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A Conductivity Relationship  
for Steady-State Unsaturated  
Flow Processes under Optimal 
Flow Conditions
Optimality principles have been used to investigate physical processes in different areas. 
This work applied an optimal principle (that water flow resistance is minimized for the 
entire flow domain) to steady-state unsaturated flow processes. Based on the calculus of 
variations, under optimal conditions, hydraulic conductivity for steady-state, gravity-domi-
nated unsaturated flow is proportional to a power function of the magnitude of water flux. 
This relationship is consistent with an intuitive expectation that for an optimal water flow 
system, locations where relatively large water fluxes occur should correspond to relatively 
small resistance (or large conductance). This theoretical result was also consistent with 
observed fingering-flow behavior in unsaturated soils and an existing model.

Optimality principles refer to that state of a physical process that is controlled by an 
optimal condition that is subject to physical or resource constraints. For example, Eagleson 
(2002) demonstrated that under natural conditions and in water-limited areas, vegeta-
tion tends to grow under maximum-productivity and unstressed conditions. He called 
the function and forms of vegetation, following the optimality principle, the results of 

“Darwinian expression.” After studying a variety of natural phenomena characterized by 
tree-like structures, Bejan (2000) proposed a “constructal theory,” which states that “for 
a finite-size open system to persist in time (to survive) it must evolve in such a way that it 
proves easier and easier access to the currents that flow through it.” While the definition 
of “easy access” is not always clear, Bejan (2000) demonstrated that tree-like structures are 
the direct results of the minimization of flow resistance across whole flow systems under 
consideration. During the past 30 yr, the maximum entropy production (MEP) principle 
has been successfully applied, in a heuristic sense, to the prediction of steady states of a 
wide range of systems (Niven, 2010; Kleidon, 2009). The MEP principle states that a flow 
system subject to various flows or gradients will tend toward a steady-state position of 
maximum thermodynamic entropy production (Niven, 2010). The theoretical connections 
between these optimality principles and the currently existing fundamental laws, however, 
are not well established. The alternative point of view is that these principles are actually 
self-standing and do not follow from other known laws (Bejan, 2000).

The role of optimality principles in forming complex natural patterns has been recog-
nized for many years in the surface hydrology community (Leopold and Langbein, 1962; 
Howard, 1990; Rodriguez-Iturbe et al., 1992; Rinaldo et al., 1992; Liu, 2010). For example, 
Leopold and Langbein (1962) proposed a maximum entropy principle for studying the 
formation of landscapes. Rodriguez-Iturbe et al. (1992) postulated principles of optimality 
in energy expenditure at both local and global scales for channel networks. While previous 
studies mainly use spatially “discrete” approaches as a result of considering energy dissipa-
tion through channel networks only, Liu (2010) developed a group of (partial differential) 
governing equations for steady-state optimal landscapes (including both channel networks 
and associated hillslopes) using the calculus of variations.

The importance of optimality principles has also been intuitively recognized in the vadose 
zone hydrology community for a long time. For example, it seems to be well known that 
fingering flow is due to the fact that unsaturated water tends to form flow paths corre-
sponding to the minimized flow resistances. (Note that for a given water flux, fingering 
flow always gives lower flow resistance [or higher conductance] compared with uniform 
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flow because fingering flow paths generally have higher local water 
saturations that correspond to larger unsaturated conductivities.) 
Rigorous applications of this optimality principle have not been 
fully explored, however. Because of fingering flow, water propa-
gates quickly to significant depths while bypassing large portions 
of the vadose zone, and solute travel times from a contamination 
source (located on the soil surface or in the vadose zone) to the 
groundwater are shorter than a priori expected. As a result of 
the important effects of this flow process on groundwater con-
tamination (an important issue for water resources management), 
preferential flow has been a major research area in the vadose 
zone hydrology community for a number of years and considered 
probably the most frustrating processes in terms of hampering 
accurate predictions of contaminant transport in the vadose zone 
(e.g., Glass et al., 1988; Flury and Flühler, 1995; Liu et al., 2003; 
Šimůnek et al., 2003; Nimmo, 2010).

This study developed a conductivity relationship for gravity-dom-
inated unsaturated flow derived from a principle that the energy 
dissipation rate (or flow resistance) is minimized for the entire flow 
system. Preliminary evaluation of this relationship was conducted 
by comparing it with relevant experimental observations and the 
currently existing models. The potential limitations and further 
improvements of this work are also briefly discussed.

66Theory
As the first step, we consider a relatively simple, steady-state unsatu-
rated flow system associated with a homogeneous and isotropic 
porous medium. From water mass (volume) conservation, the 
steady-state water flow equation is given by

0y zx q qq
x y z

¶ ¶¶
+ + =

¶ ¶ ¶
 	 [1]

where x and y are two horizontal coordinate axes, z is the vertical 
axis, and qx, qy, and qz are volumetric fluxes of water along the x, y, 
and z directions, respectively. (Water flux is used here to mean the 
volumetric flux of water.)

The parameter E (a function of x, y, and z) represents the total 
energy, including both potential (corresponding to elevation z) and 
(capillary) pressure energy:

PE z z h
g

= + = +
r

 	 [2]

where g is gravitational acceleration, P is capillary pressure, r is 
water density, and h is capillary pressure head. Accordingly, the 
energy expenditure rate for a unit control volume, DE, can be 
expressed as

( ) ( ) ( )y zx q E q Eq E
E

x y z

¶ ¶¶
D = + +

¶ ¶ ¶
 	 [3]

This equation simply states that for a given unit volume, the energy 
expenditure rate at that location is equal to the energy carried by 
the water flowing into the volume minus the energy carried by the 
water flowing out of the volume.

A combination of Eq. [1] and [3] yields

x y z
E E EE q q q
x y z

¶ ¶ ¶
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¶ ¶ ¶
 	 [4]

Throughout this development, Darcy’s law is assumed to applied 
to unsaturated flow:
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where K is hydraulic conductivity and is given by

( ),K K h S=  	 [5d]
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 	 [5e]

In Eq. [5d], hydraulic conductivity is assumed to be a function of 
both the capillary pressure head (h) and the square of the energy 
gradient (S). A previous study for an optimal landscape indicated 
that water-flow conductance is a function of the water flux in the 
system (Liu, 2010). That result is mathematically identical to the 
empirical relations between water depth and surface slope observed 
from many river basins (e.g., Leopold and Langbein, 1962). 
Assuming K to be a function of water flux is equivalent to assuming 
it to be a function of the energy gradient because water flux, energy 
gradient, and K are related through Darcy’s law. The function form 
of K (Eq. [5d]) was a subject of study in this work. Note that our 
theory was developed for a macroscopic scale that may include a 
number of fingering or preferential flow paths. Local scale refers 
to the continuum scale within each finger. The unsaturated flow 
process at the local scale is mainly controlled by pore-scale physics. 
We also need to emphasize that assuming K to be a function of S 
at the macroscopic scale does not exclude the possibility that K 
may have nothing to do with S in our final results. In this case, the 
mathematically derived function form of K would not include S as 
an independent variable.

When we combine Eq. [4] and [5], the global energy expenditure 
rate through domain W is given by
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( )d d d d d dE x y z KS x y z
W W
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The optimality principle in our problem is to minimize the abso-
lute value of the above integral. To do so, we use the calculus of 
variations that seeks optimal (stationary) solutions to a functional 
(a function of functions) by identifying unknown functions 
(Weinstock, 1974).

Based on Eq. [5] and [6], the Lagrangian for the given problem is 
given by

22 2

1
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x y z
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 	 [7]

Note that the first term is from Eq. [6] and the second term is 
a constraint from Eq. [5]. The use of the constraint term allows 
consideration of related functions to be independent when the 
optimal solution to Eq. [6] is determined. The l function is the 
Lagrangian multiplier. A mathematically equivalent way to define 
L to avoid the use of some (or all) constraints is to directly insert 
Eq. [5] into the first term of Eq. [7] (Pike, 2001). In this case, the 
number of independent functions will be reduced; however, the 
use of Eq. [7] is more straightforward and easier to handle for the 
given problem. Also, note that the other constraint should be the 
continuity equation and is dealt with below.

The following Euler–Lagrangian equation is used to determine an 
unknown function w associated with L to minimize the integral 
defined in Eq. [6] (Weinstock, 1974):

0
x y z

L L L L
w x w y w z w
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 	 [8]

where wx, wy, and wz are partial derivatives with respect to x, y, 
and z, respectively. In this study, w corresponds to S and h (or E). 
(Also note that application of the Euler–Lagrangian equation to 
Lagrangian multipliers will recover Eq. [5e]).

Replacing w with S in Eq. [8] yields

( )
1
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¶
 	 [9]

Replacing w with h (or E) in Eq. [8] and using Eq. [9] and the 
continuity equation, we have
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In general, it is difficult to obtain an analytical solution to the 
above equation. For some special case in which the term on the 
right-hand side is small compared with the other terms, however, a 
closed-form solution can be obtained. This may be true for a grav-
ity-dominant flow based on a rough order-of-magnitude analysis 
[S(¶K/¶h)]/(¶K/¶logS) = ¶S/¶h. Note that for gravity-dominant 
flow, the energy gradient is close to one in the vertical direction 
and not a strong function of local capillary pressure at locations 
occupied by flow patterns. In other words, for two different grav-
ity-dominated flow situations for a given flow system, changes in 
the energy gradient are much smaller than changes in the capillary 
pressure. The argument is also consistent with an observation that 
¶K/¶h ® 0 for large water saturation (corresponding to the grav-
ity-dominated conditions) (van Genuchten, 1980). A comparison 
between Eq. [10] (without the term on the right-hand side) with 
the continuity equation (Eq. [1] and [5]) yields

log
K AK

S
¶

=
¶

 	 [11]

where A is a constant.

To get practically useful results, we consider K(h,S) to be further 
expressed by

( ) ( ) ( ),K h S f h g S=  	 [12]

Substituting Eq. [12] into [11] results in

( ) Ag S Sµ  	 [13]

Based on Darcy’s law, Eq. [13] can be rewritten as

( )
/2A

q
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K
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 	 [14]

where |q| is the magnitude of water flux given by

1/22 2 2
x y zq q q qé ù= + +ê úë û  	 [15]

Combining Eq. [14] and [12] gives our final conductivity 
relationship:

( )
sat

a
q

K F h
K

æ ö÷ç ÷= ç ÷ç ÷÷çè ø
 	 [16]

where a = A/(2 + A) and Ksat is the saturated hydraulic conductiv-
ity. It is very interesting to note that although the mathematical 
derivation processes are considerably complex and involve solving 
a group of partial differential equations, the final result (Eq. [16]) 
is amazingly simple for gravity-dominant flow problems.
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66Discussion
Under optimal flow conditions corresponding to the minimum 
energy dissipation rate (or flow resistance), the derived conductivity 
is a power function of water flux (Eq. [16]) for gravity-dominated 
unsaturated flow. This result physically makes sense. For the posi-
tive power values, the smallest flow resistance occurs within flow 
paths with the largest water flux. Intuitively, it is easy to understand 
that this conductivity distribution will result in minimized total 
flow resistance globally. This finding is also consistent with our 
daily life experiences. For example, to maximize traffic transpor-
tation efficiency, our highways always have more lanes (or higher 

“conductance”) in locations with high traffic fluxes. (Highway net-
works may be considered to be analogous to fingering flow paths.)

There may be different interpretations of Eq. [16]. One interpreta-
tion is that F(h) is the local-scale hydraulic conductivity within 
the fingering flow zone and that the power function of flux in the 
equation represents the fraction of the fingering flow zone in an 
area normal to the water flux direction. This is justified because h 
is a local-scale variable. In this case, our result is supported by the 
analysis results of Wang et al. (1998). On the basis of a number 
of laboratory experimental observations of vertical fingering flow 
in homogeneous soils, Wang et al. (1998) presented a relation 
between flow conditions and a parameter, Fa, defined as the ratio 
of the horizontal cross-sectional area occupied by gravity fingers 
to the total cross-sectional areas:

0.5

a
sat

q
F

K

æ ö÷ç ÷=ç ÷ç ÷÷çè ø
 	 [17]

Obviously, Eq. [17] is identical to our theoretical result with a = 0.5. 
In other words, our theoretical result agrees with the laboratory 
observations cited by Wang et al. (1998).

Our theoretical result is also consistent with the active region 
model (ARM) proposed by Liu et al. (2005) for dealing with 
unsaturated flow in soils. The ARM is an extension of the active 
fracture model developed for modeling unsaturated water in frac-
tured rock (Liu et al., 1998). Both the active fracture model and 
the ARM have been evaluated with a variety of experimental data 
and remarkable agreements between the models and the data have 
been observed (Liu et al., 1998, 2003, 2005; Sheng et al., 2009); 
however, the ARM has been tested only for soils that are relatively 
homogeneous (e.g., Sheng et al., 2009). The ARM assumes a flow 
domain to be divided into an active region (fingering flow zone) 
and an inactive region. Flow occurs only in the active region. The 
volumetric portion of the active region is given as

f g=q  	 [18]

where q is the average effective water saturation across the whole 
flow domain (including both active and inactive regions), and g is 

a constant factor between zero and one. Note that f is equivalent 
to Fa in Eq. [17].

By definition, the average water saturation is related to the effective 
water saturation (qa) within the active region by

afq= q  	 [19]

For gravity-dominated flow, the energy gradient approximately 
equals one and the vertical water flux is about the same as the 
hydraulic conductivity. Using the well-known Brooks–Corey 
relationship (Brooks and Corey, 1964) to describe the hydraulic 
conductivity within the active region, we can write the total verti-
cal water flux as

a
sat

q
f

K
b=q  	 [20]

where b is the Brooks–Corey exponent. Combining Eq. [18–20] yields
1

1 [ (1 )/ ]

sat

q
f

K

+ b -g gæ ö÷ç ÷=ç ÷ç ÷÷çè ø
 	 [21]

Thus, Eq. [21] derived from the ARM is equivalent to our conduc-
tivity relationship with

( )
1

1 1
a=

é ù+ b -g gë û
 	 [22]

In the other words, we demonstrate the equivalence between our 
Eq. [16] and the ARM for gravity-dominated unsaturated flow 
under the condition that the power function in Eq. [16] is inter-
preted as a volumetric fraction of the fingering flow zones within 
the soil.

It is of interest to note that for typical values of b = 4 and g = 0.7 
(Brooks and Corey, 1964; Sheng et al., 2009), a = 0.4 is close to 
the value of 0.50 given in Eq. [17]. Whether or not a single value 
for parameter a is valid for different soils needs further research 
based on experimental observations.

Finally, this work is the first step to incorporate the optimality 
principle into unsaturated flow. Consequently, some limitation 
of the current work still exists. For example, detailed pore-scale 
unsaturated-flow physics is not adequately incorporated yet. This 
physics requires that the upper limit of K in Eq. [16] should be F(h), 
which, however, is not reflected in our theory. This can be approxi-
mately accounted for in practice by limiting the K value calculated 
from Eq. [16] to the corresponding F(h) value. Nevertheless, the 
major focus of this study was to highlight the potential for devel-
oping new unsaturated water flow theories based on the optimal 
principle. This principle may hold the key to resolving a number of 
problems associated with emerging patterns in unsaturated soils.
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66Conclusions
Based on the calculus of variations, this work showed that under 
optimal conditions, hydraulic conductivity for steady-state, gravity-
dominated unsaturated flow is proportional to a power function 
of the magnitude of water flux. It is consistent with an intuitive 
expectation that for an optimal water flow system, locations where 
relatively large water fluxes occur should correspond to relatively 
small resistance (or large conductance). Consistence between 
this theoretical result with observed fingering flow behavior in 
unsaturated soils and the ARM was also demonstrated. Finally, 
it is important to note that the classic unsaturated-flow theory is 
applicable to capillarity-dominated cases while the current work 
focused on unsaturated flow under gravity-dominated conditions. 
Whether the optimality principle can be used to develop a general 
theory (that includes both cases as two special ones) deserves fur-
ther research.
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