Hu et al. 2018; Morán et al., 2020). The 

distinct advantage of using water vapor density lies in SR's ability to estimate ET without the 

reliance on the energy balance for residual calculations.  

 Like SR, the linear regressions comparing sub-daily and daily ET estimates derived using 

WL demonstrate a strong agreement to that obtained from EC. As shown in Figure 9, 10, and 11, 

WL can yield reliable estimations of ET. While WL has been successfully applied in studies of 

precipitation, hydrological fluxes, atmospheric turbulence, ocean wind waves, etc. (Kumar and 

Foufoula-Georgio, 1997), the application of WL in measuring ET is limited. However, the 

observation that WL is strongly in agreement with already reliable methods like EC and SR, 

demonstrates that WL is an alternative method for measuring ET.  

4.4 Sensitivity Analysis 

The sensitivity analysis has demonstrated the robustness of both WL and SR methods in 

producing reliable results from lower frequency data sets (10 Hz, 5 Hz, and 1 Hz). Typically, SR 

and EC rely on semi-high frequency data (10 Hz or 20 Hz) to attain heightened precision in their 

outcomes (Kustas et al., 2022). However, the associated costs of equipment like the IRGASON® 

or other similar high-frequency sensors pose a considerable economic hurdle (Paw U et al., 

1995). Consequently, the utilization of low-frequency sensors (10 Hz, 5 Hz, and 1Hz) are more 

cost-effective and emerges as a more advantageous avenue. The sensitivity analysis reveals that 
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for both WL and SR, the implementation of low-frequency sensors is feasible without 

compromising the effectiveness and reliability of each method in ET estimation. This not only 

illustrates the robustness of WL and SR but also paves the way for the exploration of more 

economically viable methods.  
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5. Conclusion  

The findings in this study highlight the strong performance of WL in estimating ET using 

water vapor density data. The linear regression models and frequency sensitivity analysis 

demonstrate that WL exhibits a robust correlation with EC, which is a common practice in 

tracking biosphere-atmosphere flux interactions, including ET. This strong correlation indicates 

the reliability of WL in providing accurate ET estimates. 

Moreover, the data reveals that WL performs just as well as SR in terms of sub-daily and 

daily ET estimation and sensitivity to frequency changes. WL showed the ability to yield reliable 

results even when applied to lower-frequency data. This has significant implications for 

affordability, as it allows for the use of less expensive instruments that measure at lower 

frequencies without compromising the accuracy of ET estimates.  

The affordability aspect of WL in estimating ET is a crucial advantage. By demonstrating 

that frequency does not significantly impact the performance of WL, our study suggests that 

cost-effective instruments measuring at lower frequencies can be employed, making ET 

monitoring more accessible and cost-efficient. This affordability aspect opens opportunities for a 

wider range of researchers and practitioners who may have budget constraints but still require 

accurate ET estimates for their studies or water resource management efforts. 

In summary, WL emerges as a reliable and affordable alternative for estimating ET. Its 

strong correlation with EC, comparable performance to SR, and sensitivity to frequency changes 

make it a valuable tool for monitoring ET dynamics. The ability to utilize lower-frequency data 

without compromising accuracy enhances the affordability of ET estimation. Future research 

should further explore the potential of WL in different environmental contexts and validate its 

performance against water vapor data collected using more cost-effective instruments. 
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