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Abstract. The composition of organic aerosol under differ-
ent ambient conditions as well as their phase state have been
a subject of intense study in recent years. One way to study
particle properties is to measure the particle size shrinkage in
a diluted environment at isothermal conditions. From these
measurements it is possible to separate the fraction of low-
volatility compounds from high-volatility compounds. In this
work, we analyse and evaluate a method for obtaining par-
ticle composition and viscosity from measurements using
process models coupled with input optimization algorithms.
Two optimization methods, the Monte Carlo genetic algo-
rithm and Bayesian inference, are used together with pro-
cess models describing the dynamics of particle evaporation.
The process model optimization scheme in inferring particle
composition in a volatility-basis-set sense and composition-
dependent particle viscosity is tested with artificially gener-
ated data sets and real experimental data. Optimizing model
input so that the output matches these data yields a good
match for the estimated quantities. Both optimization meth-
ods give equally good results when they are used to estimate
particle composition to artificially test data. The timescale of
the experiments and the initial particle size are found to be
important in defining the range of values that can be identi-
fied for the properties from the optimization.

1 Introduction

It has been estimated that organic aerosols (OAs) comprise
a large fraction of global aerosol particle mass (Kanakidou
et al., 2005; Jimenez et al., 2009). A significant fraction of
OA is of secondary origin (secondary organic aerosol, SOA),
i.e. OA formed from oxidation of volatile organic compounds
and their subsequent condensation onto pre-existing particles
(Hallquist et al., 2009). Especially in SOA systems, there are
gaps of knowledge in the composition and phase state of the
particles and their response to atmospheric conditions such
as relative humidity or temperature (Hallquist et al., 2009;
Virtanen et al., 2010; Pajunoja et al., 2015). These properties
are important since they control the evolution of atmospheric
organic particles and their subsequent effect on climate (Tsi-
garidis et al., 2014; Shiraiwa et al., 2017).

The volatilities of particle-phase compounds in OA and
the viscosity of the particles can be inferred by measuring
the size change of particles during their evaporation (Vaden
et al., 2011; Wilson et al., 2015; Yli-Juuti et al., 2017). In
addition, if the shrinking stops after a certain time, the par-
ticles can be inferred to contain organic compounds, which
are nonvolatile with respect to the ambient conditions. The
phase state of OA particles can be studied in these experi-
ments by comparing evaporation at different relative humid-
ity conditions. New techniques have also been developed to
infer the viscosity of the particles directly (Abramson et al.,
2013; Renbaum-Wolff et al., 2013; Reid et al., 2018). The
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benefit of the evaporation technique over direct measurement
of viscosity is the possibility of using freshly formed, sus-
pended OA particles without a need, for example, for filter
collection and further treatment.

In addition to experimental methods, increasing attention
has also been given to modelling the evaporation process to
better understand the measurements (Vaden et al., 2011; Liu
et al., 2016; Yli-Juuti et al., 2017). Usually, the model re-
sults obtained by assuming distinct OA properties are com-
pared to experimental data and conclusions are drawn from
the differences or similarities of the two. However, an inverse
approach is also possible where some of the OA properties
are fit such that the model output is matched to the experi-
mental observations. This approach allows the estimation of
the properties that are challenging to measure directly with
available instruments. For example, Arangio et al. (2015)
used this concept to derive kinetic parameters for multiphase
chemical reactions of the hydroxyl radical with levoglucosan
and abietic acid. Berkemeier et al. (2016) derived kinetic pa-
rameters influencing ozone uptake of shikimic acid by fitting
to multiple measurements of ozone uptake by the acid at dif-
ferent relative humidities. Lowe et al. (2016) studied the sen-
sitivity of various parameters of Köhler theory by studying
the goodness of fit to artificial cloud condensation nucleus
spectra. Yli-Juuti et al. (2017) inferred volatility distribution
of compounds in SOA particles by searching for an optimal
input to a process model such that the model produces similar
particle size change as was measured.

Even though the optimization of models to replicate ex-
perimental data is a widely used method in other fields (e.g.,
Kaipio et al., 2000; Hernández et al., 2017; Varvia et al.,
2018), such an approach is yet to be commonly utilized in
studies probing organic aerosol volatility and viscosity. The
current challenges of accurately estimating OA component
volatility and particle viscosity raises a need for studies that
assess how accurately they can be inferred by fitting process
model output to time-dependent evaporation measurements,
which is the aim of this study.

The rest of the article is organized as follows. In the second
section the evaporation data and computational methods are
described. In the third section two different approaches for
performing the optimization are tested. In sections four and
five, the particle volatility distribution is optimized to match
artificial data sets and then the optimization method is tested
by applying it to experimental data sets where the compo-
sition and viscosity of generated particles are known. In the
last section the findings are summarized and conclusions are
drawn.

2 Methods

The optimization method described here is based on process
models that simulate the evaporation of OA particles and an
optimization algorithm that is used for finding the desired

properties. Two evaporation models which have different lev-
els of detail in their representation of the aerosol particle
evaporation process are used. Additionally, two different op-
timization algorithms are tested.

2.1 Process models

Evaporation at high relative humidity (RH) is modelled with
a liquid-like evaporation model (hereafter LLEVAP) (Yli-
Juuti et al., 2017) and evaporation at low RH with a modi-
fied version of the kinetic multilayer model for gas–particle
interactions in aerosols and clouds (KM-GAP) model (Shi-
raiwa et al., 2012; Yli-Juuti et al., 2017). Both models and
variations from their typical implementations are described
below.

In LLEVAP the evaporation of an organic compound i is
controlled by the difference in its gas-phase concentration Ci
and the equilibrium concentration Ceq,i (Vesala et al., 1997;
Lehtinen and Kulmala, 2003), equivalent to the gas-phase
diffusional gradient between the infinite distance and parti-
cle surface, respectively. Therefore, the mass transport be-
tween the gas and the particle phases is assumed to be the
limiting phenomenon and the diffusion timescales within the
particle are assumed to be negligible. The mixture of organ-
ics and water is assumed to behave ideally. When performing
optimization to interpret real measurements, as described in
Sect. 2.3.2, a flow of N2 maintains a near-zero background
gas-phase concentration of the volatilizing components. This
nitrogen flow is taken into account by including the Sher-
wood number correction to the mass flux equations (Kulmala
et al., 1995).

In KM-GAP, the particle-phase mass transport is modelled
by dividing the particle into concentric layers (Shiraiwa et al.,
2012, 2013). The composition-dependent viscosity η in layer
j is assumed to have the form

log10
(
ηj
)
=

∑N

i=1
Xmole,i,j log10 (bi) , (1)

where Xmole,i,j is the mole fraction of the ith compound in
the j th layer and bi is a coefficient that describes the contri-
bution of compound i to the viscosity ηj (O’Meara et al.,
2016). The particle-phase diffusion coefficients are calcu-
lated from the viscosities based on the Stokes–Einstein re-
lation (Einstein, 1905). The molecular diffusion inside the
particle is calculated based on Fick’s law of diffusion. As
with LLEVAP, an ideal mixture is assumed in the KM-GAP
model implementation.

During an evaporation simulation the particle size de-
creases. This shrinkage is modelled by allowing the quasi-
static surface layer (the outermost layer of the particle) to
shrink so that its thickness deviates from the thicknesses of
other layers. If the thickness of the quasi-static surface layer
is less than 0.3 nm it is combined with the first bulk layer,
which is the layer directly beneath the quasi-static surface
layer. This approach is the same as that used by Yli-Juuti et
al. (2017).

Atmos. Chem. Phys., 19, 9333–9350, 2019 www.atmos-chem-phys.net/19/9333/2019/
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In both models, equilibrium partitioning of water in the gas
and particle phases is assumed. In LLEVAP, this controls the
mole fraction of water in the entire particle. In KM-GAP, this
assumption controls the mole fraction of water in the parti-
cle surface layer while the composition of the inner layers is
based on the kinetics of water transport. Moreover, the coef-
ficient b for water in Eq. (1) is set to the literature value for
the viscosity of pure water, bwater ≈ 10−3 Pa s (Rumble et al.,
2018) when calculating the viscosity of a mixture in a layer.

In most of the model simulations the organic compounds
are represented by a one-dimensional volatility basis set
(Donahue et al., 2006) (1D-VBS, hereafter VBS). Organic
compounds are grouped into distinct “bins” in a VBS, de-
scribed by their saturation (mass) concentration (Csat) value
and the amount of that bin in the gas and particle phases. The
saturation concentration of a compound can be used inter-
changeably with the effective saturation concentration (Csat,i
times the activity coefficient of compound i) C∗i because the
organic–water mixture is assumed to behave ideally.

The volatilities of the compounds in the particle are mod-
elled with either a “full VBS” or with a “sparse VBS”. The
full VBS consists of bins from minimum definedCsat to max-
imum defined Csat with a decadal difference in Csat between
two adjacent bins; the sparse VBS consists of a predefined
number of bins whose saturation concentration is not con-
strained relative to each other. The sparse VBS is used to
present the properties of the organic compounds where the
number of evaporating compounds is known. Hereafter the
terms compound and VBS bin are used interchangeably in
the text. The gas phase is assumed to be infinitely diluted
of organic compounds in the particle evaporation data sets
described in Sect. 2.3 and, thus, the mass or mole fraction
presented in the VBS is always the fraction in the particle
phase.

2.2 Optimization methods

2.2.1 Monte Carlo genetic algorithm

The Monte Carlo genetic algorithm (MCGA) is an optimiza-
tion method developed by Berkemeier et al. (2017). MCGA
has been previously used in estimating atmospheric multi-
phase chemistry parameters such as reaction rate coefficients
and bulk-phase diffusion coefficients (Table 1 in Berkemeier
et al., 2017).

The algorithm divides the optimization process into two
different parts: a random sampling of the parameter space
(MC part) and a genetic algorithm (GA part) with an initial
population from the MC sampling. Random sampling means
that a predetermined number of parameter sets, named candi-
date solutions or candidates, are created by randomly choos-
ing values for the free parameters (Berkemeier et al., 2017).
These candidates form a population. The free parameter val-
ues are drawn from a uniform distribution between 0.01 and
1 for the mole or mass fraction of a compound and from

a log-uniform distribution for the saturation concentrations
and b parameters of Eq. (1), with clearly defined minimum
and maximum values (see Tables 1 and 5). Below the fitness
of a candidate is determined as the inverse of its goodness-
of-fit statistic. The goodness of fit in this work is calcu-
lated as a mean squared error (MSE) between the evaporation
simulation produced with the candidate’s parameter set and
the measured evaporation. A lower value for goodness-of-fit
statistic, i.e. lower MSE, means higher value for fitness and
a better candidate.

The initial population to the GA part is chosen from the
MC part so that 5 % of the best-fit candidates are chosen and
the remaining 95 % of the population is chosen randomly.
The computation times of the MC and GA parts are divided,
so that both parts require about half of the total computation
time (Berkemeier et al., 2017).

The GA part employs a survival-of-the-fittest scheme to
improve the parameter sets drawn in the MC part. The GA
part consists of evolving the initial population by forming
generations. Each new generation is created by first choos-
ing a number of elite candidates from the previous genera-
tion whose fitness is the highest. The rest of the generation is
created in a crossover process. First two candidates, called
parents, are chosen. A new candidate is created from the
two parents’ parameter sets. A new parameter for the new
candidate is chosen from the parents’ parameters randomly
(Berkemeier et al., 2017).

The version of the algorithm used in this work differs from
the version described in Berkemeier et al. (2017) in how a
new candidate is accepted to the next generation and how
parents are chosen. Once the new candidate has all its free
parameters drawn, it is accepted to the new generation if its
fitness is higher than the lowest fitness in the previous gen-
eration or if the candidate’s fitness divided by the lowest fit-
ness in the previous generation is lower than a uniform ran-
dom number between 0 and 1. If neither of the criteria for
accepting the candidate is met, a parent survives to the next
generation with probability proportional to their MSE val-
ues. The additional criterion for accepting the candidate is
similar to the Metropolis algorithm (Metropolis et al., 1953).
Lastly in the GA, once a new candidate is created and before
its fitness is compared against the previous generation, the
candidate can undergo mutation with a preset probability. If
mutation happens the values for all the fitting parameters are
chosen again randomly. In genetic algorithms the goal is to
keep the population as variable as possible while at the same
time improving the fitness of the candidates when new gen-
erations are calculated. If only the candidates that best pro-
duce the observations were chosen, the algorithm might get
stuck in a local minimum, and, conversely, if new random pa-
rameters were drawn too often the genetic algorithm would
not converge. The mutation step together with the Metropolis
criterion ensure that the values of the fitting parameters stay
variable in the population.

www.atmos-chem-phys.net/19/9333/2019/ Atmos. Chem. Phys., 19, 9333–9350, 2019
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The probability to be chosen to be a parent was set to be
proportional to the candidate’s fitness. This way the param-
eters that produce better fits to the data are more likely cho-
sen than those candidates that produce worse fits. The num-
ber of elite candidates was set to be 5 % of the generation
size and the mutation probability was set to 20 %. The num-
ber of generations was set to 10. To obtain statistics of the
estimated parameters the optimization process was always
repeated at least 100 times. These consecutive optimization
runs are hereafter referred to as optimization rounds. All the
MCGA parameters for each data set in this work are listed in
Supplement Table S1.

When showing estimates from the distribution of fitted pa-
rameters, the mode of the estimate is used as a point estimate
and the uncertainty is characterized by the 10th and 90th per-
centiles of the distribution.

2.2.2 Bayesian inference

Bayesian inference is a class of statistical inference that can
be used in finding estimates for unknown parameters in a
model. In Bayesian inference, the estimates of the unknown
parameters are based on statistical prior information, ob-
served data and an observation model. Statistical prior in-
formation is encoded into prior probability distribution and it
can be used, for example, to constrain the unknown parame-
ter values to a physically feasible range (e.g. nonnegativity).
The observation model describes the dependency between
the observed data and unknown parameters, and statistical
models for the observation noise and model uncertainties are
used to construct the so-called likelihood probability distri-
bution. The solution of a Bayesian inference problem is a
posterior probability distribution that is a conditional proba-
bility distribution for the unknown parameters given the ob-
servations and prior information. The posterior probability
according to the Bayes’ rule (Bayes et al., 1763; Gelman
et al., 2013) is proportional to the product of likelihood and
prior probabilities. Usually in practical applications, the pos-
terior probability distribution is not used as it is, but it is used
to derive point or interval estimates for the unknown param-
eters.

Analytic derivation of the posterior probability distribu-
tion is often difficult or even impossible and, therefore, fea-
sible numerical methods have been developed to explore the
posterior probability distribution. These numerical methods
are typically used to draw random samples from the poste-
rior probability distribution. The random samples are further
used to compute point estimates and credible intervals for
the unknown parameters. A well-known class of sampling
algorithms are the Markov chain Monte Carlo (MCMC) al-
gorithms. In MCMC algorithms, random samples from the
posterior probability distributions are drawn and, for exam-
ple, the most probable values for the unknown parameters are
computed.

The evaporation of an organic aerosol particle is modelled
using the LLEVAP model described in Sect. 2.1. This method
is applied to data set 1 described in Sect. 2.3. The prior prob-
ability models for the three organic compounds in data set 1
are set to positive parts of normal distributions with means
of 0, 0 and 500 µg m−3 and standard deviations of 10, 10
and 500 µg m−3, respectively, for the saturation concentra-
tions of the three organic compounds. For the molar fraction
the mean is one-third, standard deviation is one-third and the
distributions’ Gaussian for every compound with the nega-
tive part of the distribution function is removed. A Hamil-
tonian MCMC algorithm the No-U-Turn Sampler (NUTS)
(Hoffman and Gelman, 2014) is employed using the Stan
software (Carpenter et al., 2017) to draw 2000 samples from
the posterior probability distribution. Finally, the most prob-
able random sample according to the posterior distribution is
taken as the point estimate for the unknown parameters. This
point estimate is called the maximum a posteriori (MAP) es-
timate. Furthermore, the 90 % credible interval for the un-
known parameters is calculated to reflect the uncertainty of
the estimates.

2.3 Test data

Altogether, 10 different data sets were used to test how well
the volatility and viscosity of OA particles can be estimated
using the techniques described above. First, four artificially
created data sets were used to test the accuracy of the esti-
mated VBS in case of no particle-phase diffusion limitations.
Second, particle evaporation data measured with an electro-
dynamic balance (EDB) (see Sect. 2.3.2) were used to char-
acterize how well the volatility of compounds can be esti-
mated from experimental data on particles consisting of few
compounds. Finally, measured evaporation data were used to
test the simultaneous estimation of volatility and viscosity of
particles generated from two compound mixtures.

2.3.1 Artificial data sets generated with the LLEVAP
model

All four artificial data sets were generated using the LLEVAP
model. In every case the data sets were created by a differ-
ent person than the one performing the optimization. This
prevented subconscious bias of the operator altering the esti-
mates towards correct values. Table 1 shows the properties of
the particles or the organic compounds that change between
data sets and the free parameters. Table 2 shows the proper-
ties of the organic compounds and ambient conditions that
are the same between the data sets and Table 3 shows the
mole fractions and saturation concentrations of each com-
pound in every data set. The optimization results of these data
sets are described and discussed in Sect. 4. Additionally, the
first artificial data set is also used to compare the Bayesian
inference and MCGA methods in Sect. 3.

Atmos. Chem. Phys., 19, 9333–9350, 2019 www.atmos-chem-phys.net/19/9333/2019/
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Table 1. Characteristics for the artificial data sets. Properties from top to bottom are number of VBS compounds (bins), particle diameter
at the start of the evaporation, saturation concentrations of the VBS compounds and dry mole fraction of the compounds at the start of the
evaporation. For Csat and Xmole,dry “fitted” means that the parameter value was used as a fitting parameter and the value was constrained
between the reported minimum and maximum values.

Variable Data set 1 Data set 2 Data set 3 Data set 4

No. of compounds 3 3 6 40
dp0 (nm) 80 10 000 80 80
Csat,i (µg m−3) Fitted (min: 0.001; max: 104) Fitted (min: 1; max: 109) {0.001;0.01;0.1;1;10;100} {0.001;0.01;0.1;1;10;100}
Xmole,dry (t = 0 s) Fitted (min: 0.01; max: 1) Fitted (min: 0.01; max: 1) Fitted (min: 0.01; max: 1) Fitted (min: 0.01; max: 1)

Table 2. The ambient conditions and properties of the organic com-
pounds in the artificial test data that are the same for all compounds
in artificial data sets 1–4. The variables are, from top to bottom,
temperature, relative humidity, gas-phase diffusion coefficient, mo-
lar mass, particle-phase density of the pure compound , particle sur-
face tension and mass accommodation coefficient.

Variable Value

T (K) 298
RH (%) 80
D∗gas (cm2 s−1) 0.05
M (g mol−1) 200
ρ (kg m−3) 1200
σ (mN m−1) 40
α 1

∗ The gas-phase diffusion
coefficients are scaled to correct
temperatures by multiplying with a
factor of (T /273.15)1.75 (Reid et
al., 1987).

The artificial data sets 1, 3 and 4 mimic evaporation of
monodisperse particle population in the University of East-
ern Finland residence time chamber similar to the measure-
ments reported in Yli-Juuti et al. (2017). The data sets differ
in their number of organic compounds and their saturation
concentration values. In data set 1, three organic compounds
were used and their Csat values were chosen from the appro-
priate range. Both saturation concentrations and initial dry
mole fractions of the compounds in the particle were treated
as free parameters in optimization. In data set 3, six organic
compounds, i.e. a full VBS, were used. The saturation con-
centrations were set to their correct values (see Table 1) and
only dry particle mole fractions at the start of the evapora-
tion were optimized. Data set 4 was generated by simulat-
ing evaporation of a mixture of 40 compounds with a range
of Csat and mole fractions. In optimization a full VBS with
fixed saturation concentrations was used.

Artificial data set 2 mimics the evaporation of a single par-
ticle in an electrodynamic balance (see next subsection). This
data set simulates the particle evaporation measurements per-
formed at the University of Bristol (Davies et al., 2012; Rov-
elli et al., 2016). Data set 2 differs from the other data sets as

the particle diameter is larger by several orders of magnitude
at the start of the evaporation and the particle size is sampled
at a higher frequency. The number of organic compounds in
data set 2 was set to three and both the values of saturation
concentration and the initial fraction of each organic com-
pound was optimized to fit the data (similar to data set 1).
The artificial evaporation data are shown in Fig. 1 as well as
in the Supplement (Figs. S1, S2, S3 and S4).

2.3.2 Experimental OA evaporation data

An electrodynamic balance (EDB) was used to trap single
aerosol droplets generated from aqueous mixtures of organic
components with known chemical composition. The evapo-
rative loss of semi-volatile organic components was observed
by measuring changes in the droplet radius over timescales
of ∼ 105 s. The experimental setup and the sizing of trapped
droplets is extensively described in previous publications
(Davies et al., 2013; Rovelli et al., 2016; Marsh et al., 2017)
and briefly presented below.

Charged droplets are generated by means of a microdis-
penser (Microfab MJ-ABP-01) and confined within the elec-
trodynamic field generated by a set of concentric cylindri-
cal electrodes. Once trapped, a single particle sits in a ni-
trogen flow (200 mL min−1, gas flow velocity of 3 cm s−1)
of controlled RH and T . The RH is measured by fitting ei-
ther the size vs. time profile of an evaporating probe wa-
ter droplet (at RHs above 80 %) or the equilibrated radius
of a NaCl or NaNO3 aqueous solution probe droplet (be-
low 80 %) by applying a literature evaporation–condensation
kinetic model (Kulmala et al., 1993). The procedure is de-
scribed in Rovelli et al. (2016), where the uncertainties as-
sociated with the measured RH are also discussed (typically
<±0.2 % at RH> 90 % and∼±1 % below 90 %). The tem-
perature is measured by means of a thermocouple (NI-USB-
TC01, thermocouple type K, uncertainty of ±1.5 K) placed
between the inner and the outer bottom electrodes, directly
within the gas flow. All the measurements in this work have
been taken at 293 K. The droplet is illuminated with a 532 nm
laser light (Laser Quantum Ventus CW laser) and the angu-
larly resolved elastically scattered light is collected with a
camera (Thorlabs CMOS camera, DCC1545M). The scat-
tering pattern is used to retrieve the evolving radius of the

www.atmos-chem-phys.net/19/9333/2019/ Atmos. Chem. Phys., 19, 9333–9350, 2019
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Table 3. The correct parameters that are fitted in the optimization process for every artificial data set. The order of the mole fractions is from
the least volatile to the most volatile compound for artificial data sets 3 and 4.

Artificial Parameter 1 Parameter 2 Parameter 3 Parameter 4 Parameter 5 Parameter 6
data set

1 Csat,1 = 10−2 µg m−3 Csat,2 = 100 µg m−3 Csat,3 = 103 µg m−3 Xmole,1 = 0.5 Xmole,2 = 0.4 Xmole,3 = 0.1
2 Csat,1 = 100 µg m−3 Csat,2 = 103 µg m−3 Csat,3 = 106 µg m−3 Xmole,1 = 0.35 Xmole,2 = 0.45 Xmole,3 = 0.2
3 Xmole,1 = 0.15 Xmole,2 = 0.2 Xmole,3 = 0.25 Xmole,4 = 0.2 Xmole,5 = 0.15 Xmole,6 = 0.05
4∗ Xmole,1 = 0.434 Xmole,2 = 0.146 Xmole,3 = 0.116 Xmole,4 = 0.143 Xmole,5 = 0.069 Xmole,6 = 0.092

∗ The mole fractions are lumped into six volatility classes. See Table S2 for the exact values.

Figure 1. Simulated evaporation factors (EF, particle diameter dp divided by the initial diameter dp0) (black circles), 100 best-fit simulations
(grey lines) and the best-fit simulation (magenta line) for (a) artificial data set 1, (b) artificial data set 2, (c) artificial data set 3 and (d) artificial
data set 4. The best-fit simulation is determined as the evaporation simulation that produces the smallest mean squared error relative to the
measurement data.

confined droplet, by applying the geometric optics approxi-
mation (Glantschnig and Chen, 1981), with a time resolution
up to 10 ms.

Four different aqueous mixtures of organic components
were considered; their detailed chemical composition can be
found in Table 4. Mixtures 1 and 2 include three components
of variable volatility, whereas mixtures 3 and 4 are sucrose–
glycerol–water ternary solutions. Considering that the water-
activity-dependent viscosity of binary sucrose spans over
10−3–1012 Pa s (Power et al., 2013) and that pure glycerol
has a viscosity of 1.46 Pa s (Haynes, 2009), the viscosity of
mixtures 3 and 4 is expected to be significant and to increase
over time as glycerol evaporates from the trapped droplet.
For each of these mixtures, a single droplet was trapped into
two different RHs (low and high RH; see Sect. 5.2).

3 Comparison of MCGA and Bayesian inference
methods for fitting volatility

The artificial data set 1 was used to compare the two estima-
tion methods, MCGA and Bayesian inference. Estimates for
three saturation concentrations and dry particle mole frac-
tions at the start of the evaporation were calculated. For
MCGA, the total number of optimization rounds was 500.
For Bayesian inference, 2000 samples were generated after
a burn-in period of 500 samples where the parameters of the
NUTS algorithm were tuned (Hoffman and Gelman, 2014).
Every fourth estimated parameter set was selected from these
2000 samples for the final analysis, allowing the two meth-
ods to be compared.

Additionally, the MCGA method was used with two differ-
ent sampling schemes. In the uniform sampling scheme, the
fitting parameter values were drawn from a uniform distribu-
tion (log-uniform distribution for Csat). In the second scheme
the values for saturation concentration and mole fractions at

Atmos. Chem. Phys., 19, 9333–9350, 2019 www.atmos-chem-phys.net/19/9333/2019/
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Table 4. Composition of mixtures 1–4 in EDB measurements and the literature values for the saturation concentrations.

Component Xmole Saturation concentration
Csat (µg m−3)

Mixture 1 Carbitol (2-(2-ethoxyethoxy)ethanol) 0.39 5.5× 105 (293 K)a

Glycerol 0.40 370 (293 K)b

PEG400 (C2nH4n+ 2On+1, n= 8.2 to 9.1) 0.21 0.0090–0.27 (298 K)c

Mixture 2 Carbitol (2-(2-ethoxyethoxy)ethanol) 0.40 5.5× 105 (293 K)a

Malonic acid 0.39 4–40 (298 K)d

PEG400 (C2nH4n+ 2On+1, n= 8.2 to 9.1) 0.21 0.0090–0.27 (298 K)d

Mixture 3 Sucrose 0.50 –
Glycerol 0.50 370 (293 K)b

Mixture 4 Sucrose 0.24 –
Glycerol 0.76 370 (293 K)b

a Data from unpublished EDB measurements, same experimental approach as in Krieger et al. (2018). b Saturation
concentration of glycerol at 298 K from Haynes (2009) was converted to 293 K using the Clausius–Clapeyron equation. The
enthalpy of vaporization at boiling point (T = 562 K) was taken from Rumble et al. (2018) and corrected to 298 K using
Eq. 7-12-1 from Reid et al. (1987) resulting in 1Hvap = 78.4 kJ mol−1. c Krieger et al. (2018). d Bilde et al. (2015).

the start of the evaporation are drawn from a normal distribu-
tion with preset means and standard deviations similar to the
Bayesian inference method (see Sect. 2.2.2). The two MCGA
schemes are later referenced as MCGA with uniform sam-
pling and Gaussian sampling, respectively.

Bayesian inference fundamentally assumes that experi-
mental values are always associated with an uncertainty. This
uncertainty is needed as an a priori knowledge before any
Bayesian analysis can take place. The artificial data set 1,
however, did not include any uncertainty. When optimizing
the particle composition with the Bayesian inference method,
a 1 % uncertainty in the evaporation factor (EF) (particle di-
ameter divided by the initial diameter) was assumed.

The Bayesian inference and the MCMC algorithm assume
estimated parameters are random variables with probability
distributions, whereas the MCGA algorithm tries to find a
single set of input parameters that best fit to the observa-
tions. The MCMC algorithm explores the posterior distribu-
tion by randomly drawing samples from it. The samples are
drawn such that the parameter values that better fit to the data
and thus are more probable are drawn more often than the
lower probability parameter values that produce worse fits.
Because of this fundamental difference between these two
approaches, it would not be appropriate to compare how the
model–output data residuals evolve during the execution of
both algorithms, and only the distributions of parameter es-
timates from MCMC and MCGA over multiple optimization
rounds are used to compare the two methods.

Overall the three methods are able to produce similar, re-
liable estimates that are close to the correct values (Fig. 2).
Figure S1 shows the relative evaporation curve densities for
all three optimization methods together with the artificial
evaporation data. Relative curve density is calculated by di-
viding the time and EF space into grids and calculating how

Figure 2. Parameter estimates from the three different optimiza-
tion methods applied to artificial data set 1. Shown are MCGA
with uniform sampling (blue circles), MCGA with sampling distri-
butions similar to the Bayesian inference (Gaussian sampling, yel-
low squares) and Bayesian inference (red diamonds). The markers
show the modes of the estimated variable distributions for MCGA
methods and the maximum a posteriori estimate of the fitting vari-
able distributions for the Bayesian inference. The whiskers show the
10th and 90th percentiles of the variable distributions for the MCGA
methods and 90 % credible interval for the Bayesian inference.

many of the simulated evaporation curves go through a spe-
cific grid point and dividing this count by the maximum
count in the same time column. The relative curve densities
are similar for the three methods (Fig. S1).

The differences between the methods are the most obvious
with the most volatile compound. While the mole fraction es-
timates are all close to the correct value, the saturation con-
centration estimates show deviation from the correct value.
The Bayesian inference estimate (1230 µg m−3) narrowly
misses the correct saturation concentration (1000 µg m−3).
The MCGA method with Gaussian sampling produces an es-
timate of 800 µg m−3, a difference opposite in direction to the
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Bayesian inference method. The estimate with the MCGA
method with uniform sampling deviates the most from the
correct value (600 µg m−3). The absolute uncertainties of all
three methods span over several hundreds of microgrammes
per cubic metre. The reason for this high uncertainty is due to
the evaporation timescale of the highest-volatility compound
and is discussed more thoroughly in Sect. 4.1.

Since all of the studied optimization methods yielded sim-
ilar results, only the MCGA scheme with uniform sampling
is used in the rest of this study, first to test the optimization
method with different artificial data sets and then with the
experimental data.

4 Evaluation of process model optimization method for
fitting OA properties to artificial test data

The estimates of the compounds with the highest and low-
est volatility in data set 1 are more uncertain than the es-
timates of the other compounds. In this section the reasons
for this behaviour are examined. Further, the process model
optimization scheme is tested in estimating volatility for the
three remaining artificial data sets. With data set 2, the goal
is to inspect the performance of the process model input op-
timization approach when the evaporation conditions change
in terms of particle diameter, evaporation timescale and mea-
surement sampling frequency. With data set 3, the target is to
evaluate the performance of the optimization in the case of
a full VBS and the method’s ability to distinguish VBS bins
from each other. With data set 4 the optimization method is
tested against evaporation data where the particle contains
more evaporating compounds than what are used in the op-
timization, which is the case with real OA. A total of 500
optimization rounds were calculated for every data set.

The range of saturation concentrations that can be deter-
mined from the data with the optimization method varies
with initial particle diameter and with the time span of the
evaporation data. The former is due to the dependence of
the mass flux between the gas and particle phases on particle
size. To assess the range of minimum and maximum possi-
ble saturation concentrations that can be identified with the
method from data sets, the LLEVAP model was run multi-
ple times with particles that consist solely of one evaporating
component and are characterized by variable size. The min-
imum identifiable saturation concentration was determined
to be the concentration that shows at least 1 % shrinkage
in terms of particle diameter in the timescale of an exper-
iment. Similarly, the maximum identifiable saturation con-
centration was determined to correspond to a concentration
that left 10 % of the particle size remaining at first data point.
These minimum and maximum values are shown in Table 1.
The evaporation rate of a compound also depends on its mole
fraction, but this simple analysis already gives a reasonable
range of possible saturation concentrations for the optimiza-
tion process.

4.1 Data set 1

The values of estimated variables in Fig. 2 show the
largest uncertainty for the lowest- and highest-volatility com-
pound whereas the middle saturation concentration com-
pound has a relatively small uncertainty. The reason for this
behaviour lies in the nature of the evaporation process. For
the least volatile compound, the correct value of the esti-
mated saturation concentration was 0.01 µg m−3. The 10th
and 90th percentiles of the obtained estimate were 0.004 and
0.012 µg m−3. The lower end of the estimated saturation con-
centrations corresponds to evaporation curves which do not
show practically any evaporation once the middle-volatility
compound has evaporated from the particles. The higher end
corresponds to curves which follow the slow evaporation
pattern also observed in the data. To constrain the satura-
tion concentration and mole fraction estimates of the least
volatile compound better, more data would be needed after
ca. 50 min, when the evaporation of the least volatile com-
pound dominates the particle shrinkage.

A similar analysis can be applied to the most volatile com-
pound, for which the obtained values of saturation concen-
tration span from around 400 to over 3000 µg m−3. In the
case of data set 1, the amount of the most volatile compound
decreases by 99 % during the first 5 s of the evaporation. As
there is only one data point before 5 s, the estimated values of
the most volatile compound contribute relatively little com-
pared to the other two compounds when the goodness of fit
is calculated. In all simulations there exists a distinct high-
volatility compound as the shape of the evaporation curve
dictates that the particle must shrink 10 % by diameter dur-
ing the first 10 min. This shrinkage can only be achieved with
a compound that has a relatively high saturation concentra-
tion. More accurate estimates of the most volatile compound
would require more data points at the very beginning of the
evaporation. As data set 1 mimics evaporation experiments
which require filling of an evaporation chamber as reported
in Yli-Juuti et al. (2017), it might not be straightforward to
obtain more data points at the start of the evaporation.

4.2 Data set 2

There exist three key differences in data set 2 compared to
other data sets. First, the data extend almost twice as long in
time. Second, the particle diameter is 125 times larger and,
third, the time resolution is higher, resulting in more data
points, especially at the start of the evaporation. The first
two differences mean that the range of identifiable Csat val-
ues changes compared to data sets 1, 3 and 4 (see Table 1).

The MCGA estimates agree well with the correct values
for data set 2 (Fig. 3). For the least volatile compound the
saturation concentration and mole fraction estimates match
exactly with the correct values. The uncertainty in the mole
fraction estimate is small. While at first the uncertainty in
the saturation concentration might seem high for the least
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Figure 3. Parameter estimates for artificial data set 2; dry particle
mole fraction at the start of the evaporation and saturation concen-
trations of three model compounds were optimized to match the
data. Green stars show the MCGA estimates and black crosses the
correct values. The whiskers show the 10th and 90th percentiles of
the estimated variable distributions.

volatile component, the absolute values are between 0.4 and
20 µg m−3 and organics with these saturation concentrations
do not evaporate at all or evaporate only very slowly in the
timescale of the simulated evaporation.

The estimates for the second compound match the correct
values well. The behaviour is similar to data set 1, for which
it was found that the compound whose saturation concentra-
tion lies between the two other compounds’ saturation con-
centration was characterized the best.

For the most volatile compounds the estimates are close
to the correct values and the uncertainty in mole fraction is
negligible. The uncertainty in the Csat estimate is high and
arises from the fact that only ca. 8 % of the data points are
recorded before the most volatile compound is gone (over the
timescale of ca. 30 s). However, the increased number in data
points that influence the Csat value makes the estimate more
certain when compared to the estimate of the most volatile
compound calculated with MCGA and uniform sampling of
the parameters in data set 1 for which only one data point is
encountered before the compound has practically evaporated.

4.3 Data set 3

Artificial data set 3 describes the evaporation of organic
aerosol in conditions similar to those in data set 1. The differ-
ence from data set 1 is that the particle composition consists
of a “full VBS”; i.e. all VBS bins between minimum and
maximum identifiable Csat are present in the particle at the
start of the evaporation. From the optimization point of view,
the saturation concentrations of the organic compounds are
fixed during the optimization and only the mole fractions of
each compound at the start of the evaporation are optimized
to the data. This mimics the analysis that would be performed
for SOA particles to derive their composition in terms of a
full volatility distribution. The estimated mole fractions to-
gether with the correct values are shown in Fig. 4. The es-

Figure 4. Parameter estimates for artificial data set 3; dry parti-
cle mole fraction at the start of the evaporation of six model com-
pounds with predefined saturation concentration were optimized to
match the data. Blue triangles show the MCGA estimates and black
crosses the correct values. The whiskers show the 10th and 90th
percentiles of the estimated variable distributions.

timated values show that when the saturation concentrations
are discretized into six bins, optimizing only the mole frac-
tions is more accurate compared to data set 1 where satura-
tion concentrations and mole fractions were estimated.

For the three compounds with saturation concentration
higher than or equal to 10−1 µg m−3 in data set 3, the esti-
mated mole fractions deviate only by 0.02 from the correct
values. The estimates for the two least volatile compounds
are different compared with the other compounds in terms of
uncertainty. The estimated mole fraction for the compound
with Csat = 10−2 µg m−3 matches the correct value and the
uncertainty is−0.08/+0.06. For the least volatile compound
the estimated mole fraction is 0.01 lower than the correct
value and the uncertainty is −0.04/+ 0.08.

The evaporation curves calculated with the LLEVAP
model using the MCGA estimates as input variables show
that all the curves match artificial data set 3 extraordinarily
well (Figs. 1c and S3) compared to data set 1 (Figs. 1a and
S1) where the curves calculated from estimates show much
higher variance around the data points. This demonstrates
that the uncertainty in the mole fraction estimates is not due
to the MCGA algorithm itself but to the ability to distinguish
low-volatility VBS bins. In fact, the same evaporation curve
can be simulated by switching the numbers of molecules be-
tween the two least volatile bins. This indistinguishability is
also seen in that the summed mole fraction of the two least
volatile compounds is always in the range 0.35± 0.01.

4.4 Data set 4

In terms of evaporation characteristics, the artificial data set 4
is similar to data sets 1 and 3. However, the evaporating par-
ticle is made of 40 different compounds for data set 4 with
distinct saturation concentrations and amounts in the particle.
The correct values for all the evaporating compounds can be
found in Table S2, whereas the correct values in Fig. 5 show
these 40 compounds lumped into six VBS bins.
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Figure 5. Parameter estimates for artificial data set 4 dry particle
mole fraction at the start of the evaporation of six model compounds
with predefined saturation concentration were optimized to match
the data. Red triangles show the MCGA estimates and the whiskers
show the 10th and 90th percentiles of the estimated variable distri-
butions. Black crosses are the correct values summed to six volatil-
ity bins. All the correct values for the 40 evaporating compounds
are listed in Table S2.

When optimizing the particle composition of data set 4,
the compounds are presented with a full VBS similar to data
set 3 and the free parameters are set the same way.

Figure 5 compares the MCGA estimates for the mole frac-
tion with the correct values. The accuracy of the estimates is
similar to the results obtained with data set 3. For the four
highest volatility classes, the estimates deviate at most by
0.04 from the correct lumped values. For the two lowest-
volatility groups the estimates deviate more from the cor-
rect values, by approximately 0.12 for the group with Csat =

10−2 µg m−3 and by 0.13 for the lowest-volatility group.
There is no consistent over- or underestimation associated
with these low-volatility bins. The estimate for the group
with Csat = 10−2 µg m−3 is higher than the correct value and
the estimate for the lowest-volatility group is lower than the
correct value. In both cases, the correct lumped value is in-
cluded in the uncertainties of the estimates that are higher
compared to the other compounds. This behaviour was also
seen with data set 3 and again shows the indistinguishabil-
ity that is associated with the two least volatile bins and the
timescale of this data set. When the sums of the two least
volatile compounds are compared, the correct mole fraction
would be approximately 0.58 and the 10th and 90th per-
centiles of the estimates are 0.58 and 0.61, respectively.

4.5 Discussion on estimating the volatility from
artificial data

While all the estimates capture the correct values with rea-
sonable accuracy, the number of data points and their tempo-
ral distribution clearly affect the estimates. When the data are
sparse, the uncertainty of the estimated variables increases
as the optimization process is designed to weight each data
point equally. In the case of data set 1 and data set 2, the
compounds with saturation concentration between the other

two saturation concentrations always have the smallest un-
certainty. This is because the middle compound evaporates
during almost the whole duration of the data and thus its sat-
uration concentration and mole fraction influences the evap-
oration curve the most. If the goal is to reduce uncertainties
of the least volatile compound, measurements should be car-
ried out over longer timescales. Similarly, if the goal is to
study compounds that evaporate quickly, the very start of the
evaporation needs to be measured at a higher frequency.

The above results show the particle size and timescale of
the experiment affect the range of possible saturation concen-
trations that can be estimated from the data. When the parti-
cle size is small and the measurement timescales long, lower
saturation concentrations can be distinguished from the data;
when the particle size is large, higher saturation concentra-
tions are distinguished from the data. The time of the first
data point and the time resolution at the start of the evapora-
tion also matter. With higher sampling frequency and earlier
data points, the higher-volatility compounds can be identified
from the data with the optimization method.

An interesting remark concerns the choice of the variables
that are optimized. From Figs. S1 and S2 it can be seen that
the simulated evaporation curves show more variance around
the data points when the saturation concentrations and mole
fractions are optimized than in Figs. S3 and S4, where only
mole fractions at the start of the evaporation of a full VBS
are optimized. The mole fractions are an easier task to op-
timize because each new VBS bin creates a new dimension
to the parameter space, which can take values between 0 and
1. By contrast, adding a new saturation concentration dimen-
sion increases the parameter space significantly more as pos-
sible values span over several orders of magnitude.

It should be noted that it is not always better to fit a full
VBS as illustrated by data set 3. If the number of evaporating
compounds is known, fixing the number of compounds and
optimizing their relative amount and saturation concentration
gives more information about the experiment than optimizing
only the mole fractions of a full VBS.

5 Volatility and viscosity estimates from the EDB
evaporation measurements

So far, this study has considered only artificial evaporation
data calculated with the LLEVAP model. Next, the process
model optimization scheme is applied to real experimental
data. In the following discussion, “low viscosity” refers to
particles where particle-phase diffusivity is fast enough so
that it does not pose a limitation to the evaporation of the
volatile compounds, and “high viscosity” refers to particles
where the particle-phase diffusivity is low enough to affect
the particles’ evaporation rate. Compositions are estimated
for two low viscosity (mixtures 1 and 2) and two high vis-
cosity mixtures (mixtures 3 and 4 at low RH). For the latter
two, the viscosities are also estimated by using evaporation
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profiles measured at two different relative humidities. The or-
ganic properties in the model and conditions of evaporation
for all four mixtures are listed in Table 5. For every mixture,
100 different parameter sets that fit to the measured data were
calculated. The measured and modelled evaporation curves
are shown in Fig. 6 as well as in the Supplement (Figs. S5,
S6, S7 and S8)

In the EDB the particle- and gas-phase water are not fully
in equilibrium when the measurement starts. This creates a
period of very rapid evaporation when water evaporates from
the particle. As both process models used in this study as-
sume that the water is in equilibrium at the start of the evap-
oration, these rapid evaporation periods were removed from
the data. The point at which water is in equilibrium was de-
termined to be the point where the rate of change of particle
squared radius is constantly higher than 1 µm2 s−1 for mix-
tures 1, 2, 4 and 3 at high RH and 0.1 µm2 s−1 for mixture 3
at low RH. The reason for the higher threshold for mixture 3
at low RH is that the mixture has the highest viscosity and the
excess water evaporation the slowest of all the organic–water
mixtures.

The sampling frequency varied across the measurements.
After removing the period where water evaporates from the
particle, the start of the data sets contained a period where
the particle size was sampled at higher frequency than at later
times. For mixture 3 at low RH and for mixture 4 at both RH
values this led the MCGA algorithm to weight more strongly
in fitting the start of the evaporation where there were more
data. As this was not the desired behaviour, only one data
point for every minute was taken into account when calculat-
ing the goodness of fit for these experimental data sets.

The correct values presented here are mole or mass frac-
tion in the actual mixture and the literature values for the pure
compound saturation concentrations (Table 4). However, the
saturation concentration estimates obtained from the opti-
mization process are effective saturation concentrations be-
cause the evaporation models assume ideal behaviour. Any
nonideal behaviour of the mixtures will cause the estimated
Csat to differ from the literature values. The possible devi-
ation from ideality of every mixture is assessed by perform-
ing AIOMFAC (http://www.aiomfac.caltech.edu, last access:
11 January 2019; Zuend et al., 2008, 2011) calculations with
the composition at the start of the evaporation as the input.

5.1 Evaporation of low viscosity mixtures

The correct mole fractions and saturation vapour pressures
for the low viscosity mixtures 1 and 2 are listed in Table 4 and
shown for mixture 1 in Fig. 7 and for mixture 2 in Fig. 8. In
both figures, two different MCGA estimates are shown. The
darker squares represent optimization results where the lit-
erature values for molar masses and particle-phase densities
were used. The light diamond markers represent optimiza-
tion where the same molar mass and particle-phase density
(M = 200 g mol−1; ρ = 1200 kg m−3) were used for every

model compound. The vertical axis in Figs. 7 and 8 is mass
fraction of a compound at the start of the evaporation since
it is less sensitive to the assumed molar masses compared to
mole fraction.

5.1.1 Mixture 1

The mass fraction estimates are close to the correct values
for all three compounds (Fig. 7). The correct value is within
the uncertainty of the estimates for all the compounds ex-
cept for the highest-volatility compound (MCGA, exact com-
pound properties) for which the 90th percentile corresponds
to a mass fraction of approximately 0.28, 0.02 away from the
correct value.

The saturation concentration estimates are slightly over-
estimated with both methods for the highest-volatility com-
pound (Carbitol) and for the middle-volatility compound
(glycerol). For glycerol the MCGA estimate with literature
properties (800 µg m−3) is closer to the literature satura-
tion concentration (370 µg m−3; see Table 4 for references)
than the MCGA estimate with equal compound properties
(2100 µg m−3). With equal compound properties for the esti-
mates to produce comparable evaporation rates to measure-
ments, a higher saturation concentration is needed to com-
pensate for the larger molar mass.

For the least volatile compound (PEG400), the estimated
saturation concentrations show the largest variation. In fact,
both estimates do not include the literature value in their dis-
tribution. This is again because of the low sensitivity of the
evaporation curve to the least volatile compound. It does not
make a significant difference to the overall goodness of fit
if the saturation concentration is 3 or 0.1 µg m−3, as in the
timescales of the measurements all these saturation concen-
trations lead to practically no evaporation from the particle.

Figure S5a shows all the simulated and measured evapo-
ration curves and Fig. 6a shows 20 best-fit-simulated evap-
oration curves and the measured one. The simulated curves
show similar spread as with artificial data sets 1 and 2. In
Fig. S5b the literature values are used as input to the LL-
EVAP model and the resulting evaporation curve is com-
pared with the measurements to show that with parameters
from the literature and with correct mole fractions the model
would produce evaporation rates similar to measurements ev-
erywhere except in the middle of the measurement where
the simulated rate of evaporation is slower. This discrepancy
could be explained by the nonideality of the mixture as the
AIOMFAC-calculated activity coefficients are 1.12 and 1.88,
respectively, for Carbitol and glycerol. Neglecting the non-
ideality in the model may have caused an overestimation of
the saturation concentration of glycerol in the optimization.
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Table 5. The properties of the organic compounds for the particles generated from mixtures 1–4. The variables are, from top to bottom, parti-
cle diameter at the start of the evaporation, molar mass, particle-phase density, gas-phase diffusion coefficient, relative humidity, temperature,
saturation concentrations of the VBS compounds, mole fraction of the compounds at the start of the evaporation and viscosity parameters b
in Eq. (1).

Variable Mixture 1 Mixture 2 Mixture 3 Mixture 4

dp0 (µm) 24.29 23.70 {16.05a
;19.42a

} {19.02a
;24.87a

}

Mb (g mol−1) {134e
;92e
;400f

} {134;104e
;400} {342e

;92} {342;92}
ρb (kg m−3) {990e

;1260e
;1130h

} {990;1620;1130} {1580e
;1260} {1580;1260}

Dc
gas (cm2 s−1) {0.05;0.05;0.05} {0.05;0.05;0.05} {0.04;0.09}g {0.04;0.09}g

RH (%) 0 0 {25;70} {25.1;86.5}
T (K) 293 293 293 293
Csat Fitted (min: 0.1; max: 108) Fitted (min: 0.1; max: 108) Fitted (min: 1; max: 105) Fitted (min: 1; max: 105)
Xmole,dry (t = 0 s) Fitted (min: 0.01; max: 1) Fitted (min: 0.01; max: 1) Fitted (min: 0.01; max: 1) Fitted (min: 0.01; max: 1)
bd
i

– – Fitted (min: 10.−15; max: 1020) Fitted (min: 10.−15; max: 1020)

a First value is for measurement at low RH and second for measurement at high RH. b For mixtures 1 and 2 only for the optimization runs where exact compound properties were
used. The order of the compounds is the same as in Table 4. c The order of the compounds is the same as in Table 4. The gas-phase diffusion coefficients are scaled to correct
temperatures by multiplying by a factor of (T /273.15)1.75. d Only for low RH. e Rumble et al. (2018). f Mean molar mass from Krieger et al. (2018). g Calculated using data
and Eq. 11-3-2 from Reid et al. (1987). h Sigma-Aldrich.

Figure 6. (a) Measured evaporation factors (EF, particle diameter dp divided by the initial diameter dp0) of mixture 1 from the determined
point of water equilibrium (see Sect. 5) (black circles), 20 best-fit simulations (grey lines) and the best-fit simulation (magenta line). (b) Same
as panel (a) but for mixture 2. (c) Measured evaporation factors of mixture 3 from the determined point of water equilibrium under high RH
conditions (RH= 70 %, black circles) and low RH conditions (RH= 25 %, red circles). Grey lines show 20 best-fit simulations and magenta
line the best-fit simulation; (d) same as panel (c) but for mixture 4 for which the high RH is 86.5 % and low RH is 25.1 %. The best-fit
simulation is determined as the evaporation simulation that produces the smallest mean squared error relative to the measurement data.

5.1.2 Mixture 2

The estimated mass fractions and saturation concentrations
for mixture 2 (Fig. 8) show different behaviour to the es-
timated properties of mixture 1. The only satisfactory esti-
mates are the saturation concentration and mass fraction of
the highest-volatility compound (Carbitol), for which both
MCGA methods marginally overestimate the saturation con-
centration. The optimization performed with exact com-
pound properties produces a mass fraction estimate that is

0.05 smaller than the correct value (0.30). In the MCGA runs
with exact compound properties, the uncertainties are higher
than in the MCGA runs with equal compound properties for
all the compounds, especially in the saturation concentration
estimate. The AIOMFAC calculations give an activity coef-
ficient of 1.06 for Carbitol, which could explain some of the
overestimation in the saturation concentration.

The estimates of the saturation concentrations and mass
fractions for the two other compounds (malonic acid and
PEG400) are problematic when compared with all of the
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Figure 7. Parameter estimates for particles generated from mix-
ture 1. Dry particle mass fraction at the start of the evaporation
of three compounds and their saturation concentrations were opti-
mized to match the evaporation data. Orange diamonds show the
MCGA estimates calculated by assuming equal molar mass and
particle-phase density for all compounds and brown squares show
the MCGA estimates calculated by setting the molar mass and
particle-phase density to their literature values. Black crosses show
the literature values. The whiskers of the estimates show the 10th
and 90th percentiles of the estimated variable distributions and the
whiskers of the corrected values show the range of literature values
(see Table 4 for references).

Figure 8. Parameter estimates for particles generated from mix-
ture 2. Dry particle mass fraction at the start of the evaporation
of three compounds and their saturation concentrations were op-
timized to match the evaporation data. Cyan diamonds show the
MCGA estimates calculated by assuming equal molar mass and
particle-phase density for all compounds, and teal squares show the
MCGA estimates calculated by setting the molar mass and particle-
phase density to their literature values. Black crosses show the cor-
rect values. The whiskers of the estimates show the 10th and 90th
percentiles of the estimated variable distributions and the whiskers
of the correct values show the range of literature values (see Table 4
for references)

other systems encountered so far. For both MCGA ap-
proaches the estimates clearly deviate from the values that
were sought. The uncertainties of the estimated values with
both approaches span over a wide range in the parameter
space, from 0.03 to 0.66 in mass fraction and from 0.15 to
almost 9500 µg m−3 in saturation concentration. The reason
for this inaccuracy in the optimization method is discussed
in Sect. 5.3.

5.2 Evaporation of high-viscosity mixtures 3 and 4

Finally, the results concerning the evaporation of high-
viscosity mixtures 3 and 4 are described. For these optimiza-
tion runs the correct molar masses, particle-phase densities
and gas-phase diffusion coefficients were used for sucrose
and glycerol. With both mixtures two different evaporation
measurements were performed, one measured at high RH
and one at lower RH. For the high-RH case, it was assumed
that the particles behave like well-mixed ideal liquids and,
thus, the LLEVAP model was used to model the evaporation.
For low-RH measurements with significant particle-phase
diffusion limitations, KM-GAP was used to model the evap-
oration. The optimization to both relative humidities was per-
formed simultaneously. In this case the goodness of fit was
calculated as a sum of individual measurement–simulation
MSEs.

Two restrictions were set for the new candidate creation.
The candidate was not accepted if the overall particle vis-
cosity was below 0.01 Pa s at the start of the evaporation.
Such a low viscosity does not produce slower evaporation
at low RH, which is observed in the measurements, and a
low viscosity greatly increases the computation time of a sin-
gle KM-GAP simulation. In addition, during the candidate
creation, the free parameters were sorted based on the satu-
ration concentrations. Effectively, this guides the optimiza-
tion algorithm away from values that would produce wrong
evaporation as the higher-volatility compound (glycerol) was
prevented from becoming associated with the preset proper-
ties of lower-volatility compound (sucrose) (e.g. molar mass,
gas-phase diffusion coefficient) or vice versa. Ultimately the
choice leads to a smaller number of iterations that must be
calculated in order to obtain a reliable estimate for the free
parameters.

The estimates for the saturation concentration of sucrose
and glycerol and their mole fractions are shown in Fig. 9
for mixture 3 and in Fig. 10 for mixture 4. Table 6 shows
the median and 10th and 90th percentiles of the estimated bi
factors with which the particle viscosity is calculated in the
KM-GAP simulations. In addition, the spread of the simula-
tions together with the measured evaporation of particles are
reported in Fig. S7a (mixture 3) and Fig. S8a (mixture 4). In
Figs. S7b and S8b, the KM-GAP and LLEVAP simulations
made with the literature values are compared with the evap-
oration measurements. Figure 6c and d show the 20 best-fit
simulations together with the measured evaporation.

The saturation concentration of sucrose is presumably so
low that practically no sucrose evaporates from the parti-
cle. For this reason, it is marked in Figs. 9 and 10 at Csat =

1 µg m−3, which was identified as the lower limit that can
be reliably fitted considering the experimental timescale (see
Sect. 4). The estimated saturation concentrations for sucrose
are comparable to this value: for mixture 3 the estimated sat-
uration concentrations are between 2 and 11 µg m−3 and for
mixture 4 between 1 and 10 µg m−3. The mole fraction es-
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Table 6. The median b parameter which describes the contribution of glycerol and sucrose to the particle viscosity from optimizing the
KM-GAP model to match the low RH measurement of mixtures 3 and 4. The literature values for viscosity of glycerol are also reported. For
sucrose the reported literature value is an experimental fit calculated from viscosity measurements of sucrose–water mixtures evaluated at
RH= 0 %.

log10(bi ) log10(bi ) log10(ηi )
median 10th/90th percentile literature (Pa s)

Mixture 3: glycerol −5.1 −12.0/− 0.2 −0.030a

Mixture 4: glycerol −6.5 −11.3/− 3.3 −0.030a

Mixture 3: sucrose 12.8 9.6/16.5 15.92± 1.92b

Mixture 4: sucrose 12.3 10.9/15.6 15.92± 1.92b

a Rumble et al. (2018). b Song et al. (2016).

Figure 9. Parameter estimates for particles generated from mix-
ture 3. Dry particle mole fraction at the start of the evaporation of
two compounds and their saturation concentrations and the viscos-
ity parameters bi were optimized to match the evaporation data.
Magenta squares show the MCGA estimates and black crosses
show the literature values. The whiskers show the 10th and 90th
percentiles of the estimated variable distributions. Sucrose Csat is
marked at the lower limit of the Csat range due to its assumed low
value.

timates for sucrose are excellent as the deviation from the
correct value is at a maximum of 0.02 for mixture 3 and 0.01
for mixture 4.

For the higher-volatility compound glycerol, the optimiza-
tion yields slightly lower saturation concentrations (200–
285 µg m−3) than the literature value (370 µg m−3) for mix-
ture 3. For mixture 4 the estimated saturation concentra-
tion matches the literature value better, although the liter-
ature value is at the high end of the estimated Csat (260–
380 µg m−3). For the mole fraction of each compound at the
start of the evaporation, the estimates are close to the real
values.

Lastly, with mixtures 3 and 4 the contribution of each com-
pound to the particle viscosity was estimated. If an ideal mix-
ture is assumed, these contribution parameters (bi in Eq. 1)
can be compared to the pure compound viscosities. The esti-
mated contribution parameters b together with pure compo-
nent viscosity of sucrose and glycerol found from the litera-
ture are shown in Table 6. For sucrose the estimated bsucrose

Figure 10. Parameter estimates for particles generated from mix-
ture 4. Dry particle mole fraction at the start of the evaporation of
two compounds and their saturation concentrations and the viscos-
ity parameters bi were optimized to match the evaporation data.
Light blue triangles show the MCGA estimates and black crosses
show the literature values. The whiskers show the 10th and 90th
percentiles of the estimated variable distributions. Sucrose Csat is
marked at the lower limit of the Csat range due to its assumed low
value.

values are on the lower end of the literature values and for
glycerol the bglycerol estimates are several magnitudes smaller
than the literature value.

5.3 Discussion on estimating the volatility and viscosity
from EDB measurements

Overall, it can be said that the estimated properties are cap-
tured well when the process model optimization scheme is
applied to real experiments. However, some aspects merit
further discussion on the limitations of the method.

Among the 10 artificial and experimental data sets con-
sidered in this work, the method fails to estimate the correct
mass fractions at the start of the evaporation and the satu-
ration concentrations only for malonic acid and PEG400 in
mixture 2. This exception can be understood by looking at
Fig. S6a. The measured evaporation curve is shaped like the
letter L. There is a clear faster period of evaporation when
mainly the highest-volatility compound (Carbitol) evaporates
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followed by evaporation of at least one other compound. If
more than one compound characterized by low volatility is
present (in this case two, with Csat ≈ 10 µg m−3 or smaller)
the evaporation curve will look the same as in the case of one
low-volatility compound; i.e. the particle size remains prac-
tically constant towards the end, and it is difficult for an op-
timization algorithm to distinguish between the two. This is
an important finding because it provides information on the
sensitivity of the model to low-volatility chemical species;
in addition, it provides an estimate of what range in volatility
can be accessible as a function of the experimental timescale.
When optimizing the LLEVAP model input to particles pro-
duced from mixture 2, MCGA was set to find saturation con-
centrations and mass fractions for exactly three compounds.
When one compound is needed to produce the fast evapora-
tion and one compound the slow evaporation the third com-
pound is left over. In this case MCGA finds solutions where
the third compound’s saturation concentration is close to ei-
ther of the two other compounds or its mass fraction at the
start of the evaporation is insignificant. Fundamentally this
result shows a limit to the optimization method. If the prop-
erties of two compounds are close to each other so that they
produce similar measurable quantities as they would produce
alone, the optimization method might not find a clearly de-
fined estimate for these properties. This shortcoming was en-
countered when finding an optimal set of mass fractions and
saturation concentrations for three compounds. With artifi-
cial data set 4 it was shown that lumping 40 compounds into
six volatility classes produced a good fit, meaning that the
impact of such a shortcoming is expected to be limited when
performing the optimization to “real” OA evaporation data
sets.

Another aspect concerns the lower estimate for the satu-
ration concentration of glycerol compared to the literature
value and the estimated values for the bi parameters of su-
crose and glycerol. Figures S7b and S8b show the simulated
curves when the real properties of the organics are used as
input values. The simulated evaporation is faster than the
measured one, which means that the properties estimated by
optimizing the model to match measured data are not ex-
pected to match with the literature values. AIOMFAC cal-
culations give water activity coefficients of 0.50, 0.86 and
0.59 for mixture 3 at low and high RH and for mixture 4 at
low RH, respectively, when using the start of the evaporation
composition as input. The activity coefficients for glycerol
are all close to unity for these mixtures. Water activity co-
efficients smaller than unity mean that there is more water
partitioned in the particle phase than calculated based on the
ideality assumption. Due to Raoult’s law the rate of evapora-
tion of glycerol might be hindered, which might explain why
the optimization method underestimates glycerol’s saturation
concentration and why the literature values produce too fast
evaporation when used as a model input. AIOMFAC calcu-
lations produce a near-unity (0.97) water activity coefficient
for the high-RH experiment of mixture 4. With this experi-

ment the AIOMFAC activity coefficient of glycerol is 0.68,
which again might explain the discrepancy.

When optimizing the viscosity, the overall particle viscos-
ity is optimized, which is made up of the individual contribu-
tion parameters of sucrose and glycerol. These contribution
parameters can be compared to the pure compound viscosi-
ties, if the mixture is ideal. While at first the estimated b pa-
rameters seem to be too high for sucrose and too low for
glycerol, the range of possible contribution parameter values
allowed in the optimization was large, from 10−15 to 1020. At
a closer inspection of the estimated bi parameters (Fig. S9),
it is clear that the high bsucrose values are always associated
with low bglycerol values. However, the literature values re-
ported in Table 6 do not fit to the trend observed in Fig. S9.
If the literature values were input to Eq. (1), they would pro-
duce higher viscosity than what is estimated with the process
model optimization method. This discrepancy could be ex-
plained by the nonideality of mixtures 3 and 4 at low RH
where AIOMFAC-calculated activity coefficients for water
were 0.50 and 0.59, respectively (i.e. there could be more wa-
ter in the particle phase than what is calculated based on the
ideality assumption). This additional water could decrease
the particle-phase viscosity.

6 Summary and conclusions

In this study, process model optimization methods were
tested as a possible way of quantifying some of the physico-
chemical properties of organic aerosol particles that are chal-
lenging to measure directly. More specifically, the particle
compounds’ volatilities and particle viscosity were estimated
by searching for those values that when used as an input to
a detailed evaporation model produce an evaporation curve
similar to the evaporation test data. Additionally, two dif-
ferent ways of stating the optimization problem were tested.
Both the Monte Carlo genetic algorithm and Bayesian infer-
ence method yielded similar optimization results.

The process model optimization scheme was tested for
both artificially generated and measured isothermal evapo-
ration data. When fitting the model to artificial data, accu-
rate estimates for both mole fraction and saturation concen-
trations of the components were obtained. With real exper-
imental data the method produced good estimates given the
fact that the models assumed ideal behaviour and thermody-
namic equilibrium calculations with AIOMFAC showed that
the mixtures might be slightly nonideal.

For some of the tested data sets, the few shortcomings of
the method could be largely attributed to the fact that the
model output was not sensitive to the changes in the esti-
mated parameters with respect to the experimental timescale
and parameter range. If some parameters are uninfluential
(or have a small influence over the observed timescales) to
the model output or if the parameter is coupled to another
parameter, they cannot be estimated precisely. This was the
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case with artificial data sets 3 and 4, in which the two least
volatile compounds were almost interchangeable as both pro-
duce slow evaporation, and with the estimated viscosity of
glycerol and sucrose in mixtures 3 and 4 where the b param-
eters were coupled to produce the overall viscosity of the par-
ticle. This overall viscosity could be achieved by many com-
binations of the allowed values of the b parameter in Eq. (1).

In addition, if the estimated properties of two different
compounds were close to each other the studied method
might not be able to discriminate between them. This was ob-
served with the evaporation of particles produced from mix-
ture 2 as the saturation concentrations of malonic acid and
PEG400 were close to each other and produced nearly con-
stant rates of evaporation over the considered experimental
timescale.

The process model optimization scheme also depends on
the process models that are used. If the model output with lit-
erature values deviates from the measurements, the obtained
estimates will not be exact. This kind of drawback was en-
countered when estimating the saturation concentration of
glycerol in evaporation of mixtures 3 and 4. This can be the
case if the model does not describe the system accurately,
e.g. due to ignored nonideality.

Optimizing process model input to match measured data
is a promising method for the quantification of the volatility
of OA particle constituents and viscosity from evaporation
experiments which are challenging properties to measure di-
rectly. Further studies using this method should be accompa-
nied by a clearly defined range of values for each estimated
parameter. This range should take into account what can be
inferred from the data with respect to the experimental con-
ditions and model assumptions. Based on the analysis shown
here, various parameters can be obtained from experimental
data using this method and the design of the experiments can
be used to focus experiments on properties of interest. For in-
stance, in order to distinguish between saturation concentra-
tions of low-volatile compounds, small particles and hours-
long evaporation times are required. Conversely, to distin-
guish between semivolatile or intermediate-volatility com-
pounds, larger particles and/or high sampling time resolution
for the short evaporation timescales are needed.
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