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Numerical Advection by Conservation of Second-Order Moments 

MICHAEL J. PRATHER1 

Center for Earth and Planetary Physics, Harvard University, Cambridge, Massachusetts 

A new, accurate, and nondiffusive method for three-dimensional advection of trace species is presented. 
The method preserves tracer structures by conserving the second-order moments of the spatial distri- 
bution of tracer during advection. Tracer concentrations are represented by separate, second-order 
polynomials within each grid box. This second-order moments method has been shown, in typical tests 
for advective schemes, to be equal or superior to presently available methods in terms of absolute 
accuracy, numerical diffusion, and computational cost. 

1. INTRODUCTION 

Simulation of the spatial distribution and chemical interac- 
tion of trace elements throughout the atmosphere and ocean 
often requires accurate numerical advection of trace species. In 
many such "tracer-transport" problems it is assumed that the 
global velocity field is given and that the "tracer" is trans- 
ported passively along with the mean flow. Furthermore, the 
abundance of these tracers is regarded to be sufficiently small 
so that physical and chemical transformations which produce 
or destroy tracers do not change the general mass field. This 
paper presents a new, stable and nondispersive method for 
numerical advection of tracers in three dimensions. The focus 

is on atmospheric applications and on a class of scientific 
problems ranging from regional studies of air pollution [e.g., 
Seinfeld, 1975; Mahlman and Sinclair, 1977; Eliassen, 1980; 
Graedel and Schiavone, 1981; McRae et al., 1982; McRae and 
Seinfeld, 1983] to global simulations of natural and anthropo- 
genic trace gases [e.g., Mahlman and Moxim, 1978; Holton, 
1981;Levy et al., 1982; Steed et al., 1982; Tunq, 1982; Funq et 
al., 1983; Ko et al., 1984]. 

The continuity equation for a fluid with a three-dimensional 
velocity field (u, v, w) may be written as 

•p c•pu c•pv •pw 
- (1) 

•t •x •y •z 

where p(x, y, z) is the fluid density in grams per cubic centime- 
ter. The continuity equation at a fixed point in space for a 
trace constituent of the fluid is then 

- u -- v - w + (2) Tzz P 
where f(x, y, z) describes the mixing ratio of tracer by mass 
(gram of tracer per gram of fluid). The term p (gram of tracer 
per gram of fluid per second) represents local sources, photo- 
chemical production and loss, or other mechanisms capable of 
removing the tracer from the mean flow (for example, precipi- 
tation). The following discussion focuses on inert tracers 
(p = 0). An important consequence of defining f in terms of 
mass mixing ratio is that convergence or divergence of the 
background fluid (c•p/c•t -5/= 0) does not directly lead to changes 
inf 
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A clear requirement of an acceptable numerical advection 
scheme is that the total amount of tracer should be conserved 

with high accuracy. Further, the scheme should provide a 
straightforward method for calculating and averaging chemi- 
cal transformations involving several trace species over speci- 
fied volumes. This approach leads naturally to a grid of boxes 
which fills the entire space. The continuity equations are then 
replaced with ones relating t5 (mean density) and f (mean 
tracer mixing ratio) for each grid box to the flux across the 
sides of the box. For the one-dimensional grid of length X, (1) 
and (2) become 

- (u-p- - u + p +)IX (3) 

- (u-p -f- - u + p +f +)IX (4) 

where the superscript plus and minus refer to the leading and 
trailing edges of the grid box. A major difficulty with (4) is the 
determination off at the boundaries (f +, f-) in terms of the 
mean values (f). 

Coupling of adjacent grid boxes should generally occur only 
through explicit advection or diffusion. Chemical processes 
within one box may be calculated independently of those oc- 
curring in neighboring boxes. Methods which integrate chemi- 
cal budgets by implicitly assuming continuity of chemical pro- 
cesses (that is, p in equation (21)) across the grid are unde- 
sirable and often dangerous. The local photochemical environ- 
ment may change discontinuously by orders of magnitude: for 
example, clear skies versus clouds and rain, or moist polluted 
boundary layers versus clean dry air above. 

The paper by Russell and Lerner [1981] provides a major 
advance in advection schemes suitable to chemical tracer 

models. They coupled a basic upstream algorithm with a least 
squares procedure determining the slope of the tracer distri- 
bution within each grid box. This "slopes" scheme has all of 
the desired properties for use in chemical tracer models, but it 
is more diffusive than some of the numerical schemes reviewed 

in recent studies [Chock and Dunker, 1983; Smolarkiewicz, 
1983, 1984; Schere, 1983; Schneider, 1984]. A comparison of 
the capabilities of different algorithms shows that each scheme 
has its advantages and that no one method is most advanta- 
geous under all conditions. For example, high-order poly- 
nomial schemes or pseudospectral methods are nondiffusive 
but often produce negative fluctuations in the tracer con- 
centration, which must be filled in after the advective step. 
Flux-corrected methods and the slopes scheme can maintain 
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positive tracer concentrations during advection, but they tend 
to numerically disperse steep gradients in the tracer distri- 
bution. Furthermore, high-order schemes which are less diffu- 
sive often require small time steps for stability and accuracy. 

The method proposed here, conservation of second-order 
moments, appears to include the best qualities of most other 
methods: (1) conservation of tracer; (2) positive tracer con- 
centration can be maintained during advection; (3) stable for 
large time steps up to the Courant limit (that is, the entire box 
is moved in one time step); (4) accurate when compared with 
analytic solutions for a nondivergent flow; and (5) high ef- 
fective grid resolution (that is, resolves and advects structures 
on the order of the grid size). 

The method used in this paper is not related to the second- 
moments technique proposed by Egan and Mahoney [1972]. 
Their procedure describes the tracer distribution as a number 
of small, discrete rectilinear clumps of tracer, at most one per 
box, which move as rigid objects both within and between 
boxes. It does not allow for continuous distribution of tracer 

within each box and does not include the necessary cross 
terms. The new second-order moments method is not a classi- 

cal "second-order" polynomial advection scheme; its accuracy 
compares favorably with fourth-order differencing schemes. 
(See Russell and Lerner [1981] for comparison of first-order 
moments with fourth-order polynomial schemes). The new ap- 
proach to advection of tracers is straightforward and does not 
involve free parameters, unphysical velocity fields [e.g., Smol- 
arkiewicz, 1983], or iterative steps. It is based on Russell and 
Lerner's [1981] idea of upstream advection with slopes. 

In section 2, upstream transport and second-order tracer 
distributions are described. The moments of the tracer distri- 

bution about the center of a grid box are formally defined and 
are related to the polynomial distribution f(x, y, z) in section 
3. Section 3 presents the formulae which describe how the 
moments of a grid box are decomposed into a unique set of 
moments centered about each subbox and how they are reass- 
embled into new grid boxes. Section 4 gives a one-dimensional 
example of tracer transport and derives limits necessary to 
maintain positive tracer concentrations. Section 5 examines 
analytically the accuracy and stability of this method and pre- 
sents numerical experiments testing the effective resolution. 
The second-order moments method is compared with other 
methods for numerical advection of tracers in section 6. 

2. UPSTREAM ADVECTIVE TRANSPORT 

Upstream methods traditionally employ a staggered grid 
with f evaluated at the center of each grid box and (u, v, w) 
defined at the boundaries, as in (3) and (4) [e.g., Haitinet and 
Williams, 1980, p. 130]. This technique is mathematically 
equivalent to treating the grid boxes as volumes of uniform 
concentration, integrating the appropriate volume from the 
upwind box (that is, u At), adding it to the primary box (which 
has had a corresponding fraction of its volume sent down- 
wind), and then thoroughly mixing within the box. Russell and 
Lerner [1981] noted that within each grid box the tracer con- 
centrations need not be uniform but could include gradients of 
tracer concentration. They formulated the advection step 
therefore as an integral in which the flux of material entering a 
box in a given time step is calculated by integrating over the 
tracer distribution in the upstream box. After each advective 
step the slope of the tracer distribution is reevaluated from the 
different subvolumes which comprise the new grid box. This 
technique is employed here. Consider the case in which the 
tracer mixing ratio is represented globally by a continuous 

second-order polynomial, as in (5). Upstream advection, which 
is equivalent to a translation or rotation of coordinates, would 
preserve this tracer distribution if second-order moments were 
conserved. 

Each grid box is treated as a separate entity with a continu- 
ous internal distribution of tracer and with an inevitable dis- 

continuity across the boundaries between boxes. The tracer 
mixing ratio is expressed as a second-order polynomial in 
three dimensions, 

f (x, y, z) = a 0 + a•x + a•x 2 + ayy + ayyy 2 + 

+ a::z 2 + axyXY + ay:yz + ax:XZ 
O_< x_< X O_< y_< Y O_< z_< Z 

(5) 

within a rectilinear grid box of volume V = XYZ. The in- 
clusion of cross terms is essential and makes the formulation 

independent of coordinate rotation. The total amount of fluid 
R and of tracer Mo are given by 

fffz R = p(x, y, z) dx dy dz 
dO dO do 

(6) 

ixii z M o = f(x, y, z)p(x, y, z) dx dy dz 
do do do 

The fluid density is assumed to be uniform within the volume 
V so that R = p V. Furthermore, in the following derivations I 
shall adopt the convenience of setting p equal to unity every- 
where. The reader is advised to remember that volume inte- 

grals are actually density integrals over the fluid mass con- 
tained in the grid box and that the tracer distribution f(x, y, z) 
is tied to the background fluid. This difference will become 
important, as noted earlier, only if there is a change in the 
mass of a'grid box during the advection scheme. I will then 
consider the effective volume to have changed along with the 
mass and will adjust the length of the box in the appropriate 
dimension. 

The calculated advection of a tracer for one time step with 
the upstream algorithm involves, first, the decomposition of a 
grid box into two or more rectilinear subboxes. The volume 
(mass) of each subbox corresponds to the fraction of the orig- 
inal box which would either be advected to an adjacent grid 
box or would remain in the original grid box. Each subunit 
retains the original, second-order polynomial distribution of 
tracer f(x, y, z) but will have new, local moments with respect 
to its center of mass. Then the advected subunits are gathered 
within their destination grid box and a new tracer distribution 
of the same form f(x, y, z) is derived from the moments of the 
subunits. 

The numerical scheme conserves the total tracer abundance 

(zeroth-order moment), the mean slope of tracer distribution 
in the three dimensions (three first-order moments), and the 
curvature in the tracer distribution, including cross terms (six 
second-order moments). With storage and transport of only 
zeroth-order moments this method is equivalent to a regular 
upstream algorithm. With zeroth- and first-order moments it 
can be shown to be equivalent to Russell and Lerner's [1981] 
least squares slopes scheme. 

The conservation of second-order moments has all of the 

advantages of the basic upstream method: it is stable in gener- 
al for large time steps; if necessary, mean tracer values may be 
kept positive by eliminating transport of subunits with nega- 
tive tracer; grid box volumes may fluctuate; and the local 
chemical transformation of tracers is readily integrated over 
individual grid boxes. 
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3. DERIVATION OF SECOND-ORDER MOMENTS 

The moments of the distribution f(x, y, z), as defined in (5), 
are given by the decomposition of f into orthogonal poly- 
nomials over the volume V = X YZ : 

f (x, y, z) = moKo + m•K• + m•K• + myKy + myyKyy 

+ m•K• + mzzKzz + m,,yK,,y + myzKy z + m=Kxz (7) 

In this notation the constants mi are the moment coefficients, 
and the functions Ki(x, y, z) are orthogonal functions such 
that 

K,K i dV = 0 (i • j) (8) 
for all combinations of i and j equal to 0, x, xx, y, yy, z, zz, xy, 
xz, and yz. We selected the following set of orthogonal poly- 
nomials with rational coefficients, 

Ko=l 

K x(x ) = x- X/2 

K=(x) = x 2 - Xx + X2/6 

Ky(y) = y- Y/2 

Kyy(y) = y2 _ yy + y2/6 
(9) 

K•(z) = z -- Z/2 

Kzz(Z ) = z 2 -- Zz + Z2/6 

K xy(x, y) = (x - X/2)(y -- Y/2) 

gyz(y, z) = (y - Y/2)(z -- Z/2) 

gxz(X, z) = (x -- x/2Xz - Z/2) 

with normalizing factors, 

Kx 2 dV = VX2/12 
Kxx 2 dV = VX½/180 
•K 2 dV = Vy2/12 (10) y 

K 2 dV = VY½/180 
Kxy 2 dV = VX2y2/144 

and with parallel results for Kz, Kzz, Kxz, and Ky z. Moments S• 
may be defined therefore from f(x, y, z) by 

So = f dV f (x, y, z)K o = moV 
Sx = (6/X) f dV f (x, y, z)Kx(x ) = mxVX/2 

Sxx = (30/X 2) • dV f(x, y, z)Kxx(x ) = m•VX2/6 
(11) 

Sy = (6/Y) f dV f(x, y, z)Ky(y) = myVY/2 
Syy = (30/Y 2) f dV f(x, y, z)Kyy(y) = myyVy2/6 

s• = (36/xY) f dV f(x, y, z)KMx, y)= mxyVXY/4 

again, with parallel results for Sz, Szz, Sxz, and Syz. The nor- 
malization above has been chosen for computational con- 
venience and results in all moments having the same units' 
mass of tracer. The coefficients of the polynomial expansion in 
(5) are a linear combination of the moment coefficients, 

axx -- taxx ayy = myy azz = mzz 

axy = mxy ayz = myz axz = mxz 

ax = rnx - mxxX - mxy Y/2 - mxzZ/2 

ay - my,- myyY - m•yX/2 - my:Z/2 (12) 

a•. = rn•. - mzzZ - mxzX/2 - myzY/2 

a o = m o - m•X/2 - my Y/2 - mzZ/2 + mxxX2/6 + myyy2/6 

+ rn:zZ2/6 + mxyXY/4 + myzYZ/4 + mxzXZ/4 
In the derivations which follow, advection will be restricted 

to the two-dimensional problem involving only x and y coor- 
dinates. I shall focus on the problem of transport, and thus 
decomposition of moments, for one dimension at a time, as- 
suming that multidimensional advection may be treated in 
separate steps (see discussion following this derivation). Given 
a velocity in the x direction of c and a time step of t, I require 
that the right-hand section of the box, defined by 

X-ct<x<X O<y< Y O<z<Z (13) 

be removed from its present grid box and added to the adja- 
cent one on its right. Remember that z may be substituted for 
y (and similarly, Z for Y) to include the moments in three 
dimensions. 

The first step in upstream transport of second-order mo- 
ments occurs when the moments of the primary grid box Si 
are decomposed into the moments of the fraction of the box to 
be transported, as defined in (13) above (Si u for the case 
c > 0), and those which remain (Si L) in the volume 

O<x <X-ct O< y< Y O<z <Z (14) 

(Note here that superscripts L and R refer to the left and right 
sides of the original grid box.) The new moments and their 
coefficients, m• u and mi •, are defined in terms of totally new 
orthogonal functions, Ki • and Ki •, which are defined over the 
new local volumes V • = ct YZ and V • - (X - ct) YZ. 

Ko•= Ko u = 1 

Kx • = x -- (X -- ct)/2 Kx u = x -- (2X -- ct)/2 

Kxx L = x 2 -- (X -- ct)x q- (X -- ct)2/6 

Kxx R = x 2 -- (2X -- ct)x + (X -- ct)X + (ct)2/6 
(15) 

KyL= KyU= y-- Y/2 

KyyL= KyyU = y2 _ yy + y2/6 

K•y • = Ix -- (X -- ct)/2](y -- Y/2) 

Kxy • = Ix -- (2X -- ct)/2](y - Y/2) 
New local moment coefficients may be derived, following 
some tedious algebra' 

mo • = m o + l•xUmx + l•xUmxx 

mx R = mx + 2I•xRmxx 

mxx u = mxx 

my u = my + l•xUm,,y (16) 
myy R = myy 

mxy R = mxy 
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where K is the average value of the original orthogonal poly- 
nomial over the new subinterval. 

I•x •' = -ct/2 I•x s = (X - ct)/2 

I•xx L = ct(2ct - X)/6 I•xx s = (X - ct)(X - 2ct)/6 

The moments Si in the transported subinterval 

a = a s = ct/X = VS/V (18) 

are given then by 

So s = a[So + (1 - a)Sx + (1 - a)(1 - 2a)Sxx] 

Sx s = a2[Sx + 3(1 - a)Sxx ] 

Sxx s = a3Sxx 
(19) 

S• u = •[S• + (1 - •)Sx•] 

Syy s = 

Sx• s = a 2 Sx• 

The moments corresponding to (19) for the remaining, left- 
hand portion of the grid box are calculated with the appropri- 
ate/•L from (17). 

So •' = (1 - a)[S o - aSx - a(1 - 2a)Sxx] 

Sx L --- (1 -- a)2(Sx - 3aSxx) 

Sxx L = (1 -- a) 3Sxx (20) 
Sy • - (1 - a)(Sy - aSxy ) 

S• • = (1 - 

Sx• L = (1 - 
Grid boxes are divided into rectilinear subintervals which 

have local moments defined with respect to each subinterval, 
not with respect to the original box. 

The final step in advection involves the addition of mo- 
ments from two adjacent boxes into a new grid box. Transfor- 
mation between the local orthogonal functions (Ki • and Ki R) 
and the new orthogonal basis set for the combined box is 
tedious but straightforward. The resulting moments may be 
expressed as 

So = So R + So L 

Sx = aSx s + (1 - a)Sx •' + 3[(1 - a)So s - aSo •] 

Sxx - a2Sxx u + (1 - a) 2$xx • 

q- 5{a(1 - a)(Sx u - $x •') q- (1 - 2a)[(1 - a)So s - aSo•']} (21) 

Sy = Sy u + Sy L 

Syy = Syy • + S•y L 

Sxy = aSxy u + (1 - a)Sxy • + 3[(1 - a)Sy R - aSy •] 
where 

a = a s = Vs/(V s + V •) (22) 

Dividing a volume into submoments by (19) and (20) followed 
by the reconstitution of the original volume by (21) results in 
conservation of the original moments. These formulae apply 
universally to all velocity fields, remembering that a in (21) 
refers to the fraction of total fluid mass which is contributed 

by the right-hand (that is, positive direction) subinterval. 
I have shown thus how to partition the grid boxes and their 

moments, to transport them downstream, and to recombine 
the pieces into a new grid box with new moments. The neces- 
sary boundary conditions must specify the tracer mixing ratio 
along all upwind boundaries. The total number of moments 
per grid interval is three for a one-dimensional model, six for a 
two-dimensional model, and 10 in three dimensions. (Remem- 
ber to substitute z for y in order to derive all the moments.) 
No previous history of the tracer distribution is required; ad- 
vection calculations may begin instantly from any initial spa- 
tial distribution of tracer. However, all moments must be ini- 
tialized or stored to start a calculation. It should be empha- 
sized that the time integration for upstream moments methods 
is always explicit, forward marching. An encoding of this algo- 
rithm into FORTRAN is given in the Figure 1. 

The method described here applies directly to one- 
dimensional transport in a three-dimensional grid. For a 
three-dimensional wind field the explicit approach would be to 
divide the grid box by successive partitioning into 23 subboxes 
and then simultaneously to transport seven of these subboxes 
into neighboring boxes. This method appears to be analyti- 
cally tedious and computationally expensive for both storage 
and time requirements, but it might have advantages for vec- 
torized computers with I/O (input/output) limitations. 

The approach preferred here is to decompose three- 
dimensional advection into three separate one-dimensional 
flows which act successively upon the evolving tracer distri- 
bution. Various names have been applied to this traditional 
technique: time splitting [Smolarkiewicz, 1983], spatial leap- 
frog [Russell and Lerner, 1981], and alternating direction 
[Dahlquist and Bjorck, 1974]. This technique has been applied 
successfully to two-dimensional transport with second-order 
moments, as discussed in section 5, and to atmospheric three- 
dimensional transport with first-order moments [Russell and 
Lerner, 1981]. Potentially, there is a great advantage in the 
method of alternating directions: concurrent or parallel pro- 
cessors may calculate advection in one-dimension indepen- 
dently (that is, simultaneously) for each set of grid values in 
the remaining dimensions. 

4. ONE-DIMENSIONAL EXAMPLE WITH FLUX 

LIMITATION 

Consider the following example of advection of a two- 
dimensional distribution f(x, y) by the second-order moments 
method. Let two adjacent boxes, A and B, have equal volumes 
with unit dimensions (X = Y = 1). The tracer mixing ratio is 
zero everywhere in B, 

fB(x, y) = 0 (23) 

but has a mean value of 100 in A, with a linear slope in the y 
direction such that 

fA(x, y)= 200y 0 < y _< 1 (24) 

Suppose that fluid flow is in the positive x direction, and 
adopt a time step such that 25% of box A is transported into 
B. This process is illustrated schematically in one-dimension 
by Figure 2. The rigorous solution for the second-order mo- 
ments of the new box B' is given by the following steps. 

Step 1 

Define moments of original boxes A and B, 

So(A) = So(B) = 0 

Sx(A) = 0 Sx(B) = 0 



PRATHER: NUMERICAL ADVECTION 6675 

Step 2 

Sxx(A) = 0 Sxx(B) = 0 

Sy(A) = 100 Sy(B) = 0 

Syy(A) = 0 Syy(B) = 0 

Sxy(A) = 0 Sx•(B) = 0 

Calculate moments for appropriate subboxes by (19) and 
(20), 

•R(A) = 0.25 •L(B) = 0.75 

SoR(A) = 25 SoL(B) = 0 

Sx(A) = 0 Sx(B) = 0 

Sxx(A) = 0 S xx'(B) = 0 

S•(A) = 25 '" 

S•(A) = 0 

Sxy•(A) = 0 

Step 3 

Designate components of new grid box B', 

So(B ,) - So(A) So(B ') = So(B) 

S xL(B ') = Sx•(A) S xR(B ') = SxL(B) 

Step 4 

Combine subboxes into grid box B' from (21), • = as= 
0.75, 

S0(B') = 25 

S•(B') = - 56.25 

Sxx(B') = + 46.875 

S•(B') = 25 

S•(B') = 0 

S xy(B') = - 56.25 

The resulting distribution of tracer is now given by 

fO'(x, y)= 128.125- 393.75x + 281.25x 2 + 25(2y- 1) 

- 56.25(2x- 1)(2y- 1) (25) 

Note that advection generates slopes and a cross term Sxy, 
where, originally, there were none. The advective calculation 
for box B is now complete, unless the velocity field has a y 
component. In this case, the advection of moments is repeated 
for an equivalent time step in the y direction. 

A desired property of advective methods is often that tracer 
mixing ratios remain positive even in the vicinity of large 
discontinuities in tracer abundance. The distribution derived 

above (25) is negative in some of the permitted domain 
(0 < x < 1, 0 < y < 1). Such negative tracer values are clearly 
an artifact of high-order numerical schemes occurring in the 
vicinity of large gradients. Many applications of tracer trans- 
port, such as photochemical models, cannot accept negative 
concentrations. It is very difficult to guarantee positive definite 
values for f(x, y) over the entire domain, so I will address the 
simpler problem of maintaining a positive average of the 

tracer distribution in one-dimension, 

f (x) = f (x, y, z) dy dz 

= [(S O -- S x + Sxx) + (2Sx - 6Sxx)(x/X) + (6Sxx)(x/X)2]/X 

(26) 

where the arbitrary scaling Y = Z = 1 has been imposed. The 
resulting f(x) from (25) is illustrated in Figure 2c and has a 
minimum value off(0.7) - - 9.6875. 

In order to maintain positive tracer concentrations, limits 
are placed on the high-order moments in terms of the total 
amount of tracer (zeroth moment). This approach leads to 
some internal diffusion but is not so far reaching as the algo- 
rithms used in other schemes to fill in negative tracer amounts 
from adjacent boxes [Mahlman and Moxim, 1978]. The limit 
procedure is outlined below in greater detail and for this case 
yields the new moments 

So '= So = 25 

Sx' = -37.5 (27) 

Sxx' = +37.5 

with a distribution 

f(x)- 100- 300x + 225x 2 (28) 

as shown in Figure 2d. The new minimum mixing ratio is now 
f(2/3) = 0. 

It is difficult to devise a simple algorithm which would 
guarantee f(x, y, z) > 0 over the entire volume. Instead, let us 
require only that the mean tracer distribution along any axis 
remain positive and that the cross terms by themselves do not 
produce negative concentrations. Consequently, only positive 
quantities of tracer are advected. The objective is to place 
limits on S x and Sxx in order to force f(x), as defined in (26), to 
be positive over the interval 0 < x < 1. 

Consider first the case where Sxx < 0, such that the distri- 
bution is convex. The minimum of f(x) will occur at either 
x =0orx = 1' 

min f (x)= So- ISxl - ISxxl (29) 

The simplest approach would be to limit the first-order 
moment to ISxl _< So and to increase the second-order moment 
so that 

0 _> Sxx -> ISxl- So (30) 

The second and more complex case arises for Sxx > 0, where 
the distribution is concave. It may be shown that the mini- 
mum inf(x) occurs at 

min f(Xm)= So- (S•, 2 + 3Sxx2)/(6Sxx) (31) 
for 

If 

X m = 0.5 -- Sx/(6Sxx ) (32) 

ISxl > 3Sxx > 0 (33) 

then the minimum occurs outside the interval, and only the 
boundaries must be tested. There is some difference here from 

the first case above in that the second-order moment may 
offset the first-order moment at the boundary. The algorithm 
thus places less stringent restrictions on the slope, 

ISxl 1.5s0 (34) 
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Fig. 2. The mixing ratio of tracer f in one spatial dimension x is 
shown (a) before and (b) after an advective time step which transports 
25% of the contents of boxes A and B in the positive x-direction. The 
smooth polynomial distribution of the tracer, which corresponds to 
the moments of the two discontinuous subintervals in B is shown (c) 
before and (d) after limits are placed to ensure positive tracer con- 
centrations. 

and uses the second-order moment to fill in negative values, 

s• >_ Is•l- So (35) 

The other branch of the second case occurs when the second- 

order moment dominates the slope, 

3S• > IS•l > 0 (36) 

and a minimum occurs within the interval. If the limit (34) is 
first placed on S,,, it can be shown that f(x) > 0 if 

Sxx • Sxx max= S 0 q- [So 2 - Sx2/3] 1/2 (37) 

It may be undesirable to calculate a square root at each ad- 
vective time step, and a simpler but more restrictive formula 
may be used. 

s• _< 2s0- IS•1/3 < S xx max (38) 

These limit cases, along with the restriction on cross terms, 
may be combined into a few tests, 

So•_O 

S,/= min[ + 1.5S o, max (-1.5S o, S,,)] 
(39) 

S,,,,' = min I-2S0 -IS•'1/3, max (IS•'I- So, S•)] 

Sxy'= min[ + So, max (-So, Sxy)] 

where the primed quantities have been corrected. While these 
manipulations may seem arbitrary, they are applied only in 
the most severe cases, as given in the example. Generally, the 
tracer distribution will evolve to a state where the limits im- 

posed in (39) should not affect the moments. The second-order 
moments method may be applied without these limits if nega- 
tive tracer concentrations can be accommodated. 

5. ACCURACY, STABILITY, AND RESOLUTION 

The accuracy and stability of the second-order moments 
method may be derived analytically for the case of uniform, 
one-dimensional transport over an equally spaced grid. Let 
the tracer distribution be decomposed into Fourier compo- 
nents and examine the advective transport of one such wave, 

f (x) = e"'" (40) 

For the grid box 0 < x < X, the moments may be calculated 

from (11) 

So = X(e "'x- 1)/(ikX) 

S,, = 6X[(e + 1)/2- (e 1)/(ikX)]/(ikX) (41) 

S,,,,= 5X{(e ';'x- 1)[1 + 12/(ikX)2]-6(e ';'x + 1)/(ikX)}/(ikX) 

The moments for the previous grid box (-X < x < 0) can be 
calculated by multiplying the respective moments in (41) 
above by the phase shift factor e -ikx. Now consider a uniform 
velocity c and time step t with •- ct/X as before. The true 
values after one time step are 

Sjtrue(t) = e-i!•X•sj(o) j = O, x, xx (42) 

whereas the calculated moments Sicale(t) can be shown to have 
the following errors: 

s0calc(t) = SotrUe(t:) + X(ikX)4(o• -- 6• 2 + 10• 3 _ 5•4)/120 

+ X(ikX)S(y - 10• 2 + 30• 3 -- 35• 4 + 14ys)/1680 + order[(ikX) 6] 

(43a) 

SxCalc(t) = SxtrUe(t) q- X(ikX)3(o• - 6• 2 q- 10• 3 _ 5•4)/20 

+ X(ikX)4(y- 3• 2 q- 2y3)/280 + order[(ikX) 5] 

SxxCa•c(t) -- SxxtrUe(t ) + X(ikX)3(o• 2 - 4• 3 + 5• 4 _ 2ys)/4 

+ X(ikX)4(7o• - 390• 2 + 64y 3 _ 32y½)/168 + order[(ikX) 5] 

(43b) 

(43c) 

Note that the errors disappear for y - 0 or y -- 1, as expected 
for upstream methods. The complex ratio 

S fa'•(t)/Sj(O) = Ae 'B (44) 

gives a measure of both the amplification factor A and the 
computed phase speed of the wave (Cph•se = --B/kt)- Table 1 
shows the amplification factors and relative phase speeds 
(Cph•se/C) for the allowed domain' 0 < o• < 1, 0 < kX < r•. For 
So the method is absolutely stable (A _< 1) only for a restricted 
range of o• 

0.2764 < • < 0.7236 (45) 

However, it is only marginally unstable over the rest of the 
domain, with a worst case instance o• A- 1.03 for •- 0.85 
and kX - n. In those cases where So is stable, the higher-order 
moments S• and S•,, are marginally unstable, and vice versa. 
Phase errors are extremely small, with the exception of a com- 
bination of small • and values of kX near 7• (that is, Nyquist 
frequency). 

An important measure of any advective scheme is the ef- 
fective resolution of the method: how many grid points are 
needed to resolve a structure? One test is the advection of a 

step function: 

f (x, y, z)= 1 x < Xo Y < Yo z < Zo (46) 

elsewhere, 

f (x, y, z) = 0 

Examples of one-, two-, and three-dimensional uniform flows 
are presented in Figure 3 for the second-order moments 
method and its lower-order forms, the slopes method [Russell 
and Lerner, 1981], and plain upstream advection. The dis- 
continuous function (46) rapidly changes into a shape which 
the algorithm can accurately describe and transport across the 
grid. Subsequently, this quasi-static shape continues to evolve 
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TABLE 1. Amplification Factors and Relative Phase Speeds From 
the Second-Order Moments Method 

kX/• 

ct/X 0.05 0.25 0.50 0.75 1.00 

Amplification, S O 
0.10 1.000 1.000 1.002 1.011 1.028 
0.30 1.000 1.000 0.999 0.996 0.983 
0.50 1.000 1.000 0.996 0.980 0.920 
0.70 1.000 1.000 0.999 0.996 0.983 
0.90 1.000 1.000 1.002 1.011 1.028 
1.00 1.000 1.000 1.000 1.000 1.000 

Relative Phase, S O 
0.10 1.000 1.001 1.010 1.051 1.179 
0.30 1.000 1.000 1.000 1.001 1.001 
0.50 1.000 1.000 1.000 1.000 1.000 
0.70 1.000 1.000 1.000 1.000 0.999 
0.90 1.000 1.000 0.999 0.994 0.980 
1.00 1.000 1.000 1.000 1.000 1.000 

Amplification, Sx 
0.10 1.000 0.997 0.988 0.975 0.962 
0.30 1.000 1.001 1.002 1.002 0.997 
0.50 1.000 1.004 1.016 1.040 1.080 
0.70 1.000 1.001 1.002 1.002 0.997 
0.90 1.000 0.997 0.988 0.975 0.962 
1.00 1.000 1.000 1.000 1.000 1.000 

Relative Phase, Sx 
0.10 1.000 0.991 0.962 0.908 0.822 
0.30 1.000 1.002 1.007 1.016 1.029 
0.50 1.000 1.000 1.000 1.000 1.000 
0.70 1.000 0.999 0.997 0.993 0.988 
0.90 1.000 1.001 1.004 1.010 1.020 
1.00 1.000 1.000 1.000 1.000 1.000 

Amplification, S• 
0.10 1.000 0.989 0.966 0.959 1.024 
0.30 1.000 1.005 1.020 1.048 1.093 
0.50 1.000 1.011 1.046 1.110 1.211 
0.70 1.000 1.005 1.020 1.048 1.093 
0.90 1.000 0.989 0.966 0.959 1.024 
1.00 1.000 1.000 1.000 1.000 1.000 

Relative Phase, S• 
0.10 0.807 0.745 0.565 0.283 -0.012 
0.30 0.827 0.823 0.821 0.818 0.815 
0.50 1.000 1.000 1.000 1.000 1.000 
0.70 1.074 1.076 1.077 1.078 1.079 
0.90 1.021 1.028 1.048 1.080 1.110 
1.00 1.000 1.000 1.000 1.000 1.000 
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Fig. 3. Tracer mixing ratios f are shown for numerical advection 
of a step function (see text). (a) The evolution of the initial step func- 
tion at time zero (labeled 0) following one-dimensional advection by 
the second-order moments (SOM) method through 20, 100, 200, and 
400 grid intervals with a Courant step size of ct/X- 0.20. (b) The 
basic upstream advective scheme (0), the slopes or first-order mo- 
ments method (1), the SOM method with limits (2 + L) and without 
limits (2) are compared. The step function has been advected in one 
dimension across 200 grid boxes with a Courant step of 0.20. (c) The 
effect of "checkerboard" noise N on SOM for the same case as Figure 
3b above. (d) Results from the one-dimensional (1), two-dimensional 
(2), and three-dimensional (3) advection of a 4 x 4 x 4 cube of tracer. 
The Courant step sizes were 1/2, 1/3, 1/6 for the (x, y, z) directions, 
and the advection was followed for 96 steps. The mixing ratio shown 
in Figure 3d is along an axis through the center of the cube. 

slowly and stably. The slopes scheme is capable of resolving a 
step function with four to five grid points in one-dimension; 
whereas the second-order moments method can maintain a 

step function with only two grid points. As can be seen in 
Figure 3, the imposition of limits (39) adds only minor numeri- 
cal diffusion. 

Upstream methods have already been noted to do ex- 
tremely well under conditions of noisy flow [Russell and 
Lerner, 1981]. As an additional test which includes divergent 
flows, the two-dimensional (i, j)-grid is considered as a 
checkerboard in which the "black" squares (i + j odd) collect 
mass from all neighboring "red" squares (i + j even) for several 
time steps, following which the process reverses. This oscil- 
lating two-point grid noise is imposed on top of the uniform 
flow used above and has an amplitude (50%) such that the 
density of each grid box varies by a factor of 2 over the cycle. 
As shown in Figure 2, such noisy flows do not significantly 
affect the one-dimensional advection of the step function. The 

accuracy of two-dimensional flows is reduced (errors of order 
25%) when the noise level exceeds 50%, but it is not notice- 
ably affected (errors less than 2%) when the noise in the mean 
flow is 10% of the grid box mass. 

There are questions of stability in such a complex scheme 
when operator splitting is used to calculate multidimensional 
advection. A test proposed by one of the reviewers includes 
convergent/divergent flow in the x direction, which is bal- 
anced by flow in the y direction: 

u(x, y) = a(2rt/Y) sin (2fix/X) cos (2try/Y) 

v(x, y) = -a(2•r/X) cos (2•rx/X) sin (2•ry/Y) 
(47) 

In this case the entire domain is limited by 0 < x < X and 
0 < y < Y, and the amplitude a must be small enough so that 
no grid box acquires a negative density during the advective 
time step assigned to each dimension. Beginning with a uni- 
form grid of total mass and tracer mixing ratio, advection 
according to (47) by the second-order moments method with 
operator splitting preserves the tracer uniformity to machine 
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TABLE 2. A Comparison of Numerical Advection Algorithms' The "Clock" Experiment From Chock and Dunker [1983] 

Positive Y•f2(t)/ Average Maximum Time CPU,* Two-dimensional 
Method Tracer Y• f2(0) IErrorl Errorl Step, n s Arrays 

SHASTA yes 0.3 1.4 75 15 44 4 
MFCT/LT yes 0.55 0.7 47 15 140 8 

[Zalesak, 1979] 
Pseudospectral (PS/L) no 1.0 0.3 8 15 190 6 

[Orszag, 1972] 1.0 0.10 2 5 570 6 
Discrete second moments yes 0.78 0.6 38 15 190 12 

(SM) [Egan and Mahoney, 1972] 
Orthogonal collocation no 0.96 3.2 58 15 63 7 

(OC/PC) 
Chapeau function (CF/I) no 1.0 0.9 22 15 51 3 

[Pepper et al., 1979] 
Moments Methods 

0th order (upstream) yes 0.04 2.4 95 15 19 1 
1st order with limits yes 0.71 0.40 24 15 67 3 

[Russell and Lerner, 1981] 0.80 0.26 14 60 17 3 
2nd order, with limits yes 0.97 0.06 2 15 102 6 

0.96 0.05 2 60 26 6 

2nd order, no limits no 0.98 0.07 2 60 24 6 

Results are from two complete revolutions of a cosine hill with half-height radius of 2 grid boxes and an original height of 100. A time step of 
15 rc is equivalent to 480 steps per revolution. 

*Computer times are based on Chock and Dunker's reported CPU seconds for an IBM 3033; timings for the moments methods are CPU 
times on a VAX 11/780 divided by 7. 

accuracy, as would be expected in this case for any upstream 
method with operator splitting. 

6. COMPARISON AND DISCUSSION 

The second-order moments method is summarized by (19), 
(20), and (21), with the optional limit condition (39). The initial 
distribution of tracer is decomposed into moments Si over a 
set of connected grid boxes. Only the mean concentrations 
(So/V) need be specified to start; high-order moments may be 
zero. A specific time step for each dimension is selected from 
the globally limiting value of the Courant number. The grid 
boxes are cleaved (along the remaining dimensions) into ap- 
propriate subunits to be transported to and from adjacent 
boxes. The moments of the tracer distribution are subdivided 

according to (19)-(20) and then recombined within the appro- 
priate new grid boxes according to (21). If limits are imposed, 
formulae (39) are invoked prior to decomposition by (19)-(20). 
This process is repeated for the remaining dimensions to com- 
plete the advective time step. 

The second-order moments method may be compared with 
several other methods reviewed in the literature. Advection of 

a parcel of tracer in a rigidly rotating plane would appear to 
provide a useful cross comparison of methods. Chock and 
Dunker [1983] selected a cosine hill of tracer with a radius of 4 
units at a distance of 10 units from the center of a 33 x 33 

unit grid. Results from several methods tested by this "clock" 
experiment are compared in Table 2 with calculations using 
the upstream moments method. Some criteria for selection of 
numerical methods are given in Table 2: (1) nonnegative 
tracer concentrations, (2) low numerical diffusion (I;f2), (3) low 
average absolute error, (4) low values for the maximum error 
at any point, (5) computational time, and (6) storage require- 
ments for two-dimensional arrays. 

If we require that tracer concentrations remain nonnegative, 
then, among those listed by Chock and Dunker [1983], only 
flux-correction methods (SHASTA, MFCT/LT) or the discrete 
second-moments method [Egan and Mahoney, 1972] are ac- 
ceptable. When compared with these generally more diffusive 
methods, it may be seen that even the first-order moments 

method [Russell and Lerner, 1981] is superior in terms of 
accuracy and computational efficiency. The second-order mo- 
ments method, however, provides an order of magnitude re- 
duction in the diffusion and absolute error, with only small 
additional costs in programming, computation, and storage. It 
should be noted that the cross moments (S,,y) are essential to 
the stability of the scheme. 

If the major requirement of an advective scheme is absolute 
accuracy, then pseudospectral methods [Orszag, 1972] or the 
Chapeau function method must be selected from Chock and 
Dunker's [1983] examples. Compared with this class of algo- 
rithms, the second-order moments method may be marginally 
more dispersive (0.96 versus 1.0), but it is significantly more 
accurate in terms of average or maximum errors. Application 
of this method without limits reduces the numerical diffusion 

but results in negative tracer concentrations. 
A further advantage of the second-order moments method 

is that the time step may be increased by a factor of 4 
(At = 607•, computer time = 24 s) without degrading accuracy. 
Indeed, if the same level of accuracy were required from the 
only other method capable of such skill, the pseudospectral 
method, then the time step would have to be divided by 3 
(At = 57•, time = 570 s), and the relative cost in computation 
would be greater by a factor of about 24. 

A revised form of upstream transport with an antidiffusive 
step has been proposed by Smolarkiewicz [1983]. His test case 
used a cone of radius of 15 units at a distance of 25 units from 

the center of a 100 x 100 unit grid. After six revolutions, he 
examines (1) the peak value of the cone and (2) the dispersion 
error, as shown in Table 3. The second-order moments 
method is seen to reduce both errors by at least an order of 
magnitude. 

Schneider [1984] has proposed a square root scheme for 
advection which dramatically improves the accuracy of tradi- 
tional finite difference methods while maintaining positive 
tracer concentrations. I repeated his example of the one- 
dimensional transport of a triangular wedge of height 1.00 
resolved by 10 grid points. Schneider's Figure 2e shows errors 
of order +0.2 across the wedge' whereas the second-order 
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TABLE 3. A Comparison of Algorithms From Smolarkiewicz 
[1983-] 

Method Peak Value Dispersion Error 

Upstream 0.07 0.95 
FCT 0.79 0.29 

Modified upstream 
[(19)(20)] 0.60 0.52 
[(13)(14)3]/TS 0.84 0.13 

Second-order moments 0.99 0.002 

The labeling and notation in this table are those of Smolarkiewicz 
[1983]. The FCT method appears to be equivalent to the MFCT 
method used by Chock and Dunker [1983]. Smolarkiewicz's optimal 
scheme is given by [(13)(14)3]/TS. The original, conelike distribution 
has a peak value of 1.00 with a radius of 15 grid units and is allowed 
to revolve 6 times. The dispersion error is the complement of the 
dispersion defined in Table 2:1 - Y•f2(t)/y•f2(O). 

moments method with limits has errors of -0.05 at the cen- 

tral peak and less than + 0.02 everywhere else. 
These examples are restricted in scope; a more interesting 

test would examine the dispersion of tracer distribution in a 
realistic three-dimensional divergent flow. Russell and Lerner 
[1981] have compared the slopes (first-order moments) 
method with traditional second- and fourth-order differencing 
methods in several experiments, including a three-dimensional 
tracer model of the atmosphere. They find that slopes and 
fourth-order methods are equivalent for uniform grids but 
that the slopes method is superior for irregular grids (a 
common property in atmospheric models). As noted in section 
5, the second-order moments scheme shares these advantages 
with the slopes scheme and should provide increased accuracy 
with significantly lower numerical diffusion (see Tables 2 and 
3). 

In summary, a new method for advection of trace species is 
presented and shown to be superior to most available meth- 
ods in terms of accuracy, numerical diffusion, and compu- 
tational cost. The method is based on conservation of the 

second-order moments of the tracer distribution about the 

center of mass in each grid box. The second-order moments 
method has, in addition, three characteristics which are useful 
when applied to atmospheric tracer models' positive tracer 
concentrations can be maintained, large time steps do not 
significantly reduce accuracy, and spatial and temporal fluctu- 
ations in grid box volumes are readily included. 
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