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Abstract

Neural Schrödinger Bridge

with Sinkhorn Losses

by

Charlie Yan

We consider the problem of directly controlling (i.e., reshaping) stochastic

uncertainties subject to continuous-time controlled nonlinear dynamics and fixed

deadline constraints. This problem is known as the generalized Schrödinger bridge

problem. Historically, a version of the problem originated in the works of Erwin

Schrödinger in 1931-32, and can be seen as the stochastic version of the optimal

mass transport problem with prior nonlinear dynamics. From a control-theoretic

viewpoint, this is an atypical stochastic optimal control problem–“atypical” because

instead of boundary conditions on a finite dimensional state space, the problem in-

volves endpoint boundary conditions on the space of joint state probability density

functions, or probability measures in general. In recent years, significant strides

have been made in the control community to solve such problems for some spe-

cial classes of prior nonlinear dynamics including control-affine gradient and mixed

conservative-dissipative systems. However, the existing algorithms in the literature

exploit special structures of such prior nonlinear dynamics, but in the absence of

such structures, no general computational framework is available.

In this work, we propose to leverage recent advances in machine learning,

specifically physics-informed neural networks (PINNs), to numerically solve general-

ized Schrödinger bridge problems. We introduce a variant of the standard PINN to

vi
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account for the endpoint joint distributional constraints via the Sinkhorn divergence

that exploits the geometry on the space of probability measures. We explain how

this architecture can be implemented as differentiable layers. Our proposed frame-

work allows numerically solving variants of Schrödinger bridge problems for which

no algorithms are available otherwise. This includes systems with control non-affine

as well as nonlinear non-autonomous (i.e., explicit time dependent) drifts and dif-

fusions, as well as situations where the controlled dynamics may only be available

in a data-driven manner (e.g., in the form of neural networks).

We demonstrate the efficacy of our computational framework using two en-

gineering case studies. The first case study involves optimally steering the stochastic

angular velocity of a rotating rigid body from a given statistics to another over a

prescribed time horizon. This is of interest, for example, in controlling the spin

of a spacecraft in the presence of stochastic uncertainties. The second case study

involves controlled colloidal self-assembly for the purpose of advanced manufactur-

ing of materials with desirable properties. In this case, first principle physics-based

control-oriented models are difficult to obtain due to complex molecular dynamics,

quantum effects and thermal fluctuations. We show how such colloidal self-assembly

problems are amenable to generalized Schrödinger bridge formulation, and solve

the data-driven distribution steering problems for such systems using our proposed

framework. We provide detailed numerical results and discuss the implementation

details for the proposed computational architecture and algorithms.
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Chapter 1

Introduction

In this introductory Chapter, we provide the necessary backgrounds for

two problems–the optimal mass transport (OMT) problem, and the Schrödinger

bridge problem (SBP)–that lie at the heart of our work. The two problems are

related but had very different historical origins. Their connections with each other,

and with the disciplines of control theory, optimization, probability, machine learn-

ing and the partial differential equations, have only recently come to the fore.

For each of these two problems, we first present the “classical” version:

the incarnation in which the problem originated historically. This is then followed

up by the “generalized” version: the incarnation in which the problem becomes

relevant in our context. The high level difference between the classical and the

generalized versions, for both OMT and SBP, is that the generalized version has

a prior dynamics encapsulating the underlying “physics” of the problem. In con-

trast, the corresponding classical version has no prior dynamics, i.e., the problem

is formulated in the Wiener path space without any other information.

1
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1.1 Optimal Mass Transport

1.1.1 Classical OMT

We start by summarizing the rudiments on classical OMT. Well-known references

for this topic are [74, 75]; for a brief summary see e.g., [36].

Static Formulation. The static formulation of classical OMT goes back to Gas-

pard Monge in 1781, which concerns with finding a mass preserving transport map

θ : Rn 7→ Rn pushing a given measure µ0 to another µT while minimizing a trans-

portation cost
R
Rn c(x, θ(x))dµ0 where c is some ground cost functional, i.e.,

c : Rn × Rn 7→ R≥0.

In other words, Monge’s formulation is a static optimization problem:

arg inf
measurable θ:Rn 7→Rn

Z

Rn

c(x, θ(x))dµ0 (1.1)

subject to x ∼ µ0, θ(x) ∼ µT . (1.2)

Notice that this is an infinite dimensional nonlinear nonconvex problem over mea-

surable maps θ(·).

A common choice for c is half of the squared Euclidean distance, but in

general, the choice of the functional c plays an important role for guaranteeing the

existence-uniqueness of the minimizer θopt(·). Even when the existence-uniqueness

of the optimal transport map θopt(·) can be guaranteed, Monge’s formulation is

computationally less malleable as it requires solving a nonlinear nonconvex problem

over all measurable pushforward mappings θ : Rn 7→ Rn taking µ0 to µT . For

c(x,y) ≡ 1
2∥x − y∥22, x,y ∈ Rn, dµ0(x) = ρ0(x)dx, dµT (x) = ρT (y)dy, it is

known [6] that θopt exists, is unique, and admits a representation θopt = ∇ψ for

some convex function ψ. Even then, the direct computation of ψ is numerically

2
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challenging because it reduces to solving a second order nonlinear elliptic Monge-

Ampère PDE [74, p. 126]:

det
�
∇2ψ(x)

�
ρT (∇ψ(x)) = ρ0(x)

where det and ∇2 denote the determinant and the Hessian, respectively.

A more tractable reformulation of the static OMT is due to Leonid Kan-

torovich in 1942 [46], which instead of finding the optimal transport map θopt, seeks

to compute an optimal coupling πopt between the given measures µ0, µT that solves

arg inf
π∈Π2(µ0,µT )

Z

Rn×Rn

c(x,y)dπ(x,y) (1.3)

where Π2(µ0, µT ) denotes the set of all joint probability measures π supported over

the product space Rn×Rn with xmarginal µ0, and y marginal µT . Notice that (1.3)

is an infinite dimensional linear program. The map θopt is precisely the support

of the optimal coupling πopt. In the other direction, we can recover πopt from θopt

as πopt =
�
Id× θopt

�
♯ µ0 where Id denotes the identity map, and ♯ denotes the

pushforward of a probability measure.

Dynamic Formulation. Let P2 (Rn) denote the collection of probability density

functions (PDFs) supported over Rn that have finite second moments, i.e.,

P2 (Rn) :=

�
ρ : Rn 7→ R≥0 |

Z

Rn

ρdx = 1,

Z

Rn

∥x∥22ρdx < ∞
�
.

The dynamic formulation of OMT due to Benamou and Brenier [4] appeared at the

turn of the 21st century. When c(x,y) ≡ 1
2∥x − y∥22 and µ0, µT admit respective

PDFs ρ0, ρT , the dynamic formulation is the following stochastic optimal control

3
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problem:

arg inf
(ρu,u)∈P2(Rn)×U

Z T

0

Z

Rn

1

2
∥u∥22 ρu(xu, t)dxudt (1.4a)

∂ρu

∂t
+∇xu · (ρuu) = 0, (1.4b)

ρu(xu, t = 0) = ρ0, ρu(xu, t = T ) = ρT . (1.4c)

The constraint (1.4b) is the Liouville PDE (see e.g., [33]) that governs the evolution

of the state PDF ρu(xu, t) under a feasible control policy u ∈ U . So (1.4) is a

problem of optimally steering a given joint PDF ρ0 to another ρT over time horizon

[0, T ] using a vector of single integrators, i.e., with full control authority in U . The

solution (ρopt,uopt) for (1.4) satisfies

ρopt(xu, t) = θt ♯ ρ0, θt :=

�
1− t

T

�
Id +

t

T
θopt, (1.5a)

uopt(xu, t) = ∇xuϕ(xu, t),
∂ϕ

∂t
+

1

2
∥∇xuϕ∥22 = 0. (1.5b)

Thus, (1.5a) tells that the optimally controlled PDF is obtained as pushforward of

the initial PDF via a map that is a linear interpolation between identity and the

optimal transport map. Consequently, the PDF ρopt itself is a (nonlinear) McCann’s

displacement interpolant [56] between ρ0 and ρT . The optimal control in (1.5b) is

obtained as the gradient of the solution of a Hamilton-Jacobi-Bellman (HJB) PDE.

The ψ(x) in static OMT and the ϕ(x, t) in dynamic OMT are related [74,

Thm. 5.51] through the Hopf-Lax representation formula

ϕ(x, t) = inf
y∈Rn

�
ϕ(y, 0) +

1

2t
∥x− y∥22

�
, t ∈ (0, T ], (1.6a)

ϕ(y, 0) = ψ(y)− 1

2
∥y∥22, (1.6b)

i.e., ϕ(x, t) is the Moreau-Yosida proximal envelope [65, Ch. 3.1] of ϕ(y, 0) =

ψ(y)− 1
2∥y∥22, and hence ϕ(x, t) is continuously differentiable w.r.t. x ∈ Rn.

4
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Classical OMT allows defining a distance metric, called the Wasserstein

metric W , on the manifold of probability measures or PDFs. In particular, when

c(x,y) ≡ 1
2∥x − y∥22, the infimum value achieved in (1.3) is the one half of the

squared Wasserstein metric between µ0 and µT , i.e.,

W 2(µ0, µT ) := inf
π∈Π2(µ0,µT )

Z

Rn×Rn

∥x− y∥22 dπ(x,y), (1.7)

which is also equal to the infimum value achieved in (1.4), provided µ0, µT are

absolutely continuous. The tuple (P2 (Rn) ,W ) defines a complete separable metric

space, i.e., a polish space. This offers a natural way to metrize the topology of weak

convergence of probability measures w.r.t. the metric W .

1.1.2 Generalized OMT

The dynamic version of the generalized OMT is the following stochastic optimal

control problem:

arg inf
(ρu,u)∈P2(Rn)×U

Z T

0

Z

Rn

(q(xu) + r(u)) ρu(xu, t)dxudt (1.8a)

∂ρu

∂t
+∇xu · (ρuf (t,xu,u)) = 0, (1.8b)

ρu(xu, t = 0) = ρ0, ρu(xu, t = T ) = ρT . (1.8c)

We suppose that the cost functions q(·), r(·) and the controlled vector field f are

sufficiently smooth to make the problem (1.8) well-posed. For instance, we suppose

that q + r is at least lower bounded.

Notice that the problem (1.8) reduces to the problem (1.4) when

q(·) ≡ 0, r(·) ≡ 1

2
∥ · ∥22, f ≡ u.

In other words, (1.8) generalizes (1.4) in two ways. One generalization comes

from considering more general (separable) cost-to-go in the objective. Another

5
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generalization comes from considering more general (both time, state and control-

dependent) vector field in the Liouville PDE constraint.

Notice that the PDE (1.4b) is induced by the underlying controlled ODE:

ẋu = u. In contrast, the PDE (1.8b) is induced by the underlying controlled ODE:

ẋu = f (t,xu,u).

Just like the classical dynamic OMT (1.4) corresponds to the classical

static OMT (1.3), similar correspondence can be associated with (1.8). To do this,

we slightly generalize the setting: we replace Rn in (1.3) with an n dimensional

Riemannian manifold M. Consider an absolutely continuous curve γ(t) ∈ M,

t ∈ [0, T ], and (γ, γ̇) ∈ T M (tangent bundle). Then for x,y ∈ M, we think of

c(x,y) in (1.3) to be derived from a Lagrangian L : [0, T ]× T M 7→ R, i.e., express

c as an action integral

c(x,y) = inf
γ(·)∈Γxy

Z T

0
L(t,γ(t), γ̇(t)) dt, (1.9)

where

Γxy := {γ : [0, T ] 7→ Rn |γ(·) is absolutely continuous,γ(0) = x,γ(T ) = y}.

In particular, the choice M ≡ Rn and L(t,γ, γ̇) ≡ 1
2∥γ̇∥22 results in c(x,y) =

∥x−y∥22, i.e., the standard Euclidean OMT (1.3). WhenM ≡ Rn and f (t,xu,u) ≡

ef(t,xu) + B(t)u, i.e., a control-affine vector field with B(t) ∈ Rn×n nonsingular

for all t ∈ [0, T ], then the Lagrangain L in (1.9) is

L(t,γ, γ̇) = q(γ) + r
�
(B(t))−1

�
γ̇ − ef(t,γ)

��
.

We say that a Lagrangian L is superlinear (1-coercive) if

lim
∥γ̇∥2→∞

L

∥γ̇∥2
= +∞. (1.10)

6
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For the identified Lagrangian L in (1.9), if the mapping γ̇ 7→ L(·, ·, γ̇) is strictly

convex as well as superlinear, then we say L is a weak Tonelli Lagrangian [75, p.

118], [29, Ch. 6.2]. It is known that if L in (1.9) is a weak Tonelli Lagrangian, then

[29, Thm. 1.4.2] the existence and uniqueness of the minimizing pair (ρopt,uopt)

for (1.8) is guaranteed.

1.2 Schrödinger Bridge Problem

From a control-theoretic viewpoint, both the SBP and the OMT are stochastic

optimal control problems. Even then, it is helpful to think about the SBP as a

further stochastic generalization of the OMT. We explain this next.

1.2.1 Classical SBP

The classical SBP concerns with the minimum effort additive control needed to

move a given distribution to another over a presribed finite time horizon subject

to the constraint that the uncontrolled sample paths evolve according to Brownian

motion (i.e., standard Wiener process). This is a stochastic optimal control of the

form

arg inf
(ρu,u)∈P2(Rn)×U

Z T

0

Z

Rn

1

2
∥u∥22 ρu(xu, t)dxudt (1.11a)

∂ρu

∂t
+∇xu (ρuu) = β−1∆xuρu, (1.11b)

ρu(xu, t = 0) = ρ0, ρu(xu, t = T ) = ρT . (1.11c)

The constant β is referred to as the inverse temperature. Clearly, if β−1 ↓ 0, then

the classical SBP (1.11) reduces to the classical OMT (1.4).

Notice that unlike the first order Liouville PDE (1.4b), the PDE constraint

(1.11b) involves a second order Laplacian term. Thus, (1.11b) is a Fokker-Planck-

7
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Kolmogorov (FPK) PDE. This can be motivated as follows. The macroscopic dy-

namics (1.11b) is induced by the controlled sample path dynamics:

dxu = u dt+
p
2β−1dw (1.12)

where u ∈ Rn is the control, and w is the standard Wiener process in Rn. In other

words, the trajectory-level controlled dynamics for the classical SBP is “single inte-

grator + Gaussian white noise”. The controlled Itô stochastic differential equation

(SDE) generalizes the controlled ODE

dxu

dt
= u,

which was indeed the sample path dynamics associated with (1.4b).

The SBP originated in the works of Erwin Scrödinger [71, 72, 76] and as

such predates both the mathematical theory of stochastic processes and feedback

control. Scrödinger’s original motivation behind this study was to seek a proba-

bilistic interpretation of quantum mechanics.

1.2.2 Generalized SBP

The generalized SBP is a stochastic optimal control problem of the form:

inf
(ρu,u)∈P2(Rn)×U

Z T

0

Z

Rn

(q(xu) + r(u)) ρu(x, t) dxdt (1.13a)

∂ρu

∂t
+∇xu · (ρuf (t,xu,u)) = β−1⟨G (t,xu,u) ,∇2

xuρu⟩, (1.13b)

ρu(xu, t = 0) = ρ0, ρu(xu, t = T ) = ρT , (1.13c)

where ⟨·, ·⟩ in (1.13b) is the Frobenius inner product, G (t,xu,u) ∈ Rn×n is the dif-

fuison tensor, and ∇2
xu is the Hessian operator. The diffusion tensor G (t,xu,u) :=

(g (t,xu,u))⊤ g (t,xu,u) for some diffusion coefficient g (t,xu,u) ∈ Rn×p. Thus,

the diffusion tensor, by definition, is symmetric positive semi-definite.

8
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As in the case for the OMT, here too, the qualifier “generalized” refers

to the presence of prior dynamics given by the controlled drift-diffusion coefficient

pair (f , g) which was not considered in Schrödinger’s original investigations [71,72].

Specifically, the FPK PDE (1.13b) is induced by a controlled sample path dynamics

dxu = f (t,xu,u) dt+
p
2β−1 g (t,xu,u) dw, (1.14)

where u ∈ Rm is the control, and w is a standard Wiener process in R.

Let us now comment on how the classical SBP (1.11) can be seen as a

special case of the gernealized SBP (1.13). By setting f ≡ u and g ≡ In, we see

that (1.14) reduces to (1.12), and consequently the macroscopic dynamics (1.13b)

specializes to (1.11b). The reduction of (1.13) to (1.11) then follows by setting

q(·) ≡ 0, r(·) = 1
2∥u∥22.

In recent years, Schrödinger bridge problems and their connections to

OMT have come to prominence in both control [9, 12, 16, 60] and machine learn-

ing [13, 24, 78] communities.

1.3 Organization of this Thesis

The remaining of this Thesis is organized as follows. In Chapter 2. we discuss some

results about the solution structure of the SBPs: both classical and generalized. In

Chapter 3, we explain the proposed idea of using the physics informed neural net-

works (PINNs) and its variants to numerically solve the generalized SBP. Chapter 4

details a numerical case study where we solve an instance of generalized SBP. In this

particular case study, the prior dynamics in the generalized SBP comes from Euler

equation describing the spin dynamics for a rigid body. Chapter 5 details another

numerical case study solving a model-free instance of generalized SBP appearing in
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controlled colloidal self-assembly applications. We provide the concluding remarks

and a summary of this work in Chapter 6.

1.4 Publications

The following two manuscripts came out from the research reported in this Thesis.

• C. Yan, I. Nodozi, A. Halder, “Optimal Mass Transport over the Euler Equa-

tion”, 2023 IEEE Conference on Decision and Control (CDC), [under review].

• I. Nodozi, C. Yan, M. Khare, A. Halder, A. Mesbah, “Neural Schrödinger

Bridge for Minimum Effort Controlled Colloidal Self Assembly”, [in prepara-

tion for submission to IEEE Transactions on Control Systems Technology].

In particular, the first manuscript formed the basis for the material in Chapter 4.

The second manuscript’s content is reported in Chapter 5.
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Chapter 2

Solution Structure for the SBP

In this Chapter, we discuss the structural results for the solutions of the

SBPs. These will be useful in the ensuing Chapters.

2.1 Solution structure for the classical SBP

Let us consider the classical SBP (1.11). From the first order conditions of opti-

mality, it is easy to verify that the optimal pair (ρuopt,uopt) for (1.11), satisfies the

following system of PDEs:

∂ψ

∂t
+

1

2
∥∇xuψ∥22 = −β−1∆ψ, (2.1a)

∂

∂t
ρuopt +∇xu · (ρuopt∇xuψ) = β−1∆xuρuopt, (2.1b)

with boundary conditions:

ρuopt(x
u, , 0) = ρ0, ρuopt(x

u, T ) = ρT , (2.2)

and the optimal control is given by uopt(x
u, t) = ∇xuψ(xu, t).

The system (2.1) can further be transformed into a system of linear PDEs
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via the mapping
�
ρuopt,ψ

�
7→ (φ, φ̂) given by

φ(·, t) = exp

�
ψ(·, t)
2β−1

�
, (2.3a)

φ̂(·, t) = ρuopt(·, t) exp
�
−ψ(·, t)

2β−1

�
. (2.3b)

The transformed variables (φ, φ̂) satisfy the following pair of forward-backward

heat equations:

∂φ

∂t
= −β−1∆φ, (2.4a)

∂φ̂

∂t
= β−1∆φ̂, (2.4b)

with coupled boundary conditions

φ(·, t = 0)φ̂(·, t = 0) = ρ0(·), (2.5a)

φ(·, t = T )φ̂(·, t = T ) = ρT (·). (2.5b)

To simplify the notation, let

φT (·) := φ(·, t = T ), φ̂0(·) := φ̂(·, t = 0). (2.6)

Then, the solution of (2.4) can be formally written as

φ(x, t) =

Z

Rn

K(t,x, T,y)φT (y) dy, t ≤ T, (2.7a)

φ̂(x, t) =

Z

Rn

K(0,y, t,x)φ̂0(y) dy, t ≥ 0, (2.7b)

where

K(t,x, s,y) :=
�
4πβ−1(t− s)

�−n/2
exp

�
− ∥x− y∥22
4β−1(t− s)

�
(2.8)

is the heat kernel or the Markov kernel associated with the uncontrolled diffusion

SDE dx =
p
2β−1 dw(t).

Combining (2.5) and (2.7), it follows that finding the minimizer for the

classical SBP reduces to solving for the pair (φT , φ̂0) which satisfies the following
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system of nonlinear integral equations, referred to as the Schrödinger system, given

by

ρ0(x) = φ̂0(x)

Z

Rn

K(0,x, T,y)φT (y) dy, (2.9a)

ρT (x) = φT (x)

Z

Rn

K(0,y, T,x)φ̂0(y) dy. (2.9b)

The existence and uniqueness of solutions to the Schrödinger system (2.9) were

established in [5, 31, 45]. To compute the pair (φT , φ̂0) from (2.9), a fixed point

recursion was proposed in [15]. Such a recursion was also proved [15, Sec. III] to be

contractive in Hilbert’s projective metric [8,41]. Once the pair (φT , φ̂0) is obtained

from (2.9), then using (2.7) one can compute the pair (φ, φ̂). Finally, from (2.3),

the original decision variables (ρuopt,uopt) can be recovered via the mapping

ρuopt (·, t) = φ (·, t) φ̂ (·, t) , (2.10a)

uopt (·, t) = 2β−1∇(·) logφ(·, t). (2.10b)

From (2.10a), the optimal controlled joint state PDF at any time is a product of

the factors φ and φ̂ at that time, and hence we refer to (φ, φ̂) as the Schrödinger

factors. Notice that the factors solve the boundary-coupled PDE system (2.4)-(2.5).

2.2 Solution structure for the minimum energy gener-

alized SBP

We now consider the minimum energy generalized SBP, which is (1.13) with the

control cost r(·) := 1
2∥ · ∥22. For notational ease, let Gβ := β−1G. In this case, the

analogue of the optimality conditions (2.1) is given by the following result.

Theorem 1. (Conditions for optimality)

The pair (ρuopt,uopt) that solves (1.13) with r(·) := 1
2∥ · ∥22, must satisfy the system
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of coupled PDEs

∂ψ

∂t
= q +

1

2
∥uopt∥22 − ⟨∇xuψ,f⟩ − ⟨Gβ ,Hess(ψ)⟩ (2.11a)

∂ρuopt
∂t

= −∇xu · (ρuoptf) + ⟨Gβ ,Hess(ρuopt)⟩, (2.11b)

uopt = ∇uopt (⟨∇xuψ,f⟩+ ⟨Gβ ,Hess(ψ)⟩) . (2.11c)

with boundary conditions (5.2), where ψ(xu, t) is a C1(Rn; [0, T ]) Lagrange multi-

plier.

Proof. Consider the Lagrangian associated with (1.13) and r(·) := 1
2∥ · ∥22, given by

L(ρu,u,ψ) :=
Z T

0

Z

Rn

�
q(xu) +

1

2
∥u(xu, t)∥22 ρu(xu, t) + ψ(xu, t)×

�
∂ρu

∂t
+∇xu · (ρuf)− ⟨Gβ ,Hess (ρu)⟩

��
dxu dt

(2.12)

where ψ(xu, t) is a C1(Rn; [0, T ]) Lagrange multiplier.

Define the set of feasible controls U comprising of finite energy inputs, i.e.,

U := {u : Rn × [0, T ] 7→ Rm | ⟨u,u⟩ < ∞} . (2.13)

Let

P0T (Rn) :=

�
ρ(·, t) ≥ 0 |

Z

Rn

ρd(·) = 1, ρ(·, t = 0) = ρ0, ρ(·, t = T ) = ρT

�
.

(2.14)

The idea now is to perform the unconstrained minimization of the Lagrangian L

over P0T (Rn)× U . Carrying out integration by parts, the Lagrangian (5.3) can be

written as

L(ρu,u,ψ) =
Z T

0

Z

Rn

�
q(xu) +

1

2
∥u(xu, t)∥22 −

∂ψ

∂t
− ⟨∇ψ,f⟩

−⟨Gβ ,Hess(ψ)⟩) ρudxu dt. (2.15)
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Minimizing (5.5) with respect to u for a fixed PDF gives (5.1c). By substituting

(5.1c) in (5.5) and equating the resulting expression to zero, we get the dynamic

programming equation

Z T

0

Z

R

�
q (xu) +

1

2
∥∇uopt (⟨∇xuψ,f⟩+ ⟨Gβ ,Hess(ψ)⟩) ∥22

− ∂ψ

∂t
− ⟨∇xuψ,f⟩ − ⟨Gβ ,Hess(ψ)⟩) ρu(xu, t)dxu dt = 0.

(2.16)

For above equation to be satisfied for an arbitrary ρu, we must have

∂ψ

∂t
= q (xu) +

1

2
∥∇uopt (⟨∇xuψ,f⟩+ ⟨Gβ ,Hess(ψ)⟩) ∥22 − ⟨∇xuψ,f⟩

−⟨Gβ ,Hess(ψ)⟩, (2.17)

which is the Hamilton-Jacobi-Bellman (HJB) PDE (5.1a). The associated FPK

PDE (2.11b) and the boundary conditions (5.2) follow from primal feasibility. ■

We notice that the conditions for optimality (5.1) for the minimum energy

generalized SBP is qualitatively different from (2.1) in the sense we now get a system

of three (as opposed to two) coupled PDEs. The implicit equation (5.1c) is a result

of the control non-affine drift and diffusion f , g.

2.3 Existing literature on solving the minimum energy

Generalized SBP

While solution methods for (5.1) in general are not available in the current liter-

ature, specialized algorithms for particular cases have appeared. For instance, [9]

considered the case when the drift coefficient is control affine and the diffusion

coefficient is C ([0, T ]) matrix that is independent of state and input:

f (t,xu,u) ≡ ef (t,xu) +B(t)u, g (t,xu,u) ≡ B(t) ∈ Rn×m.
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In this case m = p, and the stochastic process noise enters through the input chan-

nels (modeling e.g., disturbance in forcing and/or actuation uncertainties). The

results in [9] showed that if ef is gradient of a potential, or when
�
ef ,B(t)

�
is of

mixed conservative-dissipative form, then certain proximal recursions can be de-

signed to numerically solve for the optimal pair (ρuopt,uopt). In [12], this result was

extended for the case when additional (deterministic) state inequality constraints

are present. SBP with nonlinear drifts with full state feedback linearizable struc-

tures were considered in [11, 32]. The SBPs for both first and second order noisy

nonuniform Kuramoto oscillator models were solved in [60]. Closest to our general-

ized SBP is the work in [61], which considered control non-affine drift and diffusion

coefficients and solved the resulting system of three PDEs via PINN. We will take

a similar approach for the case study in Chapter 5.

All the works mentioned above considered minimum energy SBP with the

state cost q ≡ 0.

We mention here that there exist works on controlling the density of robotic

or cellular swarms [58, 59, 64]. The generalized SBPs considered here differ from

these works in that SBPs directly impose two-point boundary value constraints on

the space of measures in a non-parametric sense. Notice that the space of joint

PDFs is an infinite dimensional manifold, and our development utilize the metric

geometry underlying this manifold (without assuming square integrability of the

joint state density functions which need not hold).
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Chapter 3

Neural Networks to Learn the

Solution of the Minimum

Energy Generalized SBP

3.1 Physics Informed Neural Networks

PINNs are deep neural networks which can be trained to minimize a (possibly

weighted) sum of equation errors and initial-boundary condition losses, to approxi-

mate the solution of a system of equations such as (5.1). In the next two Chapters

we will detail such PINN implementations to solve instances of the minimum energy

generalized SBP (1.13). The instances we consider are those for which alternative

methods (e.g., Hopf-Cole transform techniques) are not available due to the non-

affine control structures.

Since we explain the specific PINN implementations in the ensuing Chapter

4 and Chapter 5, here we only outline the main idea. For solving a spatio-temporal
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PDE system such as (5.1), PINN considers the joint space-time domain as the

“feature space”. In our context, initial-boundary condition losses correspond to

the satisfaction of (5.2). Likewise, equation losses correspond to the satisfaction of

(5.1). The output of the PINN, in our case, will be the tuple
�
ρuopt,uopt,ψ

�
.

As standard, the training of the PINN is done via first order search al-

gorithms such as stochastic gradient descent and its variants such as ADAM. The

training is performed over a number of epochs so that all the (equation and initial-

boundary condition) residuals are small. The learnt solutions can be verified either

graphically (e.g., by inspecting the optimally controlled transient joint PDFs or

their marginals) or by performing closed-loop simulation with the learnt control

policy and then estimating the controlled PDFs from the ensemble of simulated

closed-loop sample paths. We refer to this proposed computational framework of

learning the generalized SBP as the neural Schrödinger bridge.

3.2 PINNs with Sinkhorn Losses

Typically, PINN implementations in the literature use standard 2-norm losses.

While such losses are easy to implement, they do not necessarily take into account

the pertinent geometry of the decision variables. For example, the SBP involves the

endpoint boundary conditions (5.2) on only one variable (PDF) level. However, the

standard 2-norm is less meaningful as a metric to measure the closeness of PDFs.

A more meaningful loss for (5.2) could be in terms of the Wasserstein

metric (1.7). However, a direct discretization of the Wasserstein loss (1.7) requires

computing a large scale linear program (LP), and differentiating through this large

scale LP is not scalable for the training of PINN. This issue can be alleviated by

18

Doc ID: 9787ca325a9b9b6b7ba442fb02cfbb86a8bf6d59

DocuSign Envelope ID: 0B162CDE-F9EC-481C-810F-E59C87132B2F



instead computing the Wasserstein losses with small entropic regularization a.k.a.

the Sinkhorn divergences.

For a regularization parameter ε > 0, we refer to the entropy-regularized

version of (1.7) as Sinkhorn divergence

W 2
ε (µ0, µT ) := inf

π∈Π2(µ0,µT )

Z

Rn×Rn

�
∥x− y∥22 + ε log π(x,y)

	
dπ(x,y). (3.1)

As ε ↓ 0, the Sinkhorn divergence (3.1) approaches the Wasserstein metric (1.7). It

turns out that the computation of (3.1) reduces to certain matrix scaling problem

which can be solved via the so-called Sinkhorn iterations involving modest compu-

tation. In particular, we peopose to use losses of the form (3.1) for the endpoint

conditions (5.2). We find that it is easy to differentiate through the Sinkhorn com-

putation facilitating training of the PINN. This will be discussed in detail in Chapter

5. We refer to this variant of the proposed framework as the neural Schrödinger

bridge with Sinkhorn losses.
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Chapter 4

Case study: Steering Angular

Velocity Distribution

In this Chapter, we present a numerical case study for finite horizon optimal steering

of the joint state probability distribution subject to the angular velocity dynamics

governed by the Euler equation. The problem and its solution amounts to con-

trolling the spin of a rigid body via feedback, and is of practical importance, for

example, in angular stabilization of a spacecraft with stochastic initial and terminal

states.

4.1 Problem Formulation

The controlled angular velocity dynamics for a rotating rigid body such as a space-

craft, is given by the well-known Euler equation

Jω̇ = −[ω]×Jω + τ , (4.1)

where the positive diagonal matrix J := diag(J1, J2, J3) comprises of the principal

moments of inertia, the vector ω := (ω1,ω2,ω3)
⊤ ∈ R3 denotes the body’s angular
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velocity (in rad/s) along its principal axes, the vector τ := (τ1, τ2, τ3)
⊤ ∈ R3 denotes

the torque input applied about the principal axes, and

[ω]× :=




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0




∈ so(3).

As usual, so(3) denotes the Lie algebra of the three dimensional rotation group

SO(3). Motivated by the problem of steering the probabilistic uncertainties in

angular velocities over a prescribed time horizon, we consider the deterministic and

stochastic variants of the optimal mass transport (OMT) [4, 74, 75] over the Euler

equation, which we refer to as the OMT-EE.

Specifically, let P2(R3) denote the manifold of probability measures sup-

ported on R3 with finite second moments. Given two probability measures µ0, µT ∈

P2(R3), the OMT-EE associated with (4.1) is a stochastic optimal control problem:

inf
u∈U

Z T

0
Eµu [q(xu) + r(u)] dt (4.2a)

subject to ẋu = α⊙ f(xu) + β ⊙ u, i ∈ J3K := {1, 2, 3}, (4.2b)

µu(xu, t = 0) = µ0 (given), µ
u(xu, t = T ) = µT (given), (4.2c)

where the fixed time horizon is [0, T ] for some prescribed T > 0, and Eµu [·]

denotes the expectation w.r.t. the controlled state probability measure µu(xu, t)

for t ∈ [0, T ], i.e., Eµu [·] :=
R
(·) dµu. The superscript u for a variable indicates

that variable’s dependence on the choice of control u. The symbol ⊙ denotes the

elementwise (Hadamard) vector product.

The correspondence between (4.1) and (4.2b) follows by noting that the
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controlled state xu ≡ controlled ω, the control u ≡ τ , the vector field

f(z) := (z2z3, z3z1, z1z2)
⊤ for z ∈ R3, (4.3)

and the parameter vectors α,β ∈ R3 have entries

αi := (Ji+1 mod 3 − Ji+2 mod 3)/Ji, βi := 1/Ji, i ∈ J3K. (4.4)

The cost-to-go in (4.2a) comprises of an additive state cost q(·), and a strictly

convex and superlinear (i.e., 1-coercive) control cost r(·). Of particular interest is

the case q(·) ≡ 0 and r(·) = 1
2∥ · ∥22 which corresponds to minimum effort control.

We suppose that q + r is lower bounded.

Let Ω be the space of continuous functions η : [0, T ] 7→ R3, which is a

complete separable metric space endowed with the topology of uniform convergence

on compact time intervals. With Ω, we associate the σ-algebra F = σ{η(s) |

0 ≤ s ≤ T}, and consider the complete filtered probability space (Ω,F ,P) with

filtration Ft = σ{η(s) | 0 ≤ s ≤ t ≤ T}. So, F0 contains all P-null sets and

Ft is right continuous. The stochastic initial condition xu(t = 0) in (4.2) is F0

measurable. For a given control policy u, the controlled state xu(t) is Ft-adapted

(i.e., non-anticipating) for all t ∈ [0, T ].

In (4.2), the set of feasible Markovian control policies

U := {u : R3 × [0, T ] 7→ R3 |
Z T

0
Eµu [r(u)] dt < ∞}. (4.5)

Thus, solving (4.2) amounts to designing an admissible Markovian control policy

u ∈ U that transfers the stochastic angular velocity state from a prescribed initial

to a prescribed terminal probability measure under the controlled sample path dy-

namics constraint (4.2b), and hard deadline constraint. The initial and terminal

measures can be interpreted as the estimated and allowable statistical uncertainty
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specifications, respectively, and therefore, problem (4.2) asks to directly control or

reshape uncertainties in a nonparametric sense [18].

4.2 Related Works

Continuous time deterministic optimal control subject to the angular velocity dy-

namics given by the Euler equation, has been studied in several prior works. In the

finite horizon setting, Athans et. al. [1] derived the minimum time, minimum fuel

(assuming free terminal time) and minimum energy (assuming fixed terminal time)

controllers–all steering an arbitrary initial angular velocity vector to zero. Consid-

ering free terminal state and no terminal cost, Kumar [48] showed that a tangent

hyperbolic feedback is optimal for finite horizon problem w.r.t. quadratic state

and quadratic control cost-to-go. Again considering free terminal state, Dwyer [27]

derived the optimal finite horizon controller w.r.t. quadratic state and quadratic

control cost-to-go, as well as quadratic terminal cost. Infinite horizon optimal con-

trol problem w.r.t. quadratic state and control objective was studied in [73].

Besides control design, systems-theoretic properties for (4.1) are known

too. Thanks to the periodicity of unforced motion, (4.1) enjoys global controllability

guarantees and it is known [7, Thm. 4 and disussions thereafter], [2, Reamrk in p.

895] that the controlled dynamics is reachable on entire R3. See also [21].

Formulating and solving the OMT with prior dynamics is a relatively

recent endeavor, see e.g., [11, 17, 28, 44]. To the best of the author’s knowledge,

OMT over the Euler equation has not been investigated before.
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4.3 OMT-EE as Generalized OMT

We suppose that the endpoint measures µ0, µT ∈ P2(R3) in (4.2) are ab-

solutely continuous with respective PDFs ρ0, ρT , and rewrite (4.2) as

arg inf
(ρu,u)∈P2(R3)×U

Z T

0

Z

R3

(q(xu) + r(u)) ρu(xu, t)dxudt (4.6a)

∂ρu

∂t
+∇xu · (ρu (α⊙ f(xu) + β ⊙ u)) = 0, (4.6b)

ρu(xu, t = 0) = ρ0, ρu(xu, t = T ) = ρT . (4.6c)

Clearly, problem (4.6) is an instance of the generalized OMT (1.8).

We clarify here that the solution of the Liouville PDE (4.6b) is understood

in the weak sense, i.e., for all compactly supported smooth test functions ζ(xu, t) ∈

C∞
c

�
[0, T ]× R3

�
, the function ρu(xu, t) satisfies:

Z T

0

Z

R3

�
ρu

∂ζ

∂t
+ ρu⟨α⊙ f(xu) + β ⊙ u,∇xuζ⟩

�
dxudt

+

Z

R3

ρ0(x
u)ζ(xu, t = 0)dxu = 0. (4.7)

4.3.1 Static OMT-EE

At this point, a natural question arises: if (4.6) is the Euler equation gener-

alization of the dynamic OMT (1.4), then what is the corresponding generalization

of the static OMT (1.3)?

Answering this requires us to identify the Lagrangian in (1.9). For OMT-

EE, M ≡ R3 and we have the Lagrangian

L(t,γ, γ̇) ≡ q(γ) + r((γ̇ −α⊙ f)⊘ β) (4.8)

where ⊘ denotes vector element-wise (Hadamard) division. In particular, L in (4.8)

has no explicit dependence on t, i.e., L : T M 7→ R.
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This identification allows us to define the static OMT-EE as the linear

program (1.9) wherein the functional c is given by (4.8). The feasible set (1.9)

Π2(µ0, µT ) here denotes the set of all joint probability measures π supported over

the product space R3 × R3 with x marginal µ0, and y marginal µ1. We next show

that identifying (4.8) also helps establish the existence-uniqueness of solution for

the specific generalized OMT (4.6).

4.3.2 Back to Dynamic OMT-EE (4.6): Existence and Uniqueness

Theorem 2. (Existence-uniqueness) Let r : R3 7→ R≥0 be strictly convex and

superlinear function. Then the minimizing tuple (ρopt,uopt) for problem (4.6) exists

and is unique.

Proof. Since r is strictly convex, so L in (4.8) viewed as function of γ̇ ∈ R3, is

strictly convex composed with an affine map. Therefore, L is strictly convex in γ̇.

We next show that L in (4.8) is also superlinear in γ̇ ∈ R3. To see this,

notice that

lim
∥γ̇∥2→∞

L

∥γ̇∥2
= lim

∥γ̇∥2→∞
r((γ̇ −α⊙ f)⊘ β)

∥γ̇∥2

= lim
∥z∥2→∞

r(z)

∥α⊙ f + β ⊙ z∥2
. (4.9)

Using triangle inequality: ∥α⊙ f + β ⊙ z∥2 ≤ ∥α⊙ f∥2 + ∥β ⊙ z∥2 ≤ ∥α⊙ f∥2 +

∥β∥∞∥z∥2, and hence

r(z)

∥α⊙ f + β ⊙ z∥2
≥ r(z)

∥α⊙ f∥2 + ∥β∥∞∥z∥2
.

Taking the limit ∥z∥2 → ∞ to both sides of above, we obtain

(4.9) ≥ lim
∥z∥2→∞

r(z)

∥α⊙ f∥2 + ∥β∥∞∥z∥2

= lim
∥z∥2→∞

r(z)/∥z∥2
∥β∥∞

= +∞,

25

Doc ID: 9787ca325a9b9b6b7ba442fb02cfbb86a8bf6d59

DocuSign Envelope ID: 0B162CDE-F9EC-481C-810F-E59C87132B2F



since r is superlinear, and ∥α ⊙ f∥2, ∥β∥∞ > 0. Thus, (4.9) itself equals to +∞,

thereby proving that L is indeed superlinear.

The Lagrangian (4.8) being both strictly convex and superlinear in γ̇, is

a weak Tonelli Lagrangian [75, p. 118], [29, Ch. 6.2], and therefore guarantees [29,

Thm. 1.4.2] the existence and uniqueness of the minimizing pair (ρopt,uopt) for

problem (4.6). ■

4.4 Conditions of Optimality, q(·) ≡ 0, r = 1
2∥ · ∥22

A specific instance of (4.6) that is of practical interest is minimum energy

angular velocity steering, i.e., the case

q(·) ≡ 0, r =
1

2
∥ · ∥22.

Then, (4.6) resembles the Benamou-Brenier dynamic OMT (1.4) except that the

controlled Liouville PDE (4.6b) has a prior bilinear drift which (1.4b) does not have.

Theorem 3. (Necessary conditions of optimality for minimum energy

steering of angular velocity PDF without process noise) The optimal tuple

(ρopt,uopt) solving problem (4.6) with q(·) ≡ 0, r = 1
2∥ · ∥22, satisfies the following

first order necessary conditions of optimality:

∂ϕ

∂t
+

1

2
∥β ⊙∇xuϕ∥22 + ⟨∇xuϕ,α⊙ f(xu)⟩ = 0, (4.10a)

∂ρopt

∂t
+∇xu ·

�
ρopt

�
α⊙f(xu) + β2 ⊙∇xuϕ

��
=0, (4.10b)

ρopt(xu, t = 0) = ρ0, ρopt(xu, t = T ) = ρT , (4.10c)

uopt = β ⊙∇xuϕ, (4.10d)

where β2 denotes the vector element-wise square.
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Proof. Consider problem (4.6) with q ≡ 0, r(·) = 1
2∥ · ∥22, and its associated La-

grangian

L (ρu,u,ϕ) :=

Z T

0

Z

R3

�
1

2
∥u(xu, t)∥22 ρu(xu, t) + ϕ(xu, t)

�
∂ρu

∂t
+∇xu · (ρu (α⊙ f(xu) + β ⊙ u))

��
dxudt (4.11)

where the Lagrange multiplier ϕ ∈ C1
�
R3; [0, T ]

�
. Let P0T denote the family of

PDF-valued curves over [0, T ] satisfying (4.10c). We perform unconstrained mini-

mization of (4.11) over P0T × U .

Performing integration-by-parts of the right-hand-side of (4.11) and as-

suming the limits for ∥xu∥2 → ∞ are zero, we arrive at the unconstrained mini-

mization of

Z T

0

Z

R3

�
1

2
∥u(xu, t)∥22 −

∂ϕ

∂t
− ⟨∇xuϕ,α⊙ f(xu)

+β ⊙ u⟩) ρu(xu, t) dxu dt. (4.12)

Pointwise minimization of the integrand in (4.12) w.r.t. u for each fixed PDF-valued

curve in P0T , gives

uopt = diag (β)∇xuϕ,

which is the same as (4.10d). Substituting the above expression for optimal control

back in (4.12), and equating the resulting expression to zero, we obtain the dynamic

programming equation

Z T

0

Z

R3

�
−∂ϕ

∂t
− 1

2
∥β ⊙∇xuϕ∥22 − ⟨∇xuϕ,α⊙ f(xu)⟩

�

ρu(xu, t) dxu dt = 0. (4.13)

For (4.13) to hold for any feasible ρu(xu, t), the expression within the parentheses

must vanish, which gives us the HJB PDE (4.10a).
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Since ρopt must satisfy the feasibility conditions (4.6b)-(4.6c), hence sub-

stituting (4.10d) therein yields (4.10b)-(4.10c). ■

Remark 1. Equations (4.10d) and (4.10a) generalize the condition (1.5b) in clas-

sical dynamic OMT. The solution of the coupled system of HJB PDE (4.10a) and

Liouville PDE (4.10b) with boundary conditions (4.10c) yields the optimal PDF

ρopt.

4.5 Numerical Results

4.5.1 Uncontrolled PDF Evolution

Before delving into the approximate numerical solution for the optimally

controlled PDF evolution, we briefly remark on the uncontrolled PDF evolution.

Specifically, we show next that the bilinear structure of the drift vector field in

Eulerian dynamics (4.2b) allows analytic handle on the uncontrolled PDFs, which

will come in handy later for comparing the optimally controlled versus uncontrolled

evolution of the stochastic states.

In the absence of control, we denote the uncontrolled state vector as x,

and the uncontrolled joint state PDF as ρ (i.e., without the u superscripts). In that

case, (4.6b) specializes to the uncontrolled Liouville PDE

∂ρ

∂t
+∇x · (ρα⊙ f(x)) = 0. (4.14)

Since the drift in (4.2b) is divergence free, we can explicitly solve (4.14) with known

initial condition ρ(x, t = 0) = ρ0, as

ρ(x, t) = ρ0 (x0 (x, t)) (4.15)
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where x0 (x, t) is the inverse flow map associated with the unforced initial value

problem:

ẋ = α⊙ f(x), x(t = 0) = x0. (4.16)

For an asymmetric rigid body, we have J1 ̸= J2 ̸= J3, and the correspond-

ing flow map x (x0, t) for (4.16) is given component-wise by (see e.g., [49, equation

(37.10)])

x1 = x10 cn (ωpt+ λ1,λ2) , (4.17a)

x2 = x20 sn (ωpt+ λ1,λ2) , (4.17b)

x3 = x30 dn (ωpt+ λ1,λ2) , (4.17c)

where cn (elliptic cosine), sn (elliptic sine), dn (delta amplitude) are the Jacobi

elliptic functions, and the variables xi0∀i ∈ J3K, ωp, λ1,λ2 depend only on x0. In

Sec. 4.5, we numerically compute the inverse flow map x0 (x, t) associated with

(4.17).

For an axisymmetric rigid body, we have J1 = J2 ̸= J3, and the inverse

flow map x0 (x, t) for (4.16) can be computed component-wise analytically as

γ :=
x2 − x1 tan (α2x3t)

x1 + x2 tan (α2x3t)
, (4.18a)

x10 =

�
x21 + x22
1 + γ2

� 1
2

, (4.18b)

x20 = γ x10 = γ

�
x21 + x22
1 + γ2

� 1
2

, (4.18c)

x30 = x3, (4.18d)
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To see this, notice that for J1 = J2 ̸= J3, (4.16) specializes to



ẋ1

ẋ2

ẋ3




=




α1x2x3

α2x3x1

0




,




x1(t = 0)

x2(t = 0)

x3(t = 0)




=




x10

x20

x30




, (4.19)

giving x3(t) = x30, and

ẋ1 = (α1x30)x2 ⇒ ẍ1 = (α1x30)ẋ2 =
�
α1α2x

2
30

�
x1 = −

�
α2
2x

2
30

�
x1, (asα1 = −α2),

which is a simple harmonic oscillator with angular frequency α2x30, yielding general

solution:

x1(t) = A cos (α2x30t+ φ) , x2(t) = A sin (α2x30t+ φ) .

The constants A and φ can be determined from the initial conditions: x1(t = 0) =

x10, ẋ1(t = 0) = α1x20x30, as A =
p
x210 + x220 and φ = arctan(x20/x10). Then we

express A,φ as function of the current states as

A =
q
x21 + x22, φ = arctan(x2/x1)− α2x3t.

Finally back out A,φ to x10, x20 using φ = arctan(x20/x10) as

α2x3t = arctan (x2/x1)− arctan(x20/x10)

⇔ x20/x10 = arctan (x2/x1)− arctan tan (α2x3t)

= arctan

 
x2
x1

− tan (α2x3t)

1 + x2
x1

tan (α2x3t)

!

⇔ x20/x10 = γ. (4.20)

On the other hand,

A =
q
x210 + x220 =

q
x21 + x22,

whereupon using x20 = γx10, and then solving for x10 yields (4.18b). Now invoking

x20 = γx10 again, we obtain (4.18c).
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Using (4.18), we see that (4.15) takes the form

ρ(x1, x2, x3, t) = ρ0

 �
x21 + x22
1 + γ2

� 1
2

, γ

�
x21 + x22
1 + γ2

� 1
2

, x3

!
.

4.5.2 Minumum Energy Stochastic OMT-EE

To facilitate the numerical solution of the dynamic OMT-EE discussed in

Sec. 4.4, i.e., the solution of (4.6) with q ≡ 0, r(·) ≡ 1
2∥ · ∥22, we perturb the sample

path dynamics (4.2b) with an additive process noise resulting in the Itô stochastic

differential equation (SDE):

dxu =(α⊙ f(xu) + β ⊙ u) dt+
√
2δ dw, δ > 0. (4.21)

The w in (4.21) denotes standard Wiener process in R3. Due to process noise,

the first order Liouville PDE (4.6b) is replaced by the second order Fokker-Planck-

Kolmogorov (FPK) PDE

∂ρu

∂t
+∇xu · (ρu (α⊙ f(xu) + β ⊙ u))=δ∆xuρu, (4.22)

which has both advection and diffusion. The corresponding necessary conditions of

optimality are then transformed as follows.

Theorem 4. (Necessary conditions of optimality for minimum energy

steering of angular velocity PDF with process noise) Let δ > 0. The optimal

tuple (ρopt,uopt) solving problem (4.6) with q(·) ≡ 0, r = 1
2∥·∥22, and (4.6b) replaced

by (5.1b), satisfies the following first order necessary conditions of optimality:

∂ϕ

∂t
+

1

2
∥β ⊙∇xuϕ∥22 + ⟨∇xuϕ,α⊙ f(xu)⟩ = −δ∆xuϕ, (4.23a)

∂ρopt

∂t
+∇xu ·

�
ρopt

�
α⊙f(xu) + β2 ⊙∇xuϕ

��
= δ∆xuρopt, (4.23b)

ρopt(xu, t = 0) = ρ0, ρopt(xu, t = T ) = ρT , (4.23c)

uopt = β ⊙∇xuϕ, (4.23d)
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where β2 denotes the vector element-wise square.

Proof. The proof follows the same line of arguments, mutatis mutandis, as in the

proof of Theorem 3. See also [9, proof of Prop. 1], [19, p. 275]. ■

Remark 2. In the limit δ ↓ 0, the conditions (4.23) reduce to the conditions (4.10).

While (4.23) is valid for arbitrary (not necessarily small) δ > 0, we are

particularly interested in numerically solving (4.23) for small δ since then, its solu-

tion is guaranteed [53,57] to approximate the solution of (4.10). Indeed, the second

order terms in (4.23) contribute toward smoother numerical solutions, i.e., behave

as stochastic dynamic regularization in a computational sense. This idea of lever-

aging the stochastic version of the OMT for approximate numerical solution of the

corresponding deterministic dynamic OMT has appeared, e.g., in [32].

4.5.3 Solving the Conditions of Optimality

using A Modified Physics Informed Neural Network

We propose leveraging recent advances in neural network-based compu-

tational frameworks to numerically solve (4.23) for small δ > 0. Specifically, we

propose training a modified physics informed neural network (PINN) [55,67] to nu-

merically solve (4.23a)-(4.23c), which is a system of two second order coupled PDEs

together with the endpoint PDF boundary conditions.

We point out here that one can alternatively use the Hopf-Cole [20, 42]

a.k.a. Fleming’s logarithmic transform [30] to rewrite the system (4.23a)-(4.23c)

into a system of forward-backward Kolmogorov PDEs with the unknowns being

the so-called “Schrödinger factors”. Unlike (4.23), these PDEs are coupled via

nonlinear boundary conditions; see e.g., [9, Sec. II, III.B], [19, Sec. 5]. However, the
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…

Losses

Figure 4.1: The architecture of the PINN with ξ := (ω1,ω2,ω3, t) as the input
features. The PINN output η comprises of the value function and the optimally
controlled PDF, i.e., η := (ϕ, ρopt).

numerical solution of the resulting system is then contingent on the availability of

two initial value problem solvers: one for the forward Kolmogorov PDE and another

for the backward Komogorov PDE. While specialized solvers may be designed for

certain classes of prior nonlinear drifts [9, 10], in general one resorts to particle-

based methods such as Monte Carlo and Feynman-Kac solvers. Directly solving the

conditions of optimality by adapting PINNs, as pursued here, offers an alternative

computational method.

As in [61], our training of PINN in this work involves minimizing a sum

of four losses: two losses encoding the equation errors in (4.23a)-(4.23b), and the

other two encoding the boundary condition errors in (4.23c). However, different

from [61], we penalize the boundary condition losses using the discrete version of

the Sinkhorn divergence (3.1) computed using contractive Sinkhorn iterations [22].

Because the Sinkhorn iterations involve a sequence of differentiable linear

operations, it is Pytorch auto-differentiable to support backpropagation. Compared

to the computationally demanding task of differentiating through a large linear pro-

gram involving the Wasserstein losses, the Sinkhorn losses for the endpoint bound-

ary conditions offer approximate solutions with far less computational cost allowing

us to train the PINN on nontrivial problems.

The proposed architecture of the PINN is shown in Fig. 5.1. In our
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problem, ξ := (ω1,ω2,ω3, t) comprises the features given to the PINN, and the

PINN output η := (ϕ, ρopt). We parameterize the output of the fully connected

feed-forward network via θ ∈ RD, i.e.,

η(ξ) ≈ NSchrödinger Bridge(ξ;θ), (4.24)

where NSchrödinger Bridge(·; θ) denotes the neural network approximant parameter-

ized by θ, and D is the dimension of the parameter space (i.e., the total number of

to-be-trained weight, bias and scaling parameters for the network).

The overall loss function for the network denoted as LNSchrödinger Bridge
, con-

sists of the sum of the equation error losses and the losses associated with the

boundary conditions. Specifically, let Lϕ be the mean squared error (MSE) loss

term for the HJB PDE (4.23a), and let Lρopt be the MSE loss term for the FPK

PDE (4.23b). For (4.23c), we consider Sinkhorn regularized losses Lρ0 and LρT .

Then,

LNSchrödinger Bridge
:=Lϕ + Lρopt + Lρ0 + LρT , (4.25)

where each summand loss term in (5.17) is evaluated on a set of n collocation points

{ξi}ni=1 in the domain of the feature space Ω := X × [0, T ] for some X ⊂ R3, i.e.,

{ξi}ni=1 ⊂ Ω.

We train the PINN with a Pytorch backend to compute the optimal train-

ing parameter

θ∗ := argmin
θ∈RD

LNSchrödinger Bridge
({ξi}ni=1;θ). (4.26)

In the next Section, we detail the simulation setup and report the numerical results.

We consider the stochastic dynamics (4.21) with δ = 0.1. The vector field

f : R3 7→ R3 is given in (4.3). For the parameter vectors in (4.4), we consider
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J1 = 0.45, J2 = 0.50, and J3 = 0.55.

The control objective is to steer the prescribed joint PDF of the initial

condition x(t = 0) ∼ ρ0 = N (m0,Σ0) to the prescribed joint PDF of the terminal

condition x(t = T ) ∼ ρT = N (mT ,ΣT ) over t ∈ [0, T ], subject to (4.21), while

minimizing (4.6a) with q(·) ≡ 0, r = 1
2∥ · ∥22. Here, we fix the final time T = 4 s,

and

m0 = (2, 2, 2)⊤, mT = (0, 0, 0)⊤, Σ0 = ΣT = 0.5I3.

Due to the prior nonlinear drift, the optimally controlled transient joint state PDFs

are expected to be non-Gaussian even when the endpoint joint state PDFs are

Gaussian.

For training the NSchrödinger Bridge, we use a network with 3 hidden layers

with 70 neurons in each layer. The activation functions are chosen to be tanh(·).

The input-output structure of the network is as explained in Sec. 5.3.1.

We fix the state-time collocation domain Ω = X × [0, T ] = [−5, 5]3× [0, 4].

We trained the PINN for 80,000 epochs with the Adam optimizer [47] and with a

learning rate 10−3. We used n = 100, 000 pseudorandom samples (using Hammers-

ley distribution) between the endpoint boundary conditions at t = 0 and t = T for

the training. Additionally, to satisfy compute constraints, we uniformly randomly

sampled 35,000 samples every 40,000 epochs. For computing the Sinkhorn losses

at the endpoint boundary conditions, we use the entropic regularization parameter

(see (3.1)) ε = 0.1.

Fig. 4.2 depicts fifty optimally controlled state sample paths for this simu-

lation. These sample paths are obtained via closed-loop simulation with the optimal

control policy uopt resulting from the training of the PINN.
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Figure 4.2: Fifty optimally controlled closed-loop state sample paths ωopt
i (t), i ∈ J3K,

for the simulation reported in Sec. 4.5.

Fig. 4.3 shows the snaphsots of the univariate marginal PDFs under opti-

mal control and the same without control, for the aforesaid numerical simulation.

Following Sec. 4.5.1, computing the uncontrolled PDFs for the deterministic dynam-

ics (i.e., δ = 0) requires inverting (4.17). We used the method-of-characteristics [33]

to solve the corresponding unforced Liouville PDE, thereby obtaining the uncon-

trolled joint PDF snapshots. The marginals ρunci , i ∈ J3K, in Fig. 4.3 were obtained

by numerically integrating these uncontrolled joints.
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Figure 4.3: Four snapshots for the optimally controlled univariate marginals ρopti and
the corresponding uncontrolled univariate marginals ρunci , i ∈ J3K, for the numerical
simulation in Sec. 4.5.
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Chapter 5

Case study: Data-driven

Controlled Colloidal

Self-assembly

5.1 Problem Formulation

We now consider a controlled colloidal self-assembly application where the

interest is to solve the minimum energy variant of the generalized SBP, i.e., to solve

(1.13) with

q(·) ≡ 0, r(·) ≡ 1

2
∥ · ∥22,

where the associated drift and diffusion coefficient pair (f , g) in (1.14), are not

available from first principle physics, but are instead approximated in a data-driven

manner (e.g., using neural networks). This is particularly challenging since both f

and g can in general be non-autonomous (i.e., may have explicit t-dependence) as

well as nonlinear in state, and non-affine in control.
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5.2 Conditions of Optimality

In the following, we derive the first-order optimality conditions for the

minimum energy generalized SBP as a coupled system of nonlinear PDEs.

Theorem 5. The pair (ρuopt(x, t),uopt(x, t)) that solves (1.13) with q(·) ≡ 0 and

r(·) ≡ 1
2∥ · ∥22, must satisfy the following system of coupled PDEs

∂ψ

∂t
=

1

2
∥uopt∥22 − ⟨∇ψ,f⟩ − ⟨G,Hess(ψ)⟩ (5.1a)

∂ρuopt
∂t

= −∇.(ρuoptf) + ⟨G,Hess(ρuopt)⟩, (5.1b)

uopt = ∇uopt (⟨∇xψ,f⟩+ ⟨G,Hess(ψ)⟩) . (5.1c)

with boundary conditions

ρuopt(x, 0) = ρ0, ρuopt(x, T ) = ρT , (5.2)

where ψ(x, t) is a C1(Rn;R≥0) value function.

Proof. Consider the Lagrangian

L(ρu,u,ψ) :=
Z T

0

Z

Rn

�
1

2
∥u(x, t)∥22ρu(x, t) + ψ(x, t)×

�
∂ρu

∂t
+∇.(ρuf)− ⟨G,Hess (ρu)⟩

�
}dxdt

(5.3)

where ψ(x, t) is a C1(Rn;R≥0) Lagrange multiplier. Let

P0T (Rn) :=
�
ρ(x, t) ≥ 0 |

Z

Rn

ρdx = 1, ρ(x, t = 0) = ρ0, ρ(x, t = T ) = ρT
	
.

(5.4)

We seek to minimize the Lagrangian over over P0T (Rn)× U .

Performing integration by parts, Lagrangian (5.3) can be written as

L(ρu,u,ψ) =
Z T

0

Z

Rn

�
1

2
∥u(x, t)∥22 −

∂ψ

∂t
− ⟨∇ψ,f⟩ − ⟨G,Hess(ψ)⟩

�
ρudx dt.

(5.5)
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Minimizing (5.5) with respect to u for a fixed PDF ρ results (5.1c). By substituting

(5.1c) in (5.5) and equating the resulting expression to zero, we get the dynamic

programming equation

Z T

0

Z

R

�
1

2
∥∇uopt (⟨∇xψ,f⟩+ ⟨G,Hess(ψ)⟩) ∥22

− ∂ψ

∂t
− ⟨∇ψ,f⟩ − ⟨G,Hess(ψ)⟩) ρu(x, t)dx dt = 0.

(5.6)

For the above equation to be satisfied for arbitrary ρu, we must have

∂ψ

∂t
=

1

2
∥∇u (⟨∇xψ,f⟩+ ⟨G,Hess(ψ)⟩) ∥22 − ⟨∇ψ,f⟩ − ⟨G,Hess(ψ)⟩ (5.7)

which is the HJB PDE (5.1a). Finally, (5.1b) and (5.2) follow from (1.13b) and

(1.13c), respectively. ■

Remark 3. Unlike the conditions for optimality for control-affine SBP in Ch. 4

(see also [19, eq. (5.7)-(5.8)], [9, eq. (20)-(21)], [12, eq. (4)]) where we get two

coupled PDEs, one being the HJB PDE and another being the controlled FPK PDE,

the system (5.1) comprises of m+2 coupled PDEs where m is the number of control

inputs. This is because the policy equation (5.1c) is implicit in uopt. Due to the

non-affine control, we can no longer express uopt as the scaled gradient of the value

function ψ. Instead, we now need to solve the coupled system (5.1)-(5.2).

5.3 Numerical Results

5.3.1 Solving the Conditions for Optimality

using a Modified PINN

We propose leveraging recent advances in neural network-based compu-

tational frameworks to jointly learn the solutions of (5.1)-(5.2). In the following,
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Figure 5.1: The architecture of the physics-informed neural network with the system
order parameters ⟨C10⟩, ⟨C12⟩, and time as the input features ξ := (⟨C10⟩, ⟨C12⟩, t).
The output η comprises of the value function, optimally controlled PDF, and opti-
mal control policy, i.e., η := (ψ, ρuopt,uopt). The networks NDrift and NDiffusion are

fully trained from MD simulation.

we discuss the training of a modified PINN [55,67] to numerically solve (5.1)-(5.2),

which is a system of three coupled PDEs together with the endpoint PDF boundary

conditions.

In this regard, we first introduce the 2-Wasserstein distance, which will

play an important role in the development of the modified PINN structure.

To solve (1.7), we implement Sinkhorn iteration approach as following. We

first we write the discrete version of (1.7) as

W 2 (ρ1, ρ2) = min
M∈Π(ρ1,ρ2)

⟨C,M⟩ (5.8)

where the matrix C ∈ Rd×d is given by

C(i, j) = ∥xi − yj∥22, i, j = 1, 2, . . . d (5.9)

and Π(ρ1, ρ2) stands for the set of all coupling matrices M ∈ Rd×d such that

M ≥ 0, M1 = ρ1 M⊤1 = ρ2. (5.10)
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We define the entropy of a matrix as

H(M) := ⟨M , logM⟩ (5.11)

and by including this entropic regularization in (5.8), we get Sinkhorn regularized

squared Wasserstein distance, which encourages smoother coupling matrices

W 2
ε (ρ1, ρ2) = min

M∈Π(ρ1,ρ2)
⟨C,M⟩+ ε⟨M , logM⟩

Subject to M1 = ρ1 M⊤1 = ρ2 (5.12)

where ε > 0 is a regularization parameter. The convex optimization problem given

in (5.12) can be solved iteratively using the Sinkhorn iterations algorithm [22]. The

solution can be written in the form

M = diag(u)Γdiag(v) (5.13)

where Γ := exp

�−C

2ε

�
and the iterations alternate between updating u and v

uk+1 = ρ1 ⊘
�
Γvk

�
(5.14)

vk+1 = ρ2 ⊘
�
Γ⊤uk+1

�
. (5.15)

Computing the Wasserstein distance as a linear program is very computationally ex-

pensive, and even more so to get a differentiable distance that is trainable. Because

the Sinkhorn iterations algorithm is a series of differentiable linear operations, it is

Pytorch auto-differentiable to support backpropagation. The Sinkhorn algorithm

offers an approximately equivalent distance for far less computational cost allowing

us to train on this metric for nontrivial problems.

The proposed architecture of the PINN is shown in Fig. 5.1. In our prob-

lem, ξ := (⟨C10⟩, ⟨C12⟩, t) comprises the features given to the DNN, and the DNN
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output η := (ψ, ρuopt,uopt) comprises of the value function, optimally controlled

PDF, and optimal policy. We parameterize the output of the fully connected feed-

forward DNN via θ ∈ RD, i.e.,

η(ξ) ≈ NSchrödinger Bridge(ξ;θ), (5.16)

where NSchrödinger Bridge(·; θ) denotes the neural network approximant parameter-

ized by θ, and D is the dimension of the parameter space (i.e., the total number

of to-be-trained weight, bias and scaling parameters for the DNN). As discussed in

the previous sections, the explicit expression for drift and diffusion functions are

not given, and we learn them from an MD simulation. After finishing the MD

simulations, the output of the fully trained networks NDrift and NDiffusion, which

are the learned drift and learned diffusion functions, will be fed to the loss of

LNSchrödinger Bridge
.

The overall loss function for the network denoted as LNSchrödinger Bridge
, con-

sists of the sum of the losses associated with the three equations in (5.1) and the

losses associated with the boundary conditions (5.2). Specifically, let Lψ be the

Mean Squared Error (MSE) loss term for the HJB PDE (5.1a), let Lρuopt
be the

MSE loss term for the FPK PDE (5.1b), and because the control policy has m

components (u1, . . . , um), let Lujopt
|j=1,...,m be the corresponding MSE loss term

for each control policy component in (5.1c). The MSE loss function is insufficient

to train and solve the joint PDF boundary conditions in (5.2). So, we consider

Sinkhorn regularized squared Wasserstein distance Lρ0 and LρT for (5.2) and im-

plement the Sinkhorn iteration algorithm to obtain the Sinkhorn regularized squared
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Wasserstein distance for the boundary conditions (5.2). Then,

LNSchrödinger Bridge
:=Lψ + Lρuopt

+ Lujopt
|j=1,...,m

+ Lρ0 + LρT , (5.17)

where each summand loss term in (5.17) is evaluated on a set of n collocation points

{ξi}ni=1 in the domain of the feature space Ω := [0, 1]2 × [0, T ], i.e., {ξi}ni=1 ⊂ Ω,

and

Lψ :=
1

n

nX

i=1

 
∂ψ

∂t

����
ξi

− 1

2
∥uopt∥22

����
ξi

+⟨∇ψ, D1⟩|ξi

+⟨D2,Hess(ψ)⟩|ξi
�2

,

Lρuopt
:=

1

n

nX

i=1

 
∂ρuopt
∂t

����
ξi

+ ∇.(ρuoptD1)
��
ξi

−⟨D2,Hess(ρuopt)⟩
��
ξi

�2
,

Lujopt
|j=1,...,m :=

1

n

nX

i=1

�
ujopt

��
ξi
− ∂

∂ujopt
(⟨∇xψ, D1⟩

+⟨D2,Hess(ψ)⟩)|ξi
�2

,

Lρ0 := W 2
ε

�
ρuopt(x, t = 0), ρ0

�
,

LρT := W 2
ε

�
ρuopt(x, t = T ), ρT

�

for each collocation point ξi, i = 1, . . . , n. Since PINN’s activations function is

tanh, its output tensors could be negative, positive, trivial, take on any distribu-

tion shape, and may not be a valid PDF during training. Therefore, computing a

distance measure between such an output can result in numerical singularities or

non-differentiable distances, or local minima distances that jeopardize overall PINN
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training. To avoid this problem in Sinkhorn iteration implementation, we use the

log-sum-exp (LSE) technique to maintain numerical stability during iteration irre-

spective of the input numerical properties at the expense of some memory overhead

costs. We expose ρ0 and ρT to the network during training, and for every epoch, we

compute the Sinkhorn regularized squared Wasserstein distance respective network

output to these two distributions. To further reduce memory footprint, we practice

mini-batching, where we sample our output and use the same sample indices to

sample our desired boundary distributions. We compute the matrix C (5.9) from

the output batch points. While the LSE technique is a good way to guarantee

numerical stability for arbitrary neural network output distributions, it does not

guarantee that the computed distance will not be a local minimum if the input dis-

tributions are not valid PDFs. It is still necessary to introduce another term to the

loss function to penalize invalid distribution outputs, specifically negative outputs.

There are many possible ways to ask this as a loss function, and one ’convex’ way

that performs well is to express it as the negative sum of all the outputs that violate

it. We also weight this loss component by a scalar multiplier (of 10) so that the

network penalizes violating this constraint more and thus learns it ’before’ learning

the Sinkhorn regularized squared Wasserstein distance. Another successful ’convex’

ways of asking for network output include raising a sum to the power of 2 and

using the count of violations as a loss is not ’convex’ and confuses training. Finally,

we found in our numerical experiments that constraining the boundary condition

distributions to have a sum or trapze of 1 to satisfy the PDF definition yields a

network that scales down the control magnitudes to trivial ranges and failed closed-

loop simulations. Such an outcome suggests some implicit relationship between the

45

Doc ID: 9787ca325a9b9b6b7ba442fb02cfbb86a8bf6d59

DocuSign Envelope ID: 0B162CDE-F9EC-481C-810F-E59C87132B2F



control magnitude and the ρopt equation and that Sinkhorn regularized squared

Wasserstein distance similarity is more necessary for reasonable optimal transport

control than strictly satisfying PDF definitions.

We used the PINN software library with a Pytorch backend to perform

numerical experiments using the above loss functions. The PINN library was not

written for optimal transport-type problems, so we needed to modify it to suit our

needs. One modification was to program PINN to compute loss between outputs

and distributions directly and integrate the Sinkhorn iteration algorithm into the

library. We also had to modify it to perform the mini-batching we needed. In

summary, for training the PINN, we minimize the overall loss (5.17) over θ ∈ RD

by solving

θ∗ = argmin
θ∈RD

LNSchrödinger Bridge
({ξi}ni=1;θ). (5.18)

Next we detail the simulation setup and report the numerical results.

5.3.2 Numerical Case Study of Isotropic Colloids in an NPT en-

semble

System Description

We consider a in-silico representation of a system of isotropic colloids with

Lennard-Jones interaction potentials

U(r) = 4ϵ((
σ

r
)12 − (

σ

r
)6) (5.19)

in an NPT ensemble. In this system, 2048 particles with identical ϵ and

σ are initialized at a temperature and stress value. The system can be controlled

with a linear temperature or pressure ramp.

46

Doc ID: 9787ca325a9b9b6b7ba442fb02cfbb86a8bf6d59

DocuSign Envelope ID: 0B162CDE-F9EC-481C-810F-E59C87132B2F



⟨C10⟩, ⟨C12⟩ denote the Steinhart bond order parameters defined below

C(i) =

 
4π

2l + 1

lX

m=−l

|Clm(i)|2
! 1

2

(5.20)

where Clm(i)

Cl m(i) =
1

N(i)

N(i)X

j=1

Ylm (ri j) (5.21)

Ylm represents the spherical harmonic and N(i) is the number of neighbors. The

subscript in the order parameters correspond to the quantum number used in

defining the spherical harmonics (⟨C10⟩ would correspond to 10 fold ordering).

⟨C10⟩, ⟨C12⟩ were chosen due to their ability to differentiate between BCC and FCC

structures. The simulations used to train NDrift and NDiffusion were trajectories with

a batch size of 105, sampled 500 times per trajectory. Alternative sampling inter-

vals were tested with a sensitivity analysis prior to selecting 500. Temperature and

stress ramp rate combinations were sampled with a hypercube distribution. MD

simulations were conducted in the python package HOOMD-blue.

x := (⟨C10⟩, ⟨C12⟩) ∈ [0, 1]2

u = (u1, u2) := (temperature ramp, stress ramp)

Learning the Dynamics

NDrift and NDiffusion were each modeled with a neural network trained

using the python package torchsde, a stochastic differential equation solver. The

input to the model was the current system state (value of x at the start of the MD

simulation trajectory), and the temperature and stress ramps (u). The model was

then trained to predict the evolution of x over the trajectory. 5-fold cross validation

was used to train the model.
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Controller Synthesis

We consider the self-assembly mechanism of colloidal particles is given by

(4.21),

D1, D2 are the outputs of neural network representationsNDrift andNDiffusion,

respectively, and learnt from the high fidelity MD simulation data.

The control objective is to steer the prescribed joint PDF of the initial

condition x(t = 0) ∼ ρ0 = N (m0,Σ0) to the prescribed joint PDF of the terminal

condition x(t = T ) ∼ ρT = N (mT ,ΣT ) (fcc point) over t ∈ [0, T ], subject to

(4.21), while minimizing (??). Here, we fix the final time T = 200 s, and

m0 = (0.2, 0.2)⊤, mT = (0.4, 0.375)⊤, Σ0 = ΣT = 0.1I2.

The domain for state-time collocation is Ω = [0, 1]2 × [0, 200], and we

trained the Physics-Informed Neural Network (PINN) for 100, 000 epochs with the

Adam optimizer [47], using a learning rate of 10−3. To train the model, we used

n = 3000 pseudorandom samples, drawn using Sobol distribution, between the

endpoint boundary conditions at t = 0 and t = 200. We also uniformly randomly

sampled 3, 000 samples every 20, 000 epochs to satisfy compute constraints. For

computing the Sinkhorn losses at the endpoint boundary conditions, we used an

entropic regularization parameter of ε = 0.1 as given in (5.12).Fig. 5.2 shows the

residuals for each loss functions given in (5.17).

Fig.5.3 shows the evolution of ρopt(x, t) over time, starting from the initial

distribution and reaching the terminal distribution after 200 seconds. By comparing

Fig. 5.4 and Fig. 5.5 with Fig. 5.6, it becomes clear that the controls are high

(low) in regions where the value function ψ changes rapidly (when the gradient of

ψ is large/small).
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Figure 5.2: The PINN residuals for solving the conditions for optimality (5.1)-(5.2).

Figure 5.3: Contour plots of the optimally controlled state PDFs ρopt(x, t) over
[0, 1]2.

Figure 5.4: Contour plots of the magnitude of the optimal control uopt1 (x, t) over
[0, 1]2.

Figure 5.5: Contour plots of the magnitude of the optimal control uopt2 (x, t) over
[0, 1]2.

Figure 5.6: Contour plots of the value function ψ (x, t) over [0, 1]2.

Figure 5.7: Simulation results for the optimal PDF steering for the self-assembly
mechanism of colloidal particles over t ∈ [0, 200]. The color denotes the value of the
plotted variable; see colorbar (dark red = high, light yellow = low).
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Chapter 6

Conclusions

In this thesis, we present a solution to a specific instance of the generalized

Schrodinger Bridge Problem (SBP) with control cost r(·) := 1
2∥ · ∥22, q ≡ 0, the min-

imum energy generalized SBP. We cover the existence-uniqueness of such problems.

We prove the conditions for optimality for such systems using integration by parts

on the Lagrangians, minimizing with respect to u and performing substitution and

equating the expressions to zero to yield dyanmic programing expressions. These

operations yield the system of coupled partial differential equations (PDEs) that

must be satisfied for (ρuopt,uopt)

We propose using Physics-Informed Neural Networks (PINNs) to solve

these PDE systems, and provide the architectures, loss functions, and implemen-

tation details for 2 case studies. Whereas prior work has used mean squared error

(MSE) loss functions, those loss functions do not respect the geometry necessary for

outputs, such as in this case that the boundary conditions at time T0, Tt must be

probability density functions (PDFs). After some experimentation we confirm that

computing the direct squared Wasserstein-2 distance metric (from classical opti-
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mal mass transport (OMT)) between the network output and the desired boundary

condition PDFs with backpropable gradients is computationally intractable for non-

trivial problems.

Instead we use an entropy-regularized version of the Wasserstein metric we

refer to as Sinkhorn divergence which as ϵ ↓ 0 converges to the classical Wasserstein

metric. Such a divergence metric can be computed using Sinkhorn iterations in a

backpropable, and numerically stable, implementation, making the entire system

computationally tractable for PINN to solve.

We demonstrate these techniques on 2 case distribution steering problems,

the first where the state is angular velocities for a rigid body, the second states for

colloidal self-assembly. In the first case study, we derive the conditions for opti-

mality and present a system of 2 coupled PDE equations (FPK and HJB PDEs).

We show a sufficient neural network architecture, loss functions, and numerical ex-

periment. The numerical experiment is non-trivial: it is 3 dimensional, the system

dynamics are nonlinear, the inertias are non-axis-symmetric. We also performed

post-processing, and applied the learned control policy to a closed-loop simulation

and confirmed it could steer a Gaussian distribution of 50 samples at a given initial

PDF to a desired PDF. In the second case study, we had a different system of 3

coupled PDEs and different architecture. Here, we use the same Sinkhorn itera-

tion technique to train for the boundary conditions. Like in the first case study,

we provide conditions for optimality and define loss functions and implementation

details. Unlike in the first case study where the system dynamics were well defined

equations, here we have data-driven system dynamics encoded as frozen neural nets

themselves. Still we show that PINN can be trained to learn to steer a distribution.
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During our experiments it was clear that PINN could achieve low residual

values without providing a good control policy (for example when there are too

many hidden layers, or when the training distribution was sufficiently dense), or

that PINN could not converge on a good policy when the proposed problem was not

solvable. Future work could investigate this further, to get a clearer understanding

of what numerical and implementation details are necessary for BOTH good loss

function results and good closed loop control policies. Another interesting finding is

that clamping the HJB PDEs in both cases resulted in a trivial control policy, and

removing any numerical upper bound limitation on HJB PDE net output resulted

in good control policies, so it is important to state that the network outputs are

not strict PDFs / PMFs. Future work might revisit why this is another necessary

condition for good training to yield good control policies. In addition, future work

might extend to more colorful boundary condition distributions such as Gaussian

mixtures, or explore how feasible these methods are for different nonlinear system

dynamics and problem constraints.
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