
UC San Diego
Technical Reports

Title
FTP-M: An FTP-like Multicast File Transfer Application

Permalink
https://escholarship.org/uc/item/6ct8p4tj

Authors
Mysore, Manamohan
Varghese, George

Publication Date
2001-09-11
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ct8p4tj
https://escholarship.org
http://www.cdlib.org/


FTP-M: An FTP-like Multicast File Transfer
Application

Manamohan Mysore, George Varghese

Abstract— Research in Reliable Multicast has focused on providing
scalable, semi-reliable delivery of data. Such solutions based on schemes
like SRM have proved adequate for multicast delivery of multimedia
data or whiteboard applications, but are inadequate for the strict de-
livery semantics of file transfer. This paper describes a simple applica-
tion called FTP-M that provides an efficient one-to-many multicast data
transfer by simply extending the FTP protocol and user interface. FTP-
M relies on a strictly-reliable Reliable Multicast protocol layer beneath
to send data reliably to multiple receivers. In this paper, we describe
the design and implementation of FTP-M. We suggest that FTP-M has
the potential to be adopted as a standard way to achieve multicast file
transfer.

Keywords—Reliable Multicast, File Transfer, Application

I. INTRODUCTION

One of the significant advances in computer networks in
the last decade has been the invention of IP multicast. This
invention has opened up the possibility of a variety of new
applications in today’s Internet. Among the applications that
have been proposed to use IP multicast are streaming multi-
media applications that disseminate video/audio data simul-
taneously to several destinations, and conferencing applica-
tions. However, a very important application of IP multicast,
one-to-many file transfer has not received attention commen-
surate with its importance. While the research in this field
has mainly focused on providing a reliable or semi-reliable
transport layer over IP multicast, the application layer aspect
of achieving multicast file transfer has not received as much
attention.

This paper presents a simple application, FTP-M that ex-
tends FTP protocol [9] and interface to provide a natural
and convenient interface to one-to-many multicast file trans-
fer. FTP-M relies on a strictly-reliable 1 Reliable Multicast
protocol layer beneath to send data reliably to multiple re-
ceivers. The FTP-M mechanism itself is thus decoupled from
the problem of strictly-reliable multicast. In this paper, we
describe the design and implementation of FTP-M. We show
how to modify FTP to make is useful in a multicast envi-
ronment. We also describe FTP User Interface extensions
to provide a natural and convenient interface to multicast file
transfer. We then go on to describe our actual implementation
experience. Using an illustrative reliable multicast protocol
called TCP-M, that provides strict reliability by extending
TCP, we show how FTP-M can be implemented with ease.
We argue that FTP-M has the potential to be adopted as a
standard way to achieve multicast file transfer.

M. Mysore is a research scientist at Nomadix Inc., Westlake Village.
Email: mmysore@ieee.org

G. Varghese is a professor at Dept. of Comp. Sci. & Eng., UC – San
Diego. Email: varghese@cs.ucsd.edu.
1Refer to Section II

The rest of the paper is organized as follows. Section II
introduces the context of our work by briefly surveying exist-
ing solutions to achieve multicast file transfer. In Section III,
we present a brief overview of TCP-M, the strictly-reliable

multicast protocol that we have used in this paper to illus-
trate FTP-M. After setting the stage for our core contribu-
tion, we describe the design and implementation of FTP-M
in Section IV. In Section VI, we conclude the paper and out-
line directions for future research.

II. RELATED WORK

An important offshoot of IP multicast is the field of Re-
liable Multicast. This topic aims at improving reliability of
IP multicast data transfers. Traditionally, Reliable Multicast
has focused mainly on improving reliability of multicast data
transfers. These protocols do not guarantee delivery of data
and hence leave much of the reliability issues to be resolved
by applications. Of late, there have been a few proposals to
enhance such protocols to include the notion of strict relia-
bility. While these new protocols do simplify the problem of
conveniently achieving multicast file transfer, an easily un-
derstandable and quickly deployable “killer-app” is needed.
In the following sub-section, we give an overview of the ex-
isting research in reliable multicast in order to set the ground
for our discussion of FTP-M, the multicast file transfer appli-
cation that we propose.

A. Reliable Multicast

One can classify existing reliable multicast methods into
two broad categories: semi-reliable and strictly-reliable.
Among the first class of semi-reliable multicast protocols and
congestion control techniques, MTP[1],SRM [2], RMTP [6],
MTCP [10], PGM [14], and PGMCC [12] are quite well-
known. These solutions are meant for applications such as
multimedia data transfers, conferencing, and whiteboard ap-
plications and do not guarantee transfer of data as unicast
transport protocols such as TCP do. For example, as they
scale by having the source be unaware of the receivers, the
source can never be sure that every receiver has received ev-
ery message. Using these protocols for file transfer would
need additional effort to build another layer on top of these
protocols to guarantee delivery of data. Such a layer would
then be required to keep track of the intended receivers and
which among them received data correctly.

On the other hand, the second class of strictly-reliable re-
liable multicast protocols includes protocols such as IRMA
[5], SCE [16], MFTP [13] and TCP-M[4]. These protocols
provide an implicit or explicit way of informing the applica-
tion which receivers have finally received the data that was



sent via multicast. This presupposes that the multicast source
knows the intended receivers. These are ideally suited for use
in multicast file transfer applications such as FTP-M.

B. Existing Multicast File Transfer Applications

While there are other multicast file transfer applications
that have been proposed (FCAST [3], RMDDP [11], MFTP
[13], XFTP [16], MDP [7]), these build a new file transfer
protocol and user interface from scratch. However, FTP-M
reuses and very simply extends a well known file transfer
protocol (FTP) and interface (ftp) to achieve multicast file
transfer. This makes FTP-M more suitable for easy and large
scale deployment. Moreover, FTP-M does not depend on the
use of a particular strictly-reliable reliable multicast protocol
to function and can be used with any such protocol.

We now briefly describe TCP-M, an illustrative strictly-
reliable multicast protocol that is used in our implementation
of FTP-M.

III. TCP-M

To illustrate the working of FTP-M, we use a TCP-like
reliable multicast protocol called TCP-M, that was initially
proposed by Ghosh, et. al [4]. By reusing much of the TCP
code and socket interface, TCP-M minimized the changes to
FTP we need to make. FTP-M uses TCP-M as an example
multicast reliability layer to ensure strictly-reliable delivery
of data to recipients. In the following subsections, we briefly
describe the design and implementation of TCP-M.

A. Introduction to TCP-M

TCP-M, as described in [4], is a TCP-like reliable multicast
transport protocol that provides the following features:

� Strict Reliability: since unicast TCP is reused as the trans-
port layer.

� TCP-friendliness: due to the unicast TCP layer at the
source.

� Scalability: by enlisting router support to do Ack-fusion
(Refer to [4])

� Convenient API: by using the standard BSD Socket API
[15] enhanced with getsockopts and setsockopt.

B. The working of TCP-M

The essential idea behind TCP-M is to reuse a well known
unicast transport protocol to serve as the transport layer at the
source as in [5], [16]2. This idea makes sense in a multicast
scenario with unidirectional data transfer, if one does a many-
to-one mapping somewhere. In TCP-M, this is achieved at a
new adaptation layer called the Group Module (GM) intro-
duced between the TCP and IP layers at the source. Figure 1
shows the positioning of the GM layer. Effectively, the source
GM makes it appear to its TCP that it has a single peer, while
in reality, a connection is being established to multiple re-
ceivers via multicast. The GM layers at the receivers capture

2However, the detailed mechanisms of TCP-M are different from [5], [16]

any modifications that might be needed in the receiver’s pro-
tocol stack.3

In normal operation, packets originating from the source
TCP are sent to the multicast group by the source GM. Re-
ceiver GMs, on receiving multicast packets, make appropriate
modifications to fool the receiver TCP that they are genuinely
from its peer. Receiver TCPs send Acks to their peers and
the GM layers direct the those Acks to the source TCP. The
GM layer at the source does the many-to-one mapping, i.e.,
fuses all incoming Acks and passes up a summarized Ack to
the TCP above. The details of connection establishment and
tear-down may be found in [4].

As an enhancement, TCP-M enlists router support to fuse
Acks as they proceed towards the source. However, the ab-
sence of Ack-fusing routers does not pose a problem to the
working of TCP-M.

Network

TCP

IP

GM

TCP

IP

GM

TCP

IP

GM

Fig. 1. TCP-M Architecture

C. Implementation of TCP-M

We implemented TCP-M in NetBSD kernel 1.3.2. Our im-
plementation included the source and receiver GMs. Router
Ack-fusion was not implemented. For modularity and easy
maintenance, we chose to implement the GM as a sepa-
rate protocol layer in NetBSD. The API was implemented
as getsockopt and setsockopt extensions to the BSD
Socket Interface [15]. setsockopts were provided to en-
able TCP-M semantics for a socket, to set the list of receivers
at the source, to set the multicast group for the transfer and
to boot out slow receivers. getsockopts were provided
to return the list of currently active receivers, to query re-
ceiver RTTs, and to return certain statistics. The semantics
of socket, bind, connect, and accept were not mod-
ified. For details, the reader is referred to [8].

Having described TCP-M and its implementation, we now
go on to present the nuts and bolts of FTP-M.

IV. FTP-M

FTP-M is an application-layer protocol-interface combina-
tion that ensures fast and convenient multicast file transfer.
Although the FTP-M idea works with any strictly-reliable

3In the case of NetBSD 1.3.2 TCP, receiver side modifications are very
small but unavoidable



multicast transport protocol, we chose TCP-M as its trans-
port service since we already had a usable prototype of TCP-
M. In addition, TCP-M provided a comprehensive list of fea-
tures – TCP-like congestion control, scalability, containment
of Ack-implosion, easy API, and resilience to failures (refer
Section II).

A. FTP-M features

Before going on to describe the intricacies of FTP-M, it is
useful to summarize its features:

� FTP-M extends the standard FTP interface to achieve one-
to-many file transfer.

� It uses a strictly-reliable Reliable Multicast protocol (such
as TCP-M) to push data to multiple destinations.

� The actual modifications made to FTP are minimal. Most
modifications are on the client side. The FTP server needs
minimal extensions to function as an FTP-M server.

� The FTP-M interface has two modes of operation: one, the
normal mode; two, one-to-many multicast mode. While func-
tioning in multicast mode, FTP-M allows only push opera-
tions (such as put and mput); all pull commands (such as
get and mget) are disallowed in this mode.

Before proceeding, a brief overview of the FTP protocol and
interface is appropriate.

B. FTP

The FTP model is illustrated in Figure 2. FTP (unicast)
uses two connections: a control connection, and a data con-
nection. The control connection is active all through a file
transfer session while the data connection is established and
closed on demand. As can be seen in Figure 2, the control
connection between the peer protocol interpreters that im-
plement the File Transfer Protocol uses FTP command-reply
sequences (such as USER, PASS, STOR, RETR, etc.). The
data connection between the data transfer processes follows
no specific protocol and involves the transfer of a sequence of
bytes. The user interface provides a simpler interface to the
FTP commands. For example, the user interface put com-
mand uses the STOR FTP command provided by the protocol
interpreter. FTP replies are number-coded to facilitate easy
interpretation.

User DTP Server DTP

Server PIUser PI

PI: Protocol Interpreter
DTP: Data Transfer Process

Interface
User

User

System
File Data Connection

FTP Commands

System
File

Fig. 2. The FTP Model

FTP provides two ways transferring data. In the first way,
called active mode transfer, the client side creates a socket

that waits4 on a certain port p, and using the PORT command
informs the server of port p. The server then initiates a con-
nection to port p on the client machine to start the data trans-
fer. In the second way, called passive mode transfer, the client
side tells the server using the PASV command that it instead
wants to connect to a waiting server socket. In response,
the server waits on a new socket and informs the client of its
port q. The client then initiates a connection to port q on the
server machine to accomplish data transfer.

C. FTP-M model

Having described the working of FTP in brief let us now
go onto examine the design of FTP-M. Figure 3 illustrates the
FTP-M model. Let us examine Figure 3 in greater detail. In
the FTP-M model, the client maintains control connections
to several servers5; these control connections use enhanced
FTP commands and replies. However, whenever there is a
need to push data, a single reliable multicast (here, TCP-M)
connection is initiated to all FTP-M servers. At any point
of time, the user can work or negotiate with only one con-
trol connection; hence, the client protocol interpreter points

to only one control connection (termed the active control
connection) at any point of time. An FTP-M data transfer
functions in two phases. In the first phase called the negoti-

ation phase, the user establishes control connections to all
the servers and if necessary, prepares each server (by say,
moving/deleting/renaming files or changing working direc-
tory) for the planned multicast data transfer. In the second
phase termed the data transfer phase, the user issues a suit-
able push interface command (put, mput or send) to reli-
ably multicast the file. These two phases could repeat several
times during an FTP-M session.

System
File

User
Interface

PI: Protocol Interpreter
DTP: Data Transfer Process

Data Connection
TCP-M

System
File

Server PI

System
File

Server PI
User DTP

User

Server DTP

Server DTP

.

.

.

.

.
User PI

FTP Commands

(active)

Fig. 3. The FTP-M Model

D. FTP-M User Interface

Figure 4 shows an example FTP-M session. In the exam-
ple below, the user first switches the FTP-M user interface
to the multicast mode by using the multi command6. He

4using the accept system call
5As mentioned in Section II, the multicast source needs to know the in-

tended receivers
6FTP-M interface defaults to standard FTP interface if the multi com-

mand is not issued



then opens a control connection to pc1 as pat and readies
the stage for the planned file transfer. He then opens an-
other control connection to pc2 as al and performs similar
actions. Now, the active control connection points to pc2.
Later, he realizes that he needs to check the directory con-
tents in pc1 and hence opens pc1 again, which switches
the active control connection now to pc1. Finally, he does a
put to attempt to transfer the file using TCP-M to both pc1
and pc2. However, pc1 crashes in the middle of the transfer,
but the file is transfered successfully to pc2. The failure of
pc1 is explicitly reported by FTP-M. Note that this interface
reuses most of the FTP user interface.7

ftp-m> multi

ftp-m> open pc1

Connected to pc1

220 pc1 FTP-M server ready

Name : pat

331 Passwd required for pat.

Passwd:

230 User pat logged in.

ftp-m> ls

-rw-r- - - - - 1 pat ... .zshrc

ftp-m> mkdir Temp

ftp-m> cd Temp

ftp-m> open pc2

Connected to pc2

220 pc2 FTP-M server ready

Name : al

331 Passwd required for al.

Passwd:

230 User al logged in.

ftp-m> ls

-rw-r- - - - - 1 al ... unwanted

ftp-m> del unwanted

ftp-m> mkdir Doc

ftp-m> cd Doc

ftp-m> open pc1

Switching to pc1

ftp-m> ls

-rw-r- - - - - 1 pat ... .zshrc

ftp-m> lsopen

pat@pc1 : Temp (active)

al@pc2: Doc

ftp-m> put README

pc1 failed during transfer.

Transfer partially successful.

ftp-m> bye

221 Goodbye.

Fig. 4. An example FTP-M interaction

Below, we enumerate the various modifications FTP-M
makes to the existing FTP interface. The usage of the fol-
lowing commands changes in multi mode.

1. open: multiple opens are now allowed.

2. put and mput: in multi mode, these commands use a
TCP-M connection to push the file.

3. close: if specified with a hostname argument, it
closes the control connection to hostname. If no argument
is used, it closes the active control connection and switches
the active control connection to the first in the list of con-
nected servers.

4. get and mget: these are disabled in multi mode, since
only push commands are available in this mode.

In addition, a few new commands are introduced for added
convenience.

1. lsopen: This command is used to list all open connec-
tions. This command can be subsumed under the more gen-
eral status command, but is incorporated to retain speci-
ficity.

2. run: This command, if used with a file argument loads
and executes a configuration file that stores the mapping be-
tween the servers in consideration and the files that need to be

7It should be noted that while the Figure 4 uses the prompt ftp-m> for
clarity, a real implementation would instead use the normal ftp> prompt.

transferred. This too can be avoided by storing FTP-M com-
mands in a file and redirecting their contents8 to an FTP-M
execution.

E. Behind the Scenes

We now describe how the above interface is made pos-
sible in FTP-M. As was mentioned earlier, there are two
modes (active and passive) in FTP. Since FTP-M uses TCP-
M where the source initiates connection to the receivers, the
data transfer mechanism has to use the passive mode, where
the client initiates the connection. In usual FTP, the passive
mode causes the server side to wait on a usual TCP socket.
In FTP-M, since we want the server side to wait on a TCP-
M socket, a new protocol command (PASM) is introduced.
PASM causes the remote end to wait on a TCP-M socket and
return the address and port number to the client side. With
this knowledge, let us examine the FTP-M protocol command
reply sequences that correspond to the example FTP-M trans-
fer shown in Figure 4.

!

1

USER pat

 

1

331 Passwd needed for pat.

!

1

PASS

 

1

230 User pat logged in.

!

1

PORT 24,94,3,173,4,196

 

1

200 PORT cmd successful

!

1

LIST

 

1

150 Opening ASCII mode

 

1

226 Transfer complete.

!

1

MKD Temp

 

1

257 “Temp” dir created.

.

.

!

2

USER al

 

2

331 Passwd needed for al.

!

2

PASS

 

2

230 User al logged in.

!

2

PORT 24,94,3,173,4,197

 

2

200 PORT cmd successful

!

2

LIST

 

2

150 Opening ASCII mode

 

2

226 Transfer complete

.

.

!

1

PASM

 

1

227 Entering passive

mode(132,239,17...)

!

2

PASM

 

2

227 Entering passive

mode(132,239,17...)

!

1

STOR README

 

1

150 Opening BIN mode

!

2

STOR README

 

2

150 Opening BIN mode

Data transfer completes...

pc1’s death reported...

 

2

226 Transfer complete

 

1

(dead)

!

1

QUIT

 

1

(dead)

!

2

QUIT

 

2

221 Goodbye.

Fig. 5. FTP-M cmd sequence corresponding to Figure 4

Figure 5 shows the FTP-M protocol exchange. The com-
mands directed to pc1 are preceded with !

1

and those di-
rected to pc2 are preceded with!

2

. The ‘ ’s have a similar
meaning. Notice the use of the PASM command. Notice also
that pc1’s failure during the TCP-M transfer is reported by
TCP-M to the application and is handled elegantly.

F. Implementation

We implemented FTP-M on the NetBSD version of ftp
and ftpd. The extension of ftp to include the multicast
extensions took just around 400 lines of well-placed code.
ftpd modifications took around 100 lines of code. We hope

8using a standard shell redirection mechanism



this shows the simplicity of our design. For lack of space, we
do not mention performance figures except to state that using
733 Mhz Pentium III PCs, file transfer time for a 80 MB file
on a 100 Mbps Ethernet increased by around 30% (due to the
overhead of TCP-M versus standard TCP) when using two
receivers instead of a single receiver; thereafter, file transfer
time remained nearly constant up to 12 receivers. By measur-
ing CPU utilization with 12 receivers and extrapolating, we
expect that the file transfer time would remain at this value till
around 216 receivers at which point the CPU would saturate
(the ack fusion overhead of TCP-M grows with the number
of receivers.)

As mentioned earlier, the API exported by TCP-M to the
application layer was a simplegetsockopt/setsockopt
extension to the BSD Socket Interface. This was much not
of a deviation from the API used by unicast ftp or ftpd to
interact with TCP. This was another factor that aided the tran-
sition from FTP to FTP-M. While several reliable multicast
protocols have been implemented with modified BSD Socket
APIs ([16] and [5] to mention a few), this API advantage may
not be available in the case of an implementation of FTP-M
over a general strictly-reliable reliable multicast protocol. We
argue that inserting code to use a non-standard API would not
add a significant amount of development effort.

program added modified

ftp

multi

lsopen

run

open close

put send

get recv

ftpd PASM -

TABLE I

Table detailing ftp and ftpd modifications

Table I summarizes the modifications made to the ftp and
ftpd programs.

V. DISCUSSION

In the preceding subsections, we have seen how FTP-M
provides an efficient and elegant way of achieving multicast
file transfer by simply extending FTP. Since FTP-M does not
directly depend on any particular reliable multicast protocol,
issues concerning scalability, response to congestion, deploy-
ability are based almost entirely upon the reliable multicast
protocol used. It is true that if one wanted to transfer a file to
several thousands of receivers, the FTP-M interface may not
be appropriate. We intend FTP-M for small to medium scale
multicast scenarios. In typical usage scenarios such as fast
network backups, web-server mirroring, and software update
distribution, we argue that FTP-M would provide a familiar
and convenient way of transferring files via IP multicast for
hundreds of receivers.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced FTP-M, which extends the ex-
isting FTP protocol and user interface to provide a simple and
convenient way of achieving multicast file transfer. FTP-M is
general enough to be implemented to use any strictly-reliable

multicast protocol. In this paper, we described the implemen-
tation of FTP-M using TCP-M, an example strictly-reliable
multicast protocol. The basic implementation required less
just a few hundred lines of code modifications to FTP client
and server, proving the elegance of the FTP-M idea. We hope
that that the generality, convenience of use/implementation
and familiarity of FTP-M makes it suitable for adoption as a
standard application in today’s Internet.

One could extend this work by defining a general and con-
venient API between the multicast file transfer application
and the strictly-reliable protocol. One could also implement
FTP-M with a variety of strictly-reliable multicast protocols
to get a deeper understanding of the application-protocol in-
terdependence.

VII. ACKNOWLEDGMENTS

We thank Girish Chandranmenon, Lili Qiu, Geoff Voelker
and Joe Pasquale for their insightful comments.

REFERENCES

[1] S. Armstrong, A. Freier, and K. Marzullo. Multicast Transport Proto-
col. Network Working Group, RFC 1301, February 1992.

[2] S. Floyd, V. Jacobson, S. McCanne, C. Liu, and L. Zhang. A Reliable
Multicast Framework for Light-weight Sessions and Application Level
Framing. In Proceedings of ACM SIGCOMM ’95, pages 342–356,
August 1995.

[3] Jim Gemmell, Eve Schooler, and Jim Gray. Fcast Multicast File Dis-
tribution. IEEE Network, Vol. 14, No.1, pages 55–68, Jan 2000.

[4] Rajib Ghosh and George Varghese. Congestion Control in Multicast
Transport Protocols. Technical Report WUCS-98-19, Washington Uni-
versity in St. Louis, June 1998.

[5] Kang-Won Lee, Sungwon Ha, and Vaduvur Bharghavan. IRMA: A
Reliable Multicast Architecture in the Internet. In Proeedings of IEEE
Infocom ’99, New York, NY, March 1999.

[6] John C. Lin and Sanjoy Paul. RMTP: A Reliable Multicast Transport
Protocol. In Proceedings of IEEE INFOCOM ’96, pages 1414–1442,
March 1996.

[7] J P Macker and R B Adamson. The Multicast Dissemination Protocol
Toolkit. Proceedings of IEEE MILCOM 99, Nov 1999.

[8] Manamohan Mysore. TCP-M: A TCP-friendly Transport Pro-
tocol for Multicast File Transfer Applications. Thesis, Uni-
versity of California – San Diego, June 2000. Available at
http://mysore.ucsd.edu/˜ mmysore/ms-thesis.ps.

[9] J. B. Postel and J. K. Reynolds. File Transfer Protocol. RFC 959,
October 1985.

[10] I. Rhee, N. Balaguru, and G. N. Rouskas. MTCP: Scalable TCP-like
Congestion Control for Reliable Multicast. Technical Report TR-98-
01, Department of Computer Science, NCSU, January 1998.

[11] L Rizzo and L Vicisano. Reliable Multicast Data Distribution pro-
tocol based on software FEC techniques. Proceedings of the Fourth
IEEES Workshop on the Architecture and Implementation of High Per-
formance Communications Systems, HPCS ’97, Chalkidiki, Greece,
June 1997.

[12] Luigi Rizzo. pgmcc: a TCP-friendly single-rate multicast. SIGCOMM
Conference 2000, Stockholm, pages 17–28, August 2000.

[13] K. Robertson, K. Miller, M. White, and A. Tweedly. Starburst Multi-
cast File Transfer Protocol (MFTP) Specification. Internet Draft, In-
ternet Engineering Task Force, April 1998.

[14] Tony Speakman, Dino Farinacci, Steven Lin, and Alex Tweedly. PGM
Reliable Transport Protocol. Internet Draft: draft-speakman-pgm-
spec-01.txt, January 1998. Expires July 1998.

[15] W. Richard Stevens. UNIX Network Programming, Volume 1, Second
Edition: Networking APIs: Sockets and XTI. Prentice Hall, 1998.

[16] R. Talpade and M. H. Ammar. Single Connection Emulation: An Ar-
chitecture for Providing a Reliable Multicast Transport Service. In
Proceedings of the 15th IEEE Intl Conf on Distributed Computing Sys-
tems, Vancouver, June 1995.




