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Abstract

In this report, issues related to design descriptions are discussed. Several existing
description styles including timing diagrams, algorithmic-state-machine charts, state-
action tables, VHDL, SpecCharts, and signal-flow graphs are investigated, and their
features are compared. Five examples (addressed handshake read protocol, parallel
counters, controlled counter, finite-impulse-response (FIR) filter, anda simple computer
system) described in different styles are also presented.
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1 Introduction

The issue of design description has been around for almost as long as hardware. A

cursory glance at any standard component databook shows that, traditionally, a design is

often specified in plain English annotated with flowcharts, state graphs, timing diagrams

and block diagrams. As designs become increasingly more complex, so does the need for

the description languages to raise beyond the present levels of abstraction in order to cope

with the increased design complexity.

This survey will address the features of different description styles and relate these

description styles to different design styles. We can divide the design styles with respect to

complexity into three different categories:

1. Interface. This refers to low complexity designs used for communication between

components. The design descriptions specify signal changes, sequences of events, and

timing relationships between events. No data transformation is used in the description.

2. FSMD (Finite State Machines with Datapaths). This refers to medium com

plexity designs, which are usually described with sets of register transfers. FSMD is

well-suited for modeling a design with up to several hundred states. Beyond that, it

becomes incomprehensible to human designers.

3. System. This refers to designs of highest complexity, which are usually described with

programming languages and implemented with one or more communicating processors

or FSMDs.

The differences between the design styles impose vastly different requirements on the

description style. To be effective, a description style should have features which can greatly

reduce the effort required by the designer to describe a particular aspect, such as timing.

Obviously, having a close match between the description style and the design style simplifies

the task of synthesis and produces higher quality designs.

This short survey examines several description styles, including timing diagrams,

Algorithmic-State-Machine Charts (ASM Charts), State-Action Tables, VHSIC Hardware

Description Language (VHDL), SpecCharts, and Signal-Flow Graphs. They are believed to

be representative of design description styles currently in use. We compare their capabil

ity with respect to specifying actions, states, hierarchy, concurrency, sequentiality, timing



constraints, pipelining, clocking, chaining, asynchrony, synchronization, and memory. To
demonstrate their features, five examples (addressed handshake read protocols, parallel
counters, controlled counter, Finite-Impulse-Response filter, and a computer system) are
described using different description styles.

In the next section, we briefly introduce each of the above description styles. In Section 3,
different features of these styles are compared. The examples are presented in Section 4^
and Section 5 contains concluding remarks.

2 Description Styles

2.1 Timing Diagram

CALEN(T1)

(DIRECT
MAPPED)

COE#

(2 WAY)

CALEN(T1P)

minSns
max 24 ns

Figure 1: Example oftiming diagram

Timing Diagrams are avery common description style and can be found in any component
databook. They show various signals in the design as a function of time. Several signals
are usually plotted with the same time scale so that the time at which these signals change
with respect to each other can be easily observed. Typically, timing diagrams specify timing



coQStraints such as clock rates, setup times, and timing relationships in terms of "ns" (nano

second) or clock cycles. Because it can clearly show the rising and falling of signals (called

events), sequencing of events and also timing relationships between events, it is generally

used to specify protocols and I/O relationships. On the other hand, designers can not specify

data transformations using timing diagrams because they lack the notation for expressions.

Figure 1 shows an example of a timing diagram from the specification of the Intel 32-bit

cache controller 82385 [Inte91]. This example shows how to specify signal changes related to

multi-phase clocking and timing relationships such as minimum and maximum time range

in timing diagrams.

2.2 Algorithmic State Machine Chart

The Algorithmic-State-Machine (ASM) chart [Clar73] is a diagrammatic description of

the output function and the next-state function of a Finite State Machine (FSM). It re

sembles a conventional flow chart: control flow is expressed graphically, while operational

behavior is described using textual assignment statements.

The chart is composed of three basic elements (Figure 2(a)): the state box, the decision

box, and the conditional box. A state in the control sequence is indicated by a state

box which contains a list of register operations or output signal names that the controller

generates while being in this state. The exit path of the state box leads to other state boxes,

decision boxes or conditional output boxes.

The decision box describes the effect of an input on the controller. Each decision box

has two exit paths. One path is taken when the enclosed condition is true and the other

when the condition is false. These two paths are usually indicated by 1 for true and 0 for

The conditional box describes register assignments or outputs which are dependent on

one or more inputs in addition to the state of the FSM. The rounded corners of a conditional

box differentiate it from a state box.

An ASM block is a structure consisting of one state box and all the decision and condi

tional boxes connected to its exit path (Figure 2(a)). Each block has one entrance and any

number of exit paths represented by the structure of the decision boxes. An ASM chart

consists of one or more interconnected ASM blocks. One ASM block describes the FSM

operation during one state. It should be stressed that the exit paths of decision boxes, in
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Figure 2: Example of ASM chart

no way, describe time dependence. They only represent logic relationship. The state box

is the only element representing time in the ASM chart since each state box indicates one

state. The timing model used in the ASM chart is a simple one-phase synchronous clocking

scheme; therefore, asynchronous logic cannot be described using ASM charts. Moreover,

designers cannot specify timing constraints such as component delay in ASM charts. Fig

ure 2(b) gives an example of the ASM chart. This example shows two states TO and Tl.

In TO, signal START is asserted. At the same time, if Boolean expression B is true or B is

false and C, E are both true, then R is cleared.

2.3 State-Action Table

State-Action Table [HaCG93] provides a concise tabular notation for state-based design

descriptions, where the state sequencing of the design can be clearly expressed in a state

table and the datapath operations can be expressed using textual assignment statements in

each state.

The State-Action Table (Figure 3) contains several different fields: PS (the present

state), SCOND (the condition for a next-state transition), NS (the next state), ORDER (a

level ordering of the actions within a given state), CV (the condition vector under which

the results of the action will be used), ACOND (the assignment condition for each action),

and ACTIONS (all operations in the behavior).
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Figure 3: Example of state-action table

TIMINq

"is I SB

The assignment condition for each action (ACOND) can be an asynchronous input-
signal, a clock-signal change or any valid expression resulting in a Boolean value. In the
field ACTIONS, the designer can specify functions as weU as simple assignments. The
functions which define multiple operations may take place over multiple time steps, and may
have multiple return values. Using functions, the designer can specify operator pipelining
and multi-cycle operators. Operator pipelining aUows asingle operator to be mapped to a
pipelined component which will take one or more states to complete an operation. Multi-
cycling allows asingle operation to be divided into some number of sequential time steps.
By specifying the execution sequence using the field ORDER, the state-action table also
allows several operations to be chained together into asingle state (called chaining).

The state-action table also allows the designer to specify four kinds of timing constraints.
Action-Based constraints specify timing values over asingle action. Expression-Based con
straints specify timing values across several sequential actions. State-Based constraints
show timing values for an entire state. And Tmnsition-Based constraints show timing val
ues across several sequential states. In Figure 3, an action-based (AB) constraint is specified
on the action Zl = b- 2. Similarly, a state-based (SB) constraint is shown for state 1.
And an expression-based (EB) constraint indicates that the time constraint from action 4
{Z2 - Y- Zl) to action 6(X =V*Z2) is 80 ns. Similarly, the transition-based (TB)
constraint indicates that the time constraint from state 1 to state 2 is 200 ns.

Multiple clock phases can be represented in state-action tables by introducing ahierarchy
between states and atomic actions. Figure 4shows the same example as shown in Figure 3,
but using a two-phase clock. The clock phases (PHASE) are always offset from the current
state and proceed in the order they are numbered. The phase order (BORDER) column is
equivalent to the ORDER column with the numbers offset from the current phase.
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Figure 4: Two-phase clock representation in state-action table

2.4 VHDL

VHDL (VHSIC Hardware Description Language) [IEEE88] is an industry standard lan

guage used to describe hardware from the abstract to the concrete level. It exhibits seman

tics common to high-level programming languages, such as data abstraction, behavioral

operators, assignment statements, and control and execution ordering constructs to express

conditional and repetitive behavior. For instance, the data types allowed in VHDL consist

of everything from scalar numeric types, to composite arrays, records, and file types.

The primary hardware abstraction in VHDL is an entity. It represents a portion of the

design which performs a specific function and possesses well-defined inputs and outputs. A

design entity may represent any abstraction level from a logic gate to a complete system,

and it can be described in terms of a hierarchy of subentities. The relationship between

the inputs and outputs of a design entity may be described in terms of behavior, dataflow,

structure or any combination thereof.

In behavioral descriptions, a design can be modeled as a set of concurrently executing

processes. Statements within a process are executed sequentially. The execution of each

process can be controlled by making the process sensitive to changes on certain synchronous

or asynchronous signals. Figure 5(a) shows the behavioral description of a simple modulo-8

counter. To model pipelining, a process can be partitioned into successive, synchronized

stages such that multiple processes, each in a stage different from others, can be executed

in parcdlel.

In data-flow descriptions, a design can be modeled as a hierarchy of data-flow blocks.

Statements within a data-flow block are executed concurrently. Each statement «tssigns a

value to a signal based on a set of conditions or control expressions. VHDL allows a guard

condition to be associated with a data-flow block, which enables conditional assignments

of selected statements in the block. Figure 5(b) show the data-flow style description of the



counter.

In structural descriptions, the designer can instantiate components which represent pre

viously defined design entities and specify their interconnections by mapping component

ports to the same signal. The design structure can still be maintained hierarchically. The

structural description of the counter is given in Figure 5 (c).

ertity COUNTER is
port(CLK ; in bit; CNT: out integer);

end COUNTER;

architechture A of COUNTER is
begin

wait unti (CU<='1') and not CLK'slable:
if (CNT»7) then

CNT <= 0;

'̂?NT <= CNT +1;
end if;

end process;
end A;

entity COUNTER is
port (CLX: in bit; CNT:out integer);

end COUNTER;

architecture A of COUNTER is
begin

tiock (CLK='1' and not CLK'stable)
begin

CNT <= guarded 0 when CNT=7 else
CNT+1;

end block;
end A;

entity COUNTER is
port (CLK;in bit; CNT: out integer);

end entity;

architecture A of COUNTER is
component REG

port (D: in integer; CLK: in bit; Q: out integer);
end comporwnt;

component ADO
port (A. 6: in integer; O: out integer);

end component;

component MUX
port (10. It: in integer; SEL: in bit; O: out integer);

end component;

signal ONE: integer := 1;
signal ZERO: integer0;
signal SEL. ADD.OUT, MUX.OUT: Integer;

REGISTER: REG
port mapfMUX^OUT. CLK.CNT);

ADDER: ADD
port map(CNT. ONE. ADD_OUT);

MUX: MUX
port map (ZERO. ADD_OUT. SEL. MUX OUT);

Figure 5: Example of VHDL description styles: (a)behavioral; (b) data-flow; (c) structural

VHDL also provides timing specifications: wait statement and after clause. The wait

statement can be used in several ways such as delay specification ("wait for"), synchroniza

tion ("wait until", "wait on") and timeout clause ("wait on" signal "for" time). The after

clause specifies the time into the future when the value of the signal is to be updated with

the new value, which in a way, places a timing constraint on the assignment statement.

In a description with several concurrent processes, synchronizing the processes is often

required because two processes may need to exchange data or certain actions must be

performed by different processes at the same time. Wait statements of VHDL in two

processes with a common signal wiU synchronize the two processes when an event occurs



on the common signal. In addition, any event on a signal which occurs in the sensitivity

list of twoor more processes will start the processes simultaneously. Anexample is a global

clock signal which can be used to synchronize the entire system.

In asynchronous interprocess communication, global signals are declared which can be

accessed by concurrent processes. The sending processes update the global signals which

are then read by all the receiving processes. The process which is ready first usually waits

for the other processes to be ready for the communication. The protocol to implement the

transfer has to be specified as a part of the description of the processes.

2.5 SpecCharts

The SpecCharts language [NaVG91] [VaNGQl] consists of a hierarchy of states, repre

sented in combined graphical and textual form, while catering to the expression of concur

rent behavior and specification of constraints.

The basic object in SpecCharts is a behavior (i.e., a state). A behavior can be expressed

in one of the three ways. First, a behavior may itself consist of several sub-behaviors

sequenced by transition arcs. This corresponds to traditional state diagrams. Secondly,

a behavior may consist of concurrent sub-behaviors (often called processes). Thirdly, a

behavior may be a leaf behavior which is not further decomposed into sub-behaviors. Such

a behavior has sequential VHDL code only.

Briefly, behaviors are represented as boxes, sequential behaviors are sequenced by transi

tion arcs and concurrent behaviors are separated by dotted lines. Each behavior may contain

declarations identical to those in VHDL. Figure 6 shows a CPU described in SpecCharts.

At the topmost level, the description SYSTEM consists of two concurrently executing sub-

behaviors, the processor CPU and the clock generator CLK-GEN. The CPU in turn consists

of two major states: RESET, which is the default entry state for the CPU, and ACTIVE,

where the processor Is operational. The ACTIVE state is further composed of three se

quential sub-behaviors representing instruction fetch, decode and execution, respectively.

CLK-GEN is a leaf state which contains sequential VHDL code only.

SpecChartsprovides twodifferent kinds of transition arcs: TOC (Transition-On-Completion)

and TI (Transition-Immediately). A TOC arc is traversed only if the source behavior has

completed execution and the arc condition is true. A TI arc is traversed the instance its

associated condition becomes true, regardless of the execution status of the source behavior



declarations: port RESET: in bit;

3YSTEM connections; CPU-CLK:CUK_GEN.CLK:
constraints: num_chips <= 3;

port CLK: in bit;
CPU variable AC, IR. PC: integer:

variable memory: mem_array{255 downlo 0};

j CLK_GEN
I port CLK: out bit;

ACTIVE
signal OPCODE. AOOR:integer;

(OPCODE=0)

case OPCODE is
when 1 =>

AC := 0;
when 2 =>

AC :=AC+1;

end case;

not (OPCODEsO)

VHDLsequential
statements that
generate a dock;

Figure 6: Example of SpecCharts

and any of its descendant behaviors. For instance, in Figure 6, the arc from ACTIVE to

RESET is a TI arc; therefore, the event rising(RESET) forces the CPU process into the

RESET state, no matter which ACTIVE substate it is currently in.

Interface information such as external ports and communication channels between con

current sub-behaviors can be specified either by using global signals or by channels. A

channel is a combination of ports and protocols. A protocol definition is identical to a pro

cedure definition and contains data transfer statements such as placing address on the bus,

generating a request, waiting for an acknowledgement, etc. The designer simply declares

a channel at a module boundary, associating a descriptive label with it, and specifies the

protocol of that channel. The channel label can then be used throughout the code as any

procedure call.



Since SpecCharts semantics are identical to VHDL, the designer can use the same timing

specifications as used in VHDL. Besides this, SpecCharts provides a special construct to

represent timeout: a transition arc called timeout arc causes a transition on the expiry of

the associated time period.

2.6 Signal-Flow Graph

A signal-flow graph is basically a set of directed paths that connect at nodes. Each

node represents a data transformation operation such as an addition or multiplication.

The flow paths show how the inputs of nodes are derived from appropriate outputs of the

other nodes or external input signals. In other words, the nodes in a signal-flow graph

represent functions to be performed on input or intermediate signals, while the flow paths

represent data flows as well as time-dependence between operations. There is no notation

for conditional expressions, recursion, iteration or timing constraints.

Figure 7 gives an example of a signal-flow graph. It shows the set of input data a, b, c,

and in, and the computations performed on them to produce the signal out.

3 Description Styles Evaluation

We have described the different description styles described in the previous section. Dif

ferent features of these description styles are summarized in Figure 8 with respect to the

capability of specifying actions, states, hierarchy, concurrency, sequentiality, timing con

straints, pipelining, chaining, clocking, asynchrony, synchronization and memory. We will

now evaluate and compare the styles with respect to these features.
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3.1 Timing Diagram

Timing diagrams present synchronous and asynchronous signals uniformly and make it

trivial to identify signal events and interrelate them with timing constraints. Hence, timing
diagrams can be used to describe the events and timing constraints on the 10 pins. On the
other hand, they lack notations to specify design implementation used to generate those
events. This information is very useful in initial phases of design when complete design
details are not known. One example is the specification ofa system backplane bus protocol
and the timing constraints that must be respected for proper operation.

There are also many limitations to using timing diagrams. There are no conventions

for specifying conditional and looping behavior nor are there ways of expressing hierar
chy. Therefore, a complete specification usually needs more than one timing diagrams to
represent all possible cases of the same set of signals. For instance, the Intel cache con

troller 82385 specification [Inte91] consists of 3 diagrams: cache write hit cycle, cache read

miss cycle, and cache read cycle (Figure 1). Since there is no data transformation speci

fied in timing diagram, they can be implemented with FSMs. However, extracting control
flow from timing diagrams is difficult since control constructs such as conditional behaviors

cannot be specified explicitly in timing diagrams.

3.2 ASM Chart

The ASM chart ha^ explicit state specification, which requires the designer to finish
scheduling before the design can be described using the ASM chart. Every block in an

ASM chart specifies the operations that are to be performed during the same clock period

(state). The timing model used in the ASM chart is a very simple one-phase clocking
scheme: every operation is synchronized by a global clock signal and no timing constraint
can be specified. The requirements for the design of the datapath are specified inside the

state and conditional boxes. The control logic is determined from the decision boxes and

the required state transitions.

Because operations are written at the register-transfer level, datapath synthesis can be

done simply by doing allocation. By following the control flow in the chart, boolean ex

pressions for every datapath control signal can be generated, from which the control logic
is synthesized. For example, consider the ASM chart shown in Figure 2. While in state TO,

the control circuit evaluates the Boolean expressions B, C, E&nd generates control signals



to clear register R. Suppose the control signal which resets register R is called clear, then

we know that

clear = TO A (B V (B A C A E)).

As shown above, the design implementation can be obtained from the ASM chart de

scription relatively easy. On the other hand, highly hierarchical designs will increase the

number ofstates in ASM charts exponentially ASM charts are inherently flat and sequen
tial. Therefore, ASM chart is well-suited to describe small FSMDs resulted by decomposing
complex systems in some intermediate design phases.

3.3 State-Action table

State-action table is a state-based description, and it has many similarities compared
to the ASM chart. For instance, scheduling is automatically achieved by describing an
operation in its appropriate state; it shows exponential increase in number of states when

describing hierarchical systems; the requirements for the design of datapath are specified
as actions and written in register-transfer level, and thus can be synthesized without much

effort, etc. But it also differs from the ASM chart in several ways.

Thestate-action table provides procedural hierarchy by using "functions" as a shorthand

notation for describing repetitive behavior. This procedural hierarchy permits grouping of
actions in a structured fashion and allows a concise representation. Using functions, the
designer can specify pipelined and multi-cycle operators and any other hardware.

The state-action table also allows several operators to be chained together into a single
state while ASM charts assume that all operations within a state are synchronized with the

clock signal. The state-action table can also be used to specified asynchronous designs, but
the ASM chart is limited to synchronous logic because of its one-phase clock timing model.

3.4 VHDL

VHDL has a rich set of language constructs, such as behavioral operators, which allow
it to succinctly capture behavior that contains assignment statements with complex data

transformations carried out by an algorithm.

The concepts ofstates, state hierarchy, state transitions, etc., are not present in VHDL.



Thus, for state-based designs, the state activation and transitions need to be explicitly spec

ified in detail using state variables and control constructs such as "case" statements. This

can prove to be cumbersome, error-prone, and reduces understandability of descriptions.

To describe complex systems, VHDL supports structural hierarchy which allows the

designer to decompose a large complicated system into smaller and more comprehensible

subsystems. Each of the subsystems may represent behavior or structure. This capability

becomes vital as design complexity grows.

It is noted that synthesis from VHDL descriptions needs more effort than from the

ASM chart or the state-action table because it does not explicitly specify states, control

and register transfers. For instance, since VHDL does not specify control steps explicitly, a

VHDL description must be partitioned into control steps before it can be realized as FSMD

structure.

3.5 SpecCharts

A state-based description with simple assignments is difficult to use for system level

designs. In the absence of programming constructs, implementing even a simply looping

mechanism will require a complicated set of state transitions, making design description

cumbersome and less readable. Therefore, description styles such as the ASM chart and

the state-action table are limited to describe small FSMDs.

On the other hand, programming languages such as VHDL have a rich set of program

ming constructs, but they do not have state-based specification. Besides, VHDL provides

only a single level of concurrency (processes) followed by one level of sequentiality (sequen

tial statements in the process). Therefore, for highly hierarchical designs, the designer has

to coerce the design specification into a description of a single-level of concurrent processes,

which may not always be possible. Besides, designers do not usually think in terms of pro

gramming languages when designing system; instead, they draw state diagrams, and think

of protocols, etc.

SpecCharts is essentially a combination of behavioral VHDL and hierarchical/concurrent

state diagrams. It has programming constructs like in VHDL and thus inherits the merits

from it. Furthermore, it includes state-based specification and supports behavioral hierarchy

to concisely capture complex behavior in a way closer to the designer's conceptual view of

the system. In short, SpecCharts is intended for system descriptions.



3,6 Signal-Flow Graph

A signal-flow graph shows data operations and data flow. It has no notation for control

flow or conditional operations. Therefore, it is usually used in digital signal processing where

very little control flow is needed and a relatively large amount of data transformations are

performed.

Hardware designers do not think in terms of equations or algorithms when they design

circuits. The signal-flow graphs can be derived by expanding equations in the algorithm

or in the program. They also provide a good visual aid for designers to gain a better

understanding of the equations. By analyzing the signal-flow graphs, the designer can

obtain the datapath according to different design constraints. However, the signal-flow

graphs do not have notations to specify control flows. Therefore, to obtain the control

logic, the signal-flow graphs need to be annotated by some other description styles.

4 Examples

In this section, we describe a large variety of examples using different description styles.

These examples are chosen to demonstrate the applications of the description styles. The

first example is the Addressed Handshake Read Protocol which represents a typical interface

protocol. The second example Parallel Counters^ brings out the features of concurrent

behaviors. The third example is an asynchronous circuit: Controlled Counter. Finite-

Impulse-Response (FIR) Filter is a DSP application which is given by a mathematical

formula. The last example is a Simple Computer System. It shows the importance of

hierarchy when describing a complex system.

4.1 Example 1: Addressed Handshake Read Protocol

This example is a well-known read protocol used for memory access. The processor

initiates the data transfer by placing the address on the ADDRESS has and eisserting the

READ signal. The READY signal is activated by the memory after it places the data on

the DATA bus. The processor deasserts the READ signal after it stores the data. The

memory then deasserts its READY signal, and invalidates the data on the bus.

Timing diagram is a natural choice to describe this protocol. The timing diagram in

Figure 9 clearly shows the exchange of signals between the processor and the memory. For



ProcMsor Memory

Figure 9: Description of addressed handshake read protocol using timing diagram
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Figure 11: Description of addressed handshake read protocol using state-action tables

the purpose of simulation, this timing diagram provides concise and adequate information

about the interface behaviors. No unnecessary information such as internal circuit or the

interface logic implementation is described. To implement the interface logic, the timing

diagram needs to be partitioned into control steps, then it can be implemented with FSMs.

In comparison with the timing diagram, Figures 10 and 11 show the interface control

logic descriptions using the ASM chart and the state-action table respectively. These two

FSMs (the processor and the memory) can be synchronized with different clock signals.

Processor

ADDRESS <= address:
READ<='r;
wait until READY='1';
data <= DATA after 20 ns;
READ «= 0' ^er 20 ns;

proc^ Memory
variable memory: mem.array;

be^n
wait until READs'1';
DATA <= menwry(ADDRESS) after 60 ns;
R^DY <=' 1'^er 70 ns;
wait until READs'O':
READY <= '0' after 10 ns;

erHf;

Figure 12: Description of addressed handshake read protocol using VHDL

The designer can also describe the processor and memory as two concurrent processes



in VHDL. The communication between these two processes is via addressed handshake

protocol (Figures 12). To observe or modify the interface behaviors is more difficult now

because they are splitted into two processes. The VHDL code can also be partitioned into

control steps using scheduling technique and result in FSMs as described in Figure 10 and

11.

Figures 10, 11 and 12 show the memory read operations only, but it should be stressed

that these statements may be only part of the entire descriptions of the processor and the

memory. This makes it more difficult to modify the interface descriptions since they are

mixed with the internal circuit descriptions.

a(to.hnctehk_fead (acfcfresa, data)
port ADDRESS: out;
port DATA; in;
port READ; out bit:
port READY: in bit;

data <> DATA;

READ <- -0';

addr_hnd5fik_8«nd (array)
port ADDRESS: in;
port DATA: out;
port READ: in bit;
port READY: out bit;

wait until READ> 1;

OATAo a/roK (ADDRESS)

READY<-'V-

READY <« •C;

Figure 13: SpecCharts description of the address handshake protocol

varlabia PC. IR: blt_vector(7 downto 0);
channel READ MEMORY: addr hndshk read:

variable MEMORY: arrayil to 256) of byte;
channel SEND DATA; addr hndshk send

Figure 14: Channel declaration and parameterized protocol instantiation

Moreover, the designer can describe the protocol using SpecChaits. SpecCharts provides

a special construct called channel for interprocess communication. In Figure 13, the two

complementary halvesof the protocol are shown as parameterizable SpecCharts states, with



the actual low-level data transfer statements that constitute the protocol. The designer

simply has to specify the protocol and the italicized parameters at each access point. For

instance, a channel is declared on both the processor and the memory, and the appropriate

protocol associated with each (Figure 14). This construct c/ianne/separates the descriptions

of the interface and the internal behaviors as using the timing diagram, and the low-level

descriptions of the protocol have been assigned to states as using the ASM chart or the

state-action table. But comparing to the timing diagram, the signal exchanges between the

processor and the memory is not as easy to observe.

4.2 Example 2: Parallel Counters

This example consists of N-independent counters where each counter has a separate load

signal, start signal, M-bit limit signal and a time-out signal (Figure 15). The M-bit limit

is loaded into the counter when the signal load is high. When the counter receives a start

signal, it counts down on every clock cycle, and sets time.out signal high when it reaches

time_out2 ttm«_outN

Figure 15: N-independent parallel counters

The functional requirements can be easily transformed into a VHDL process (Figure 16),

an ASM chart(Figure 17), or a state-action table (Figure 18).

In VHDL, N-independent counters can be represented using one process with a loop as

shown in Figure 16. Although the statements in the VHDL process are executed sequen

tially, the behaviors of the N counters described by the loop can still be viewed as concurrent

since there is no time elapsed within the loop and ail the statements are executed at the

same time. It should be noted that if there is timing constraints specified using wait state

ments or after clauses for the individual counter, then the N parallel counters have to be



CNT1: process(ckx!l<)
begin

for 1in 0 to N-1 loop
ifloa^i)s1 tfien

Cf^f(i) <= lifnit(l):
elsif start(i)=1 tfien

count(i) := 1;
Cl^(i) <= ChJT{i)-l:

elsif count(i)=1 Ihm
if CIMT(i)=0 then

count(i) :s 0;
ljme_out(i) <= 1;

OtSG
CNT(i) <» Cl^(i)- 1;

end if;
ef)d if;

end loop;
end process;

Figure 16: Description of N-independent parallel counters using VHDL

(CNTI^ timiti

,CNT1^CNT1-1>

r^U:r''CNTi^o>A

' counM -^1
,cntn-^cntn-v

Figure 17: Description of N-independent parallel counters using ASM chart
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l(toad2»«1)A!(staft2«.1)*(cour<2^1)A!(CNT2—0)
l(load2-»1)&l(8taft2=1)&[count2»-1)A(CNT2«»0)
I{k}ad2—1 )&Kslart2==1}&(count2«-lWCNT2:.:=0)

(loadN-=1)
!(loadN=.1)A(8UftN—1)
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l(loadN«.1)&)(8tartNm,1)A(coumN««1)&!(CNTN—0)
!(lcadN-=1 )A!(staflN=»«1 )&(cciuntN»=1 )A(CNTN=.0)
!(loadN—1)&f(6tartN-=1)&(countN»»1)&(CNTN=aO)

ASCONO

(h3adl»1)

!(load1»=i)A(8tart1»»1)
!(toad1—1)&(staft1=l)

Kloadi—1 )A!(aart1—1 }&(count1 )AI(CNTl—0)
Kloadl—1)&t(5taf11»->)A(eount1-«1)A(CNT1—0)

I(toad1g=1 )A!(8taft1 a-1 )&(count1.ai )A(CNT1«^)
(load2ss1}

!(load2=»1)A(start2-=1}
!(load2-»1)&(slart2=n

•(load2»g1)A!(start2=»l)&(cotjnt2=1)AI(CNT2»«0)
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!(load2«=1 )aiH8tart2—1)&(couni2..l)4(CNT2»»0)

(loadN—1)
!{loadN>i=i)&(startN=1)

!(loadN=«1)A(staftN»=.1)
!(loadN«.1 )A!(6tartN— l )j.(countN^ 1)A!(CNTN—0)
!(loadN—1 )4!(8»artN»«1 )&(countN==t )A(CNTN—0)
!(toadN-»1 )&UstarlN—1)a.(countN»=1 )4(CNTN—0)

Figure 18: Description of N-independent parallel counters using State-action table

described using N concurrent processes individually.

The ASM chart and the state-action table are inherently sequential and they do not have

any notation for higher level concurrent behaviors such as processes or blocks; therefore, it

becomes cumbersome to describe N parallel counters using the ASM chart and the state-

action table. The designer has to duplicate the description for one counter N times to

specify N parallel counters. Figure 17 shows the description of this example using the ASM

chart. Figure 18 gives the description of N-independent parallel counters in the state-action

table.

The example shows that VHDL description is short and more readable because it benefits

from the loop constructs. But to implement the design from this description, the designer

has to recognize the parallelism across the loop iterations. Exploiting the parallelism and

partitioning the VHDL code into control steps becomes a difficult task. On the other hand,

the ASM chart and the state-action table descriptions are lengthy, but the parallelism is

specified explicitly. It requires the designer less effort to obtain the implementation from

the ASM chart and the state-action table descriptions.



4.3 Example 3: Controlled Counter

The controlled counter is a 4-bit counter which can count up or down on each rising

clock, to a specified limit, and can be asynchronously cleared. It consists of three main

components: a 2-bit control register {CNTL), a 4-bit limit register {LIMIT), and a 4-

bit counter {CNT). The output of the counter is OUT. On the rising edge of the STRB

signal, the counter stores the 2-bit control input signal CON. It then performs the following

operations based on the stored value of CON:

1. "00": Clear the counter.

2. "01": Load inputs from the DATA signals into the LIMIT register on the falling edge

of the STRB signal.

3. "10": Increment the counter CNT on the rising edge of the clock signal CLK.

4. "11": Decrement the counter CNT on the rising edge of the clock signal CLK.

The difference between the N-independent parallel counters and this controlled counter is

that the behavior of the controlled counter consists of both synchronous and asynchronous

parts. The synchronous part is performed on the rising edge of the CLK signal while

the asynchronous part is performed on the rising edge of the STRB signal. State-action

table, VHDL and SpecCharts can be used to describe the controlled counter because of

their capability in specifying asynchrony. Here, we show the state-action table and VHDL

descriptions only.

ASCONO.*

STRB

1 TtUINQ(iM) 1
ASCONOJ ACTIOMS ACTION

T C0N>CNT1.
40

CONbs'OO* CNT-'OOOO*

C0Na-'1<r&CNTf-LlMrT CNT=CNT+*0001*

CONa-ir&CNT>.UMIT CNT»CNT-"OOOr

OUT^NT

Figure 19: Description of controlled counter using state-action table

Figure 19 shows the state-action table description of the controlled counter. The field

ASCOND is split into two subfields: ASCOND.e specifies the edge-triggered conditions,

and ASCOND.l specifies the level-triggered conditions. The VHDL description is shown in



Figure 20. Wait statements are used in VHDL code to represent the asynchrony while the

state-action table does not need additional constructs. Hence, the state-action table gives

a more concise description.

wait until not STRB'stable;

If STRBs'V then CON CNTL; end tf.

case CON Is
when *00" =>

CNT :s 'OOOO*;
when •or=>

wait until STRB='0' and not STRB'stable;
LIMIT := DATA;

when •10*=>
wait until CLKz't' and not CUCstable;
It CNT/sLIMIT then

CNT :s CNT+*0001* aftBf 30 ns;
end If;

when 'ir =>
wait until CLKs'l' and not CUCstable;
II CNT/=LIMIT then

CNT CNT-*OOOr after 30 ns;
end If;

when others => null;
end case;

OLTT<= CNT;
end process;

Figure 20: Description of controlled counter using VHDL

We can also specify the component delays in VHDL using after clause. For instance,

Figure 20 shows that the increment and decrement operations need 30 ns each. In state-

action table, the component delays can be specified using action-based constraints as shown

in Figure 19. On the other hand, using expression-based constraints, the state-action table

can specify timing values across sequential actions while VHDL cannot.

4.4 Example 4: Finite-Impulse-Response (FIR) filter

process
begin

1:= 0;
for iin 0 to 15 loop

for k in 0 to 3 loop
if (i-k>0) or {i-k»0) tfien

yp]<=b(i]x[i-k] + y(i]:
end if;

end loop;
end loop;

end process;

Figure 21: Description of FIR filter using VHDL



The FIR filter response is given by the following equation:

where x[O..N-l] is the input stream, y[O..N-l] is the output stream and b[O..M-l] is the

array of filter coefficients (M is the order of the filter, N is the number of samples, and

i, k are the filter sample index and the filter order index respectively). This equation

can be naturally written as an iterative algorithm using VHDL (Figure 21) because of the

programming constructs it provides.

The VHDL description shows that this example has little control but a large amount of

data transformations, and we know a signal-flow graph is suitable to describe designs with

this nature. Figure 22 shows the signal-flow graph for an FIR filter (M = 4, iV = 16). The

signal-flow graph represents the most parallel design resulted from unfolding the loops in

the algorithm.

To demonstrate how signal-flow graphs help designers analyzing data flows and de

termining datapath, we now assume there are four multipliers available. Figures 22 and

23 shows four different ways of utilizing these four multipliers. The four multiplications

grouped in the dashed boxes (called slice) represent the operations to be performed on the

four multipliers concurrently. The dashed arcs pointing from one slice to another repre

sent dataflow which requires data storage. There are a number of selection rules for slicing

depending on different design constraints[BaGa93]. For instance, here, to minimize the

data buffering requirements, designers should choose horizontal slicing since it has minimal

number of connections crossing the slices.

Now the datapath is chosen, the algorithm can be rewritten to reflect the datapath

(Figure 24). To obtain the implementation, we need to schedule the VHDL process into

control steps. Since VHDL cannot specify control steps explicitly, state-based description

styles are more effective to describe the design after scheduling. Here, wedescribe the design

using both the state-action table (Figure 25) and the ASM chart (Figure 26). Comparing

the state-action table and the ASM chart, it is noted that the ASM chart has more states

(9) than the state-action table (3) because it cannot specify action chaining.
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process
variable RO, R1, RS. DR: register_type;
variable a. b. c, d, e. f; registerJype;

begin
RO :=0:
R1 :aO;
R2 :aO:
i:sO;
lor i in Oto 15 loop

OR :a xTij;
a :=WOl^R:
b:=WirRO:
c;=b(2)*Ri;
d :a b{3)*R2;
e :a a+b;
f -.s c+d:

Ri :aRC
RO :a Of

end loop;
end:

Figure 24: Description of FIR filter using VHDL
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Figure 25: Description of FIR filter using state-action table





4.5 Example 5: Computer System

CLK.GEN

(dock gtncraior)
lOJNTERFACE

hand$hak»
I chsnnol

mat intamjpt

Figure 27: Block diagram ofan example computer system

Figure 27 shows the block diagram of an example computer system. In Figure 28, apartial
SpecCharts ofthe system is shown. At the topmost level, the specification consists of the
state SYSTEM, which consists of three concurrent states: CLK_GEN, lOJNTERFACE,
and CPU. CPU in turn contains two sequential states: RESET and NORMAL, whereas
NORMAL contains three sequential states represents the instruction fetch, execution, and
interrupt handling respectively. An 8K memory is declared as a variable array in CPU.

On the other hand, this system can also be described using VHDL (Figure 29). The top-
level entity SYSTEM consists of three concurrent processes: CLK.GEN, lOJNTERFACE,
and CPU. The CLK-GEN process is identical to the CLK-GEN state in the SpecCharts
description since the CLK.GEN state is aleaf behavior and contains VHDL code only. Since
VHDL can represent only one level of concurrency and sequentiality, the hierarchy of sub-
behaviors RESET, FETCH, EXECUTE, and INTERRUPT in the SpecCharts descriptions
are all flattened in VHDL description. This results in a less readable description.

5 Conclusion

In the previous sections, we have presented six description styles and examined some
of their features. Figure 8 summarizes the various features of the descriptions we have
discussed. We also described five examples using different description styles.

The timing diagram is an unambiguous canonical form which can be used to describe



SYSTEM

declaratiorc port resot:inbit: port intemjpt: inbit:
connections: CPU.CLO: CLK_GEN.CLK: lOjf^ERFACE.ioeond: CPU.wrecieve
constraints: num^cfips <=3; area_pef_chp <= 60 sqmm;

CPU

channel ioreceive: hndshk_rec(<J#at;out byte);
portCLX: in bit;
variable AC, IR, PC; integer
vanable memory:array<1 to0192)o(ir«eger

risingtreseQ

IR := momofy(PC):
PC:a PC+1:

EXECUTE

estimate: timesSO ns;
areasZS sqmm;

case IR/tOis
when 1 => AC 0;

.t when 2 => AC AC+1:

CIK and interrupt

INTERRUPT

CLK GEN

I port CLX: out be

rVHOLcode
which generatea
a clock. 7

©.INTERFACE

channel ioaend:hndshK_sond(data: in byie);

estimates: area=20 sqmm;

/* Contents will be speceied at
somelaterdate. */

Figure 28; A partial SpecCharts description of the example computer system



«rttlty SYSTEM is
pott (ressi: In bit;

intsfrupt; In bit);
»nd SYSTEM;

architecture A of SYSTEM Is
signal CLK: bit;

begin

CLK.GEN; process

— dock generation

end process;

lO.INTERFACE: process

end process:

CPU: proceestreset, Interrupt.CLK)
variable state: integer;:^;
variable AC. IR. PC: integer
variable memor/; array(1 to 8192} of integei;

bMin
If resets'V and not resefstablethen

AC := 0;
IR :-0;
PC>0;

elsif CLKs'r and Interrupts'O' and then
II stateaOthen

IR := memory(PC):
PC:= PC+1;
state :3 1;

stateal then
case IR/10 is

when 1 => AC := 0;
when 2 => AC ;=AC+1:

end case;
state :a 0;

elsif CLKs'1' and lnterrupta'1' then

end If;
end process;

Figure 29: A partial VHDL description of the example system



an interface without implying any implementation. It is well-suited in the initial phases

of design when the implementation details are not known. For implementation purpose,

the timing diagram becomes insufficient since the designer cannot use it to specify any
implementation method. For instance, to implement the interface using FSMs, the designer

has to describe the design using state-based description styles such as the ASM chart or the

state-action table to specify the control steps. The ASM chart and the state-action table

are useful in describing small FSM-based designs because they have the notion of states

built into them.

The signal-flow graphshows the data operations and data flow graphically, but it cannot

specify any control constructs. The FIR filter example indicates that it can help describing
and scheduling DSP applications because they have a large amount of data computations

but very little control flow is needed.

VHDL provides programming constructs, and can succinctly capture behavior that con

tains assignment statements with complex data transformations. On the other hand, it
needs to be scheduled into control steps before the implementation can be obtained because

it does not have built-in state specifications.

Hierarchy becomes vital when the design complexity increases. TheSpecChart language,

designed for system-level description, provides hierarchy as well as programming constructs
and state-based specifications.

Obviously, one description style cannot fit all possible design styles. Hence, a framework

is needed to enable designers to describe designs in a variety of styles, each suitable for a
particular abstraction or model of design.
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