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ABSTRACT OF THE DISSERTATION

Leveraging Diversity to Improve the Wisdom of the Crowd

By

Lauren Elizabeth Montgomery

Doctor of Philosophy in Cognitive Sciences

University of California, Irvine, 2024

Professor Michael D. Lee, Chair

This dissertation addresses how contextualized expertise and task design can improve wisdom

of the crowd estimates. The first two chapters apply the wisdom of the crowd to two related

tasks that require spatial knowledge. The third chapter applies the wisdom of the crowd to

a subset ranking task.

In Chapter 1, I investigate how framing effects impact the wisdom of the crowd. Participants

selected tiles that either represented US states or African countries in two frames, present

and absent. I constructed three wisdom of the crowd estimates: an unweighted average, a

confidence-weighted average, and a wisdom of the crowd within estimate that combines an

individual’s responses across frames. I found that combining the estimates from the two

frames resulted in an improved wisdom of the crowd estimate.

In Chapter 2, I build on the wisdom of the crowd application for a task that again requires

spatial knowledge. Participants supplied a point estimate and a radius centered at that

point estimate for where various US cities were located. Unweighted and radius-weighted

wisdom of the crowd estimates were more accurate than most individuals, but the cognitive

model-based wisdom of the crowd estimates tended to be even more accurate. I describe

how using cognitive modeling that contextualizes expertise led to improved wisdom of the

crowd estimates.
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In Chapter 3, I present a new extension for the Thurstone model to partial ranking data.

Ranking tasks have usually had participants rank all items, but I present two different types

of partial ranking tasks where either an experimenter or a participant selects the items to

be ranked. I demonstrate how the Thurstone model can be used to generate wisdom of the

crowd estimates, and speculate how other partial ranking tasks can be developed to better

elicit diverse estimates from the crowd.

In all, these chapters detail specific applications of the wisdom of the crowd effect that better

contextualize expertise, elicit multiple meaningful estimates from the same individual, and

improve diversity. These methods are used in conjunction with cognitive modeling to produce

improved wisdom of the crowd estimates.
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INTRODUCTION

The wisdom of the crowd effect describes when group aggregation results in a more accurate

estimate than that of a random individual group member (Galton, 1907; Surowiecki, 2004).

Aggregating a group’s estimates or judgments amplifies the shared signal in their responses

while canceling out the idiosyncratic noise. These group aggregations can take on a variety

of forms, but are most typically measures of central tendency, e.g., an arithmetic mean.

While there are a vast number of applications for the wisdom of the crowd, there are several

prerequisites for the wisdom of the crowd finding to hold: the crowd needs to be diverse,

estimates or judgments need to be produced independently, and estimates or judgments

should be elicited in a decentralized way (Surowiecki, 2004, p. XVIII). Furthermore, the

wisdom of the crowd should be limited to situations where performance can be evaluated,

either by knowing the ground truth or being able to determine it at a later time. There are

other topics in the literature, like that of cultural consensus theory (Anders & Batchelder,

2012), that would be better references when evaluation is not possible or not an appropriate

way to judge the accuracy of the aggregated estimate. Even with all these caveats, the

wisdom of the crowd effect is versatile and particularly useful when the correct answer is

difficult or costly to acquire, i.e., prediction or forecasting (Atanasov et al., 2017; Budescu

& Chen, 2014; Da & Huang, 2019; Davis-Stober et al., 2015).

Considering how useful the wisdom of the crowd effect is, one general goal in the literature

is to find how to aggregate the available information to get the best wisdom of the crowd
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estimate. Achieving this goal requires knowing both how to best elicit the existing wisdom

from the crowd and how to improve the wisdom of the crowd estimates. With respect to

the first question of how to elicit the crowd’s knowledge most effectively, there is a strong

emphasis on crowd construction and using multiple estimates from the same individual.

Crowd construction, which is the focus of the wisdom of select crowds, tends to focus on

winnowing the crowd down to just those who are “expert” enough. The wisdom of select

crowds is specifically focused on finding smaller groups that concentrate particular measures

of expertise while still demonstrating a wisdom of the crowd effect, specifically by quantifying

the relative expertise of individuals in the crowd in some way (Mannes et al., 2014). Though

these selected crowds can outperform other simple group estimates, one issue with focusing

on expertise is that it is not necessarily transferable. This means that groups chosen on the

basis of expertise alone may not perform as well on another related task or question.

Knowing how to select a better crowd is only part of the answer though, as another con-

sideration for extracting more wisdom from the crowd is whether or not the single estimate

or judgment that was collected is all that an individual knows. It might be the case that

individuals want to convey their uncertainty about how long the Nile is, or that they would

be equally willing to say that North Dakota or Maine is further north than Texas. Thus, it

may also be desirable to gather multiple estimates or different types of estimates from the

same individual. The wisdom of the crowd within refers to the approach of using multiple

estimates from the same individual for inner (individual) and outer (group) wisdom of the

crowd estimates. This approach inherently relies on obtaining independent estimates from

the same individual, otherwise aggregating these estimates would increase, instead of de-

crease, the systematic error (Herzog & Hertwig, 2009). A simple way to do this is to allow

time to pass between eliciting the estimates, potentially on the scale of weeks. Another

approach is to have participants “consider-the-opposite” response to encourage individuals

to seek out or consider previously overlooked information or information that is inconsistent

with their current beliefs (Herzog & Hertwig, 2009; Lord et al., 1984). The wisdom of select

2



crowds and the wisdom of the crowd within both address the question of how the existing

wisdom can be extracted from the crowd, although it still leaves the question of how to

further improve the wisdom of the crowd aggregations.

Usually, these wisdom of the crowd aggregations are simple arithmetic means, medians, or

modes. There are endless variations on these methods, such as, geometric means (Lorenz

et al., 2011), corrected means and medians (Kao et al., 2018), trimmed means (Jose &

Winkler, 2008; Kao et al., 2018; Stock & Watson, 2004), Borda counts (Steyvers et al., 2009),

weighted averages (Lyon & Pacuit, 2013), or the suprisingly popular method (Prelec et al.,

2017; Lee et al., 2018). Generally speaking, simpler wisdom of the crowd aggregations like

arithmetic means do not account for confidence or expertise, but can be extended to weighted

arithmetic means that do. These methods can be more accurate, but are still limited to group

aggregations and cannot say anything about the individual or parameters of interest like

expertise. In contrast, cognitive modeling-based wisdom of the crowd estimates can be more

accurate, provide both individual- and group-level inferences, and simultaneously provide

information about latent parameters like expertise. Cognitive modeling can also help with

unpacking and interpreting the diversity within the crowd. Diversity can be though of as

the information that is unique to an individual, and this can easily be lost when aggregating

across individuals to get the collective group estimate. As mentioned though, cognitive

modeling captures information about the individuals and can consider more carefully how

individual expertise should be distilled in the model’s estimate. Thus, cognitive modeling is

an especially useful method in improving the wisdom of the crowd estimates.

This dissertation is focused on using cognitive modeling to improve the wisdom of the crowd

estimates. The three chapters of this dissertation are particular applications of the wisdom

of the crowd to tasks that require spatial knowledge (Chapters 1 and 2) and subset rank-

ing (Chapter 3); however, all of these applications are concerned with optimizing diversity.

Throughout this dissertation, I consider alternative ways to optimize diversity by consider-

3



ing expertise in a more contextualized manner to further improve the wisdom of the crowd

estimates. I focus on familiarity and confidence by collecting additional demographic infor-

mation and by introducing it into the task structure for Chapters 1 and 2. This body of work

suggests that expertise is not a constant individual feature across items and is instead more

nuanced. I also focus on manipulations to the experimental structure that can introduce or

preserve diversity in individuals’ responses in Chapters 1 and 3.

The first chapter of the dissertation focuses on applying the wisdom of the crowd to a task

that requires spatial knowledge. This application of a task with spatial knowledge is different

from other existing work as it directly asks participants to provide spatial estimates instead

of scalar estimates, discrete choices, or rankings. In this task, participants were asked to

identify the location of various US states or African countries. Participants selected tiles in

a present framing (e.g., “Where is Pennsylvania located? Select as few states as possible,

but be sure Pennsylvania IS in the states you select”) and absent framing (e.g., “Where is

Pennsylvania NOT located? Select as many states as possible, but be sure Pennsylvania IS

NOT in the states you select”). I found evidence of a framing effect where participants across

both US states and African countries were more confident in terms of how many states or

countries they selected in the present than absent frame. I then constructed three wisdom

of the crowd estimates: an unweighted wisdom of the crowd estimate, a confidence-weighted

wisdom of the estimate, and a wisdom of the crowd within estimate that was justified by

there being a framing effect. Overall, both the wisdom of the crowd and the wisdom of

the crowd within estimates outperformed most of the individuals. These findings suggest

that individuals can produce diverse estimates with alternate question frames, and that the

wisdom of the crowd estimates outperform individuals.

The second chapter of the dissertation focuses again on applying the wisdom of the crowd to

a task that requires spatial knowledge, but goes further than Chapter 1 by using cognitive

modeling to generate model-based wisdom of the crowd estimates. The experimental task
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had participants provide a point estimate of where a particular US city was located, and

then using this point estimate as the center point produce a circle whose radius was certain

to contain the target city. In their demographic information, participants were asked what

US states they were familiar with which was operationalized as the states they had lived in

or driven through frequently. I constructed an unweighted wisdom of the crowd estimate

and a radius-weighted wisdom of the crowd estimate. These two statistical wisdom of the

crowd estimates demonstrated the wisdom of the crowd effect. I then developed a series of

cognitive models that included or excluded the radius judgments and assumed differences

in individual expertise and city difficulty. These model-based estimates outperformed the

statistical wisdom of the crowd estimates, as long as they assumed there was individual

expertise. Model-based estimates were most accurate when they allowed for individual-

by-city expertise. I replicated these findings using a dataset collected by Mayer & Heck

(2023). In summary, the model-based estimates outperformed the statistical wisdom of the

crowd estimates, and there is something about the individual-by-city expertise that should

be further explored as it was not explained by familiarity with particular states as thought.

The third chapter of the dissertation deals with a ranking task rather than a task requir-

ing spatial knowledge. Participants completed one of three task versions: complete ranking

where they ranked the full set of items, experimenter-selected partial ranking where they

ranked experimenter constructed subsets made at random or with respect to existing struc-

ture preexisting within the data, and individual-selected partial ranking where they selected

with items they wanted to rank and only ranked their selected subset of items. The focus of

these analyses was on the usage of a Thurstone model to produce a group aggregated ranking

of the items. The inconsistencies between the different datasets limit the interpretation of

results as they cannot be directly compared without caveat to each other. However, the cog-

nitive model implementation of the Thurstone model to deal with partial ranking data is new

and useful. Different experimental tasks can be developed to elicit diverse responses from

the same individual, and these data can then be used to get at the underlying latent ranking.
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I found that the Thurstone model produced reasonable, and in some cases very accurate,

wisdom of the crowd estimates in addition to helpful information about latent parameters

like an individual’s inferred expertise. These findings demonstrate how the wisdom of the

crowd can be applied to complete or partial ranking tasks aimed at preserving diversity in

individuals’ responses.

These chapters altogether extend the applications of the wisdom of the crowd and provide

cognitive model-based approaches to further improve the wisdom of the crowd estimates.

These results and methods consider alternative ways to optimize and preserve diversity in the

crowd by considering expertise in a more contextualized manner and through different task

designs. From this body of work, it cannot be assumed that expertise is a constant individual

feature across items. Instead, we see evidence that expertise can be item specific, and so

propose that cognitive models should consider breaking down expertise into component parts

that are easier to identify that may help create diverse crowds with better contextualized

expertise. This dissertation also explores several specific applications of the wisdom of the

inner crowd where individuals are asked to generate multiple estimates, and by using the

different question framings or task designs elicit multiple estimates from the same individual.
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Chapter 1

The Wisdom of the Crowd and

Framing Effects in Spatial Knowledge

Abstract

We study the wisdom of the crowd in the context of spatial knowledge, asking participants

to identify US states and African countries on unlabeled tile maps. We use two question

frames, asking participants to select where the target is present or eliminate where it is

absent. Participants generally display overconfidence, often selecting small regions that

do not include the target. We find strong wisdom of the crowd effects by aggregating

participants’ responses, especially by weighting the individual responses according to the

size of their selection. The weighted crowd outperforms all but a few participants for the

US states and all participants for the African countries. We also find wisdom of the crowd

within effects, by aggregating the present and absent frames for the same participant. We

discuss the implications of our findings for understanding how people express uncertain

spatial knowledge and the potential use of crowd aggregation in real-world applications.
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1.1 Introduction

The wisdom of the crowd is the finding that a crowd’s aggregate judgment is more accurate

than the judgment of a randomly sampled individual in the crowd (Galton, 1907; Davis-

Stober et al., 2014; Surowiecki, 2004). Crowd superiority has been demonstrated in a range

of contexts. The most common context is general knowledge, which examines the accuracy

of answers to factual questions about geography, society, culture, entertainment, and other

topics (Bennett et al., 2018; Lee et al., 2014; Prelec et al., 2017). Another context involves

forecasting and predictions about political, social, sporting, and other events (Armstrong,

2001; Boon, 2012; Da & Huang, 2019; Klugman, 1947; Lee et al., 2018; Miller et al., 2012;

Page & Clemen, 2013). A third context involves group settings in which individuals interact

or compete with each other to generate judgments or estimates about stimuli (Atanasov

et al., 2017; Christiansen, 2007; Lee et al., 2011b; Lyon & Pacuit, 2013; Ray, 2006). In all of

these contexts, the required judgments can take different forms, including scalar estimates

(Jenness, 1932; Farnsworth & Williams, 1936), discrete choice (Lee et al., 2018; Prelec et al.,

2017), rank orderings (Bruce, 1935; Gordon, 1924; Knight, 1921; Lee et al., 2014; Miller

et al., 2012), or sequential decisions (Thomas et al., 2021; Zhang & Lee, 2010).

In this study, we explore the wisdom of the crowd in the context of spatial knowledge by

asking people to identify US states or African countries on unlabeled tile maps. Some pre-

vious research on spatial or geographical knowledge has focused on scalar estimates (“what

is the height of Mount Everest?”), discrete choices (“is Reno east or west of San Diego?”),

or rankings (“order the following US states from west to east”) rather than direct spatial

judgments. Other previous research has presented spatial targets and then required direct

spatial judgments (Juni & Eckstein, 2017), although this type of task involves immediate

perceptual rather than longer-term memory-based knowledge. The most relevant previous

work studies how accurately people can identify locations on a map (Fu et al., 2017, 2020;

Mayer & Heck, 2023). Our task involves people’s memory for spatial knowledge and requires
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them to express that knowledge in a direct and detailed way by selecting a spatial region.

An interesting feature of our task is that it allows the same question to be framed in different

ways. People are asked to identify a target US state or African country by selecting as many

states or countries they need to be confident that the target is included in their set. We

call this the present framing. They are also asked to identify a target state or country by

indicating a set of states or countries that are not the target. We call this the absent framing.

Being able to collect both of these judgments raises the issue of framing effects (Levin et al.,

1998; Tversky & Kahneman, 1981) and, in particular, whether the inherent uncertainty in

forming regions is managed differently between the frames. Previous research on elimination

and inclusion, the same dichotomy that we use, suggests that using these frames will produce

some non-complementarity in the generated choice sets (Shafir, 1993; Yaniv & Schul, 1997).

Asking multiple questions also allows us to consider the phenomenon known as the wisdom

of the crowd within, in which multiple judgments from the same individual are aggregated.

A basic challenge for the wisdom of the crowd within is that using only judgments from one

individual results in correlated judgments, which limits the improvement in the aggregate.

Accordingly, an effort is made to make the judgments as independent as possible. This

has been achieved by increasing the time interval between estimates (Vul & Pashler, 2008)

or having participants use various question framing strategies, such as consider-the-opposite

(Herzog & Hertwig, 2009; Lord et al., 1984), starting from scratch (Herzog & Hertwig, 2014),

or having the individual combine their previous estimates in some way (Herzog & Hertwig,

2009; Larrick & Soll, 2006). These question framing strategies work because the participant

has to consider additional information or approach the question differently. In our spatial

knowledge context, being able to ask about the location of targets in terms of presence

and absence provides two natural contexts for asking the same individual about the same

information.

The remainder of this paper is organized as follows. We first describe the experimental
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design and the framing effects on participants’ judgments and how participants manage the

uncertainty inherent in the task. To test for the wisdom of the crowd, we develop two

approaches for aggregating crowd judgments and compare their performance to individual

judgments. To test for the wisdom of the crowd within effects, we examine improvements in

individual judgments resulting from aggregating their two judgments. Finally, we examine

how the crowd aggregate improves as a function of the number of individuals in the crowd.

We close with a discussion of our main results and directions for future research.

1.2 Experiment

1.2.1 Participants

50 participants were recruited using Prolific (Prolific, 2022) for each of the US states and

African countries conditions in a between-participants design. All participants were current

US residents and provided basic demographic information including their age, whether they

attended high school in the US, and their familiarity with each of the US states or African

countries.

1.2.2 Stimuli

Figure 1.1 shows the tile maps presented to participants in each trial. These are standard

configurations used in data journalism.1 The US states map was restricted to the 48 conti-

nental US states, and the African countries map was restricted to 51 of the 54 countries by

excluding Comoros, Mauritius, and the Seychelles.

1See, for example, https://blog.apps.npr.org/2015/05/11/hex-tile-maps.html and https:

//public.tableau.com/app/profile/neil.richards/viz/Malaria_14/Dashboard1.

10

https://blog.apps.npr.org/2015/05/11/hex-tile-maps.html
https://public.tableau.com/app/profile/neil.richards/viz/Malaria_14/Dashboard1
https://public.tableau.com/app/profile/neil.richards/viz/Malaria_14/Dashboard1


Figure 1.1: Tile map stimuli for the US states (left) and African countries (right) conditions.

The tile maps make responding to the task simple and responses easy to visualize. They also

introduce some irreducible uncertainty because even participants with perfect geographical

knowledge will still be uncertain about the exact translation between the true geography

and the tile layout. For example, South Africa could reasonably be any of the three tiles at

the bottom of the African map. Thus, when responding to the questions, participants need

to consider both the uncertainty in their spatial knowledge and the uncertainty that the tile

layout introduces.

1.2.3 Method

Every participant was given every state or country as a target on a trial in both the present

and absent framings. The two framings were blocked so that all of the targets were presented

in one frame before changing to the other. The order of the framings was randomized, as

was the order of the targets.

In the present framing, participants were asked “Where is X located? Select as few states/-

countries as possible, but be sure X IS in the states/countries you select.” In the absent
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Figure 1.2: Four illustrative individual participant responses to particular target states and
countries in both frames. States and countries selected in only the present frame are colored
yellow, selected in only the absent frame are colored blue, selected in both frames are colored
blue-yellow, and selected in neither frame are colored white.

framing, participants were asked “Where is X NOT located? Select as many states/countries

as possible, but be sure X IS NOT in the states/countries you select.” Each question was

answered sequentially with participants being asked not to look up any information but rely

instead on their general knowledge and memory. Participants were not allowed to return

to or view previous responses, and they did not receive any feedback. At the completion

of all of the target questions in both frames, participants were asked for their demographic

information.

1.3 Framing Effects and Managing Uncertainty

To analyze framing effects, we looked at how complementary the participants’ responses

were. Complementary means that a participant’s response contained the same information

in both frames. Figure 1.2 shows participant-level responses for both the present and absent

frames for four illustrative cases. In each panel, the tile for the target state or country is

outlined in black. The participant’s selections made only in the present frame are in blue,

and their selections made only in the absent frame are in yellow. Tiles for states or countries

selected in both frames are a blended blue-yellow color, and tiles selected in neither frame

are white. This means that the extent of blue versus yellow regions indicates the confidence
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Figure 1.3: Individual participant performance in both conditions and both frames. Each
blue cross corresponds to a participant, showing the average number of selections they made
and the numbers of states or countries correctly included in their selections.

of the knowledge expressed by the participant. For example, the participant in panel A is

very confident in locating California, the participant in panel C is less confident (and wrong)

in locating the Democratic Republic of the Congo, and the participant in panel D has low

confidence in locating Uganda.

The presence of blue-yellow and white tiles indicates that the participant’s responses across

the two frames are not perfectly complementary. In panel A, the participant made logically

complementary selections for California, while in panel B the participant selected some states

neighboring California in both the present and absent frames. This suggests the participant

in panel B was less confident in the present than the absent frame. In contrast, the participant

in panel C is more confident in the present frame and less confident in the absent frame. The

participant in panel D is hard to characterize, since their present and absent frame responses

are quite inconsistent, with some countries selected in both framings and others selected

in neither. Participants rarely provided strictly complementary responses. On average,

participants provided 5.7 complementary responses in the US states condition and 2.0 per

country in the African countries condition. They had some overlap in 19.3 and 24.3 states

and countries, respectively. They selected some tiles in neither frame in 38.4 and 45.9 states

and countries, respectively.

Consistent with the task instructions, we measure a response as accurate if the target is
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Figure 1.4: Examples of aggregate crowd responses. The two left-most panels show the
unweighted proportion of participants who selected each state while targeting Iowa in the
present and absent frames, with darker red colors indicating greater proportions. The two
right-most panels show the unweighted and confidence-weighted proportion of participants
who selected each country while targeting Rwanda in the present frame.

included in the participant’s selections in the present frame or not included in their selection

in the absent frame, regardless of the size of the regions they selected. Figure 1.3 shows

the relationship between the number of states or countries selected and this measure of

participant accuracy. The four panels correspond to the US states and African countries

conditions and the present and absent frames. To allow direct comparisons between the two

frames, participant responses in the absent framing have been inverted so that they indicate

the states or countries the participant selected as including the target. This means that less

confident behavior now consistently corresponds to higher numbers of selections and more

confident behavior corresponds to lower numbers of selections.
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Figure 1.5: Individual participant and crowd performance in both conditions and both
frames. Blue crosses correspond to participant performance. Red curves correspond to un-
weighted and weighted crowd performance, showing the average number of selections made
and the numbers of states or countries correctly included.
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The striking feature of Figure 1.3 is that very few participants achieve high levels of accuracy.

This likely reflects both a lack of perfect knowledge and a failure to compensate by selecting

enough states or countries. In the present frame, participants selected an average of 5.2

states and 11.8 countries, correctly including an average of 25.5 states and 25.0 countries.

More selections are made in the absent frame, especially for US states. The average numbers

selected are 12.4 states and 26.8 countries. These expanded selections lead to greater average

accuracies of 33.8 states and 39.6 countries.

There is no reason, however, participants cannot achieve perfect accuracy in both frames.

In fact, this is what the task instructions require. A participant who has little relevant

geographical knowledge should select many of the states or countries in the present frame

and few in the absent frame. No participants were completely accurate in the US states

condition. The four participants who achieved complete accuracy in the African countries

condition did so in the absent frame by eliminating very few countries. The fact that most

participants achieve modest accuracy suggests that they are overconfident in their selections.

The explanation cannot be as simple as wanting to avoid effort, since the way to achieve

high accuracy in the absent frame is the least effortful. Most participants provide effortful

responses in the absent frame that still exhibit overconfidence.

1.4 The Wisdom of the Crowd

The simplest way to form an aggregate crowd judgment is to count the proportion of times

each state or country is selected by a participant. A more complicated method weighs the

individual selections according to their confidence. A natural measure of confidence is the

number of states or countries selected: that is, the number selected in the present frame and

the number not selected in the absent frame. For example, if a participant selects 10 states,

each of their selections will have 1/10th the value of a participant who just selected one
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state. Weighting individual judgments in this way implements the idea that more confident

participants should have more influence on the crowd judgment (Lyon & Pacuit, 2013).

Figure 1.4 demonstrates these two approaches to crowd aggregation using heat map visual-

izations. The states and countries are shaded according to the aggregated group proportions.

The left-most panels show the present and absent frames for the target state Iowa. It is clear

that the crowd selection is more concentrated (less disperse) in the present frame, consis-

tent with individuals making relatively fewer selections. The right-most panels show the

unweighted and confidence-weighted crowd judgments for the target country Rwanda. The

confidence-weighted aggregate is much more concentrated than the unweighted aggregate.

This is a natural consequence of giving less weight to each selection made by participants

who made many selections overall.

Crowd judgments are inherently graded and give a probability that each state or country

is the target, unlike individual judgments in which every state or country is either selected

or not selected. Accordingly, there is no natural single measure of crowd accuracy. Instead,

there is a set of measures, depending on where the graded responses are thresholded. A

simple way to set these thresholds is by ranking the probabilities and setting a threshold k

so that only states or countries in the top-k are considered to be selected by the crowd. For

example, if k = 1, the crowd response is the modal (most likely) state or country. In all four

of the illustrative examples in Figure 1.4, this response would be incorrect. As the threshold

is increased, to allow the top-two or top-three or more possibilities, the crowd will become

more accurate at the expense of making more selections.

Figure 1.5 superimposes crowd performance on the individual performance shown in Fig-

ure 1.3. The red curves correspond to crowd performance, starting with the modal response

and ranging to increased numbers of selections and accuracy (the non-integer values for selec-

tions are the result of ties in probabilities). These curves are shown for both the unweighted

and confidence-weighted crowds. Better performance corresponds to small numbers of selec-
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Figure 1.6: Wisdom of the crowd within performance for both conditions. Blue markers show
aggregate performance across both frames for individual participants with lines connecting
to their performance in each frame. The red curves show the the unweighted and confidence-
weighted crowd performance.

tions with high accuracy. The unweighted and confidence-weighted curves are very similar

in the US states condition but the weighted crowd clearly performs better in the African

countries condition, especially for the absent frame.

Comparing crowd and individual performance depends on how the goals of the task are

interpreted. A strict literal interpretation of the task is that perfect accuracy is required

using as few selections as possible. By this measure, the crowd outperforms every individual

because it is capable of perfect accuracy. Almost every participant in both frames fails to

achieve this. The unweighted crowd reaches perfect accuracy with 15.8, 11.7, 42.7, and 43.2

selections for US present, US absent, Africa present, and Africa absent cases, respectively,

while the confidence-weighted crowd needs 19.9, 11.1, 29.3. and 11.1 selections. It is clear

that the weighted crowd outperforms the unweighted crowds in the relatively low-knowledge

African countries condition.
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Figure 1.7: Performance of the crowd based on different numbers of individuals for both
conditions. Each curve corresponds to the performance of the confidence-weighted crowd,
including responses for both frames for crowds ranging from 2 to 50 individuals.

A less strict assessment of individual and crowd performance allows for less than perfect

accuracy while still requiring relatively few selections. Visually, this corresponds to being

at the top-left of the graphs shown in Figure 1.5. In the present frame of the US states

condition, there are two participants whose performance is above and to the left of the

crowd curve, and another three or four who are close. A similar result holds for the absent

frame. In the African countries condition, there is one participant who meets this criterion

in the present frame and none in the absent frame. A reasonable conclusion is that the crowd

aggregate is superior to at least 90% of participants in the US states condition and essentially

all participants in the African countries condition. For the vast majority of participants in all

conditions and frames, the crowd’s performance is both ordinally better and quantitatively

much better.
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1.5 The Wisdom of the Crowd Within

To examine the wisdom of the crowd within, we combined the selections made in the present

and absent frames by the same participant for the same target. We also created crowd

aggregate responses by combining the selections made by all of the participants in both

frames. Figure 1.6 shows the results of these analyses. The blue dots correspond to individual

participants, showing the average of the number of states or countries they selected over

both framings, and the accuracy of their crowd-within aggregate. Accuracy is measured in

terms of whether the correct state or country was selected in either the present or absent

framing. The blue lines connect the aggregate individual performance to performance for

just the present and absent frames separately (i.e., to the performance measures shown in

Figures 1.3 and 1.5). These wisdom of the crowd within aggregates allow us to evaluate how

perceptually similar participants treat the two structurally identical tasks as complementary

responses would be exactly overlaid in Figure 1.6.

By its construction, the crowd-within aggregate always involves as many or more states

or countries being selected as in the separate frames. Our interest is whether this increase

significantly improves accuracy. Visually, this corresponds to crowd-within performance that

shifts significantly upward without shifting far to the right. Figure 1.6 makes clear that, for

most of the participants in both conditions, the crowd-within aggregate leads to an increase

in accuracy. The mean increase in accuracy is 11.5 states and 17.9 countries. Much of this

improvement comes from the absent frame selections broadening the selections to include the

target as shown by the crowd-within aggregates moving diagonally toward the upper right

in Figure 1.6. There are also cases in which two relatively narrow selections in the frame are

combined to form an improved selection and where the crowd-within aggregates mainly shift

upward with little movement to the right. For example, for the best performing individual in

the US states condition, the crowd-within aggregate has perfect accuracy based on an average

of 6.8 states being selected. This individual’s crowd-within aggregate combined their present
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frame accuracy of 46 states, based on 6.0 selections, with their absent frame accuracy of 40

states, based on 5.0 selections. The crowd aggregation over both frames shown by the red

curves continues to be well performed.

1.6 Crowd Size

Given the clear wisdom of the crowd effect, an interesting follow-up question is how many

individuals are needed for effective crowd performance. Figure 1.7 shows the confidence-

weighted crowd-within responses averaged over many subsets of 2, 5, or 10 randomly selected

participants and the full crowd of 50 participants. The full crowd is the one considered

in Figure 1.6, which uses all of the participant and frame information about each target.

Both conditions show the same expected pattern of improved performance as the crowd size

increases. There is an especially large improvement as the crowd increases from the smallest

possible size of 2 to the still small size of 5. This pattern of initial quick improvement as the

crowd size first grows followed by a long period of more gradual improvement is consistent

with previous findings (Han & Budescu, 2019; Steegen et al., 2014; Vul & Pashler, 2008).

For the US states condition, a crowd size of 10 is almost as well performed as the full crowd.

For the African countries condition, the full crowd is clearly better performed than the

smaller crowds. We interpret this result as showing that the more difficult African countries

condition, about which participants had less knowledge, benefits more from incorporating

more participants to capture the more sparsely distributed knowledge.

1.7 Discussion

We studied spatial knowledge in an experiment that asked participants to select regions

on unlabeled tile maps to identify target US states or African countries. We asked for
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the knowledge to be expressed in two different ways, by framing the question in terms of

identifying regions in which the target was present or eliminating regions from which the

target was absent. Our first interest was in how people manage their uncertainty about

the spatial location of the target, and whether this is affected by the different frames. Our

second interest was whether wisdom of the crowd effects, including wisdom of the crowd

within, are present for spatial knowledge.

We found that participants were consistently overconfident in their management of uncer-

tainty, often to a very large degree. Many participants selected regions in the present frame

that were too narrow and failed to include more than half of the targets. They were also

overconfident in the absent frame, although to a lesser degree. The consistent pattern of

overconfidence in both frames eliminates simple explanations in terms of minimizing effort

and suggests that people are overconfident in their spatial knowledge. This sort of overcon-

fidence is consistent with classic findings from the judgment and decision-making literature

(Lichtenstein et al., 1982; Paese & Sniezek, 1991; Russo & Schoemaker, 1992; Welsh & Begg,

2018).

We also found strong wisdom of the crowd effects. Both unweighted and confidence-weighted

aggregate crowd judgments outperformed the vast majority of individual participants. This

was especially true for the more difficult African countries condition, suggesting most indi-

viduals have significant gaps in their knowledge but that collectively a crowd can perform

well. At the individual level, we found that combining judgments from the same partic-

ipants across both present and absent frames improved performance. A crowd aggregate

that combined all participants and both frames achieved very good performance in both

conditions. For the US states domain, a crowd of around 10 people proved enough to exhibit

good performance, but the lower-knowledge African countries domain benefited from larger

crowds.

Our results have implications both for understanding human cognition and practical appli-
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cations. It is important to understand why people are overconfident in the regions they

select, how robust this behavior is, and whether it can be mitigated. Future experiments

should consider other spatial knowledge domains and other methods for expressing spatial

knowledge, such as point estimates of locations or free-form selections of regions rather than

discrete choices on tile maps. It is also important to understand how framing effects inter-

act with the management of uncertainty. Our results suggest that the absent frame reduces

overconfidence, but this could arise from the nature of the task design, and more robust repli-

cation is needed. In terms of practical applications, the demonstration of strong wisdom of

the crowd effects holds promise for real-world problems like search and rescue (Breivik et al.,

2013; Lin et al., 2013), military targeting (Council, 2013; Qing & Fang, 2021), and other

problems where a spatial region needs to be identified based on human knowledge (e.g. Drew

et al., 2013; Fu et al., 2017, 2020; Krupinski, 2010; Lin et al., 2014).

Finally, future work should apply cognitive modeling methods to understand people’s behav-

ior and potentially improve the wisdom of the crowd. This approach has proved fruitful in

other cognitive domains including probability estimation, category learning, and sequential

decision making (Danileiko & Lee, 2018; Lee & Danileiko, 2014; Thomas et al., 2021). Mod-

eling how people select states and countries based on their knowledge should allow inferences

about parameters that correspond to their uncertainty and decision-making strategies. A

model-based approach to crowd aggregation may outperform the simple statistical methods

on which our wisdom of the crowd results are based.

1.8 Publication Note

This chapter was previously published as Montgomery, L.E., & Lee, M.D. (2022). The

wisdom of the crowd and framing effects in spatial knowledge. In J. Culbertson, A. Perfors,

H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the Annual Conference of the Cognitive
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Chapter 2

Where’s Waldo, Ohio? Using

Cognitive Models to Improve the

Aggregation of Spatial Knowledge

Abstract

We apply cognitive modeling to improve the wisdom of the crowd in a spatial knowledge

task. Participants provided point estimates for where 48 US cities are located and then,

using the point estimate as a center point, chose a radius large enough that they believed

the resulting circle was certain to contain the city’s location. Simple and radius-weighted

arithmetic averages of the individuals’ point estimates produced more accurate group answers

than the majority of individuals. These statistical aggregates, however, assume there are no

differences in individual expertise nor in the difficulty of locating different cities. Accordingly,

we develop a set of cognitive models to infer group estimates that make various assumptions

about individual expertise and differences in city difficulty. The model-based estimates

24



generally outperform the statistical averages. The models are especially accurate if they

allow for individual differences in expertise that can vary city by city. We replicate this

finding by applying the same cognitive models to data reported by Mayer & Heck (2023) in

which participants provided point estimates for the locations of European cities.

2.1 Introduction

The wisdom of the crowd is the idea that an aggregated judgment of a group of individuals

is often more accurate than the judgments of the individuals in the group (Davis-Stober

et al., 2014; Galton, 1907; Surowiecki, 2004). The basic premise is that crowd aggregation

helps to minimize individual variability and error, while at the same time isolating the

signal that contains the correct answer. The wisdom of the crowd has been broadly applied

to tasks relating to general knowledge (Bennett et al., 2018; Lee & Danileiko, 2014; Prelec

et al., 2017; Steyvers et al., 2009), forecasting or predictions (Butler et al., 2021; Himmelstein

et al., 2023; Da & Huang, 2019; Klugman, 1947), and collaborative decision making (Knight,

1921; Lyon & Pacuit, 2013; Shaw, 1932). The elicited estimates from these tasks take various

forms. Sometimes people give numerical answers, such as estimating when a historic event

occurred (e.g., Herzog & Hertwig, 2009; Keck & Tang, 2020; Larrick et al., 2007). Sometimes

people select between discrete options, such as choosing a country’s capital city from a set

of alternatives (e.g., Aydin et al., 2014; Simoiu et al., 2019). Sometimes people provide

rankings, such as ordering a set of weights from lightest to heaviest (e.g., Gordon, 1924) or

a list of cities from largest to smallest in terms of their population (e.g., Lee et al., 2014).

The wisdom of the crowd has also been applied to tasks that require spatial knowledge, such

as locating cities on a map (Mayer & Heck, 2023) or selecting regions that include a state or

country (Montgomery & Lee, 2022). Tasks like these involve making two-dimensional spatial

estimates, emphasizing that the wisdom of the crowd is not restricted to scalar estimates or
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discrete choices. Spatial tasks also emphasize that expertise can be more complicated than

a unidimensional measure of ability. It is reasonable to expect that people may be more

expert at locating cities in geographic regions that they are familiar with, but there is also

evidence that spatial estimates are affected by more abstract social and cultural categorical

knowledge that varies across people (Friedman et al., 2002a,b, 2005, 2012).

One way to address the challenges of multidimensional behavior and structured expertise is

to use cognitive models (see Lee, 2024, for an overview). The representational assumptions

made by cognitive models provide a basis for aggregating multidimensional behavior, and the

psychometric assumptions they make about individual differences provide a basis for inferring

and up-weighting expertise. Cognitive models have been successfully used in wisdom of the

crowd applications involving probability forecasts (Lee & Danileiko, 2014; Turner et al.,

2014), rankings (Lee et al., 2014), category learning (Danileiko & Lee, 2018), competitive

bidding (Lee et al., 2011b), combinatorial problem solving (Yi et al., 2012), and sequential

decision tasks (Thomas et al., 2021). In all of these applications, the model-based approach

forms crowd estimates without access to the ground truth or any other sort of normative

feedback. The idea is that, as part of modeling people’s observed behavior, the latent true

values assumed to be generating the behavior can be inferred. These inferences constitute

the model-based crowd estimates. Practically, because the model-based approach does not

require any knowledge of the ground truth, it can be applied to real world problems involving

spatial knowledge, such as search and rescue operations (Abi-Zeid & Frost, 2005; Lin &

Goodrich, 2010; Wysokiński et al., 2014).

In this article, we use a cognitive modeling approach to improve the wisdom of the crowd

aggregates for a spatial knowledge task similar to that developed by Mayer & Heck (2023). As

for their task, we ask participants to provide point estimates of city locations. In addition,

our task asks participants, starting at their point estimate, to extend a radius until they

are certain that the resulting circle contains the true location of the city. We begin by
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Figure 2.1: An example of a participant’s response. Their point estimate of where the city
is located is represented by the dark orange dot and their selected radius is represented by
the larger orange circle surrounding it.

providing a description of our experiment and summarize the performance of individuals

and statistical group aggregates. We then develop a series of cognitive models that make

different assumptions about individual expertise, city difficulty, and whether or not to use

the radius judgments. These models make many of the same assumptions as the Cultural

Consensus Theory model developed by Mayer & Heck (2023), but also extend their modeling

in key ways. We show that our model-based wisdom of the crowd estimates outperform the

statistical wisdom of the crowd estimates, and that our model findings generalize to Mayer &

Heck’s (2023) data. We conclude with a discussion of theoretical implications of our findings

for model-based wisdom of the crowd approaches, and the potential for applications.

2.2 Experimental Design

2.2.1 Experimental Interface

A screen shot of the experimental interface is shown in Figure 2.1. The interface displayed a

contiguous map centered on the continental USA. There were no boundaries to distinguish
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the countries (the USA, Canada, and Mexico) or the 48 US states from each other. The

interface was implemented using OpenStreetMap, a tiled web map with a geospatial data

scheme similar to other popular interfaces such as Google Maps. The map was set to a fixed

zoom level, and all methods of altering the zoom level, such as double-clicking or moving

the mouse wheel, were disabled. These restrictions were intended to simplify the task and

to standardize the correspondence between a participant’s motor movement and their level

of assumed uncertainty in specifying a radius.

2.2.2 Participants

A total of 50 participants were recruited on Prolific (www.prolific.co) to complete the

task. The youngest participant was 19, the oldest participant was 61, and the median age

was 32. All participants were current US residents who had attended high school in the USA.

They were each asked which US states they were familiar with, which was operationalized

as the states that they had lived in previously or visited frequently. All participants were

familiar with at least one state, and 27 participants reported being familiar with more than

one state. The maximum number of familiar states reported was 19.

2.2.3 Procedure

Participants were asked to estimate where a set of 48 cities, containing the most populous

city in each of the contiguous US states, were located. They began the task by watching a

3-min video demonstrating how to select a point on the map and indicate a radius around

it. The video emphasized that participants should select the initial point that represented

their “best estimate” of each city’s location before dragging their mouse outward to the

desired radius, stopping when they were certain that the city’s true location was within

the area of the circle. Participants were specifically told to “first make your best guess
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and expand your radius of uncertainty from there,” with the goal of “stopping when you’re

certain the location is within the area of your circle.” The full instructions can be found

in the supplementary material. Radius judgments were allowed to go beyond land borders

and encompass surrounding bodies of water. Figure 2.1 shows an example of a participant’s

response. The point estimate for the city’s location is shown by the dark orange dot, and

the judged radius generates the larger surrounding orange circle.

At the start of the task, all participants were given a practice trial in which they were

asked to locate San Francisco, California. Responses in this practice trial were not recorded.

Participants then completed the main task in which they provided a point estimate and

radius judgment for the 48 cities. The order of cities was randomized for each participant.

On each trial, participants could redo their point estimate and radius judgment as many

times as they liked before moving on to the next city. Only their most recent selection for

each city was recorded, and participants were not allowed to return to an earlier city. There

was no time constraint on individual trials, but the entire task had to be completed within

the allotted time on Prolific, which was 87 minutes. On average, participants took 23.5

minutes to complete the task and answer the demographic questions after having watched

the instructional video. Participants were not provided with any feedback on either the

practice trial or the main trials. We did not exclude any responses.

We normalized the latitude and longitude spatial estimates provided by the experimental

software to be consistent with the physical dimensions of the map in the interface, which was

approximately 2.44 times wider than it was tall. This means that x-axis and y-axis spatial

locations on the normalized scale took values between (0, 2.44) and (0, 1), respectively. The

experimental software provided radius judgments in terms of miles, which we converted into

degrees of latitude in the North direction to map them to the normalized scale. For both

the point estimates and radius judgments, we ignored the Earth’s curvature.
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2.3 Behavioral Analyses

2.3.1 Participant Performance

Given the true locations of the 48 cities and the point estimates and the radius judgments

provided by participants, we measured participant performance two different ways. The first

mean error measure considered how far away point estimates were from true locations, which

we calculated as the mean Euclidean distance on the normalized scale. The second accuracy

measure considered the proportion of circles around the point estimate that contained the

true location. Over all participants, the mean error was 0.13, the mean radius was 0.17,

and the resulting circles were correct 64% of the time. The two measures of performance—

mean error and accuracy—had a correlation of r = −0.54, meaning that participants with

better point estimates tended also to include the target cities in their circles. The correlation

between mean error and the mean radius judgment was r = 0.35, meaning that participants

with worse point estimates tended to express more uncertainty.

As examples of individual participant behavior, Figure 2.2 shows the performance of a rela-

tively well-performed and a relatively poorly-performed participant. Each city’s true location

is shown as a black square. A black line connects the true location to the point estimate of

the participant. The circles that surround the point estimates show the radius judgment of

the participant, and are color-coded so that an accurate response is blue and an inaccurate

response is red. The well-performed participant had a mean error of 0.033, provided an

average radius of 0.075, and their circles contained the true location 83% of the time. The

poorly-performed participant had a mean error of 0.18, provided an average radius of 0.14,

and their circles contained the true location only 33% of the time.
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Figure 2.2: The true locations of the 48 city locations compared with the estimated locations
for a well-performed (top) and poorly-performed (bottom) participant. The true locations
of the cities are shown by squares, and the error is shown by the line connecting the true
location to the participant’s point estimates. The circles generated by the point and radius
estimate are shown in blue if they contain the true location and in red if they do not.

2.3.2 Crowd Performance

We used the arithmetic mean and a weighted arithmetic mean as statistical wisdom of the

crowd estimates. The simple wisdom of the crowd estimate is the unweighted average of the

individual participants’ estimates: for city j, it is 1
n

∑i
n=1 yij, where yij is the point estimate

of participant i for city j. The weighted wisdom of the crowd estimate is a weighted average

of the individual participant estimates according to the area of the circle they provided: for

city j, it is 1
n

∑i
n=1

1
r2ij
yij, where rij is the radius judgment of participant i for city j. The

weighted wisdom of the crowd estimate puts more weight on the estimates of individuals

who provided a smaller radius judgment and thus identified a smaller possible area in which

the city could be located.

Figure 2.3 provides four examples of individual estimates producing crowd aggregate esti-

mates. These are Jacksonville in coral, Seattle in teal, Houston in lilac, and Boise in green.
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True Location

Simple WOC

Weighted WOC

Jacksonville, Florida

Boise, Idaho

Seattle, Washington

Houston, Texas

Figure 2.3: The 50 participants’ estimates for four cities: Jacksonville (coral), Boise (green),
Seattle (teal), and Houston (lilac). The city’s true location is shown as a square, the simple
wisdom of the crowd estimate is shown as a triangle, and the weighted wisdom of the crowd
estimate is shown as a circle.

For all four cities, the true target location is shown as a square, and the simple and weighted

crowd estimates are shown as triangles and circles, respectively. The crowd estimates are

generally closer to the true location of the city than most of the individual estimates. In

addition, the weighted wisdom of the crowd estimates tend to be closer to the target location

than the simple wisdom of the crowd estimates.

Comparing the four cities, Figure 2.3 demonstrates clear differences in how difficult different

cities were to locate. Jacksonville had a mean error across all participants of 0.079 and

was the city most often correctly contained in participants’ circles, with 86% accuracy.

Seattle had a mean error of 0.13, with 78% accuracy. Houston was slightly more difficult for

participants to locate. The mean error was 0.14, and accuracy was 68%. Boise was one of

the most difficult cities to locate with a mean error of 0.25 and only 28% accuracy.

The examples in Figure 2.3 provide the insight that cities may have different inherent dif-

ficulties, not just in relation to each other, but also in terms of differences in locating the

correct longitude versus latitude. Seattle appears to be easier for participants to locate than

Boise, and the uncertainty for Seattle seems to be approximately circular. Boise, in addition

to being more difficult, appears to be more difficult along its longitude than its latitude.
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This unequal difficulty results in the uncertainty for Boise across participants being ellip-

tical in shape. Jacksonville, in contrast, looks to be more difficult along its latitude than

longitude, likely because participants use the constraining geographic information provided

by the coastline of the peninsula.

2.4 Cognitive Models for Aggregating Estimates

A cognitive model of participant behavior in our task needs to consider both the point

estimates and radius judgments that the participants made. We describe the model of

behavior in terms of these two parts.

2.4.1 Model of Point Estimates

Our approach to modeling the point estimate uses several key features of the cognitive model

developed by Mayer & Heck (2023). We adopt the same basic assumption that the point

estimate yij is sampled from a bivariate Gaussian distribution centered on the latent true

location of the city, with a potentially tilted elliptical shape that represents the uncertainty

the participant has about the location. Formally, our model assumes that

yij ∼ bivariate Gaussian
(
µj,Σij), (2.1)

where µj is the unknown latent location of city j, and the uncertainty about its location is

captured by the covariance matrix Σij. The latent true location has both a longitude µj1
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and latitude µj2 with prior distributions that are uniform over the normalized scale:

µj1 ∼ uniform
(
0, 2.44

)
(2.2)

µj2 ∼ uniform
(
0, 1

)
. (2.3)

It is the inferences made by the model about these parameters from people’s data that

corresponds to the model-based wisdom of the crowd aggregate.

The covariance matrix Σij in Equation 2.1 is specified as

Σij =

 λ2
j1 + σ2

i + β2
ij ρj

√
λ2
j1 + σ2

i + β2
ij

√
λ2
j2 + σ2

i + β2
ij

ρj
√
λ2
j1 + σ2

i + β2
ij

√
λ2
j2 + σ2

i + β2
ij λ2

j2 + σ2
i + β2

ij

 ,(2.4)

which incorporates the overall expertise of individual i, σi, the city-specific expertise of

individual i for city j, βij, the difficulty of city j with respect to its longitude λj1 and

latitude λj2, and a correlation ρj. There are two expertise components included in the

covariance matrix: one for the individual’s overall expertise and one for their city-specific

expertise. The individual’s overall expertise σi is a measure of the average uncertainty they

have across all cities. Smaller values of σi correspond to reduced uncertainty and greater

expertise. The city-specific expertise βij provides an offset to the average uncertainty for

each city. It is modeled hierarchically with a mean of zero and variance ω2
i :

βij ∼ Gaussian+

(
0,

1

ω2
i

)
. (2.5)
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The model developed by Mayer & Heck (2023) similarly included individual expertise and

city difficulty components, but our introduction of a city-by-expertise component is new.

Restricting the model to just individual expertise corresponds to assuming that individuals

can be more or less expert than each other, but that an individual is equally expert for

all cities. Our motivation for including individual-by-city expertise is to allow individuals

to have some city-specific knowledge. The value of βij increases or decreases the average

expertise of individual i in the specific context of city j. Larger values of ωi mean that an

individual’s expertise differs more from city to city. We use diffuse priors on the individual

expertise and the variability in individual-by-city expertise parameters:

σi ∼ uniform
(
0, 1

)
(2.6)

ωi ∼ uniform
(
0, 1

)
. (2.7)

We divide a city’s difficulty into a longitude difficulty λj1 and latitude difficulty λj2. Separat-

ing a city’s difficulty into these two parts is based on the intuition, made clear in Figure 2.3,

that some cities are more difficult to locate along one of these dimensions. We assume that

these difficulties are hierarchically distributed, using diffuse priors:

λj1 ∼ Gaussian+

(
µλ1 , 1/σ

2
λ1

)
(2.8)

λj2 ∼ Gaussian+

(
µλ2 , 1/σ

2
λ2

)
(2.9)

µλ1 , µλ2 ∼ uniform
(
0, 2

)
(2.10)

σλ1 , σλ2 ∼ uniform
(
0, 1

)
. (2.11)

The correlation ρj completes the statistical representation of an uncertainty ellipse that can
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vary in orientation, and is also given a diffuse prior

ρj ∼ uniform
(
−1, 1

)
. (2.12)

2.4.2 Model of Radius Judgments

Mayer & Heck (2023) did not collect or attempt to model radius judgments, so this part of

our model is entirely new. The key assumption we make for the radius yrij is that it depends

both on the uncertainty ellipse and how a participant manages that uncertainty to produce

a circle that expresses their confidence. The variances of the ellipse are provided by the

diagonal elements of the covariance matrix in Equation 2.4. Given that the experimental

task constrained participants to use circles, it seems reasonable to assume radius judgments

were based on the largest standard deviation
√

max(λj)2 + σ2
i + β2

ij. We then assume that

there are individual differences in how participants manage their uncertainty using a scale

parameter αi for individual i. Formally, our model assumes that the radius judgment is

yrij ∼ Gaussian
(
αi

√
max(λj)2 + σ2

i + β2
ij, 1/τ

2). (2.13)

Thus, the scale parameter effectively corresponds to how many standard deviations, in the

direction of maximum uncertainty, participants use to determine their radius judgments.

The parameter τ measures the precision with which participants produce intended radius

judgments in the experimental interface. It is a measure of motor movement error and other

sources of noise, and is assumed to be common to all individuals on all trials. Both the
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uncertainty scaling αi and response noise τ parameters are given diffuse priors:

αi ∼ uniform
(
0,
√
2.442 + 12) (2.14)

τ ∼ uniform
(
0, 1

)
. (2.15)

2.4.3 Model Identifiability

The full cognitive model defined by Equations 2.1–2.15 defines a joint model of the point

estimate and radius judgments. To test whether the model is identifiable, especially given

the introduction of flexibility by allowing for individual-by-city expertise, we conducted a

simulation study. We created 50 artificial participants using the posterior means found

by applying the model to the participants in our task. The motivation was to make sure

the artificial participants had a realistic range of parameter values. We then simulated 50

experiments in which the model was used to generate artificial point estimates and radius

judgments for each participant and city. Finally, we applied the model to make inferences

from the simulated data. The inferences approximated the known generating values for all

parameters, both in the aggregate across experiments and (especially) by averaging over

experiments. The code, simulated data, and results associated with this parameter recovery

study can be found in the supplementary information.

We conclude from the successful parameter recovery that the model is identifiable. We

speculate that there are two main reasons for this. One is that most of the model’s key

parameters—individual expertise, individual-by-city expertise, and city difficulty—play a

role in making predictions about both the point estimates and radius judgments. This makes

the model constrained in terms of its joint prediction of the two different components of the

behavioral data. The second likely basis for identifiability lies in the constraints inherent in
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two-dimensional spatial judgments coming from the metric axioms that define distances in

the space.

2.4.4 Model Variants

The full model has three important features. The first is that expertise varies not only by

individual σi, but also by individual and city βij. The second is that each city has its own

difficulty λj that is specified in terms of separate longitude and latitude difficulties. The

third is that both the individual’s point estimate and their radius judgment are included.

Simplified models can be constructed by changing one or more of these features, and serve

to test whether or not the various features of the model contribute to good wisdom of the

crowd aggregation.

For expertise, we consider two simpler assumptions than the full model: that there are

no individual differences and all individuals have the same expertise σ or that there are

individual differences in expertise σi but individuals do not have a city-specific expertise. To

switch between the total of three different assumptions about expertise requires changing

Equations 2.4 and 2.13 to use either σ, σi, or σi and βij. For the assumption of no individual

differences in expertise, it is also necessary to remove Equations 2.5 and 2.7 and replace σi

in Equation 2.6 with σ. The assumption of no individual-by-city expertise requires removing

Equations 2.5 and 2.7.

For city difficulty, we consider the alternative assumption that city difficulty is still different

in terms of longitude and latitude, but that these difficulties no longer vary by city. Instead,

all cities share the same longitude difficulty λ1 and latitude difficulty λ2. To make these

assumptions, it is necessary to remove Equations 2.10–2.11 and adjust Equations 2.8–2.9.

Specifically, λj1 and λj2 in Equations 2.8–2.9 become λ1, λ2 ∼ uniform(0, 2).
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For radius judgments, we consider the possibility of only modeling the point estimates. This

requires removing Equations 2.13, 2.14, and 2.15. This specific form of the model can be

applied to data involving only point estimates, such as those collected by Mayer & Heck

(2023).

2.4.5 Model Implementation

Exhaustively combining the three assumptions about expertise, the two assumptions about

city difficulty, and whether or not the radius judgments are included produces 12 different

models. We implemented all of these models as graphical models in JAGS (Plummer, 2003)

to allow for fully Bayesian inference based on computational sampling approximation to the

joint posterior (Lee & Wagenmakers, 2014). Our results are based on six independent chains

each with 5000 samples, a burn-in of 1000 samples, and thinning the chains by retaining one

in every 4 samples. We evaluated the chains for convergence according to the standard R̂

(Brooks & Gelman, 1998) measure. JAGS and R code for the modeling analysis is available

in the supplementary information.

2.5 Results

2.5.1 Performance Results

Each of the 12 models makes a prediction about where each of the 48 cities are located.

These predictions are the inferences for the latent true location µj of the cities, and take the

form of a posterior distribution over the two-dimensional map. The posterior distribution

quantifies how likely it is that every location on the map is the true location of a city, based

on the observed estimates people made for the city, and the cognitive modeling assumptions
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Figure 2.4: The main panel shows the distribution of individual mean error in yellow and the
mean error of statistical and model-based crowd aggregates by vertical lines. The posterior
distribution for the best-performing model’s mean error is shown in blue. The vertical bars
in the inset panel provide a magnified view of the performance of model-based and statistical
estimates, with color coding to indicate the assumption each model makes about expertise.

about how they produced those estimates. As emphasized above, these inferences are made

without access to the ground truth. Once the inferences have been made, however, it is

possible to measure their performance by comparing them to the true locations of the cities.

The posterior distribution can be used to construct a posterior distribution of the error of

the model. A convenient simpler point estimate measure of error is the distance between the

posterior mean and the true city location.

The main panel of Figure 2.4 shows how the wisdom of the crowd estimates for the various

models compare to individual performance and the performance of statistical aggregates.

The mean error of the individuals are shown as a yellow histogram. The mean error of the
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statistical wisdom of the crowd estimates, and two of the model-based estimates, are shown

as vertical lines. The best-performing model assumes that there is individual expertise that

varies across cities and includes the radius judgments, and has point estimates that are on

average 0.040 from the true locations of the cities. This model’s full posterior distribution

of mean error is shown in light blue. There is evidence of a wisdom of the crowd effect,

because all of the statistical and model-based crowd estimates outperform the majority of

individuals in the crowd. There is further evidence that model-based estimates outperform

statistical estimates in aggregating individual knowledge.

The inset bar plot in Figure 2.4 compares the different wisdom of the crowd estimates to each

other, focusing on the restricted range of mean error in which they all lie. The two statistical

wisdom of the crowd estimates are the simple wisdom of the crowd estimate in orange and

weighted wisdom of the crowd estimate in maroon. The other 12 lines correspond to the

12 cognitive models. The lines are labeled according to how they incorporate expertise,

city difficulty, and the radius judgments. The line color corresponds to how the model

incorporates expertise: gray lines indicate that the model assumed no individual differences

in expertise, light blue lines indicate that the model assumed individual differences, and

dark blue lines indicate that the model assumed individual differences that vary by city. The

models that allow for individual expertise outperform the models that assume expertise is

constant across participants, and generally, the models that include the individual-by-city

expertise perform better than models with just individual expertise. Further interpretation

of these results may not generalize beyond this data set, but we think that the pattern of

results suggests that assumptions about expertise affect the performance of crowd estimates.

Our results also suggest that there may be some trade-off between including the radius

judgments and assuming individual-by-city expertise, so that models with either tend to do

better than models without.
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2.5.2 Parameter Results

Our main focus in evaluating the cognitive models is on predictive accuracy, but a different

way to use the models is as measurement models. The parameters correspond to meaningful

psychological properties like expertise, uncertainty management, and city difficulty. Fig-

ure 2.5 shows the inferences about key parameters from the full model for all participants,

and how they relate to basic behavioral measures. In all of the panels, the model parameters

are represented by their posterior mean and their 95% credible interval. The correlations

between the model parameters and their corresponding behavioral measures are provided in

the bottom-right-hand corner of each panel.

The two panels in the top row of Figure 2.5 focus on the expertise and uncertainty man-

agement of individuals. The top-left panel compares the model’s inferences of individual

expertise σi to the behavioral measure of performance provided by the mean error of an

individual’s point estimates. Individuals with smaller errors had smaller σi, consistent with

greater expertise. We emphasize again that the model was not provided information about

the cities’ true locations, so the correlation of σi with performance shows that the model is

genuinely able to predict the relative expertise of individuals. The top-right panel compares

model inferences about an individual’s management of uncertainty αi with their average

radius. Individuals inferred to express more of their latent uncertainty gave larger average

radius judgments.

The two panels in the bottom row focus on the cities instead of individuals. The bottom-left

panel compares the model’s inferred maximum city difficulty across longitude and latitude,

maxλj, to a behavioral measure of city accuracy. This measure was calculated in the same

manner as individual accuracy. Instead of measuring how far a particular individual’s es-

timates were from the true locations, we measured how far on average the estimates for a

particular city across individuals were from the city’s true location. Cities that were inferred
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Figure 2.5: The relationship between parameter values and behavioral measures of individual
differences in terms of expertise and uncertainty, and city differences in terms of difficulty.
See main text for details.
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Figure 2.6: A visualization of inferred maximum city difficulty. Circles are located on the
true locations of the cities. Cities inferred to be less difficult are in bright green, and cities
inferred to be more difficult are in bright red.

to be easier to locate had smaller mean errors, while cities that were inferred to be harder to

locate had larger mean errors. Once again, because the model is not provided with ground

truth information, these are predictions about relative city difficulty. The bottom-right panel

compares the inferred city difficulty to the average radius size for that city. Cities that were

more difficult had larger average radius sizes.

The results in Figure 2.5 show that the key model parameters of expertise, uncertainty

management, and city difficulty correlate well with conceptually related behavioral measures.

Figure 2.6 demonstrates one way that these parameters can be used for interpretation. It

shows the inferred difficulties of the cities, ranging from the most difficult in bright red to

the easiest in bright green. The cities on the east and west coasts were generally inferred to

be less difficult than those that were more centrally located.

Figure 2.5 does not include a comparison of the city-specific expertise βij with a behav-

ioral measure. Of the experimental data we collected, the most likely candidate is the

individual’s familiarity with different states. Using the self-reported familiarity information,

we compared the distribution of individual-by-city expertise for cities that were in familiar

states with cities that were in unfamiliar states. These distributions were extremely similar,

and had a mean difference of only 0.005. Accordingly, it seems that individual-by-city exper-

tise, as incorporated in our model, is sensitive to some other information than self-reported
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familiarity.

2.5.3 Application to Mayer & Heck (2023)

To evaluate the replicability and generalizability of our findings, we applied the same cogni-

tive models to the data set collected by Mayer & Heck (2023). Mayer & Heck (2023) had 228

participants provide point estimates for 57 European cities on seven different maps of Austria

and Switzerland, France, Italy, Spain and Portugal, the UK, Eastern Europe, and Germany.

We followed Mayer & Heck (2023) in excluding participants who gave point estimates that

were outside the countries of interest for more than 10% of the cities. Participants were not

asked to provide radius judgments, so we only applied the models using point estimates. We

tested the six models that exhaustively combined the three assumptions about expertise and

the two assumptions about city difficulty.

We also compared our model’s performance with the model developed by Mayer & Heck

(2023). Their model was inspired by the Cultural Consensus Theory model for two-dimensional

judgments known as CCT-2D (Anders et al., 2014; Romney et al., 1986). Cultural Consen-

sus Theory was developed in cultural anthropology as a model of crowd consensus in the

absence of ground truths. A simple example is a society agreeing that the number 13 is

unlucky. We think that Mayer & Heck’s (2023) application of Cultural Consensus Theory to

the location of cities, which have objective ground truths, reduces to a model-based wisdom

of the crowd approach. Because of its CCT-2D foundations, there are a few differences in

the details of Mayer & Heck’s (2023) cognitive model when compared to ours, related to the

scales on which parameters are defined and the priors they are subsequently given. However,

at its heart, their model assumes that individuals possess some cultural competence, which

we think of as synonymous with individual expertise in this context, and that items have

variable difficulty in two different dimensions. We think that this makes the CCT-2D model
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Figure 2.7: Analysis of Mayer & Heck’s (2023) data. The main panel shows the distribution
of individual mean error in yellow and the mean error of statistical and model-based estimates
by vertical lines. The posterior distribution for the best-performing model’s mean error is
shown in blue. The vertical lines in the inset panel provide a magnified view of the mean
error of model-based and statistical estimates, with color coding to indicate the assumption
each model makes about expertise.

conceptually the same as our model that assumes individual expertise and allows for city

difficulty, but does not allow for individual-by-city expertise or incorporate radius judgments.

The performance of our models and the Mayer & Heck (2023) model are shown in Figure 2.7.

The simple wisdom of the crowd estimate again outperforms the majority of individuals

demonstrating that there is a wisdom of the crowd effect. The best-performing model allows

for individual-by-city expertise, but assumes cities have equal difficulty. Its inferred city

location point estimates have a mean error of 0.077 from the true locations of the cities.

The second-best model additionally allows for variable city difficulty. Overall, the model-

based wisdom of the crowd estimates improve as the expertise assumption changes from

having no individual differences to having individual differences and then finally to individual

differences that also vary by city. The models that assume no individual differences in
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expertise perform very similarly to the simple statistical wisdom of the crowd estimate.

These modeling results replicate the key finding from our experiment by showing improved

performance by allowing individual-by-city expertise. For both data sets, it generally ap-

pears that the models allowing for individual-by-city expertise but not variable city difficulty

perform the best. The application to Mayer & Heck’s (2023) data also underscores the point

that our modeling approach can infer expertise based only on the point estimates of city

locations. Finally, it is interesting to note that the Mayer & Heck (2023) model performed

slightly better than our model that made the same psychological assumptions, presumably

due to their different priors.

2.6 Discussion

We found a wisdom of the crowd effect in the spatial estimation problem of locating cities.

Statistical aggregates of people’s estimates outperformed most individual estimates. We

also found that cognitive models can outperform both the simple and weighted statistical

aggregations. Model-based estimates improved the wisdom of the crowd estimates primarily

because they allowed for differences in individual expertise. We also found a consistent but

smaller improvement associated with allowing for individual-by-city expertise in addition to

individual expertise.

Most previous cognitive models used to find the wisdom of the crowd have assumed that

expertise is a stable property of the individual across all of the items in the domain being

judged (e.g. Lee & Danileiko, 2014; Lee et al., 2012, 2014; Mayer & Heck, 2023). Our findings

suggest this assumption could be too simple. Conceptually, allowing people to have different

levels of expertise for different items changes the emphasis on how the wisdom of the crowd is

achieved. For the wisdom of the crowd effect, Lee (2024) distinguishes between a signal and
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noise mechanism that relies on aggregating judgments to amplify common signal and cancel

noise, and a jigsaw puzzle mechanism that relies on diversity in knowledge so that different

people provide accurate answers to different subsets of a problem. The use of individual-by-

city expertise recognizes this diversity and allows the weight of an individual’s estimate to

be different for different cities. We do not yet, however, have a good account of how and why

expertise varies across items. The basic hypothesis that for city locations people’s expertise

is related to their self-reported familiarity with those cities was not supported by our data.

Expertise has been explored before in the wisdom of the crowd literature. Others have

investigated how smaller select crowds of experts can be more accurate than larger ones

(Mannes et al., 2014; Olsson & Loveday, 2015) and found ways of identifying those with

more relative expertise within the crowd (Budescu & Chen, 2014; Goldstein et al., 2014).

Smaller select crowd performance has also compared different crowd compositions, like those

of novices or experts (Fiechter & Kornell, 2021), and into the specific conditions that must

be met for smaller select crowds to be more accurate (Davis-Stober et al., 2014, 2015).

Most of this research, however, has also viewed expertise as a relatively stable personal

trait. Future work should explore structured context-dependent accounts of expertise. Our

modeling allowed for individual-by-city expertise, but lacked a theory to understand how

and why expertise varied. One possible approach is to use hierarchical representations of

expertise in terms of general and specific abilities, of the type that form the foundation

of psychometric studies of cognitive abilities (Deary, 2020; McGrew, 2009). There are also

structural accounts of expertise within specific domains that could be especially useful in

the wisdom of the crowd context (e.g., Schvaneveldt et al., 1985).

Future work could also explore other sorts of spatial estimation tasks. For example, our task

restricted people to providing circles to represent their spatial knowledge. This simplifies

the task and the analysis, but it would be interesting to allow people to draw free-form

shapes that could better express their knowledge. We also provided simple instructions of
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extending a circle until people were confident they had included the city. It would be possible

to be more precise, and ask people (for example) to be 95% certain, although findings on

the calibration of probability judgments suggest that people may not be able to do this

well, since they are often overconfident (Hora, 2004; Keren, 1991; Lichtenstein et al., 1977;

Ronis & Yates, 1987; Wallsten et al., 1993). Bigger variations on the basic task are also

possible. For example, Montgomery & Lee (2022) asked participants to select a region on a

map, instead of a point estimate and radius. The task also required manipulating the way

the spatial knowledge question was framed, by asking participants either to select a region

that included the target or select all the regions that did not include the target. Thus, for

example, participants were asked to select as few US states as as possible an unlabeled map

so that Ohio was included in the selection, or as many states as possible without including

Ohio. A model-based wisdom of the crowd approach thus would need to understand how the

question framing affected the participant’s management of their uncertainty about Ohio’s

location. The extra complexity required in modeling people’s behavior, however, has the

benefit of allowing multiple estimates to be collected from the same individual, consistent

with the wisdom-of-the-crowds-within effect (Herzog & Hertwig, 2014; Vul & Pashler, 2008).

Spatial knowledge provides an interesting application of the cognitive modeling approach

to the wisdom of the crowd. Our modeling analysis suggests that expertise is best treated

as multidimensional, and demands a representation that allows for people’s expertise to

vary across the spatial domain. This finding emphasizes that the wisdom of the crowd is

not just a statistical consequence of reducing noise by sampling many people, but also a

psychological consequence of incorporating enough people in a crowd to capture a diverse

range of knowledge. It seems likely that cognitive modeling approaches to the wisdom of

the crowd in other settings will benefit from allowing this diversity in their representations

of individual differences.
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Chapter 3

The Wisdom of the Crowd with

Partial Rankings: A Bayesian

Approach Implementing the

Thurstone Model in JAGS

Abstract

We develop a Bayesian method for aggregating partial ranking data using the Thurstone

model. Our implementation is a JAGS graphical model that allows each individual to rank

any subset of items, and provides an inference about the latent true ranking of the items

and the relative expertise of each individual. We demonstrate the method by analyzing data

from new experiments that collected partial ranking data. In one experiment, participants

were assigned subsets of items to rank; in the other experiment, participants could choose

how many and which items they ranked. We show that our method works effectively for
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both sorts of partial ranking in applications to US city populations and the chronology of

US presidents. We discuss the potential of the method for studying the wisdom of the crowd

and other research problems that require aggregating incomplete or partial rankings.

3.1 Introduction

The wisdom of the crowd is the idea that an aggregated judgment of a group of individuals is

often more accurate than the judgments of the individuals in the group (Davis-Stober et al.,

2014; Galton, 1907; Surowiecki, 2004). The wisdom of the crowd is most often applied to

continuous estimates or discrete choices, but has also been considered for ranking data (Lee

et al., 2014).

Ranking or ordering is a common form of data in psychology, and provides a simple but

informative way for people to express their knowledge. In the wisdom of the crowd setting,

rankings have been used in the psychophysical task of aggregating people’s perception of the

weights of objects (Gordon, 1924). Rankings have been used to aggregate factual knowledge,

such as people’s ability to provide correct orders for domains like river lengths, city popu-

lations, and the ten commandments (Lee et al., 2011a, 2014), or to test people’s ability to

order items correctly in the NASA survival task (Hamada et al., 2020). Rankings have been

used to aggregate people’s episodic knowledge of event sequences (Steyvers et al., 2009).

Finally, rankings have been used to aggregate people’s predictions, such as the end-of-season

order of sporting teams, the elimination sequence of contestants on a game show (Lee et al.,

2011a, 2014), or the box-office success of movies (Selker et al., 2017).

A number of these wisdom of the crowds applications to ranking data have relied on the Thur-

stone cognitive model (e.g., Lee et al., 2011a, 2014; Selker et al., 2017; Steyvers et al., 2009).

One common feature of all of these applications is that they involve complete rankings. Ev-
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ery individual is required to provide a ranking that includes every item under consideration.

Thurstone models, however, are capable of considering partial or incomplete information.

The original applications of the model to subjective perception of physical proximal stim-

uli (Thurstone, 1927a) and socially consensus opinions about offenses (Thurstone, 1927b)

were both based on only pairwise judgments ranking two items. More recently, Böckenholt

(1993, Section 9.1) developed general approaches for applying the Thurstone model to par-

tial rankings, and Böckenholt (1992) presented an analysis to partial rankings of soft drink

preferences.

The ability of the Thurstone model to deal with partial rankings seems especially useful in

wisdom of the crowd applications. Consider three potential applications. The first involves

the episodic memory eyewitnesses have for the sequence of events involved in a crime. Be-

cause of their vantage point, each eyewitness is able to provide a ranking of only the subset

of events that they saw. The goal is to aggregate the partial rankings of the eyewitnesses

to determine the overall true sequence of all of the events. The second potential application

involves a set of sporting scouts evaluating potential players. Because each scout is limited

to a geographical area or specializes in a specific type of player, they each evaluate only a

subset of the players. The goal is to aggregate the partial rankings to form an overall ranking

of the players on which to base recruitment decisions. The third potential application was

introduced by Lee et al. (2015) and involves factual knowledge, such as identifying the top

ten athletes in terms of personal wealth. It involves the situation in which people are not

provided with a list of items, but must recall candidate items from memory. Because recall

is be imperfect, different people’s rankings will be based on different underlying subsets of

the items, and thus their rankings need to be treated as being incomplete. The goal is to

account for the failures of recall in aggregating the rankings.

These applications highlight two possible advantages of using partial rather than complete

rankings. The first is to reduce the demand on peoples’ time and effort. If there are a large
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number of items, it becomes difficult for people to provide complete rankings. The second

advantage is that there is evidence that allowing people to contribute only the knowledge

they are confident about can lead to better wisdom of the crowd performance. Kameda

et al.’s (2022) review of information aggregation and collective intelligence argues that “opt-

in and opt-out behavioral mechanisms can promote collective intelligence further in both

consensus and combined decision making through capitalizing on individual heterogeneity in

knowledge, skills and ability” (p. 354). As a specific example, in the context of true-or-false

trivia questions, Bennett et al. (2018) show that crowd aggregates are more accurate when

participants are allowed to “volunteer judgments” by selecting which questions they answer.

Given these potential applications and possible advantages, this article presents an approach

to aggregating partial ranking to study the wisdom of the crowd. The approach relies on a

Bayesian implementation of the Thurstone model, implemented using the JAGS graphical

modeling language (Plummer, 2003). Previous work applying the Thurstone model to partial

rankings (e.g., Böckenholt, 1992; Böckenholt, 1993) has not used Bayesian inference methods,

and previous work using the Thurstone model with Bayesian methods (e.g., Johnson & Kuhn,

2013; Lee et al., 2014) has not involved applications to partial ranking data.

The structure of the remainder of this article is as follows. In the next section, we describe

the basic assumptions of the Thurstone model of ranking, including its application to partial

ranking data. We then consider applications to two different wisdom of the crowd prob-

lems: one involving the ranking the populations of ten US cities, and the other involving

the chronological ordering of the first 44 US presidents. For both domains, we summarize

previous result based on complete rankings, and present results based on new experiments

using partial rankings. We consider two different methods for collecting partial rankings.

One involves the experimenter selecting the subset of items each person ranks. The other al-

lows the person to choose how many and which items they rank. We show that our Bayesian

implementation of the Thurstone model applies naturally to aggregate both sorts of partial

54



latent ground truth

person 1

Observed Ranking

person 2

Observed Ranking

person 3

Observed Ranking

Figure 3.1: Conceptual representation of the Thurstone model applied to partial rankings.

data. We conclude with a discussion of how our approach raises, and can help answer, wis-

dom of the crowd research questions for situations in which people do not rank all of the

items in a domain.
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3.2 Thurstone Model for Partial Ranking

3.2.1 Model Assumptions

Figure 3.1 provides an overview of the assumptions of the Thurstone model as it applies to

partial ranking data. The core assumption is that each item that can be ranked has a latent

true location on an underlying unidimensional representation. In Figure 3.1, an example

with five items is shown, and their latent grounds truths are represented by the parameters

µ1, . . . , µ5. The model assumes that each person knows the ground truth with some level

of precision and, when asked to rank the item, draws mental samples representing their

momentary understanding of each item with respect to the criterion. People’s rankings are

then determined by the ranking of the mental samples.

In Figure 3.1, Person 1 ranks only the first, second, and fifth items. Their mental samples,

x11, x21, and x51 are drawn from Gaussian distributions centered on the ground truths µ1,

µ2, and µ5, with a standard deviation σ1 that quantifies the precision of their knowledge.

Formally, this means that

xji = Gaussian
(
µj,

1

σ2
i

)
, (3.1)

where the Gaussian distribution is parameterized in terms of its mean and precision. The

order of the mental samples for Person 1 is x11 < x21 < x51, which leads to the observed

partial ranking y1 = (1, 2, 5). Person 2 ranks only the second and third items. Because

x22 < x32 their observed ranking is y2 = (2, 3). Person 3 ranks all but the second item.

Because x13 < x33 < x53 < x43 their observed ranking is y3 = (1, 3, 5, 4). The standard

deviation σi can be interpreted as a measure of the expertise of the ith person: the smaller

the standard deviation, the more likely it is the mental samples will be close to the ground

truth. Figure 3.1 shows that σ2 < σ1 < σ3, which means that Person 2 is relatively more
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expert than Person 1, but Person 3 is relatively less expert than both.

The Thurstone model does not provide an account of which items a person includes in their

partial ranking. The strength of the model is its ability to make inferences about the ground

truths µ of the items and expertise σ of the individuals for any collection of partial rankings.

The representational assumptions of the model, coupled with the simple decision processes

assumed to generate rankings, provide a scaffolding that allows partial ranking data to be

analyzed. Formally, the Thurstone model provides the likelihood p (y | µ,σ). Together with

priors on µ and σ, this allows Bayesian inferences to be made about the posterior p (µ,σ | y).

The posterior inferences for µ correspond to the wisdom-of-the-crowd aggregate ranking, and

the posterior inferences for σ correspond to measures of individual expertise.

The priors on µ and σ need to incorporate identifiability constraints. The same ranking

data would be produced under translation and scaling of the underlying unidimensional

representational. One way to impose constraints is allow initial uniform priors and then

zero-center by requiring
∑

µj = 0 and unit-normalize by requiring ⟨σ⟩ = 1.

3.2.2 Model Implementation

Bayesian inference for Thurstone models generally requires computational methods based on

Markov-chain Monte Carlo sampling. Custom samplers and libraries have been developed in

computer science and statistics (e.g., Giles et al., 2018; Li et al., 2022), often with the ability

to incorporate covariates relating to the expertise of individuals or the difficulties of items.

Within psychology, Johnson & Kuhn (2013) pioneered a simpler implementation approach

relying on the high-level graphical modeling language JAGS (Plummer, 2003).

A key assumption of the Thurstone model is that the order of the mental samples determines

the rankings. This is an example of the statistical concept of censoring. JAGS implements
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censoring effectively through the use of its dinterval function. The general form of the

dinterval function is yk = dinterval
(
xk, b

)
, where b = (b1, . . . , bm) is a vector of bounds

that determine the mapping from the latent values in x to the censored observation. This

means that

yk =



0 if xk ≤ b1

1 if b1 < xk ≤ b2

· · ·

m− 1 if bm−1 < xk ≤ bm

m if bm < xk.

(3.2)

The dinterval function returns a lowest value of 0 for the first-ranked item. Ranking

data, however, are usually represented as starting at rank 1. One way to accommodate this

mismatch is to provide ranking data that start at 0 to the JAGS model.

The JAGS implementation developed by Johnson & Kuhn (2013), and used by others (e.g.,

Lee et al., 2014; Selker et al., 2017), applies dinterval and requires the separate calculation

of the bounds for each position in a ranking, with placeholders below and above the first-

and last-ranked items. A more direct use of dinterval was introduced by Lee & Ke (2022)

in the context of modeling preferences in top-k lists. This approach uses the relevant mental

samples themselves as the bounds, by sorting the mental samples:

yk = dinterval
(
xk, sort (x)

)
. (3.3)

In this formulation, the mental sample xk is required to be in ranked position yk among the

mental samples. JAGS is able to make this joint censored inference, in which the mental
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sample for the current sample is constrained by bounds that correspond to other unknown

mental samples.

To accommodate partial rankings, we extend this approach further by introducing an ob-

served subset s that lists the items considered by the partial ranking. This leads to

yk = dinterval
(
xsk , sort (xs)

)
. (3.4)

The following JAGS script implements the Thurstone model for partial ranking data, in

which nPeople consider a total of nItems and produce a total of nRankings. This allows

for the same person to produce more than one ranking. The person who produced the

ith ranking is person[i] and this partial ranking is given by y[i,]. The subset of items

considered in this ranking is recorded in set[i,] and the number of items in the subset is

setN[i]. The latent representation of the jth item is mu[j], and the expertise of the ith

person is sigma[i]. The observed inputs to the script are nPeople, nItems, nRankings,

person, set, setN, and y. The parameters to be monitored are mu and sigma.
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model{

# Latent truth

for (j in 1: nItems ){

muTmp[j] ~ dunif ( -100 ,100)

mu[j] = muTmp[j] - mean(muTmp)

}

# Expertise

for (i in 1: nPeople ){

sigmaTmp[i] ~ dunif (0,1)

sigma[i] = sigmaTmp[i]/mean(sigmaTmp)

}

# Data

for (i in 1: nRankings ){

for (j in 1: nItems ){

x[i,j] ~ dnorm(mu[j],1/sigma[person[i]]^2)

}

for (j in 1:setN[i]){

y[i,set[i,j]] ~ dinterval(x[i,set[i,j]],sort(x[i,set[i,1: setN[i]]]))

}

}

}
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3.2.3 Concrete Example

As a concrete example of applying the model, consider the simple situation with three people

and five items shown in Figure 3.1. The inputs to the model are

nPeople = 3

nItems = 5

nRankings = 3

person =

[
1 2 3

]

y =


1 2 − − 3

− 1 2 − −

1 − 2 4 3



subset =


1 2 5 −

2 3 − −

1 3 4 5


setN =

[
3 2 4

]
.

Note that the data in y are of the form that the entry in the jth column indicates the position

in the partial ranking that the jth item was placed. The − entries are needed to pad the

y and subset matrices. These are implemented as missing, not available, or not-a-number

values depending on the software being used to call JAGS.

All of the computational applications of the model reported in this article used eight chains.

Most applications used 1000 burnin samples followed by 10,000 collected samples per chain,

thinning by recording every 5th sample. The application to 194 partial rankings of the 44 US

presidents required an additional 1000 samples burnin, and additional thinning by recording
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every 100th sample. With these settings, chains were observed to converge, based on visual

inspection and the R̂ statistic (Brooks & Gelman, 1998).

3.3 Application to US Cities Populations

Our first application of the model involves people’s rankings of the population of ten US

cities: New York, Los Angeles, Chicago, Houston, Phoenix, Philadelphia, San Antonia, San

Diego, Dallas, and San Jose. We first summarize previously-published results involving com-

plete rankings, then consider results for new experimental data involving both experimenter-

selected and individual-selected approaches to partial rankings.

3.3.1 Complete Ranking

Lee et al. (2014) applied the Thurstone model to complete ranking data, in which every

participant ranked every item. In one of their tasks, they had 142 participants provide a

complete ranking of ten US city populations. Participants completed this task online using a

drag and drop interface. The modeling results are shown in Lee et al. (2014, Figure 4). The

key measure of wisdom the crowd performance is the difference between the model-inferred

ranking and the true ordering. Lee et al. (2014) use Kendall’s τ as a measure of performance.

Kendall’s τ counts the number of pairwise swaps needed to convert one ranking into another

(Kendall, 1938; van Doorn et al., 2021). It provides an error measure, with τ = 0 indicating

a perfect estimate, and greater values of τ indicating successively less accurate estimates.

Lee et al. (2014) report that the Thurstone model wisdom-of-the-crowd aggregate for the

cities based on complete rankings has τ = 8.

Lee et al. (2014) also report a predictive correlation between the Thurstone model’s inferences

about individual expertise and observed individual performance. Expertise is measured by
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Table 3.1: The six different subsets of the ten US cities used to collect experimenter-selected
partial rankings. Each participant was given just one subset, and provided a ranking of all
six US cities in their subset.

Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6

New York New York Chicago Los Angeles New York New York
Los Angeles Los Angeles Houston Houston Chicago Houston
Phoenix Chicago Philadelphia Phoenix Houston Phoenix
Philadelphia San Antonio San Antonio San Diego Phoenix San Antonio
Dallas Dallas San Diego Dallas San Antonio Dallas
San Jose San Jose San Jose San Jose San Diego San Jose

the posterior of the σi parameter for each participant, and the accuracy of their observed

rankings is again measured by Kendall’s τ . Since σi is a standard deviation on the preci-

sion of mental samples, smaller values correspond to greater expertise. Similarly, smaller

Kendall’s τ values correspond to greater accuracy. Lee et al. (2014) report a correlation of

r = 0.79 between the individuals’ inferred expertise and their accuracy, meaning that partic-

ipants inferred to be more expert tend to provide more accurate rankings. Lee et al. (2014)

emphasize that this result genuinely involves predictions about expertise and performance,

since the model never has access to the ground truth, and hence has no information about

participant performance.

3.3.2 Experimenter-Selected Partial Ranking

Participants

A total of 62 participants were recruited on Prolific (www.prolific.com). All of the Prolific

participants were US citizens. Their median age was 32 years.
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Figure 3.2: The main panel shows the model’s inferred marginal posterior distributions for
the µj of each city, based on experimenter-selected partial rankings. The inset panel shows
the relationship across participants between their inferred expertise, as measured by the
posterior mean of σi, and their observed accuracy, as measured by Kendall’s τ .

Procedure

Participants provided rankings for one of six different subsets, each of which contained six

cities. The six subsets were constructed beforehand and are listed in Table 3.1. They

were chosen at random, subject to two constraints. Each city needed to occur in at least

two subsets, and every pair of cities needed to occur together in at least one subset. The

task was completed online using the “Rank Order” question type provided by Qualtrics

(www.qualtrics.com). Due to an experimenter error, one subset was completed by twelve

participants while the other five had ten participants.
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Figure 3.3: Screenshots of the Qualtrics interface for the US city population task in the
individual-selected partial ranking experiment. The left panel shows the initial state of the
interface. The right panel shows an illustrative participant response.

Results

The results of applying the Thurstone model to the partial ranking data are show in Fig-

ure 3.2. The ten cities are ordered top to bottom in terms of their population from largest

to smallest. The violin plots show the marginal posterior distributions of the ground truth

µj for each city. The model’s inferred ranking is determined by the means of these posterior

distributions: New York, Los Angeles, Chicago, San Diego, Houston, Dallas, Philadelphia,

San Antonio, Phoenix, and San Jose. This wisdom-of-the-crowd aggregate ranking is τ = 9

pairwise swaps from the true ordering. The inset scatter plot in Figure 3.2 compares inferred

individual expertise to performance, and shows a correlation of r = 0.70.
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3.3.3 Individual-Selected Partial Ranking

Participants

A total of 194 undergraduate students in a psychology class at the University of California

Irvine participated for class credit.

Procedure

Participants provided partial rankings in a setting in which they could choose how many and

which cities they ranked. The left panel of Figure 3.3 provides an example of the Qualtrics

interface, developed using the “Pick, Group, & Rank” question type. Participants were

required to drag and drop all ten items into either the ranked or unranked box. They were

asked to rank a minimum of two items, but otherwise only rank the items that they were

confident they could rank correctly. The right panel of Figure 3.3 provides an illustrative

participant response in which New York, Dallas, Philadelphia and Houston are ranked, in

that order, but the other six cities are not ranked.

Results

Figure 3.4 orders participants from left to right in terms of how many cities they ranked,

and the cities in terms of the true order of their population from top to bottom. The blue

lines in the main axes denote the cities that a participant ranked. The right margin bar

graph shows how often each city was ranked. Some cities, like New York and Los Angeles,

were ranked more often than others. The top margin bar graph shows how many cities each

participant ranked, beginning with ten and ending with two. Green bars indicate correct

rankings with τ = 0, while yellow bars indicate incorrect rankings with τ > 0. The top
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Figure 3.4: The main axes shows participants ordered from left to right according to how
many cities they ranked, and the cities’ true population ordering from top to bottom. The
blue lines in the main axes denote the cities a participant ranked. The right margin bar
graph shows how often every city was ranked. The top margin bar graph shows how many
cities a participant ranked. Green and yellow bars indicate correct and incorrect rankings.
The top margin with crosses shows the τ measure for each participant.
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Figure 3.5: The main panel shows the model’s inferred marginal posterior distributions for
the µj of each city, based on individual-selected partial rankings. The inset panel shows
the relationship across participants between their inferred expertise, as measured by the
posterior mean of σi, and their observed accuracy, as measured by Kendall’s τ .

margin with crosses shows the τ error measure for each participant.

The Thurstone model results for the individual-selected partial rankings are shown in Fig-

ure 3.5. The wisdom-of-the-crowd aggregate ranking is τ = 7 pairwise swaps from the true

ordering, and a correlation of r = 0.70 between the individuals’ inferred expertise and their

accuracy.

The results of the Thurstone model with both the experimenter-selected and individual-

selected partial rankings are very similar to the results based on complete rankings. It does

not make sense to compare the three sets of results closely, because they do not come from

a within-participants design, and the numbers of participant and recruitment populations
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are very different. The results do suggest, however, that partial ranking data can allow the

Thurstone model to make similarly accurate inferences as complete ranking data about the

wisdom-of-the-crowd aggregate and individual expertise.

3.4 Application to US Presidents Chronology

Our second application of the model involves people’s rankings of the chronological order

of the first 44 US presidents. This provides a test of the ability of our approach to scale

to larger domains. Once again, we first summarize previously-published results involving

complete rankings, before considering new experimental data using experimenter-selected

and individual-selected partial rankings.

3.4.1 Complete Ranking

Lee et al. (2014) asked 26 participants to rank the first 44 US presidents in chronological

order. These participants ranked the presidents in person using physical cards. Lee et al.

(2014, Figure 3) report that the Thurstone model wisdom-of-the-crowd aggregate ranking is

τ = 37 pairwise swaps from the true ordering, and a correlation of r = 0.95 between inferred

individuals’ expertise and their observed performance.

3.4.2 Experimenter-Selected Partial Ranking

Participants

The same 62 Prolific participants who did US cities experimenter-selected partial ranking

task completed the US presidents experimenter-selected partial ranking task.
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Figure 3.6: Subsets of 44 US presidents based on time period (top row) or political party
affiliation (bottom row). Time period divided the presidents into seven subsets, while polit-
ical affiliation divided them into three subsets.

Procedure

There are various ways in which experimenter-selected partial ranking tasks can be con-

structed. The US cities task generated random overlapping subsets with the same number

of items. For some ranking tasks, however, there may be more meaningful ways to construct

subsets. The US presidents can be naturally grouped in terms of different time periods

(“founding fathers,” “civil war reconstruction,” and so on) or in terms of party affiliation

(“Democratic,” “Republican,” or “other”). These natural groupings may target the diver-

sity of niche expertise that different people have, and improve the knowledge provided by

individuals. We appealed to this motivation for the experimenter-selected partial rankings

of the presidents.

Participants completed either the time period or party affiliation condition. Figure 3.6 shows

the subsets for each of the two conditions. The time period condition grouped the presidents

into seven subsets, while the party affiliation condition grouped them into three subsets.

Participants in both conditions considered all 44 presidents, but they did so by ranking the

presidents within each of the subsets for their condition, completing one subset at a time.
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This approach is one in which the same person provides multiple partial rankings. The data

were again collected using the “Rank Order” question type provided by Qualtrics.

Results

The Thurstone model results for the experimenter-selected partial ranking tasks are shown

in Figure 3.7. The wisdom-of-the-crowd aggregate ranking is τ = 55 pairwise swaps from

the true ordering, and a correlation of r = 0.79 between the individuals’ inferred expertise

and their accuracy.

3.4.3 Individual-Selected Partial Ranking

Participants

The same 194 undergraduate students who did the US cities individual-selected partial rank-

ing task completed the US presidents individual-selected partial ranking task.

Procedure

Participants provided partial rankings for this task in an identical fashion to the US cities

individual-selected partial rankings task. Using the “Pick, Group, & Rank” question type

on Qualtrics, they dragged all 44 presidents into either the ranked or unranked box. They

were required to rank a minimum of two items, and beyond that add only the items they

were confident they could correctly include in their ranking.
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Figure 3.7: The main panel shows the model’s inferred marginal posterior distributions for
the µj of each city, based on experimenter-selected partial rankings. The inset panel shows
the relationship across participants between their inferred expertise, as measured by the
posterior mean of σi, and their observed accuracy, as measured by Kendall’s τ .
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Figure 3.8: The main axes shows participants ordered from left to right according to how
many presidents they ranked, and the presidents’ true ordering from top to bottom. The
blue lines in the main axes denote the presidents a participant ranked. The right margin bar
graph shows how often every president was ranked. The top margin bar graph shows how
many presidents a participant ranked. Green and yellow bars indicate correct and incorrect
rankings. The top margin with crosses shows the τ measure for each participant.
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Results

Figure 3.8 provides greater detail about how individual participants ranked the presidents.

Some presidents like George Washington, Abraham Lincoln, and Barack Obama were in-

cluded in almost all participants’ rankings, while other presidents like Chester Arthur and

Millard Fillmore appeared infrequently. Only eight participants chose to rank all of the

presidents. The median number of presidents ranked is 14, and 90% of participants ranked

fewer than 26 presidents.

The Thurstone model results for the individual-selected partial rankings are presented in

Figure 3.9. The wisdom-of-the-crowd aggregate ranking is τ = 2 pairwise swaps from the

true ordering, and a correlation of r = 0.85 between the individuals’ inferred expertise and

their accuracy.

In this application, the results of the Thurstone model with individual-selected partial rank-

ings are impressively accurate, and significant better than the experimenter-selected and

complete rankings. Of course, there are still important differences in the participant pools,

and the larger number of participants for individual-selected partial rankings may explain

some or all of the improvement. The results do, however, provide an encouraging example

of the potential of individual-selected partial rankings.

3.5 Discussion

The two applications demonstrate that our JAGS implementation of the Thurstone model

can be applied to partial ranking data. This capability allows a number of problems related to

the wisdom of the crowd to be studied. One central question is the relative merits of collecting

complete rankings versus some form of partial ranking. Our applications considered both

experimenter-selected and individual-selected partial rankings. In the experimenter-selected
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Figure 3.9: The main panel shows the model’s inferred marginal posterior distributions for
the µj of each president, based on individual-selected partial rankings. The inset panel
shows the relationship across participants between their inferred expertise, as measured by
the posterior mean of σi, and their observed accuracy, as measured by Kendall’s τ .
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situation, how the subsets should be chosen is an interesting research question. In the

individual-selected situation, what instructions people should be given in terms of balancing

their completeness and accuracy is also an interesting research question.

A more ambitious extension involves allowing the same person to choose and rank multiple,

possibly overlapping, subsets. For example, a person may be uncertain whether New York

or Los Angeles has the greater population, and be uncertain whether Houston or Chicago

has the greater population, but nonetheless be certain both of the first pair have greater

populations than both of the second pair, and also be that certain all four cities have greater

populations than Philadelphia. This knowledge could be expressed in four partial rankings:

New York > Houston > Philadelphia, New York > Chicago > Philadelphia, Los Angeles

> Houston > Philadelphia, and Los Angeles > Chicago > Philadelphia. To accommodate

this extension, the JAGS implementation has to allow for there to be more partial rankings

than people, and to apply the person-specific expertise σi to every ranking from the same

person. These are straightforward extensions and a script implementing the multiple partial

rankings situation is provided in the supplementary information.

Another research question is whether the use of the Thurstone model-based method improves

wisdom-of-the-crowd aggregates over statistical methods. For complete rankings, there is

evidence that the Thurstone approach improves on Borda aggregation (e.g., Lee et al., 2011a,

2014). This occurs because the model’s inferences about relative expertise allow it to give

greater weight to experts, in distinction to the Borda count which weights all individuals

equally. Various modified Borda count and other statistical aggregation methods have been

develop for partial rankings (Chen et al., 2022; Goddard, 1983; Herrero & Villar, 2021;

Ju et al., 2015). It would be interesting to compare the performance of model-based and

statistical aggregates systematically and thoroughly. As we mentioned, the results of the

individual-selected partial rankings for the US presidents are very encouraging.

Several of our motivating examples for partial ranking aggregation involved real-world prob-
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lems like eyewitness testimony and sport scouting. A feature of our approach is that it can,

in principle, accommodate any number of people, items, and any pattern with which those

people partially rank the items. This is important for naturally occurring data associated

with real-world problems that lack experimental control. The use of Bayesian methods are

particularly important in this regard. There are many possibilities in which there has to be

significant uncertainty about the aggregate ranking, and coherent Bayesian representation

of that uncertainty is required. As a simple example, consider a situation in which one

set of scouts ranks players from one team, and a different set of scouts ranks players from

another team. These partial rankings will provide information for within-team aggregation,

but there is no information for between-team comparison of players. The result from our

method would be a joint posterior over the µ parameters that captured this uncertainty,

providing posterior mass to every possible between-team combination consistent with the

within-team rankings.

The Bayesian framework also allows the introduction of informative priors (Lee & Vanpaemel,

2018). One possibility in wisdom-of-the-crowd ranking applications is to use priors based on

logical constraints. For example, in eyewitness event reconstruction, order-restricted priors

could be placed on µ to force logically connected events to follow the required sequence. Alt-

mann (2003) considers examples like this from people’s memory of events on September 11.

For example, a World Trade Center tower falling can only happen after it was hit by a plane.

Order constraints on the appropriate µ parameters formalize this logic, and allow the model

to infer the remainder of the sequence from people’s ranking judgments.

Another extension would be to incorporate covariate information about people or items. This

approach has been pioneered by Johnson & Kuhn (2013). It is likely to be especially useful

in the context of real-world applications. It would allow, for example, the inferred expertise

of scouts to be regressed on their years of experience, or the expertise of eyewitnesses to be

regressed on assessments of the acuity of their vision or the reliability of their memory.
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Finally, Thurstone partial rankings could be applied beyond wisdom-of-the-crowd settings.

Lee & Ke (2022) use top-k variants to explore the structure of people’s preferences. These

no longer have a ground truth, but inferences about the underlying ranking corresponds to

something like a cultural consensus (Anders & Batchelder, 2015; Romney et al., 1987). As

a concrete example, consider the lists of “Good Reads” provided by book lovers. These are

partial rankings of all possible books. They are not the top-k lists considered by Lee & Ke

(2022), because a top-k list would require every possible book to be considered. Instead,

they are partial rankings based on the subset of books an individual person has read (or

otherwise decides to consider in constructing their ranking). This is exactly the type of

partial ranking structure that our model can aggregate.

Ranking data are a ubiquitous way by which people express knowledge and an important case

for studying the wisdom of the crowd. In many situations, it is impractical or undesirable

for people to rank all of the items being considered. In this article, we have developed,

implemented, and demonstrated a Bayesian method for using the Thurstone to aggregate

partial rankings. We hope it serves as a useful tool for studying and applying the wisdom

of the crowd.

3.6 Publication Note

This chapter has been submitted has a manuscript for publication.
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CONCLUSION

The central focus of this dissertation is on preserving and better capturing the diversity

present in the crowd. This is done by using cognitive modeling that considers contextualized

expertise and by using different task designs to gather more informed or multiple estimates

from the individuals within the crowd. The two applications that I use to illustrate these

points are a task that requires spatial knowledge, Chapters 1 and 2, and a subset ranking

task, Chapter 3. This work complements the existing discussion in the literature about how

to construct a better crowd. All three chapters discuss ways of collecting multiple estimates

from the same individual, and, with the exception of Chapter 2, how the wisdom of the

crowd estimates can be further compared to wisdom of the crowd within estimates. I see

this work as proof of concept for how to use the wisdom of the crowd within in conjunction

with cognitive modeling to produce improved wisdom of the crowd estimates.

Simply asking a participant for a single estimates or just getting one value from them does

not necessarily allow them to express their knowledge fully. Chapter 1 explores how asking

participants for the same information in different frames may allow for them to break the

information they know into component parts. I found that there was a framing effect:

participants responded more conservatively in the absent frame than they did in the present

frame. By constructing the task to take advantage of this framing effect, a participant

can supply multiple estimates, and these estimates can then be used to generate wisdom

of the crowd within estimates. Chapter 2 has participants supply two different types of
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estimates that get at different ways of expressing where they think a particular US city is

located. Participants were asked to give a point estimate and a region that the city should

be contained in. These two measures gave different ways to evaluate their performance and

accuracy, while also evaluating whether the wisdom of the crowd estimates improved by using

one or both of these measures. I further explored whether collecting additional demographic

information about the states they were familiar with was helpful in better contextualizing

their expertise. While this was not the case, it may be that asking participants what states

they were familiar with in a more explicit fashion (i.e., “What states have you lived in within

the last five years?”) would be more helpful in shining light on why the individual-by-city

expertise was a helpful parameter to include in the cognitive model. Chapter 3 provides a

framework for how eliciting different rankings from the same individual can be accounted for

using a cognitive model. The complete and experimenter-selected rankings were intentionally

constructed so as to get rankings that exhaustively compared the items, and a concern of

using the individual-selected partial rankings was that the model’s performance would be

impacted by having incomplete pairwise comparisons. However, this was not the case; the

model’s ranking for the 44 US presidents only required 2 pairwise swaps to get to the true

ordering. Thus, it appears that the Thurstone cognitive model is robust in dealing with the

missing pairwise comparisons.

Whether in the context of spatial knowledge or ranking tasks, eliciting multiple estimates

from the same individual makes questions about expertise all the more interesting. An

unsurprising and general result from Chapter 1 was that participants found the US states

condition was easier than the African countries condition. Extending this result from the

condition-level to that of the item-level, the work in Chapter 2 more specifically addresses

how item difficulty might specifically impact spatial knowledge. The cognitive model de-

scribed in Chapter 2 has a multivariate distribution with a covariance matrix. Its covariance

matrix in Equation 2.4 has three components in its variance. These terms correspond to the

city’s difficulty, an individual’s overall expertise, and an individual-by-city expertise. The
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results from comparing the various cognitive model-based wisdom of the crowd estimates

demonstrate that there is some trade-off between including or excluding these terms. Gen-

erally though, the model-based estimates improve when individual expertise is considered.

There is not a clear result about how city difficulty and individual-by-city expertise interact

from the two datasets analyzed. Our hypothesis was that the individual-by-city difficulty

and the city difficulty might have some relation with the demographic information about

how familiar individuals were with particular states. There was not much difference between

the posterior means of the individual-by-city expertise, βij, when separated by which cities

were within familiar states and which were not. In all, we were unable to determine exactly

what is responsible for why including these parameters improves the model-based wisdom of

the crowd estimates with the data that we have from participants. We think that a useful

analysis to answer this question might instead consider how these parameters interact with

geographic constraints or population density. Cities closer to the coasts appear to be less dif-

ficult, which could be due to how those cities and states have obvious boundaries on one side

or that participants in general had more knowledge about locations with larger populations.

Another consideration to make is how the multiple estimates from the same individual should

be combined. Wisdom of the crowd within performs the best when the estimates from the

individuals are as independent as possible (Herzog & Hertwig, 2009; Vul & Pashler, 2008).

One way to do this is to manipulate the way the question is being asked, as was done in

Chapter 1. Instead of asking the same question at different times or having participants

combine estimates themselves, we focused on having participants answer a question in dif-

ferent ways. From the research on the framing effect, it is known that participants do not

treat responses to inclusion and exclusion frames equivalently. Participants tend to be risk

seeking in their responses when asked in an inclusion framework, and risk averse in the

exclusion framework. Thus, for the tile map selection task in Chapter 1, we were able to

elicit a framing effect by using the present and absent framings, comparable to the inclusion

and exclusion framings, which can be seen in the behavioral analyses for this chapter. The
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experimenter-selected partial ranking task in Chapter 3 similarly had participants rank US

presidents by time period or political party affiliation. For ranking tasks like these, how-

ever, we thought that participants being able to select the items they ranked would most

improve their responses. Bennett et al. (2018) and Kameda et al. (2022) found and argue

that allowing participants to opt-in or “volunteer” responses leads to greater accuracy in

their responses by better facilitating nuanced individual responses.

Taken together, these results provide insight into how to increase or preserve diversity in

the wisdom of the crowd. Diversity was introduced as the information that an individual

uniquely knows, and to capture this information requires considering how to elicit varied esti-

mates from individuals that better encapsulates what they think and believe. Furthermore,

diversity also refers to how to best leverage individual expertise and upweight those who

know more. Cognitive modeling is invaluable in accomplishing this as the models discussed

in Chapters 2 and 3 have latent parameters related to individual expertise embedded within

them.

The obvious future steps for this work would be developing a cognitive model for Chapter 1

and comparing the model-based wisdom of the crowd and model-based wisdom of the crowd

within estimates. The cognitive model from this task will probably be conceptually similar

to our cognitive model in Chapter 2 (see Montgomery et al., 2024) and Mayer & Heck

(2023)’s two-dimensional cultural consensus theory cognitive model. Another interesting

expansion of Chapter 3 would be to have participants supply multiple participant-selected

partial rankings of the same data set.
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