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Exposure to early life adversity has long term consequences on cognitive

function. Most research has focused on understanding components of

early life adversities that contribute to later risk, including poverty, trauma,

maltreatment, and neglect. Whereas these factors, in the aggregate, explain

a significant proportion of emotional and cognitive problems, there are

serious gaps in our ability to identify potential mechanisms by which early

life adversities might promote vulnerability or resilience. Here we discuss early

life exposure to unpredictable signals from the caretaker as an understudied

type of adversity that is amenable to prevention and intervention. We employ

a translational approach to discover underlying neurobiological mechanisms

by which early life exposure to unpredictable signals sculpts the developing

brain. First, we review evidence that exposure to unpredictable signals from

the parent during sensitive periods impacts development of neural circuits.

Second, we describe a method for characterizing early life patterns of

sensory signals across species. Third, we present published and original
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data illustrating that patterns of maternal care predict memory function in

humans, non-human primates, and rodents. Finally, implications are discussed

for identifying individuals at risk so that early preventive-intervention can

be provided.

KEYWORDS

unpredictability, stress, early adversity, memory, development, cognition, parental
care, monkeys

I Unpredictable parental signals
and neural circuit development

Cognitive health and vulnerabilities involve an interplay
of genes and environment, especially during sensitive
developmental periods. Cognitive functions are a result of the
development and maturation of underlying brain circuits. These
circuits, built of neurons and neuronal ensembles, are connected
via synapses, and perform the complex computational tasks
underlying specific brain functions. During early life, immature
circuits are sculpted as certain synaptic connections are
strengthened because of their activation, and others are
eliminated. For sensory circuits supporting vision and hearing,
it is established that patterns of sensory signals are required
for their maturation (Wiesel and Hubel, 1963; Khazipov
et al., 2004; Hackett et al., 2011; Espinosa and Stryker, 2012;
Singh-Taylor et al., 2018a; Takesian et al., 2018). Light patterns
for example, drive normative maturation of circuits within the
visual system and disruption of these patterns leads to deficits in
visual function (Espinosa and Stryker, 2012). Further, patterns
of maternal auditory signals in maternal speech have been
shown to affect functional connectivity in neonatal language
neurocircuits (Uchida-Ota et al., 2019). These studies establish
the importance of patterns of sensory information for neural
circuit formation (Davis et al., 2017; Birnie and Baram, 2022).
During the sensitive period of infancy, sensory signals come
predominantly from the parent and as documented by classic
work in non-human primates (Harlow, 1964; Harlow et al.,
1965) and rodents (Denenberg and Karas, 1959; Denenberg
and Bell, 1960; Levinek, 1967; Hofer, 1970, 1973; Hennessy
et al., 1980), parental sensory signals are critical for infant
development. Across species, the enduring impact of quality
of parental care (e.g., sensitivity, responsiveness) is known
(Bowlby, 1950; Ainsworth et al., 1978; Feldman, 2007, 2015;
Landers and Sullivan, 2012; Beebe et al., 2016; Howell et al.,
2017). However, much less is understood regarding the role
of sequences and patterns of parental sensory signals during
sensitive periods. Based on evidence supporting the importance
of patterns of sensory signals for sensory circuit formation
and the primacy of parental signals, evaluation of the impact

of patterns of parental sensory signals on higher order circuit
development, such as those involved in memory, reward, or
stress, is warranted (Baram et al., 2012; Davis et al., 2017; Glynn
and Baram, 2019; Noroña-Zhou et al., 2020; Birnie and Baram,
2022).

Infants are exposed to a variety of sensory information
(i.e., auditory, tactile, and visual), primarily from their parents.
The information may be patterned or sequential (e.g., a parent
may regularly follow an auditory signal with simultaneous
auditory and visual signals), or it may be inconsistent and
without order (e.g., a parent may follow an auditory signal
with various unpredictable sensory signals). We have developed
an approach to quantify unpredictability across species by
computing entropy rates. These define the degree to which one
can deduce the next parental behavior from the most recent
behavior, providing an index of the predictability of sensory
signals from mother to her infant/pup. We have reported that
the predictability of sensory signals early in life, characterized
by entropy, associates with cognitive and emotional outcomes
later in development (Davis et al., 2017; Glynn et al., 2018).

Emerging evidence demonstrates that early exposure to
unpredictable patterns of maternal signals (high entropy)
correlates with mental development (Davis et al., 2017) and
stress regulation, (Noroña-Zhou et al., 2020) as well as the ability
to regulate behavior, cognition, and emotion in children from
1 to 9 years of age (Davis et al., 2019). The links between
exposure to unpredictable signals and later outcomes were
observed in independent cohorts, from California, USA and
Turku, Finland with very different backgrounds and cultures,
and persisted after accounting for parental mental health,
socioeconomic status, and maternal sensitivity, indicating the
robustness of the links with unpredictability (Davis et al., 2019).
Further, sequences of parental signals are predictive of the
maturation of child brain circuits. Unpredictability early in
life altered the balanced development of two temporo-frontal
projections, the uncinate fasciculus and the cingulum, assessed
with diffusion tensor imaging (DTI), and aberrant development
of these two regions contributed to performance on a memory
task. Specifically, imbalance between the uncinate fasciculus
and the cingulum partially mediated the association between
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exposure to unpredictable signals during infancy and poor
memory performance on a delayed object recognition task
during childhood (Granger et al., 2021). Importantly, these
effects of unpredictable parental signals on brain and behavior
are independent of key previously established predictors
of development including sensitivity and responsiveness of
parental care, parental mental health, and socioeconomic factors
(e.g., income, education, etc.), underscoring the importance of
patterns of unpredictability in shaping the immature brain.

Controlled mouse and rat studies bolster human research
by illustrating the causal role of unpredictability in shaping
subsequent outcomes. In such preclinical studies, unpredictable
patterns of dam behaviors during interactions with the
pup directly led to aberrant memory and emotional circuit
maturation and function in the offspring (Molet et al.,
2016a; Bolton et al., 2018, 2020, 2022). For example, in the
hypothalamus, a key node of the stress circuit, unpredictable
patterns of maternal care behaviors influence synaptic
connectivity (Korosi et al., 2010; Gunn et al., 2013; Singh-
Taylor et al., 2018b) by attenuating microglial synaptic pruning
(Bolton et al., 2022). Further, the same unpredictable maternal
behavior sequences led to impoverished apical dendritic trees in
hippocampal pyramidal cells and such disrupted hippocampal
neuronal structure are associated with memory disfunction
(Molet et al., 2016a). These experimental findings underscore
the role of unpredictable patterns of parental signals on shaping
neural circuit development.

II Characterizing unpredictable
parental signals across species

Growing evidence supports the importance of patterns of
parental sensory signals on brain development across species.
We have applied the same basic approach of characterizing
unpredictability is used across species, with the major
differences having to do with the specific sensory signals that
are assessed and the appropriate developmental epoch for the
assessments. Entropy is a concept associated with randomness
that arises throughout science from the study of heat and
other forms of energy, where it was initially introduced to
the study of the mechanics of interacting particles and the
transmission of information. We apply it in this latter sense,
using definitions provided by Shannon (Vegetabile et al., 2019)
to characterize the predictability of the next word or symbol to
be transmitted over a communication channel. The entropy rate
of a sequence, of parental behaviors or signals in our case, is a
quantitative measure of the randomness or unpredictability of
the next observation in the sequence. Below we provide details
for computation of entropy rate to characterize unpredictability
and we then, using the example of memory, illustrate the way
that unpredictability impacts cognitive function in humans,
monkeys, and mice.

A. Unpredictable parental signals:
Humans

Unpredictability of sensory inputs (visual, tactile, and
auditory) are derived from observations of mothers interacting
with their children in a semi-structured 10-min play episode
(NICHD, 2001). During these play interactions, mothers are
given a standard set of age-appropriate toys. Maternal behaviors
which provide auditory (A; e.g., any speech or laughter), visual
(V; e.g., showing a toy while the child is attending to the toy),
or tactile (T; e.g., touching or holding the child) signals to the
child are coded continuously in real time by coders who are
blinded to all other participant characteristics with 20% of the
videos coded independently for interrater reliability. Details of
the coding scheme are available in Davis et al. (2017) and at
https://contecenter.uci.edu/. From the 3 coded types of sensory
signals (auditory, tactile and visual) there are 8 categories of
sensory input the mother can provide at any point in time; these
include only auditory, tactile, or visual stimuli, any combination
of two (e.g., auditory and tactile), all three of these signals
(auditory, tactile and visual) at the same time, or no input.
The timeseries of each mother’s signals, example shown in
Figure 1, is used to create a matrix of transition probabilities,
with each entry in the matrix capturing the proportion of the
time that the mother transitions from providing the signal
identified by the row (e.g., visual) to providing the signal
identified by the column (e.g., auditory and visual at the same
time) (Figure 1). An entropy rate is then calculated using the
approach described in the appendix with R code available.1

The entropy rate of the process (as defined, e.g., in Cover and
Thomas (2006)) measures the randomness and unpredictability
of the distribution of transitions with higher values indicating
less predictable maternal signals. Computation and applications
of the entropy rate estimates are described in more detail in
Vegetabile et al. (2019) and in the Supplementary material.
The entropy rate is stable within a given mother-child play
session (entropy derived from the first and second half of a
10-min play period have correlation 0.5) and across sessions
from when the infant is 6–12 months of age (Vegetabile et al.,
2019).

B. Unpredictable parental signals:
Non-human primates

Unpredictable maternal signals in the monkeys were
assessed using a process very similar to our work with humans.
Interactions of mother and infant were observed for 4 days
in the third month post birth for 30 min per day. Based on
developmental age, 3 months in the monkey is most analogous

1 https://contecenter.uci.edu/

Frontiers in Behavioral Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.960262
https://contecenter.uci.edu/
https://contecenter.uci.edu/
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-16-960262 October 15, 2022 Time: 15:8 # 4

Davis et al. 10.3389/fnbeh.2022.960262

FIGURE 1

Calculation of entropy rate in humans: This time series shows the eight possible states for one example mother given the three types of sensory
signals. This timeseries is then used to compute a transitional probability matrix. This matrix shows the percent of times a mother transitions
from one state to another. For example, as shown in the probability matrix, 79% of the time when this mother was providing auditory and tactile
at the same time, she then transitions to providing only tactile.

FIGURE 2

Calculation of entropy rate in monkeys: This time series illustrates the four possible states for one example mother. This timeseries is then used
to compute a transitional probability matrix. This matrix shows the percent of times a mother transitions from one state to another.

to the data from 12-month-old infants in humans and was the
data used here (Mattison and Vaughan, 2017). The maternal
behaviors identified and recorded focus on the presence and
type of contact between the mother and their infant. Coded
maternal behaviors that provide signals to the infant are contact
(contact other than ventral) (C), ventral contact (V), proximity
to the infant (P), and not in contact at all (NC). Sequences
of the 4 possible contact-related behaviors were recorded
for each period, concatenated to provide a time series (see
Figure 2), the matrix of transition probabilities calculated (see

Figure 2), and the entropy rate computed as described above for
humans.

C. Unpredictable parental signals:
Rodents

Unpredictability of maternal behavior for rats and mice was
assessed using the same basic approach as for the humans and
non-human primates. Interactions between the dam and her
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pups were observed during postnatal days 2 through 7 for 250-
min periods per day. The maternal behaviors that are the source
of sensory signals to the pups were nursing (N), licking and
grooming (LG), carrying pups (C), eating/drinking (E), off the
nest (O), nest-building (NB) and self-grooming (SG) (Molet
et al., 2016b). The data from the observation periods were
concatenated into a single time series (see Figure 3). The matrix
of transition probabilities was calculated (see Figure 3) and the
entropy rate was computed as described above for humans.

III Unpredictable parental signals
and cognition cross-species

The approach we have described to characterizing
unpredictable parental signals using entropy rate provides
a novel technique that can be used to test the impact of patterns
of moment-to moment parental signals on the developing
brain. Leveraging research with human infants and children
highlighting the importance of patterns of moment-to-moment
signals and combining this research with translational studies
in non-human primates and rodents provides: (1) support
for evolutionarily-conserved processes that link patterns of
maternal signals to infants and children’s development of
learning/memory and emotional regulation brain systems,
and (2) mechanistic insight into novel processes by which
sequences of parental signals shape the organization of the
developing brain. This approach provides an opportunity to
identify systems that are susceptible to exposure to early life
unpredictability. We test here the link between unpredictable
patterns of sensory signals from the parent to the infant on
memory development, in humans, monkeys, rats and mice.

A. Unpredictable parental signals and
memory function: Humans

We have previously shown that exposure to unpredictable
maternal signals during infancy (high entropy rate at 6
and 12 months) predicted poorer recall memory, (Davis
et al., 2017) assessed using a delayed recall memory task
(Sheslow and Adams, 2003) that is indicative of hippocampal
function (Squire et al., 2007) at 6.5 years of age. Associations
with unpredictability persisted after covarying for maternal
depression symptoms, maternal sensitivity, and socioeconomic
status. Further, unpredictable patterns of parental signals rather
than counts of behaviors or counts of transitions predicted
child cognitive function, suggesting that patterns of signals
rather than simply the number of signals is important in
shaping later outcomes (Davis et al., 2017). Notably, this study
provided parallel evidence from a preclinical experimental
model that early life exposure to unpredictable signals causes
poor memory performance on an object recognition task among

adolescent rats, (Davis et al., 2017) supporting the likelihood
that unpredictable signals underlie the observed associations in
humans.

Consistent with these published findings, we present here
new findings linking exposure to unpredictable sensory signals
in infancy to child memory performance in 71 mothers and their
children (41 girls) participating in a larger longitudinal study
of early life experiences and development (Glynn et al., 2018).
Initial recruitment criteria included: (1) singleton pregnancy,
(2) over the age of 18, (3) English speaking, (4) non-smoking.
Participants in the current study additionally participated
in infant assessments of maternal child behavior. Children
were 34% Hispanic/Latinx, 41% white, 3% Black, and 18%
multiracial/ethnic and lived in households with an average
income to needs ratio of 3.2. The Institutional Review Board
at the University of California, Irvine reviewed, and approved
study protocols and mothers gave written and informed consent
for themselves and their children. Unpredictability of sensory
signals were evaluated when the child was 6 and 12 months
and entropy rate was computed as described in section II
(Figure 1). The Continuous Recognition Memory task (CRMT),
(Sher, 2006) an object recognition memory task that has
previously been shown to engage medial temporal regions such
as the hippocampus (Eichenbaum et al., 2007) was administered
at 6.5 years (see Supplementary Figure 1 for task details).
Consistent with published findings, exposure to unpredictable
parental sensory signals during infancy (high entropy rate)
was associated with poorer memory as indicated by more
errors (lower accuracy) on the CRMT at 6.5 years of age
(Figure 4, r = −0.316, p < 0.01). Associations remained
after covarying socio-demographic factors and assessments
of maternal sensitivity, β = −0.27, t = −2.09, p = 0.04.
These findings underscore the importance of patterns of
unpredictability in shaping the immature brain and consistent
with published research suggesting that memory functions may
be susceptible to early life unpredictability (Heidinger et al.,
2012; Molet et al., 2016a; Davis et al., 2017).

B. Unpredictable parental signals and
memory function: Non-human
primates

We sought additional evidence to test the idea that
the impact of unpredictable signals is an evolutionarily
conserved processes by assessing the biological importance of
unpredictable patterns of maternal sensory signals and memory
development with non-human primates. Specifically, we
conducted an evaluation of links between unpredictable patterns
of parental signals and memory performance in juvenile rhesus
monkeys, assessed at a similar developmental stage as the
children in the studies described above. Unpredictability of
maternal behaviors was assessed in 21 mother- infant dyads,
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FIGURE 3

Calculation of entropy rate in rodents: This time series of the seven possible states for one example litter in rodents (mice). This timeseries is
then used to compute a transitional probability matrix. This matrix shows the percent of times a mother transitions from one state to another.

FIGURE 4

Children who were exposed to more unpredictable parental signals (higher entropy rate) during infancy (6 and 12 months) showed poorer
memory performance indicated by more errors on the Continuous Recognition Memory task (CRMT) at 6.5 years of age, r = –0.316, p < 0.01.
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rhesus macaques -Macaca mulatta who were part of a larger
longitudinal developmental study (McCormack et al., 2015;
Drury et al., 2016; Howell et al., 2019; Morin et al., 2020).
Nine of the infants in this study experienced maltreatment by
their mothers (3 females) and 12 were non-maltreated/control
infants (6 females). All animals were socially-housed at the
Emory National Primate Research Center (ENPRC), with social
dominance status (high, medium, low) counterbalanced across
groups and ≥450 grams birth weight to exclude prematurity. All
procedures were approved by the Emory Institutional Animal
Care and Use Committee and performed in accordance with the
NIH Guide for the Care and Use of Laboratory Animals.

Unpredictability was characterized by coding maternal
parenting behaviors when the infant was 3 months of age
and entropy rate was computed as described in section II
(see Figure 2). Working memory in the juvenile animals
was assessed at 18 months of age, roughly equivalent to 5–
6 year old children, using the delayed non-matching to sample
task, task trial unique (DNMS-TU), a simple recognition
memory task, followed by the DNMS-session unique (DNMS-
SU), which is a more complex working memory task (Heuer
and Bachevalier, 2011) (see Supplementary material and
Supplementary Figure 2 for task details). Juvenile monkeys
who were exposed to more unpredictable maternal signals
during infancy (higher entropy rate) showed impaired working
memory performance as indicated by the higher number
of trials to reach criterion on the DNMS-SU task. For the
control animals, experiencing unpredictable maternal signals
during infancy (higher entropy rate) was associated with poorer
performance (more trials to criterion) on the DNMS-SU task,
r(12) = 0.37, p = 0.12 (see Figure 5). Associations were
weaker among the animals who experienced maltreatment,
r(9) = 0.16, p = 0.34. Although underpowered to reach statistical
significance, the magnitude of the effect size is consistent
with analogous studies with humans. These preliminary results
require replication in future research. Together, human and
monkey studies provide suggestive evidence that unpredictable
patterns of sensory signals during early infancy are a potent
signal shaping brain circuit maturation across species.

C. Unpredictable parental signals and
memory function: Rodent models

While the existing human and monkey work provide
evidence that links between unpredictability and memory
are conserved across species, these observational projects do
not allow tests of causality. This limitation is addressed in
experimental studies of early life unpredictability and several
types of memory in juvenile and adult rats and mice. Earlier
rodent studies (Brunson et al., 2005; Ivy et al., 2010) employed
the water maze spatial memory test and identified deficits in
both short- and long-term spatial memory as a consequence

FIGURE 5

Juvenile monkeys who experienced more maternal
unpredictable signals (higher entropy rate) during infancy
(3 months) showed impaired working memory performance as
indicated by the higher number of trials to reach criterion on the
Delayed non-matching to sample -session unique (DNMS-SU)
task as juveniles (18–24 months). Green dots represent animals
in the control group (r(12) = 0.37, p = 0.12) and red dots
represent animals in the maltreatment group (r(9) = 0.16,
p = 0.34).

of exposure to early life unpredictability. The water maze
may involve adverse conditions (swimming in water) and the
stress of this task may moderate the link between early life
unpredictability and memory performance, thus precluding the
conclusion that unpredictability relates to memory function
under non-stress conditions. Therefore, in more recent work we
employed the novel object location and novel object recognition
tasks, which do not involve a stressor component. The object
location test probes hippocampus-dependent memory whereas
the object recognition tasks interrogates multiple components
of the limbic system. Performance deficits were observed on
both tasks after early life exposure to unpredictability, and
deficits were earlier and more severe in the more hippocampus-
dependent object location test (Molet et al., 2016a; Davis et al.,
2017; Short and Baram, 2019). In addition, rodent studies
provide mechanistic insights: in rats, early life exposure to
unpredictable sensory signals was associated with attenuated
long-term potentiation, the cellular hallmark of memory,
and with impoverished dendrites and synapses in dorsal
hippocampus (Brunson et al., 2005; Ivy et al., 2010; Short
and Baram, 2019), reflected in reduced dorsal hippocampus
volumes (Molet et al., 2016a). These observed neuroanatomical
consequences of early life exposure to unpredictability associate
with observed performance deficits (Molet et al., 2016a).

D. Summary

In summary, these cross-species studies highlight that
unpredictable patterns of parental signals during the sensitive
period of infancy may contribute to subsequent memory
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function and suggest that the developmental importance of
unpredictable signals is conserved across species. Evidence
suggests that unpredictable patterns of signals early in life
may sculpt the developing brain, particularly neural circuits
important for cognitive function. As discussed here, our recent
research with humans indicates that unpredictable patterns
of sensory signals in infancy sculpt corticolimbic circuit
maturation in ways that partially mediate memory performance
(Granger et al., 2021). Further, experimental and mechanistic
research with rodents identify that the predictability of sensory
input early in life may be a biological parameter influencing
hippocampal circuit maturation (Birnie and Baram, 2022).
Future directions in this research will probe the sex-specific
consequences of early life exposure to unpredictable parental
signals. While emerging research indicates that both males
and females are impacted by unpredictability early in life, the
functions that are vulnerable likely differ by sex (Glynn et al.,
2018; Demaestri et al., 2020; Granger et al., 2021; Levis et al.,
2021, 2022).

IV Clinical implications and next
steps

Our program of research, across laboratories and species,
illustrates that exposure to early life adversity has profound
and long-lasting implications for health and wellbeing. We
have identified that early life exposure to patterns of parental
sensory signals directly impact the developing offspring’s
learning/memory process. This cross-species evidence supports
the biological plausibility that patterns of sensory information
from the parent during infancy are critical sources of input
for the developing brain and that it is an evolutionarily
conserved mechanism by which early life experiences shape
neurodevelopment. The ability to test causality and mechanisms
in pre-clinical experimental work with rats and mice in
parallel with observational longitudinal research in humans and
monkeys provides compelling support for the hypothesis that
patterns of sensory signals during sensitive periods shape the
development of neural circuits underlying cognitive function as
well as those involved in sensory processing. Future work will
continue to explore links between early life unpredictability and
outcomes related to emotional development (Glynn et al., 2018),
as well as implications for mental health later in life.

In line with recent calls for the examination of specific
components of early life adversity (Boyce and Hertzman, 2018;
Luby et al., 2020; Gee, 2021; McLaughlin et al., 2021), our
findings suggest that unpredictable parental signals are a potent
form of early adversity that shapes neurodevelopment cross
species. Based on consequences of exposure to unpredictable
signals, there is a need for clinically feasible screening tools
to assess early life unpredictability in contexts where intensive
coding is not feasible. To this end, we have developed and

validated the Questionnaire of Unpredictability in Childhood
(QUIC), (Glynn et al., 2019) which assesses unpredictable
early experiences in the parenting and home environment
before the age of 18 years. A full (38-item) and brief (5-
item) version are available and validated in both English and
Spanish (Glynn et al., 2019; Lindert et al., in press). Early
screening is particularly important as unpredictability is a form
of early adversity that can be addressed with efforts toward
prevention and intervention. For example, we recently have
shown that maintenance of family routines was protective
during the acute responses to the COVID-19 pandemic and
related shutdowns involving closure of schools and many other
in-person activities. Importantly, maintenance of predictable
family routines mitigated the negative impact of the pandemic
on mental health outcomes among preschool aged children
(Glynn et al., 2021) and was subsequently shown to be similarly
protective for older children and adolescents (Rosen et al., 2021).
This suggests that unpredictability is an actionable form of early
life adversity that may be amenable to prevention efforts aimed
at increasing predictability within the early life environment.
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