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mass spectrometry-based approaches, and advanced 
imaging) to identify novel signatures of aging across 
scales. Cutting-edge computational approaches are 
then needed to integrate these disparate datasets and 
elucidate network interactions between known aging 
hallmarks. There is also a need for improved, human 
cell-based models of aging to ensure that basic 
research findings are relevant to human aging and 
healthspan interventions. The San Diego Nathan 
Shock Center (SD-NSC) provides access to cutting-
edge scientific resources to facilitate the study of the 
heterogeneity of aging in general and to promote the 
use of novel human cell models of aging. The center 
also has a robust Research Development Core that 
funds pilot projects on the heterogeneity of aging 
and organizes innovative training activities, includ-
ing workshops and a personalized mentoring pro-
gram, to help investigators new to the aging field suc-
ceed. Finally, the SD-NSC participates in outreach 
activities to educate the general community about the 
importance of aging research and promote the need 
for basic biology of aging research in particular.

Keywords  Aging · Heterogeneity · Organoids · 
Human cohort · Single-cell analysis · Machine 
learning

Abstract  Understanding basic mechanisms of 
aging holds great promise for developing interven-
tions that prevent or delay many age-related declines 
and diseases simultaneously to increase human 
healthspan. However, a major confounding factor in 
aging research is the heterogeneity of the aging pro-
cess itself. At the organismal level, it is clear that 
chronological age does not always predict biological 
age or susceptibility to frailty or pathology. While 
genetics and environment are major factors driv-
ing variable rates of aging, additional complexity 
arises because different organs, tissues, and cell types 
are intrinsically heterogeneous and exhibit differ-
ent aging trajectories normally or in response to the 
stresses of the aging process (e.g., damage accumu-
lation). Tackling the heterogeneity of aging requires 
new and specialized tools (e.g., single-cell analyses, 
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Introduction

“One key to understanding aging and particularly to 
taking action that might extend the human life span 
can be found in the differences in the rate of aging 
observed in different individuals. These differences 
indicate that many factors play a role in aging. When 
we know why some people age less rapidly than oth‑
ers, we may be able to create conditions that will min‑
imize the loss of functioning cells and tissues, thereby 
enabling many more people to live as long as those 
who live longest today” [1]. This quote from Nathan 
Shock himself embodies our basic philosophy at the 
San Diego Nathan Shock Center (SD-NSC), which 
is to understand the heterogeneity of aging, with the 
ultimate goal of increasing the number of healthy and 
productive years of life (i.e., increase healthspan). 
Since individuals age at different rates and are dif-
ferentially susceptible to age-related declines and 
pathology, detailed knowledge about what under-
pins the heterogeneity of aging is needed to allow 
the development of more personalized interventions 
based on targeting aging and longevity pathways.

The heterogeneity in the rates and phenotypes of 
human aging is no doubt driven by a combination 

of genetic and environmental factors unique to each 
individual [2]. However, even when using model 
organisms that are as close to genetically identi-
cal as possible and carefully controlling the lab 
environment, there is significant variability in cell 
and organismal phenotypes that leads to different 
rates of aging of individuals [3–7]. The same is 
true even of single-cell organisms and individual 
cells in cultured cell models of aging. Thus, there 
are intrinsic heterogeneities at the molecular, cel-
lular, and tissue/organ levels that change over time 
and conspire with genetic and environmental fac-
tors to determine an individual’s aging trajectory 
(Fig.  1) [2, 7, 8]. For example, there is significant 
heterogeneity in muscle stem cells that affects how 
this tissue maintains homeostasis and function 
[9] and hence changes in the stem cell niche over 
time is likely a major contributor to the variability 
observed in muscle aging between individuals. This 
is not unique to muscle, with virtually all cell types 
and tissues exhibiting significant intrinsic heteroge-
neity that changes with age due to damage accumu-
lation and other factors [10, 11]. Conversely, loss 
of heterogeneity in the hematopoietic system (e.g., 
restriction of myeloid cell diversity) with age can 

Fig. 1   The study of aging is complicated by the intrinsic heterogeneity of the process. This is manifest between individuals and 
within an organism across multiple scales down to the sub-cellular organelles and even at the molecular level
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have detrimental consequences that promote age-
related pathology [12]. However, despite the clear 
need to understand the role of heterogeneity in all 
facets of aging, there remains a dearth of attention 
to this matter in the field [13], in part due to techni-
cal barriers to measuring and studying heterogene-
ity. Therefore, we created the SD-NSC around the 
theme of the heterogeneity of aging to help fill this 
void for basic biology of aging researchers.

The SD-NSC, directed by Dr. Gerald Shadel, is 
facilitating research into the heterogeneity of aging 
by providing the research community access to three 
research resource cores. The Human Cell Models of 
Aging Core is providing new and improved human 
cell and tissue models of aging (induced cell types 
and organoids). This includes collecting and bank-
ing skin and blood samples from a clinical cohort 
that spans the breadth of the human adult lifespan 
that has been assessed for indicators of biological 
age and cellular bioenergetics. The Heterogeneity of 
Aging Core provides access to cutting-edge technol-
ogies for performing single-cell multi-omics, mass 
spectrometry-based, and advanced imaging analy-
ses of biological samples. Finally, the Integrative 
Models of Aging Core provides computational tools 
for integrating different kinds of aging datasets 
(e.g., scRNA-seq and scATAC-seq) and mathemati-
cal modeling approaches for illuminating network 
interactions between known and newly discovered 
aging hallmarks. In addition to providing high-
level services, each core is innovating within their 
research space and is committed to making these 

advancements readily available to the basic biology 
of aging research community.

Research resource cores

Human cell models of aging core

Dr. Fred Gage, gage@salk.edu
Dr. Anthony Molina, ajmolina@health.ucsd.edu

The Human Cell Models of Aging Core is focused 
on creating powerful new human cell-based models 
of aging to enable a wide range of studies into the 
molecular and cellular heterogeneities of the human 
aging process. Approaches for generating these new 
models draw largely from recent advances in creating 
induced cell types via the direct conversion of skin 
cell samples, in which many aging characteristics 
(e.g., gene expression and epigenomic signatures) are 
maintained [14–16]. Thus, an individual’s fibroblasts 
can be directly converted into additional, relevant cell 
types that can then be interrogated to reveal aging sig-
natures. To enhance these activities, we are recruit-
ing human subjects ranging in age from 20 to 75+ 
years, with no upper age limit (the SD-NSC clinical 
cohort) thereby representing the full breadth of the 
healthy adult human age span. These participants will 
be assessed for key clinical and physiological features 
of biological aging that are meaningful and relevant 
across all age groups, and blood and skin samples 
will be collected. Primary dermal fibroblasts derived 
from these skin samples will be used to create both 

Fig. 2   Subject-specific fibroblasts and iPSCs will be generated 
from the SD-NSC clinical cohort that has been assessed for 
metrics of biological age and cellular bioenergetics. New cells 

lines will power models of aging through direct conversion and 
organoid technologies
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reprogrammed stem cells and directly induced cell 
types, which will be banked (Fig.  2). The core will 
create standard operating procedures for generating 
a variety of induced cell types (e.g., neurons, vascu-
lar endothelial cells, and skeletal muscle) that aging 
researchers can use for downstream analysis, as well 
as pioneer efforts to induce cell types not yet achieved 
(e.g., hepatic, pancreatic, and cardiac), thereby 
expanding this important experimental toolkit.

For human cell models to have an even greater 
impact on basic biology of aging research, there 
is a profound need to move beyond traditional two-
dimensional cell culture systems. The core will help 
drive technology development to create novel orga-
noid and hybrid cell models that maintain age-related 
and tissue-specific heterogeneity. The use of human 
organoids in basic biological research is rapidly 
expanding, but to date, most organoids are derived 
from induced pluripotent stem cells (iPSCs), or from 
difficult to obtain primary tissue. Hence, the core will 
initially implement established iPSC-based organoid 
protocols [17–30] and then begin to introduce directly 
induced cell types. We will seek to gradually increase 
the proportion and diversity of induced cell types 
used to generate organoids, with the ultimate goal of 
developing robust protocols for creating tissue-spe-
cific organoids entirely from induced cell types that 
maintain hallmarks of aging (i.e., aged organoids). 
The core will also endeavor to develop hybrid orga-
noid models consisting of both induced and iPSC-
derived cell types (i.e., old and young cells). Alto-
gether these represent new and  robust systems for 
determining which cell types and cell-cell interac-
tions drive human aging processes.

Heterogeneity of aging core

Dr. Martin Hetzer, hetzer@salk.edu
Dr. Peter Adams, padams@sbpdiscovery.org

The ability to systematically track the molecular 
and cellular processes that drive age-related func-
tional decline within different cells and tissues is 
a critical step in understanding the heterogeneity 
of aging. The Heterogeneity of Aging Core brings 
together an array of powerful research technologies, 
methodologies, and expertise to support basic biol-
ogy of aging research projects aimed at understanding 
heterogeneity across multiple scales. Services include 

single-cell RNA-seq and ATAC-seq, spatial transcrip-
tomics, proteomics, metabolomics, and advanced 
imaging modalities (e.g., artificial intelligence-based 
image processing algorithms). Using these technolo-
gies in combination and potentially applying them to 
novel human cell-based models of aging being gener-
ated through the Human Cell Models of Aging Core 
provides investigators the ability to gain valuable 
insights into the spatiotemporal dynamics of molecu-
lar, cellular, and physiological processes that go awry 
during aging to drive tissue and organ dysfunction 
and pathology.

Single‑cell approaches

The Heterogeneity of Aging Core provides ser-
vices and training to enable single-cell sequencing 
approaches for investigating transcriptional and epi-
genetic heterogeneity of aging. The core can process 
human samples, as well as those from common model 
systems used in basic biology of aging research (e.g., 
yeast, Caenorhabditis elegans, Drosophila, rodents, 
and non-human primates). The team is experienced 
in generating single-cell suspensions from various 
tissues (e.g., liver, pancreas, bladder, bone marrow, 
lung, brain, adipose, mammary) and they are continu-
ously developing methodologies to include new cell 
types. Quality control of raw data is accomplished via 
an analysis pipeline developed at the Salk Institute. 
Unsupervised clustering analysis (see “Integrative 
models of aging core” section) is then used to reveal 
cell types based on clusters in t-distributed stochas-
tic neighbor embedding (tSNE) maps. An example 
of this is illustrated in Fig. 3, showing transcriptional 
differences in different cell types between young 
and old pancreas. The core can also perform trajec-
tory inference analyses of scRNA-seq data to enable 
the mapping of dynamic changes in gene expression 
during aging [31–35]. In this same vein, the core also 
provides access to single-cell assays for transposase-
accessible chromatin using sequencing (scATAC-
seq) to allow interrogation of variations in chroma-
tin accessibility of individual cells [36]. Combining 
scRNA-seq and scATAC-seq datasets or, preferably, 
performing 10X Genomics single-cell multiome 
assays to generate single-nucleus RNA-seq (snRNA-
seq) and snATAC-seq datasets on the same cells pro-
vides a powerful means to define cellular heterogene-
ity in a wide range of cells and tissues to address the 
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heterogeneity of aging. Finally, the core is employing 
new technologies that enable spatial transcriptomics, 
which can be used to perform RNA-seq analysis or 
in situ hybridization on sectioned tissues or organoid 
cell models at single-cell or close to single-cell reso-
lution. This approach allows analysis of heterogeneity 
within different regions of the same organ or organoid 
and can be integrated with scATAC-seq (e.g., to gain 
insight into spatiotemporal changes in enhancer activ-
ity) [37].

Mass spectrometry approaches

The core provides expert consultation concerning the 
design and implementation of a wide range of experi-
ments using high-end mass spectrometry techniques. 
This includes protein identification, quantification, 
and post-translational modifications, secreted protein/
peptide analysis, targeted and untargeted lipidomics 
(including bile acids), and targeted metabolomics, 
amino acid quantitation, and fatty acid analysis. They 
then provide analysis services, including custom 
developed proteomic and metabolomic analysis meth-
ods, including isotopic chemical labeling with tandem 
mass tags (TMT) and stable-isotope labeling with 
amino acids in cell culture (SILAC) [38]. The core is 
also continuously working to implement new analytic 
techniques in this rapidly evolving field. For example, 

the core has implemented a new hybrid technique for 
proteome quantification from cells and organoids in 
which cultures are first subjected to metabolic pulse-
chase SILAC labeling, in which the normal culture 
media is exchanged with media containing heavy 
amino acids at different time points [39, 40]. All cells 
are then harvested together on the same day, provid-
ing samples with different levels of heavy amino acid 
incorporation. Cell organelles or compartments are 
fractionated prior to proteomic analysis, providing 
sub-cellular localization information on protein life-
times. These SILAC labeled samples are then further 
labeled by TMT, which provides quantitative infor-
mation on protein changes between samples and over 
time. Thus, a wealth of information on protein hetero-
geneity can be gained in a single experiment.

Advanced imaging approaches

Imaging is critical for probing the heterogeneity of 
aging, as it reveals the spatiotemporal dynamics of 
structural, morphological, and subcellular localiza-
tion changes in aged cells at the tissue, cellular, sub-
cellular, and molecular levels. Thus, the core pro-
vides high-end microscopes and imaging resources, 
including multiple high-end fluorescence and electron 
microscopes with live-imaging, high-throughput, and 
cryo capabilities. The core has several workstations 
for deep learning-based image processing and analy-
sis and provides hands-on consultation and training 
for advanced imaging experiments, including sample 
preparation (i.e., probe selection, staining protocols, 
cell and tissue mounting techniques for optimal imag-
ing conditions), carefully controlled image acquisi-
tion protocols, and quantitative image processing, 
segmentation, analyses, and visualization. The core 
staff has developed in-house deep learning-based 
models (Point-Scanning Super-Resolution, “PSSR”) 
for live-cell imaging with higher speed and lower 
phototoxicity [41]. Training is available on how this 
resource can be used to acquire training data and 
implement pre-trained models in this workflow for 
increased throughput and spatiotemporal resolution 
while avoiding unwanted phototoxic cellular stress. 
The core has also developed advanced sample prep-
aration protocols, such as tissue clearing, expansion 
microscopy, FISH, and correlative light and electron 
microscopy workflows, for lightsheet-to-Airyscan 

Fig. 3   tSNE plot of single-cell data from pancreas (young—
black dots, old—red dots). Clusters represent the different cell 
types captured by this approach
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imaging, as well as Airyscan timelapse imaging to 
electron microscopy. Finally, the core both devel-
ops and provides access and training on utilizing 
aging-relevant fluorescence probes in imaging assays 
for quantifying ROS, cAMP, cGMP, fatty acids, 
cholesterol, organelle movement and fission [42], 
mitophagy, autophagy, and DNA damage.

Integrative models of aging core

Dr. Tatyana Sharpee, sharpee@salk.edu

Understanding the heterogeneity of aging requires 
researchers to tackle the aging process from multi-
ple perspectives and to therefore generate, curate, 
analyze, and integrate an array of different types of 
data (e.g., from gene expression to cell morphology 
to organoid functionality). However, these data pipe-
lines require domain-specific knowledge and must be 
implemented in a high-performance computing envi-
ronment, raising significant barriers for researchers 
in the basic biology of aging field who do not have 
access to high-performance computing clusters and 
trained bioinformaticians. The Integrative Models of 
Aging Core seeks to lower these barriers by providing 
access to trained bioinformaticians and tools for the 
synthesis of diverse high-throughput datasets using 
integrative computational models [43–46], effective 
management of data [47], and assay-specific imple-
mentation of state-of-the-art analysis pipelines.

Data infrastructure

High-throughput datasets provide invaluable system-
wide information about the activity of genes, proteins, 
and cells across aging phenotypes, but are typically 
noisy and include technology-specific challenges for 
pre-processing and normalization before the data can 
be analyzed. Therefore, standardized state-of-the-art 
pipelines must be implemented for downstream anal-
ysis and integration. Once processed, data must be 
stored and indexed so that downstream analyses and 
modeling can quickly identify sets of data associated 
with key variables (data type, age, tissue type, disease 
state, treatment, etc.) and extract the relevant underly-
ing information. This is important for accurate model 
building, which must still be manually optimized over 

numerous iterations of data access, model training, 
model testing, and validation. To this end, the core 
maintains hardware and software resources required 
to pre-process and store sequencing, proteomic, 
metabolomic, and imaging data.

Integrating single‑cell datasets

The core offers diverse tools for integrative analysis 
and clustering of single-cell data. Single-cell data 
pose specific challenges for interpretation and mod-
eling. Different single-cell platforms can produce 
orthologous datasets for a particular sample (e.g., 
scRNA-seq, scATAC-seq, STARmap, flow cytom-
etry, and mass spectrometry), but each approach has 
different sources of variability and experimental limi-
tations [48]. Therefore, mathematical methods are 
needed to integrate data across these diverse data-
sets, and recent advances in integrative approaches 
now make this possible. These models create maps 
between clusters of cells in each dataset, which show 
similar correlative structures, thereby providing a way 
to systematically correct for technique-specific tech-
nical limitations and biases. For example, this method 
was used to integrate STARmap single-cell imaging 
data with scRNA-seq data to increase the resolution 
of the STARmap method [49].

Another powerful application of single-cell tech-
nologies is the reconstruction of specific biological 
processes by leveraging the heterogeneity of an evolv-
ing population [50]. These processes are revealed 
as patterns that are discovered using machine learn-
ing approaches, such as clustering and pseudotime 
ordering [51]. Individual clusters or “nodes” in this 
space represent specific biological snapshots of a 
biological state (e.g., long-lived cells), while con-
nections between clusters reveal the dynamic transi-
tions between these biological states (e.g., aging pro-
cesses). By identifying both the specific states and 
how cells transition between them, these machine 
learning approaches can be used to generate specific 
hypotheses about these evolving cellular processes in 
the context of aging.

Predictive machine learning models

Statistical models, regression models, and classifica-
tion models can elucidate relationships between data 
measured using orthologous approaches, multimodal 
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data, and variables of interest such as biological 
age, or age-associated disease states [52]. However, 
these models require both expertise in model design 
and implementation and a deep understanding of the 
modeled biology. To enable truly cutting-edge data 
integration services, the core is committed to working 
directly with teams of researchers to develop custom-
ized models to answer specific questions using well-
validated modeling and machine learning libraries 
and toolkits, such as sci-kit learn [53] and caret [54]. 
A range of machine learning algorithms have been fit 
to bulk omic data to predict biological age [48–61]. 
The core aims to build and offer such machine learn-
ing models for predicting age-associated phenotypes 
from multimodal data. Importantly, due to the gen-
erality of machine learning models, collaborative 
efforts between biology of aging researchers can 
combine single-cell data with bulk measurements and 
shotgun proteomic and metabolomic measurements, 
as well as features from imaging datasets and other 
aging assays.

Methods for identifying global network geometry

The requirement for robustness under perturbation 
in biology implies significant redundancy between 
genes, proteins, and pathways in cell-biological net-
works. Thus, activity of any single node can be com-
pensated for by the activity of “similar” nodes. This 
notion of “similarity” between nodes indicates the 
existence of hidden smooth geometrical structure. 
The existence of such hidden geometry, and its use-
fulness for network stability and communication 
within the network, has been demonstrated for such 
diverse networks as the internet [62] and plant meta-
bolic products [63]. The core has developed tools 
for identifying global network geometry from mul-
timodal aging datasets. These methods are based on 
mathematical techniques from algebraic topology that 
are unaffected by linear or nonlinear monotonic trans-
formations of inputs [64], which is key for diverse 
data integration. The knowledge of identified hidden 
geometries can be incorporated into the clustering 
methods described earlier as well as the more stand-
ard embedding methods [65]. By providing a topo-
logical modeling service at the core, biology of aging 
researchers will be able to better visualize, cluster, 
and compare their multimodal datasets.

Widespread access to integrative modeling tools 
for studying the biology of aging

Integrative models promise to enable a systems-level 
understanding of aging biology phenomena, but are 
of limited use if the wider biology of aging commu-
nity cannot understand them or apply them to their 
own specific datasets. Therefore, to maximize the 
use of the developed mathematical models and data, 
computational tools must be developed for apply-
ing models to specific datasets. Key for wide-spread 
adoptability and impact is the construction of inter-
active online interfaces for these models and sharing 
software via open source licensing [66]. A central ini-
tiative of the core is thus to develop interactive tools 
for applying the models, to distribute software via 
open source licensing, and to develop workshops and 
online resources to describe the limitations, interpret-
ability, and use of these models to the basic biology 
of aging community.

Training and career development

Research development core

Dr. Alessandra Sacco, asacco@sbpdiscovery.org.
The SD-NSC Research Development Core pro-

vides support for career development of junior 
researchers entering the basic biology of aging field, 
as well as established investigators in San Diego and 
beyond who wish to join the field. To this end, the 
SD-NSC Research Development Core awards six 
$15,000 pilot grants per year to help basic biology 
of aging investigators take advantage of the SD-NSC 
research resource cores to investigate the heteroge-
neity of aging in their model system. Award recipi-
ents receive fully subsidized access to the research 
resource cores, are provided training opportunities to 
visit the cores, and are paired with a senior biology 
of aging investigator to help ensure project success. 
For junior investigators, this pairing also constitutes a 
formal mentoring relationship to discuss project and 
career development. The core offers a yearly 1-day 
workshop at the Salk Institute the day after the annual 
La Jolla Aging Meeting (LJAM), a 1-day symposium 
featuring local research in San Diego on the biol-
ogy of aging and a prominent keynote speaker  from 
the aging research field. This symposium has been 
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organized since 2017 by Drs. Jan Karlseder (profes-
sor at the Salk Institute and member of the SD-NSC 
executive team), Peter Adams, and Malene Hansen 
with support from the Glenn Foundation for Medi-
cal Research. This workshop features an overview of 
the Research Development Core and the Pilot Grant 
Program, training modules for the three research 
resource cores (e.g., equipment overview, experimen-
tal workflows, and data analysis capabilities) with 
visits to the core facilities themselves, and a module 
to provide attendees with professional tools on how 
to write compelling grant applications. In addition to 
the LJAM-associated workshop, the scientific cores 
provide small group, hands-on training sessions, thus 
facilitating the uptake of these cutting-edge tools 
by the aging research community. Finally, the core 
makes available on the SD-NSC public website the 
presentation slides as well as video recordings of the 
1-day workshop, to further disseminate details on 
center service offerings and increase the visibility of 
the SD-NSC.
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