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ABSTRACT 1 

 2 

The use of genomic techniques to address ecological questions is emerging as the field of 3 

genomic ecology. Experimentation under environmentally realistic conditions to investigate the 4 

molecular response of plants to meaningful changes in growth conditions and ecological 5 

interactions is the defining feature of genomic ecology. Since the impact of global change factors 6 

on plant performance are mediated by direct effects at the molecular, biochemical and 7 

physiological scales, gene expression analysis promises important advances in understanding 8 

factors that have previously been consigned to the “black box” of unknown mechanism. Various 9 

tools and approaches are available for assessing gene expression in model and non-model species 10 

as part of global change biology studies.  Each approach has its own unique advantages and 11 

constraints. A first generation of genomic ecology studies in managed ecosystems and 12 

mesocosms have provided a testbed for the approach and have begun to reveal how the 13 

experimental design and data analysis of gene expression studies can be tailored for use in an 14 

ecological context. 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 
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INTRODUCTION 1 

 2 

The use of genomic techniques to address ecological questions is emerging as the 3 

important new field of genomic ecology (Jackson et al., 2002; Ouborg & Vriezen, 2007; Roelofs 4 

et al., 2007; Wullschleger et al., 2007; Shiu & Borevitz, 2008; Ungerer et al., 2008). Tools are 5 

now available to assess: (1) variation in genome sequence; (2) patterns of gene expression, and 6 

(3) gene function (Ouborg & Vriezen, 2007). The use of many of these tools, including 7 

quantitative trait loci analysis, association mapping and genome sequencing has been reviewed 8 

previously (Lee et al., 2004; Straalen & Roelofs, 2006; Ouborg & Vriezen, 2007). This review 9 

focuses on how experiments investigating plant responses to elements of global change are 10 

becoming a testing ground for the use of transcript profiling, as a result of strategically targeted 11 

funding from U.S. Department of Energy’s Program for Ecosystem Research 12 

(http://per.ornl.gov/PERprojects-current.html). Support for genomic ecology is timely because 13 

the new techniques available, and specifically gene expression analysis by transcript profiling, 14 

are ideal for addressing many of the major knowledge gaps in plant responses to global change. 15 

It is well recognized that our ability to predict the impact of global change on both ecosystem 16 

function and food supply is constrained by our limited understanding of: plant responses to 17 

interacting elements of global change (e.g., drought × elevated CO2), intra- and inter-specific 18 

variation in response, non-linear responses, and trophic interactions (Fuhrer, 2003; Wullschleger 19 

et al., 2002; Leakey et al., 2006b; Long et al., 2006; Poorter, 1993; Bradley & Pregitzer, 2007; 20 

Delucia et al., 2008). Since the impact of global change factors on plant performance are 21 

mediated by direct effects at the molecular, biochemical and physiological scales, investigation 22 

of these processes promises understanding that has previously been consigned to the “black box” 23 
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of unknown mechanism (Fig 1). This can be done in the traditional hypothesis-testing framework 1 

or in surveys designed to identify novel and unexpected aspects of response. In either case, there 2 

has been a move towards broader and more integrative thinking as transcript profiles are 3 

combined with high-throughput metabolite screening, physiological assessment and automatic 4 

environmental data collection (Fig 1).  5 

Incorporation of global transcript profiling and other “omic” approaches into ecological 6 

studies constitutes a major shift in philosophy compared to investigation of a few physiological 7 

and ecological parameters, and necessitates collaboration among scientists with diverse skill sets. 8 

An additional key feature of genomic ecology is experimentation under ecologically-relevant 9 

treatments and conditions, unlike many molecular biology studies that have used shock 10 

treatments for the task of elucidating gene function. The new genomic ecology approach requires 11 

the physiologist and ecologist to learn new techniques and optimize the tools for use within the 12 

ecosystem context. This paper is the outcome of a workshop held at the University of Illinois in 13 

November 2007 to review the opportunities available for addressing important questions in 14 

global change biology using transcript profiling and associated technologies. We discuss the 15 

different approaches of studying model versus non-model species, the opportunities and 16 

challenges in profiling ecologically relevant gene expression, and the value and interpretation of 17 

“omic” data in an ecosystem context.   18 

 19 

INVESTIGATING MODEL AND NON-MODEL SPECIES 20 

Busch & Lohmann (2007) classified the different methods for gene expression profiling 21 

in three categories: (1) PCR-based methods, such as quantitative real-time reverse-transcription 22 

PCR (qRT–PCR); (2) sequencing-based methods, such as cDNA-AFLP (amplified fragment 23 
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length polymorphism), serial analyses of gene expression (SAGE), and massive parallel 1 

signature sequencing (MPSS); and (3) hybridization-based methods, such as microarrays. For 2 

this discussion, model species are defined as those for which a sufficiently large fraction of the 3 

genome has been sequenced to allow relatively easy transcript profiling of most or all genes by 4 

qRT-PCR or microarray analysis. Although real-time PCR can be high-throughput (Czechowski 5 

et al., 2004), microarray analysis is currently the most common method of choice for transcript 6 

profiling. Microarrays are glass, plastic or silicon chips with thousands of DNA oligonucleotides 7 

arrayed across their surface. Each oligonucleotide spot, or probe, corresponds to a specific target 8 

mRNA from a specific gene. The pool of RNA transcripts from sample tissue is extracted and 9 

labeled with a fluorescent tag before being washed over the microarray. Transcripts bind to their 10 

corresponding probes and the abundance of all transcripts is quantified by assessing the intensity 11 

of fluorescence associated with each probe. The result is information on the abundance of 12 

transcripts encoding a large fraction of the protein structures and enzymes in the sample tissue. A 13 

major assumption in interpretation of microarray data is that transcript abundance is related to 14 

protein synthesis and activity. The method does not directly assess the rate of gene expression or 15 

transcript degradation, but instead the pool size of transcripts that is the result of the two 16 

processes. In addition, a number of post-transcriptional and post-translation processes can disrupt 17 

the link between transcript abundance and enzyme activity.  These assumptions influence the 18 

inferences that can be drawn from such datasets, but have not prevented the widespread use of 19 

this powerful technique. 20 

To date, microarrays have been produced for at least 38 plant species (Supp. Table 1). 21 

Affymetrix is the largest commercial supplier of microarrays, and alone produces microarrays 22 

for Arabidopsis, barley, cotton, citrus species, grape, maize, Medicago spp., poplar, rice, 23 
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soybean, sugarcane, tomato and wheat (www.affymetrix.com). Other companies and research 1 

institutions manufacture microarrays for additional species, but these are also biased towards 2 

economically, rather than ecologically, significant species. As of February 2008, the National 3 

Center for Biological Information listed 37 land-plant species for which whole-genome 4 

sequencing was complete or in progress (http://www.ncbi.nlm.nih.gov/genomes/leuks.cgi). 5 

Increasing numbers of ecologically and evolutionarily important species such as Arabidopsis 6 

lyrata, Capsella rubella, Brachypodium distachyon, Mimulus lewisii and Selaginella 7 

moellendorffii are being sequenced. More species will rapidly become available for genomic 8 

investigation as techniques such as pyrosequencing allow smaller research groups to generate 9 

large amounts of sequence information and develop tools specifically for their own species of 10 

interest (Hudson, 2007). Alternatively, some researchers are using the technique of heterologous 11 

hybridization to profile transcripts of non-model species with microarrays designed for a closely 12 

related model species (e.g., Gong et al., 2005; Travers et al., 2007). These various tools and 13 

approaches for studying gene expression mean that one can choose between studying model and 14 

non-model species to address genomic ecology questions in global change biology; however, 15 

each approach has constraints that are important to consider. 16 

 17 

 18 

 19 

Limitations to molecular and functional inference in model and non-model species 20 

 Generally, in model species that have been fully sequenced and for which microarrays 21 

have been specifically designed (e.g. Arabidopsis, Populus sp. and rice), data describing the 22 

abundance of nearly all transcripts can be attributed to the relevant genes with a high degree of 23 
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confidence. Non-specific binding of products from two or more genes to a single probe on the 1 

microarray, or cross-hybridization, can cause problems if genes share very high sequence 2 

similarity, but is relatively rare (Shiu & Borevitz, 2008). Even when a full genome sequence 3 

becomes available it is not immediately possible to: (1) identify all the genes capable of being 4 

expressed to produce proteins, and (2) assign all the RNA transcripts being profiled to specific 5 

genes. However, bioinformatic techniques to identify genes are becoming increasingly efficient, 6 

especially when sequences from multiple species are analyzed in parallel (Lin et al., 2007).  7 

High quality transcript profile data are also available for species for which microarrays 8 

have been produced from expressed sequence tag libraries but the full genome sequence is not 9 

available, such as maize and soybean (Wang et al., 2003, Vodkin et al., 2004). However, there is 10 

less certainty that (1) each probe sequence on the microarray is unique to a single gene, or (2) 11 

every functional gene is detected by the microarray. For example, the soybean genechip from 12 

Affymetrix probes expression of ~38,000 unique genes, while the recent Joint Genome Institute 13 

(http://www.jgi.doe.gov/) release of the soybean genome suggests there are 58,556 loci 14 

containing protein-coding transcripts (http://www.phytozome.net/soybean). Further assembly 15 

and analysis is needed before it is known how much the disparity in these numbers is explained 16 

by partial polyploidy (Schlueter et al., 2007).  17 

Using heterologous hybridization to study transcript profiles of non-model species causes 18 

greater uncertainty about crosshybridization or missing genes. A preliminary analysis from 19 

hybridizing the genomic DNA of the study species to the microarray can be useful in identifying 20 

which probes have no corresponding gene and therefore can be subsequently ignored. Although 21 

this reduces the number of genes whose expression can be profiled, heterologous hybridization 22 

has been used to identify genes important to drought stress, cold stress, and heavy metal 23 
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tolerance (Gong et al., 2005; Hammond et al., 2006; Sharma et al., 2007). In studies on a single 1 

non-model species, errors associated with heterologous hybridization should be common to all 2 

treatments, which limit some of the problems in interpretation. By comparison, if the transcript 3 

profiles of multiple species are assessed with a common microarray platform, then sequence 4 

divergence among species could impact the efficiency of hybridization and falsely suggest 5 

differential transcript abundance. Comparing among species the results of hybridizing genomic 6 

DNA to microarrays can help quantify the extent of this problem and again eliminate probes 7 

likely to cause problems (Shiu & Borevitz, 2008).  8 

 Functional interpretation of microarray data is dependent on correct annotation of gene 9 

function. As sequence data from plants accumulates, finding means to efficiently and effectively 10 

analyze the sequences and assign annotation remains a major challenge (Dong et al., 2005).  11 

Arabidopsis has been the primary subject of studies determining gene function in plants and, 12 

therefore, more (though far from all) genes have been annotated in this species, and annotations 13 

are generally accepted with the greatest degree of confidence. Currently, ~60 % of the 28,152 14 

protein coding genes in Arabidopsis have been annotated to a Gene Ontology (GO) molecular 15 

function, with 50% annotated to a GO biological process (http://www.geneontology.org). The 16 

majority of annotations are based on a computational analysis of the gene sequence. Therefore, 17 

even in the most well studied plant species much work remains to be done to experimentally 18 

determine gene function. In other species the function of some genes may have been directly 19 

determined, but the annotation of the great majority of genes is inferred from sequence similarity 20 

to genes in Arabidopsis. An automated BLAST search (Altschul et al., 1997) against a protein 21 

database accomplishes this task.  Top BLAST matches are typically assigned an expectation 22 

value along with a putative function and Gene Ontology terms associated with similar protein 23 
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sequences. The more evolutionarily distant from Arabidopsis the subject species is, the greater 1 

the likelihood the gene sequence will have diverged, which increases uncertainty in the 2 

annotation. Nonetheless, many genes are highly conserved and can be annotated with confidence 3 

in a large number of distantly related species (Frickey et al., 2008). The BLAST procedure has 4 

the inherent flaw of propagating annotation errors from one species to another (Gilks et al., 5 

2000), but remains the most practical choice for sequence annotation. As more sequence data 6 

from various species becomes available, interspecific sequence analyses are also proving 7 

valuable for improvement of annotations, automation of annotation and identification of novel 8 

coding regions (Windsor & Mitchell-Olds, 2006).   9 

 10 

Limitations to ecological inference in model and non-model species 11 

 The vast majority of species for which substantial sequence information and transcript 12 

profiling tools are available have been selected because of their economic importance (Supp. 13 

Table 1).  This has created enormous potential for investigating the mechanisms underlying the 14 

impacts of global change on crop yield and agroecosystem function. Transcript profiling can 15 

reveal changes in gene expression that drive physiological and ecological responses, and in doing 16 

so improve understanding of mechanism at all scales (Fig 1). Managed ecosystems and 17 

mesocosms incorporating model species are an excellent test bed for genomic ecology since their 18 

low genetic and environmental heterogeneity increases the statistical power of field experiments 19 

and facilitates detection of subtle treatment differences (Ainsworth et al., 2006; Casteel et al., 20 

2008; Zavala et al., 2008; Leakey et al., 2008). In addition, the current group of model species 21 

incorporates considerable diversity including: angiosperms and gymnosperms, herbaceous plants 22 

and trees, C3 and C4 species, legumes and non-legumes, and tropical and temperate species. This 23 
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allows further fundamental biological questions to be asked regarding variation in response to 1 

global change of major functional and phylogenetic groups. However, these species are not 2 

always ideal subjects for addressing a number of important ecological and evolutionary questions 3 

in global change biology. The majority are crops bred for rapid growth and reproductive output 4 

on annual growth cycles. This means that the mechanisms underlying their responses to resource 5 

availability, disturbance and competition may differ from those of other species adapted to 6 

diverse habitats in natural communities. Custom-made transcript profiling tools are not currently 7 

available for multiple plant species from even one natural community. This limits 8 

characterization of species-specific gene expression patterns and its contribution to driving the 9 

species interactions that control community and ecosystem responses (Fig 1). One solution 10 

would be to accept the limitations and assumptions of heterologous hybridization in order to 11 

assess diversity of gene expression responses across a larger number of species (Travers et al., 12 

2007). Alternatively, custom genomic tools could be developed for the species comprising a 13 

“model” ecosystem or species possessing ecological traits of particular interest. Such an 14 

approach is becoming increasingly feasible with continued advances in the development of high-15 

throughput sequencing technologies (Hudson, 2007). 16 

 17 

 18 

EXPECTATIONS, DESIGN AND ANALYSIS OF ECOLOGICALLY RELEVANT 19 

TRANSCRIPT PROFILING EXPERIMENTS 20 

Expectations of gene expression responses to global change scenarios 21 

Experimentation under environmentally realistic conditions to investigate the molecular 22 

response of plants to meaningful changes in growth conditions and ecological interactions is the 23 
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defining feature of the genomic ecology approach. A typical laboratory based microarray study 1 

aiming to elucidate the functions of genes will subject plants to an acute treatment that 2 

precipitates many-fold changes in the transcript abundance of thousands of genes.  In contrast, 3 

results from a typical genomic ecology experiment will reveal markedly smaller magnitude 4 

changes in the abundance of transcripts from a smaller number of genes.  This probably has two 5 

main causes: (1) the imposed treatments are less severe; and (2) and the focus is often on plants 6 

that have acclimated to the treatments, in many cases spending their entire lifecycle exposed to 7 

the given treatment. In field studies there are the additional distinguishing factors of greater noise 8 

in gene expression resulting from the variable growth conditions and the greater resilience of 9 

field grown plants than laboratory grown plants to perturbation. 10 

Treatments in global change biology experiments are typically mild (e.g., a 40 % 11 

difference in [CO2]) because they aim to test the impact of changes between average field 12 

conditions today and those expected for later this century. By comparison, many molecular 13 

studies aiming to identify stress responsive genes have ensured significant treatment effects 14 

would be observed by imposing extreme conditions, such as supply of strong (200-500 mM) salt 15 

solutions (Bohnert et al., 2001), exposure to high (300 ppb) ozone concentrations (Tosti et al., 16 

2006), and withholding water from plants in small pots of rapidly drying growth media (Talame 17 

et al., 2007). Important data have been generated from such experiments, but the results may not 18 

always inform us about the mechanisms controlling plant performance in the field. For example, 19 

a cell-death response leading to lesions on leaves has been identified as an important component 20 

of response in plants exposed to >300 ppb [O3] (500% above background), but growth at <100 21 

ppb [O3] (60% above background) impairs productivity without causing visible damage to the 22 

plant (reviewed by Long & Naidu, 2002).  23 
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When plants experience a change in growing conditions (e.g., transfer from moderate to 1 

high temperature) they display a progression of responses.  First, the altered condition is sensed, 2 

activating a signal transduction pathway, which typically drives metabolic adjustments and 3 

concludes with adoption of a new acclimated state. Well-studied examples are the time courses 4 

of cellular response to ozone exposure and attack by pathogens (Kangasjarvi et al., 2005; Lamb 5 

& Dixon, 1997). The changes in gene expression immediately and shortly after the change in 6 

condition are substantial in number and magnitude. Most studies aiming to understand the 7 

molecular basis of plant responses to abiotic and biotic stimuli have focused on characterizing 8 

the responses to short-term changes in conditions. This is very important for understanding the 9 

sensing and signaling processes that control the response. Also, in combination with strong 10 

treatments, the brief shock generates an easy to detect response. However, these short-term 11 

changes in gene expression do not reveal all the important controls of plant performance upon 12 

acclimation to the growth conditions. For example, when assessed using a high-density maize 13 

oligonucleotide array, far fewer (<2% versus 27%) genes showed differential expression in 14 

maize ear tissue under a gradually developing stress than under a sudden stress (Campos et al., 15 

2004). 16 

Many genomic ecology studies are building on information from experiments employing 17 

acute treatments to determine gene function by characterizing the more subtle changes in gene 18 

expression that differentiate fully acclimated plant performance in different experimental 19 

treatments. This forces microarray studies to be designed and analyzed differently. For example, 20 

it is very logical to focus primarily on changes in transcript abundance of greater than 1.5-fold if 21 

the objective is to identify components of a signal transduction pathway a specific number of 22 

hours following a stimulus (e.g., Tosti et al., 2006). Equally, 5-fold changes in transcript 23 
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abundance for metabolic genes are unlikely to be observed in plants that are fully acclimated to 1 

growth in two mildly different treatments. For example, in Free-Air Concentration Enrichment 2 

(FACE) experiments where, in many cases plants have been grown for their entire life cycles at 3 

current and elevated [CO2], the largest fold changes in transcript abundance due to the CO2 4 

treatment are typically c. 2 fold (Gupta et al., 2005; Taylor et al., 2005; Ainsworth et al., 2006; 5 

Leakey et al., 2008). Identifying these moderate changes can give considerable insight into 6 

alterations in metabolic pathways and allocation to biosynthetic pathways that occur over time in 7 

response to elements of global change. But, the genomic ecologist is faced with the problem of 8 

balancing the cost of transcript profiling with the need for adequate replication to gain sufficient 9 

statistical power to detect small fold changes in transcript abundance. 10 

By comparison with controlled environment facilities, field conditions can provide 11 

growing conditions for plants that are simultaneously more variable, more resource rich and 12 

more stressful. For example, many habitats provide high light and unlimited rooting volume but 13 

also periods of water deficit and disease. This appears to reduce the sensitivity with which gene 14 

expression responds to stress treatments. For example, application of benzo(1,2,3) thiadiazole-7-15 

carbothioic acid S-methylester (BTH) to induce systemic resistance against pathogens in wheat 16 

caused substantial up-regulation of defense related genes in a greenhouse trial. However, when 17 

the experiment was repeated under field conditions, defense related gene expression was 18 

constitutively high and did not increase further with the BTH treatment (Pasquer et al., 2005).  19 

Experiments that investigate the response of plants to treatments simulating global 20 

change over long time periods are informative because they can generate understanding of (1) 21 

impacts over the entire life histories of the subject species; (2) slow ecological responses such as 22 

competition and succession; and (3) complex feedbacks from ecological and ecosystem scale to 23 
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whole plant performance (Fig. 1). Fewer space restrictions allow long term experiments to be 1 

done in the field more successfully than under controlled environment conditions. However, 2 

plants in the field, and especially those in long-term studies, experience variable growth 3 

conditions on scales from minutes, hours and days to months and seasons. Many of the 4 

parameters of ecological interest, e.g., biomass, yield and fecundity integrate these growth 5 

conditions over long periods of time.  In contrast, transcript profiles in plants are known to 6 

respond rapidly and extensively to temperature (Seki et al., 2002) and light  (Bertrand et al., 7 

2005), show circadian rhythms (Michael & McClung, 2003; Blasing et al., 2005) and vary with 8 

development (Taylor et al., 2005; Ainsworth et al., 2006).  Since a single sampling point only 9 

represents a snap-shot view, it is important to distinguish responses of the transcriptome that are 10 

due to the experimental manipulation versus time or weather dependent changes (Miyazaki et al., 11 

2004).  This discrimination can be achieved to a significant extent by sampling at the same time 12 

each day, sampling on multiple occasions over the duration of an experiment and interpreting 13 

treatment effects on gene expression in the context of environmental data. In addition, efforts to 14 

sample homogenous tissue that is at the same developmental stage and growing under the same 15 

environmental conditions minimizes unwanted variability that could prevent detection of 16 

treatment effects. In some cases the impact of natural variation in growth conditions on gene 17 

expression can provide novel understanding of the mechanisms underlying plant-environment 18 

interactions. For example, transcript profiling of pine trees grown in multiple field sites in 19 

Europe indicated that cold tolerance develops in response to combined photoperiodic and 20 

temperature cues (Joosen et al., 2006). 21 

 22 

Design of experiments assessing gene expression responses to global change scenarios 23 
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Nettleton (2006) reviewed how the basic principles of experimental design apply to 1 

transcript profiling experiments, with emphasis on random assignment of experimental units to 2 

treatments, use of the maximum affordable replication and applying blocking. These issues are 3 

familiar to ecologists and physiologists, and have been extensively reviewed (e.g., Scheiner & 4 

Gurevitch, 2001). The more specific importance of understanding the distinction between, and 5 

value of, technical and biological replication in transcript profiling experiments has been 6 

highlighted by Allison et al. (2006) and Nettleton (2006). Technical replication provides multiple 7 

measures of a single sample from a single experimental unit. Biological replication involves 8 

measurements of multiple experimental units each of which is independently exposed to control 9 

or treatment conditions. Without biological replication it is not possible to statistically attribute 10 

observed changes in transcript abundance to the effects of a treatment. Most experiments are 11 

limited by the funds available for transcript profiling. The power to detect treatment effects will 12 

be maximized if the transcripts from each experimental unit at a given time are profiled with 13 

only one microarray (Nettleton, 2006). However, if the number of biological replicates is limited 14 

(e.g., at a Free Air CO2 Enrichment experiment) and there is significant measurement error, 15 

averaging across technical replicates can reduce variability and provide some gain in statistical 16 

power (Nettleton, 2006).  17 

In ecological experiments and especially those in the field, variation in gene expression 18 

responses to experimental treatments over time are of great interest with respect to circadian/diel 19 

rhythms, interactions with climate, acclimation and development. With a limited supply of 20 

microarrays, this creates both challenges and opportunities. If the primary aim of the experiment 21 

is to characterize treatment effects on gene expression at a single time point (e.g., a single 22 

development event such as flowering) then adding biological replicates will provide the most 23 
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statistical power. If the primary aim of the experiment is to characterize the average treatment 1 

effects on gene expression (e.g., over a growing season) then it may be desirable to compromise 2 

technical or biological replication in order to allow additional sampling points over time. Of 3 

course, such trade-offs need to be determined on a case-by-case basis. Even for studies on the 4 

same species at a single field site, some experiments may necessitate technical replication (e.g., 5 

Ainsworth et al., 2006), while others benefit most from multiple measurements in time (e.g., 6 

Casteel et al., 2008).  7 

Sub-sampling is often used to overcome the variation among individuals within a 8 

replicate plot in field experiments. For instance, averaging the rates of photosynthesis of four 9 

different sun leaves within individual plots of maize exposed to either ambient or elevated [CO2] 10 

reduced variation among replicate plots and ensured there was sufficient statistical power to 11 

characterize a subtle, episodic treatment effect (Leakey et al., 2004; 2006b). In genomic ecology 12 

studies, one solution to the need for sampling variation within replicate plots without depleting 13 

microarray resources needed for sampling multiple biological replicates or time points is to pool 14 

mRNA from multiple samples collected within a single plot (Allison et al., 2006). Hybridizing 15 

this mixed mRNA sample to a single microarray will reduce between plot variance when 16 

biological variability is high relative to measurement error (Kendziorski et al., 2005). This 17 

approach has been used successfully in transcript profiling studies of poplar and soybean 18 

responses to elevated [CO2] in the field (e.g. Gupta et al., 2005; Taylor et al., 2005; Ainsworth et 19 

al., 2006). 20 

 21 

Analysis of gene expression responses to global change treatments 22 
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One of the greatest challenges of transcript profiling is the data analysis. This is partly 1 

due to the large size of the datasets compared to most physiological or ecological experiments. 2 

Selecting from the large number of rapidly developing analysis tools and techniques that are 3 

available is also challenging. Although it is impossible to comprehensively discuss the 4 

advantages and disadvantages of all the available options here, it is worth briefly reviewing the 5 

major steps in the analysis process and highlighting a number of specialist reviews on the subject 6 

(e.g., Allison et al., 2006; Nettleton, 2006). 7 

 The first analysis step involves processing the images of the fluorescent spots on each 8 

microarray. Many approaches have been developed, and the service facilities that perform the 9 

hybridization and scanning of microarrays for most investigators can assist in making the 10 

appropriate choices. Before proceeding with data analysis it is important to perform quality 11 

control steps and remove or replace data from defective slides or images. One simple method for 12 

eliminating poor quality data is to discount data from microarrays that do not meet threshold 13 

values of the Pearson correlation coefficient (e.g., 0.9) or kappa statistic (e.g., 0.75) when 14 

pairwise comparisons are made between microarrays from a given treatment and time point 15 

(Fleiss, 1981; McIntyre et al., 2006).  16 

A number of microarrays include probes for more than one species. For example, the 17 

Affymetrix soybean genechip includes probes for genes from soybean, a nematode species and 18 

the phytopthera pathogen. If only transcripts from soybean are to be profiled, the data for probes 19 

specific to the other species should be disregarded. The Affymetrix genechip platform provides a 20 

statistic estimating whether each individual transcript is considered to have been present or 21 

absent from the sample (Affymetrix, 2002). This allows the investigator to discount data from 22 

probes for which a transcript was not considered present in a sufficient number of samples for 23 
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meaningful replication to be achieved. This reduces the number of tests to be performed and 1 

prevents misinterpretation of results from probes for which there is not sufficient statistical 2 

power for meaningful testing. 3 

Some methods can combine image analysis algorithms with the next analysis step, which 4 

is normalization. Normalization is the process that makes adjustments to minimize the influence 5 

of technical variability across different microarrays and experiments. The simplest approach 6 

involves normalizing the fluorescence intensity for individual genes by the median fluorescence 7 

intensity on an individual microarray basis (e.g., Ainsworth et al., 2006; Fung et al., 2008). This 8 

approach has the philosophical advantage of maintaining the independence of data from 9 

individual replicates, and the practical advantage of requiring a single normalization to be 10 

performed on a given microarray, even if the data are to be analyzed as part of more than one 11 

experiment. Alternatively, more complex procedures have also been developed, some of which 12 

incorporate information from all the chips in an experiment as part of the normalization process. 13 

Normalization is an area of on-going research in which there is an unresolved debate about 14 

which method performs the best, and even how good performance should be defined (Izzary et 15 

al., 2003; Bolstad et al., 2003; Choe et al., 2005; Allison et al., 2006). After normalization, log 16 

transformation of the data is performed in nearly all cases to ensure that the data are normally 17 

distributed. 18 

The majority of published microarray studies use mixed-effects linear models to identify 19 

treatment effects on transcript abundance, with an independent analysis being performed for each 20 

probe in the dataset (Nettleton, 2006). This has the advantage of allowing the physiologist or 21 

ecologist to use familiar statistical tests and software packages. An additional reason for the 22 

approach is that different genes display different levels of variation in expression, creating 23 
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heterogeneity that a single “global” model has difficulty representing. However, it has been 1 

suggested that analyzing each gene independently is inefficient (Allison et al., 2006). Simulation 2 

studies have indicated that an intermediate approach, called variance shrinkage, which combines 3 

data from specific genes and all genes may perform better than gene by gene testing (Cui et al., 4 

2005), although optimization of the technique is still required (Allison et al., 2006). 5 

Since the analysis of most microarray experiments necessitates tens of thousands of 6 

statistical tests on individual probes, there is a greater likelihood of making type I errors (falsely 7 

identifying the abundance of transcripts as responsive to the treatment when in fact they are not) 8 

than in most physiological or ecological experiments. Consequently, techniques have been 9 

developed that quantify the false discovery rate (FDR) and allow it to be controlled (Benjamini 10 

& Hochberg, 1995; Storey & Tibshirani, 2003). Most commonly, this is done by adjusting the 11 

probability threshold at which treatment effects on transcript abundance are considered to be 12 

statistically significant, taking into account the number of tests performed and the initial p-value 13 

returned for each transcript by the mixed-effects linear model. Importantly, while applying 14 

increasingly strict FDR corrections reduces the number of transcripts falsely identified to 15 

respond significantly to the treatment, it also increases the number of transcripts falsely 16 

identified not to respond significantly to the treatment (Type II errors; Nettleton, 2006). In other 17 

words, there is a trade-off between identifying fewer genes than actually responded to the 18 

treatment, but with a high degree of confidence (strict FDR) versus more genes that actually 19 

responded to the treatment, plus some that did not (relaxed FDR). During the experimental 20 

design and analysis processes each researcher must select the FDR correction level that allows 21 

the most meaningful interpretation of the data.  22 
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In many global change biology experiments, where treatment effects can be small, 1 

applying strict FDR can result in few transcripts being identified as responding to the treatment. 2 

If more relaxed FDR are applied, other techniques are necessary to increase the confidence with 3 

which “responsive” transcripts are identified. For instance, visualization of transcript data in the 4 

context of known metabolic pathways and signal transduction cascades can indicate when many 5 

transcripts associated with a common function or response display consistent responses to an 6 

experimental treatment. If transcripts are identified as a result of random variation and not a true 7 

treatment effect, then positive and negative responses should be equal in number. However, for 8 

example, if the abundance of ≥50 % of all transcripts encoding enzymes involved in the 9 

synthesis of flavonoids are greater when soybean grows at elevated [O3], and no transcripts show 10 

the opposite result (Casteel et al., 2008), there is a good probability the result is real rather than 11 

the result of random chance.  12 

Difficulties associated with performing many tests can also be dealt with by putting 13 

transcripts into functional groups and performing a Fisher’s exact test or chi-square test on each 14 

group. These two tests allow identification of groups within which a greater fraction of 15 

transcripts respond significantly to the treatment than on average across all transcripts; i.e. 16 

functional groups of transcripts which disproportionately contribute to the overall transcriptional 17 

response. For example, the transcriptional response of soybean to growth at elevated [CO2] was 18 

assessed by assigning each of the profiled transcripts into one of 32 functional groups (Leakey et 19 

al. 2008). A Fisher’s exact test determined that the fraction of CO2-responsive transcripts in 20 

functional groups related to respiration was significantly greater than the fraction of CO2-21 

responsive transcripts across all other functional groups.  22 
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The standard procedure of repeating an experiment can also be used to increase 1 

confidence in identification of “responsive” transcripts. Transcripts whose abundance changes as 2 

a result of real treatment effects are more likely to display consistent changes in abundance of a 3 

similar magnitude and in the same direction.  In contrast, false positives that have low p-values 4 

from the initial analysis of variance as a result of random variation are equally likely to respond 5 

positively or negatively to the treatment in any given experiment. Varying the FDR threshold has 6 

a substantial impact on identification of transcripts which respond consistently in soybean grown 7 

at ambient and elevated [CO2] over two, consecutive growing seasons (Fig. 2). At an FDR of 0.2, 8 

76 transcripts responded consistently in the two years, and no transcript displayed opposite 9 

responses in the two years. By contrast, applying an FDR of 0.5 to the same data identified 615 10 

transcripts that responded consistently and 12 transcripts displaying opposite responses in the 11 

two years. The researcher has to choose between identifying treatment effects on 76 transcripts 12 

with a higher degree of confidence from a more conservative FDR correction or 615 transcripts 13 

from a less conservative FDR correction, plus the knowledge the transcript responded to the 14 

treatment in the same direction, and to a similar magnitude, in two consecutive years. Given the 15 

need to demonstrate that changes in transcript abundance have an impact on biochemical or 16 

physiological processes, there will be subsequent opportunity to eliminate false positives that 17 

have passed this initial analysis. 18 

It is common practice to validate the quantification of transcript abundance by 19 

microarrays using qRT-PCR on a subset of genes from the original experimental samples 20 

(Rajeevan et al., 2001). However, this practice has recently been suggested to be of little benefit 21 

because, while qRT-PCR probably provides a more accurate measure of transcript abundance, 22 

there is no reason to expect the new data will eliminate the types of errors that cause 23 
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identification of false positives (Allison et al., 2006).  This may not yet be a consensus view, but 1 

seems to be consistent with most physiological and ecological practices. For example, 2 

measurements of stomatal conductance using IRGA-based gas exchange systems are not 3 

typically validated with measurements using a porometer (e.g., Jones, 1999; Leakey et al., 4 

2006a). On the other hand, qRT-PCR is more sensitive to changes in transcript abundance than 5 

microarrays and it is incredibly valuable and cost effective if transcripts identified in a 6 

microarray study are profiled by quantitative-PCR in samples from additional biological 7 

replicates, other tissues, or other time points. Such follow-up studies are vital to extend 8 

investigation from broad profiling analyses to detailed understanding of specific gene responses. 9 

 10 

LINKAGES FROM GENE EXPRESSION TO PHYSIOLOGY AND ECOLOGY 11 

 12 

The ability to measure gene-specific and genome-wide patterns of transcript abundance 13 

provides a new opportunity to improve our understanding how organisms and ecosystems 14 

respond to environmental change. Different elements of global change can elicit distinct changes 15 

in gene expression (e.g., drought versus heat; Roelofs et al., 2008); therefore, the contribution of 16 

two simultaneous treatments in impacting physiological performance could start to be dissected 17 

by the molecular phenotypes. Since transcript profiling with microarrays potentially provides 18 

information on a large proportion of metabolic and signaling components, it is an ideal technique 19 

to broadly survey intra- and inter-specific variation in response to a given treatment (e.g., Gong 20 

et al., 2005). Identifying different response pathways or magnitudes of response within a 21 

pathway at the molecular level identifies a smaller group of candidate mechanisms that can then 22 

be more easily examined at the physiological and ecological scale. For example, Leakey et al. 23 
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(2008) used microarrays to characterize a transcriptionally driven acclimation of soybean to 1 

growth at elevated [CO2], which led to stimulated foliar respiration. The transcript profiling also 2 

allowed a survey of biosynthetic metabolism to identify pathways that were transcriptionally up-3 

regulated coincident with the enhanced supply of energy and carbon skeletons from respiration. 4 

The ecological significance of these changes can now be evaluated in more detailed analyses. By 5 

comparison, previous methods would probably have involved laborious and less systematic 6 

investigation of individual biosynthetic pathways in different species by different research 7 

groups. 8 

Interpretation of transcript abundance depends on assumptions about the relationship 9 

between the levels of transcripts and the functional activity of the proteins they encode. This is 10 

difficult to predict because post-transcriptional and post-translational regulation can significantly 11 

alter the response predicted from transcript data alone (Scheible et al., 1997; Kaiser & Huber, 12 

2001; Hendriks et al., 2003).  In addition, the impact of changes in transcript abundance on a 13 

biological response depends on the turn-over rate of the encoded proteins, their contribution to 14 

the control of metabolic pathways and the levels of metabolites associated with those pathways, 15 

which in turn can regulate the expression of the given gene.  Genome-wide transcript profiling 16 

and analyses of enzyme activities have shown that transcript levels undergo marked and rapid 17 

changes during the diurnal cycles whereas changes in enzyme activities are often smaller and 18 

delayed, and appear to integrate changes in transcript levels over several diurnal cycles (Gibon et 19 

al., 2006; Morcuende et al., 2007; Stitt et al., 2007). Because transcripts, enzymes and 20 

metabolites integrate information over different time scales, measuring their response provides a 21 

wider physiological snap-shot than transcript abundance alone. Fortunately, unlike 22 

transcriptomics (and proteomics) which relies to a great extent on genomic information, 23 



 24

metabolomics is widely applicable with only minimal time required to re-optimize protocols for 1 

a new species (Schauer & Fernie, 2006).  High throughput analysis of activity from >20 enzymes 2 

is now a reality (Gibon et al., 2004) and early indications suggest that these methods can also be 3 

transferred relatively easily among species (Rogers & Gibon, 2008). Although still a nascent 4 

field of investigation, techniques to model metabolic networks (Sweetlove & Fernie, 2005) and a 5 

diversity of bioinformatics tools are becoming available to aid in identifying genes that underlie 6 

important biological functions. 7 

For transcriptomic and metabolomic data, visualization of the results in a biologically 8 

meaningful way is another challenge to functional interpretation.  Thimm et al. (2004) 9 

introduced MapMan, a user-driven visualization tool for displaying transcript, metabolite and 10 

enzyme activity data-sets on plant-specific biological pathways.  MapMan is a flexible program 11 

that classifies genes into specific functional bins (e.g., photosynthesis, glycolysis, secondary 12 

metabolism), originally developed for Arabidopsis.  It has since been extended to Solanaceous 13 

species (Urbanczyk-Wochnia et al., 2006) and legumes (Goffard & Weiller, 2006; Leakey et al., 14 

2008) based on BLAST hits to the Arabidopsis proteome and the non-redundant protein database 15 

at NCBI. MapMan is but one example of a biologically relevant visualization tool.  Such 16 

resources to interpret gene expression results are becoming ever more sophisticated and available 17 

for an increasing number of species. Many of the genes involved in photosynthesis, respiration, 18 

and nutrient acquisition can be identified using such software and results subsequently related to 19 

the response of plants to altered environmental conditions. Microarrays and bioinformatics, 20 

therefore, make a compelling combination to characterize mechanisms responsible for how 21 

plants respond to experimental manipulations of temperature, water, ozone, and CO2 22 
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concentration (Watkinson et al., 2003; Ainsworth et al., 2006; Li et al., 2006; Weston et al., 1 

2008).  2 

Modelling gene expression data in the context of existing biochemical frameworks is 3 

useful, but requires that we understand a priori relationships between variables used to connect 4 

genes to physiology and beyond to ecosystem-scale processes.  One challenge with this modeling 5 

approach is in reducing the dimensionality of the gene expression data before linking with the 6 

rest of the model. There are a number of approaches to accomplish this, such as the use of gene 7 

function ontologies to define a subset of genes whose expression values would subsequently be 8 

included in the model. Gene ontologies are insightful, but the functions of many genes are still 9 

not fully understood and extrapolation of model gene function to non-model genes is potentially 10 

problematic. Therefore, unsupervised approaches for delineating gene expression into functional 11 

clusters are promising. Weighted gene coexpression network analysis is encouraging in this 12 

regard because it is an unsupervised approach for clustering genes that share highly correlated 13 

expression patterns across treatment (Zhang & Horvath, 2005).  Furthermore, the input data for 14 

this network approach are from normalized raw intensity values and thereby avoid multiple 15 

testing errors commonly associated with most expression array analytical techniques.  Using this 16 

technique, Weston et al. (2008) were able to cluster Arabidopsis genes into functionally relevant 17 

stress responsive clusters (modules) that were then correlated to phenotypic characteristics. A 18 

similar statistical approach could be used to investigate module gene correlations with 19 

metabolites and enzyme activities of interest to strengthen understanding of the metabolic 20 

pathways governing phenotype.   21 

Linking the large-scale data sets of genomic ecology to other predictors of plant 22 

responses to global change, including soil properties, biotic interactions, and climate conditions, 23 
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presents several challenges.  First, the spatial and temporal resolution of data collected across 1 

different levels of biological organization (i.e. molecular, organismal, community, and 2 

ecosystem) can vary significantly.  In addition, accounting for the hierarchical structure of data 3 

can improve predictive accuracy when using multiple variables to explain observed plant 4 

responses.  Statistical methods based on probabilistic graphical models provide a natural 5 

framework for modeling responses to environmental treatments.  In this approach, the 6 

probabilistic relationships defining a complex system are specified via a sequence of nodes that 7 

represent random variables, and edges that encode direct physical or statistical dependencies 8 

(Jordan, 2004).  The ability of graphical models to include latent or hidden variables to explicitly 9 

model unobserved relationships is particularly useful in biological research.  A variety of 10 

computational methods developed by the statistics and machine learning communities have been 11 

used to effectively analyze biological data with complex spatial and temporal structure.  Directed 12 

graphical models, or Bayesian networks, are commonly used in systems biology to learn the 13 

structure of complex genetic networks (Blanchard, 2004; Friedman, 2004).  Related multivariate 14 

modeling approaches such as structural equation modeling (SEM) have been used to identify the 15 

environmental and biotic predictors that influence plant response to various global change factors 16 

(Grace, 2006, Clark et al., 2007).  Bayesian networks and SEM are only two examples of tools 17 

being used to analyze complex ecological responses to global change.  These approaches provide 18 

powerful statistical tools that can be used to model plant responses to global change across levels 19 

of biological organization. 20 

 21 

CONCLUSION 22 
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In summary, the technology to assess gene expression through transcript profiling is now 1 

available for model and non-model species. Managed ecosystems and mesocosms are proving to 2 

be good testbeds for the genomic ecology approach. Major advances in understanding natural 3 

communities are also promised by the increasing number of species for which transcript profiling 4 

tools are available and the accelerating advances in sequencing technology. This represents a 5 

significant new opportunity to assess the mechanisms underlying the responses of plants to 6 

elements of global change. The studies that have been performed to date have revealed some 7 

important distinctions between transcript profiling in ecological studies versus molecular studies 8 

of gene function. This experience has allowed us to identify the strengths and weaknesses of 9 

various experimental design and analysis options available to the genomic ecologist. Possibly the 10 

biggest change resulting from the use of genomic tools is a new, integrative approach to 11 

investigating the abiotic and biotic interactions of plants. Using genomic ecology to understand 12 

the mechanisms currently consigned to the “black box” of plant function will significantly 13 

advance analysis of future global change, its impacts on ecosystems and how we should respond 14 

to it. 15 

 16 
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 21 
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FIGURE LEGENDS 17 

 18 

Fig. 1. Schematic describing the integration of plant, community and ecosystem responses to an 19 

element of global change. Elements of global change directly impact molecular, biochemical and 20 

physiological processes (red arrows), which combine to determine whole plant performance. 21 

Genotypic variation in whole plant responses drives ecological interactions which underlie 22 

community and ecosystem responses to global change. Feedbacks from larger scales of 23 

organization (dashed arrows) impact individual plant performance via effects on resource 24 
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availability and disturbance that modify the direct effects on global change on plant function. 1 

Transcript profiling and high-throughput biochemical and physiological screening provide an 2 

opportunity to better understand the “black box” of mechanisms driving plant responses to 3 

various elements of global change under field conditions. 4 

 5 

Fig. 2. Comparison of changes in transcript abundance in soybean leaves as a result of growth at 6 

ambient [CO2] versus elevated [CO2] at SoyFACE during the 2005 and 2006 growing seasons. 7 

At a false discovery rate (FDR) of 0.2, 76 transcripts responded consistently in the two years and 8 

no transcript displayed opposite responses in the two years. By contrast, applying an FDR of 0.5 9 

to the same data identified 615 transcripts that responded consistently and 12 transcripts 10 

displaying opposite responses in the two years.  Data adapted from Leakey et al. (2008) 11 

 12 

 13 

Supplementary Table 1. Currently available resources for microarray analysis of plant gene expression. 

target common name target latin name source Number of 
transcripts probed 

apple Malus domestica Pichler et al 2007 15,720 
arabidopsis Arabidopsis thaliana www.affymetrix.com 22500 
arabidopsis Arabidopsis thaliana www.agilent.com 40000 
arabidopsis Arabidopsis thaliana Li et al 2006 26000 

barley Hordeum distychum www.affymetrix.com 25500 
brassica Brassica spp http://jicgenomelab.co.uk/ 91854 
cacao Theobroma cacao Jones et al 2002 1380 

carnation Dianthus caryophyllus Hoeberichts et al 2007 2224 
cassava Manihot esculenta Lopez et al 2005 5700 
citrus Citrus spp www.affymetrix.com 30171 
coffee Coffea arabica De Nardi et al 2006 1554 

cotton Gossypium hirsutum, 
Gossypium raimondii www.affymetrix.com 23977 

foxtail millet Setaria italica Zhang et al 2007 1947 
Gerbera hybrida Gerbera hybrida Laitinen et al 2005 9000 

grape Vitis vinifera www.affymetrix.com 14000 
hemp Cannabis sativa van den Broeck et al 2008 3414 
lily Lilium longiflorum Okada et al 2007 1234 
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loblolly pine Pinus taeda Yang and Loopstra 2005 2171 
lolium Lolium perenne Ciannamea et al 2006 1500 
maize Zea mays www.affymetrix.com 17555 
maize Zea mays Wang et al 2003 7943 

mangrove Bruguiera gymnorrhiza Miyama and Hanagata 
2007 7029 

medicago Medicago truncatula and 
M. sativa www.affymetrix.com 52796 

peach Prunus persica Trainotti et al 2006 4800 
pepper Capsicum annuum Hwang et al 2005 3100 
populus Populus spp www.affymetrix.com 61000 
potato Solanum tuberosum Schafleitner et al 2007 15264 

Puccinellia tenuiflora Puccinellia tenuiflora Wang et al 2007 1067 
raspberry Rubus idaeus Mazzitelli et al 2007 5360 

resurrection plant Xerophyta humilis Collett et al 2004 424 
rice Oryza sativa www.affymetrix.com 51279 
rice Oryza sativa www.agilent.com 42000 

Scots pine Pinus sylvestris Adomas et al 2007 2109 
sorghum Sorghum bicolor Buchanan et al 2005 12982 
soybean Glycine max www.affymetrix.com 37500 
soybean Glycine max Vodkin et al 2004 18432 

sitka spruce Picea sitchensis Ralph et al 2006 9720 
strawberry Fragaria x ananassa Aharoni et al 2000 1701 
sugarcane Saccharum officinarum www.affymetrix.com 8236 
sugarcane Saccharum officinarum Papini-Terzi et al 2005 1280 
sunflower Helianthus annuus Alignan et al 2006 1000 
tobacco Nicotiana attenuata Heidel and Baldwin 2004 789 
tobacco Nicotiana sylvestris Chung and Sano 2007 3766 
tomato Lycopersicon esculentum www.affymetrix.com 10000 

wheat 
Triticum aestivum, T. 

monococcum, T. turgidum, 
and Aegilops tauschii 

www.affymetrix.com 61127 
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