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ABSTRACT

A general incremental variational method for the analysis of geo-
metrically and physically non-linear problems in continuum mechanics is
developed. This variational method is applicable to any type of material
properties. In particular, non-linear constitutive laws for elastic,
and elastic-plastic materials are considered. Starting from the basic
principles in continuum mechanics, such as the invariance requirements
and the thermodynamic laws, general incremental constitutive equations
have been derived for neon-linear elastic materials. For the elastic-
plastic materials an incremental constitutive law is considered where
deformations are infinitesimal but rotations are finite.

The method has been specialized and applied to the analysis of
large deflections of elastic-plastic axisymmetrically deformed shells
of revolution. The displacement formulation of the finite element
method has been exploited for this problem and a digital computer
program is written for the numerical analysis. Several examples of
circular plate, shallow shell, and thin axisymmetric shells of arbi-
trary meridional form are presented to illustrate the convergence and

accuracy of the method.
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NOMENCLATURE

A list of all important symbols in the text is compiled here. The
symbols which are introduced in some sections of the text but which are not
referred to later are not included. Some of the symbols may have two mean-
ings in different sections; these are clearly defined and should not confuse
the reader. For the symbols which have either lengthy definitions or no
particular name the reader is referred to the place in the text where they
were first introduced.

A tensor component with an asterisk (*) superscript denotes a
physical component. Repeated indices indicate summation over the range of
the indices unless otherwise stated. Latin indices range from 1 - 3, and

Greek indices from 1 - 2.

a,a,A surface area in the initial, first and second configurations,
respectively

A increment of free energy function

lA,ZA free energy function of configurations 1 and 2, respectively

gu,é@ in plane base vectors of the middle surface of the shell in

configurations 1 and 2, respectively

33§A3 unit vector normal to the middle surface of the shell in con-
B figurations 1 and 2, respectively
o ) . . -
2,32 covariant and contravariant components of the middle surface
metric tensor in configuration 1
; as defined in (II.51
ijk® ( )
B the second invariant form of the middle surface of the shell
’ in configuration 1
b% curvature tensor of the middle surface of the shell in con-

figuration 1

vii
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edge of rhe shell

Green's deformation tensor between configurations 1 and 2

Green's deformation tensors at configurations 1 and 2, respectively
elastic~plastic moduli tensor

physical components of elastic-plastic moduli tensor, defined in
(11.77)

elastic-plastic moduli tensor for generalized plane stress, see
(111.28)

Young's modulus
tangent modulus

linear part of the meridional strain of the middle surface of the
shell

linear part of the circumferential strain of the middle surface of
the shell

linear part of Lagrange strain tensor from configuration 1 to 2

linear part of the Lagrange strain tensor in configurations 1
and 2, respectively

hardening function defined in (II.42)
yield function

increment of body force per unit mass
plastic potential

base vectors in the initial, first, and second configurations,
respectively

metric tensors in the initial, first, and second configurations,
respectively

thickness of the shell

hardening function defined in (II.43)

unit base vectors

invariants of the deviatoric stress tensor

cord length of an element

viii




increment of the meridicmal and circumferential bending moments
measured per unit length of the middle surface of the shell in
configuration 1

meridional and circumferential bending moments per unit length
0of the middle surface of the shell in configuration 1

increment of the meridional and circumferential in plane forces
per unit length of the middle surface of the shell in configura-

tion 1

meridional and circumferential in plane forces per unit length
of the middle surface of the shell in configuration 1

direction cosines of the outward normal to the boundary surfaces
in the initial, first and second configurations

meridional and normal force increments measured per unit area of
the middle surface of the shell in configuration 1

increment of shear force per unit area of the middle surface of
the shell in configuration 1

radial coordinate as shown in Figure III.1

rate of heat production per unit mass in configurations 1 and 2,
respectively

meridional and circumferential principal radii of curvature of
the shell in configuration 1

arc length
entropy per unit mass in configurations 1 and 2

increments of Piola symmetric stress tensor measured per unit of
srea a and a, respectively

Piola symmetric stress tensor in configuration 2 measured per unit
of area a and a, respectively

increments of surface traction measured per unit of area a and
d, vrespectively

surface tractions in configuration 1 measured per unit of area a
and 4, respectively

surface tractions in configuration 2 measured per unit cof area a
and &, respectively

meridional displacement increment of the middle surface of the
shell, see Figure III.2



increment of the displacement vector of a generic point in the
shell space

increments of displacements of the middle surface of the shell,
see Figure 1IV.1

increments of the displacements in terms of the coordinates of
the initial and first configurations, respectively

displacements between the initial state and the first configura-
tion in terms of the coordinates of configuration 1 and initial
state, respectively

displacements between the initial state and the second configura-
tiocn in terms of the coordinates of configuration 2 and initial
state, respectively.

volumes of the initial, first,
respectively

and second configurations,

normal displacement increment of the middle surface of the ghell,
see Figure III1,2

plastic work

virtual work

curvilinear coordinates of the initial state, and configurations
L and 2, respectively

Cartesian coordinates of the initial state, and configurations 1
and 2, respectively

generalized ccoordinates

angle shown in Figure IV.1

Christeffel symbols

virtual variation

Kronecker delta

Lagrange strain tensor between configurations 1 and 2

Lagrange strain tensors at configurations 1 and 2

elastic and plastic parts of Lagrange strain tensor between
configurations 1 and 2

elastic and plastic parts of Lagrange strain tensor in configu-
ration 1
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physical components of the meridional and: circumferential
Lagrangian strain of the shell between configurations 1

and 2

physical components of the meridional and circumferential
Lagrangian strain of the middle surface of the shell between
configurations 1 and 2

equivalent plastic strain, see (I1.41)

ratio of tangent modulus to elastic modulus, also coordinate
along the thickness of the shell

local coordinate for an element as in Chapter IV, see Figure IV.1

non-linear part of Lagrange strain tensor between configurations
1 and 2

circumferential coordinate of the shell, see Figure III.1l; also
temperature as.in Chapter I

hardening parameter

change of the meridional and circumferential curvatures of the
middle surface of the shell between configurations 1 and 2

linear parts of Kgs and Ke, respectively
non-linear parts of Kg» and Kgs respectively

Lamé constant, see (II.1); also the geometric parameter of
shallow shells, see Chapter III - section III.,1,2

as defined in (II1.26) and (II.44)

Lamé constant; see (IL.1); also the dterminant of space shifter
tensor, see (E.5)

space shifter tensor, see (E.3)

Poisson's ratio

local coordinate for an element, see Figure IV.1
. . 2

the difference between strains €., and Tg,

ij ij

mass density in the initial state, and configurations 1 and 2,
respectively

~equivalent stress

Cauchy stress components in' configuration 1

%1
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deviatoric components of Cauchy stress tensor in configuration 1
meridional angle of the shell

as defined in (III.5)

normal and meridional physical components of the rotation

vector of the middle surface of the shell between configurations
L and 2.

rotation terms in the strain tensors £, ., £, and €.
respectively

as defined in (II1.31)

column vector

row vector

matrix

displacement transformation matrix, see (IV.57)
as defined in (IV.29)

matrix of elastic-plastic moduli

rigidity matrix, see (III.60)

vecror of linear components of sitrain, see (IV.24)
as defined in (IV.36)

as defined in (IV.48)

incremental stiffness matrix of an element in coordinates o
due to the linear parts of increments of strain, see (IV.30)

e

stress stiffness matrix for an element in ceoordinates

s
1V.50)

o,
a1

nitia
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]

=

=

incremental stiffness matrix for an element in coordinates
{o}, see (IV.56)

incremental stiffness matrix of an element in global coordin-
ate system, see (IV.65)

incremental stiffness matrix of the shell, see (IV.66)

vector and diagonal matrix of stress resultants in configura-
tion 1 of the shell, see (IIT.56) and (IV.41)

xii -



{pl as defined in (I11.52)
19} increment of equivalent nodal point force

Q. } increment of equivalent nodal point force in generalized
coordinates {a}

{R} increment of external nodal loads of the shell

ir} increment of nodal displacements of the shell

[Tl transformation matrix, see (IV.60)

{a} generalized coordinates

{e} Lagrange strain between configurations 1, and 2, see (IIL.59)
{n} non-linear part of Lagrange strain {€}, see (III.55)

int as defined in (IV.36)

[o] as defined in (IV,52)

{xt as defined in (IV.45)

[x] as defined in (IV.46)
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INTRODUCTION

v

The consideration of geometrical and/or material nonlinearities
in the analysis of many structures is quite important for various reasons,
e.g., for the precision demanded in the prediction of the actual behavior
of such structures under severe environmental and loading conditions and
also for economical considerations. As an example, consider thin shells
of revolution. The buckling behavior of these structures is essentially
of nonlinear character and the prediction of their post buckling charac~
teristics without such consideration is not possible. Even under pre-
buckling conditions the analysis of the behavior of some shells of
revolution like a membrane torus or a thin shallow cap inevitably requires
nonlinear analysis. Also, the necessity for utilizing engineering materials
more efficiently and economically in such areas as aerospace industry re-
quires the incorporation of physical and geometrical nonlinearities in the
analysis of shell type structures.

There are no general methods of solution of nonlinear boundary
value problems in engineering. Only a few very simple nonlinear problems
can be solved by exact analytical methods [1,2]. Even the classical approx-
imate solutions such as asymptotic expansions and weighted residual methods
can be applied to relatively simple problems [1,2,3] and resort must be
made to numerical procedures of analysis. In the past two decades the
advent of high-speed digital computers has renewed the efforts at recon-
sidering and extending some classical approximate methods such as weighted
residual and Ritz method, numerical finite difference techniques, and the
development cof new concepts like invariant imbedding and other numerical

procedures.




The finite difference method has been studied rather well mathe-

marically [145]. The difficulty with the application of this numerical
technique in the problems of continuum mechanics is that it is not suit-
able to express some boundary conditions easily and cannot accommodate
quite irregular changes of geometrical and material properties.

Invariant imbedding is the transformation of the boundary value
problem into an initial value problem by introducing new variables and
parameters [4,146]. This approach, together with the quasilinearization
rechnique, which is an extension of Newton-Raphson method for functional
analysis, can be formulated into a predictor corvector formula which may
prove useful in the solution of some nonlinear boundary value problems in
mechanics of solids. The disadvantage of this method is that instead of
one original problem a family of problems must be solved, resulting in
more computational effort. In certain problems the additional calcula-
tions provide some extra informations which are desirable to know,

Another discrete approximation to the boundary value problems
is the finite element method [5,6], which is an extension of the classi-
cal Ritz method for the solution of wariational problems. In the finire
element method the domain of the problem is discretized into a number of
disjoint subdomains called elements, a set of points of which (usuaily on
the boundary) are called nodes. Then the integrand of the functional
integral is approximated by a set of assumed functions which are expressed
in terms of the values of the integrand functions at the ncdes by suitable
interpclation formulas satisfying the continuity cenditions at the nodes.

In the problems of continuum mechanics the finite element method
is easily adaptable to matrix formulation which can be readily used for

the analysis by computers. The method is capable of approximating quite




smetrical parameters in

handle arbitrary variations of the physical and
the domain of the problem.

The above three methods can be used with an iterative and/or
incremental integration scheme. The choilce of elther one of these depends,
among other factors, on the physical charvacteristics of the problem. For
example, for a non-couservative system like a continuum with the incremen-
tal constitutive law of plasticity an incremental procedure should be
adopted. The combination of the finite element method with an incremental
forward integration procedure on some variable of the problem is quits
suitable for the analysis of many problems on digital computers.

The purpose of the present work is to develop an incremental
variational method of analysis for the problems in continuum mechanics
considering both the geometrical and physical nonlinearities, and to
apply the method for the large displacement analysis of elastic-plastic

shells of revolution using the displacement formularion of the finite

element method.

£

the
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Several forms of the incremental variarional expressions ¢

i
[

equilibrium of the continuum are considered in Chapter I and Appendix C.
From among these one expression which is based on & moving reference con-
figuration is chosen and used in subsequent developments. The fact thar
such a variational expression leads to correct incremental equations of
equilibriuwn and boundary conditions is shown in Appendix A. Also, in

hapter, after a preliminary review of the laws of thermodynamics

and invariaence principle for energy, the incremental nonlinear constitu-
cive equations of elasticity are derived. For simplicity of understand-
ing of the basic ideas, all of the presentations in Chaprters I and Il are

in Cartesian coordinates.



In Chapter II the incremental constitubive equations for elastic
materials are simplified for the isotroplc case and for infinitesimal
deformations but finite rotations. Based on these kinematic restrictions
and for inicially isotropic materials an incremental theory of plasticity
for merals is deduced from the general theory of plasticity by Green and
Naghdi [50]. It is shown that for initially isotropic materials the form
of the elastic-plastic constitutive equations remains invariant in Cartesian
and initially orthogonal convected curvilinear coordinates if the Cartesian
rensors are replaced by the physical components of their corresponding
curvilinear tensors. This invariance is very useful in applying the form-
ulations in Cartesian coordinates to shells of revolution.

Chapters I1I, IV, and V are on the application of the incremental
method to the large displacement analysis of axisymmetrically deformed
shells of revolution., The kinematic relations for agisymmetric shells of
revolution are derived in Chapter III. Alsc . in this chapter the elastic-—

plasrtic constitutive equations of Chapter II, and the incremental expres-

sion of virtual work of Chapter 1 are specialized for axisymmetric shells

of revolurion. Finite slement formulation of the variational expression

in Chapter I is given in Chapter IV and the various stiffness matrices
resuliing from it are demonstrated. For the finite element analysis of

axisymmetric shells of revolution a curved element developed in [140} is

I
£

mployed and the displacement formulation of the finite element method

for limear incremental analysis is set up. A convenient procedure for the
formarion of the initial stress stiffness matrix is demoustrated. Some
numerical examples are given in Chapter V and the conwvergence of the

gsolutions are studied.
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CHAPTER T: THEORY OF THE INCREMENTAL METHOD OF ANALYSIS
IN CONTINUUM MECHANICS
1.1 Review of Literature on Incremental Methods of Analysis in

Continuum Mechanics

The incremental method of analysis in continuum mechanics is closely
related to the developments in the theory of the continuum which 1s

under initial stress. Two approaches have been Tollowed in the formu-

i

lation of the theory of deformable bodies under initial stress. In the
first approach exact constitutive equations have been sought for the
superposition of small displacements or displacement gradients upon
arbitrarily large deformations. Tensorial definitions have been used
for strains and corresponding stresses have been defined. The second
approach is more intuitive and relies on approximations within the
kinematics of deformation and the constitutive equations.

According to Truesdell [7] the investigations in the exact theory

e back to Cauchy who arrived at the correct form of the constitutive

equations of an elastic body under initial stress [8]. A brief aistorical
account of the developments in the theory of elasticity of deformable
bodies under initial stress is given in [71. Cauchy's constitutive rela-

tions were derived by Murnaghan [3] by means of Green's theory of elastic

energy . Both Cauchy and Murnaghan's equations are limited to the super-

]
-y
o
=
7

osition of infinitesimal displacement gradients on large initial d
ations. A more restrictive theory in which the superpcosed displacements

themselves are infinitesimal was developed by Green, Rivlin, and Shield

[1i0].



ATY of these results indicate that the isc

displacements are infinitesimal,
Arother group of investigators have adopted the nontensorial straln

ity based on the definition of extension (the so-called engineering

“inition of strain) as a measure of deformation. They separate

o]

[l
@]
ey
O
H

mations and rotations and use constitutive eguations which involve
only pure deformations--thus separating the physics of the problem from
the geometry. This approach has been followed by Scuthwell [11], Biezeno
and Hencky [12], and has been extensively discussed and used by Biot sinec
1934 [13]. The difficulty with such a strain measure is that it is not

5 tensorial entity and cannot be used easily in curvilinear coordinates

unless some approximations are made. Also, in general, 1t is an irrational

function of displacement gradients unless approximations of the third order

*
are committed . The resulting non-linear expression of strain has a

vestricted form in which the linear strains are infinitesimal. Even rota

1imited to the first order to make tThe transformations among

the various stress measures practically useful.

It can be said that the theories developed by this approach are

in scope and generality and usually leave many approximations Lo

be made by the user, a feature which may prove both helpful and misleadin

I

and more restricted development in the theory of elastic sta-

¢

2

bility was reported by Prager [14] who superposes infinitesimal displace-

u.

ments on large ones and performs the superposition of stresses by the

Piola unsymmetric stress tensor, He assumes that the incremental consti-

Biot, M.A. [13], pp. 19
% i
Biot, M.A. [13], pp. 10, 21.

e

g
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Tn an attempt to extend Biot's ideas to the analysis of large
deformations, Felippa [15] wrote an expression for virtual work in
which he uses the Lagrangian strain increment together with the Bie-
zerio-Hencky type of stress. It can be shown that these stresses and

trains are not conjugate in the sense that their product doss not

w

represent work unless the deformations are infinitesimal in which case
Biot's relations are obtained. Therefore, his theory is applicable to
problems in which deformations are infinitesimal but rotations are of

first order.

2]

The increasing interest in the non-linear analysis of structures
has accelerated the application of the incremental method of analysis
to such problems. The use of incremental procedure together with the
finite element technique (with or without iterative procedures) is
gaining momentum in the analysis of nonlinear problems in structural
mechanics. However, so far no rigorous attempt has been made to give
a general theory for the incremental analysis and in most cases the

tack of understanding of the theory of the continuum under initial

a2}

{

is evident. This is partly due to the simplicity of the problem

approximations are made. The common feature of most of these incremental
procedures is the presence of the so called geometric or the initial

255 stiffness matrix which accounts for the effect of change of the

geometry on equilibrium equations. Since the investigations in this

w

area are applications to various structural problems and do not present
5 unified theory a detailed survey of them will not be presented but

rather the trend of developments will be outlined. More detailed study



of the papers on circular plates and shells of revolution will be given
in Chapter 3.
The use of the geometric stiffness matrix in the linearized incre-

ental method of analysis was first reported by Turner, et al. [16] for

=

tringers and triangular membrane elements. Gallagher and Padlog [17]

&}

derived the geometric stiffness matrix for beam columns from the
expressioh of potential energy. Argyris and his co-workers have
advocated the separation of rigid body motions and deformations of the
elements in the finite element method of analysis and have derived corre-
sponding geometric stiffness matrices for one, two and three dimensional
bodies [18], [19], [20], [21]. An account of the developments in the
incremental approach for nonlinear analysis of structures up to 1965 is
given by Martin [22]. 1In both [22] and [23] Martin tries to present a
more consistent method of deriving the initial stress stiffness matrix.
Similar attempt was made by Oden [24] who uses the potential energy of
the structural system. The application of the geometric stiffness matrix
for the analysis of linear eigenvalue stability problems for beam columns

is reported by Gallagher and Padlog [17]. 'The stability analysis for

ot

plane stress problems is considered by Turner, et al. [25], for plate
problems by Hartz [26] and Kapur and Hartz [27], and for shells by Gal-
lagher, et al. [28], [29] and Navaratna [30]. The problems of post
buckling of plates is studied by Murray [31] who uses an iterative
incremental procedure, and of plates and cylindrical shells by Schmit,

Bogner, and Fox [32]. The importance of retaining higher order terms in

e

he formulation of the incremental method for the analysis of certain

¢

structures was pointed out by Purdy and Przemieniecki [33]. Mallet and

Marcal [34] discuss the methods of formulation of direct and incremental



procedures and arrive at various degrees of non-linearities.

In this chapter a general incremental method of analysis is pre-
gented in which the size of an increment is arbitrary. The incremental
equations of equilibrium are given in the form of the expression of
virtual work which renders itself to direct methods of solution of the
variational problems. In order to make the presentation self-contained,
a summary of the laws of thermodynamics and field equations are given
in section I.2. The treatment follows the work of Truesdell and Noll
[36], Green and Adkins [37], and Green and Rivlin [38]. The incremental
form of the nonlinear constitutive equations for elastic materials is
derived from the laws of thermodynamics. A more restrictive form of the
constitutive equations for the elastic-plastic continuum is given in
chapter 2. The theory is presented in Cartesian coordinates so that the
understanding of the main ideas becomes easy. However, for the sake of
completeness of presentation the derivations are also carried out in
curvilinear coordinates in Appendix A. 1In secrtion I.5 it is demonstra-
red that the constitutive equations for isotropic elastic-plastic
materials in orthogonal curvilinear coordinates will be the same as
those in Cartesian coordinates if the Cartesian tensors are replaced
by the physical components of the curvilinear tensors. This invari-
ance will be very helpful in the application of the incremental method
for the solution of problems which are formulated in orthogonal curvi-
linear coordinates.

Choice of proper notations becomes a problem in a treatise of
this form which deals with several types of stresses, strains, and
coordinates. Each new variable is defined when it first appears. A

collection of all the notations is appended. Both vectorial and




indicial notations are used. The summation convention holds.

indices range from 1 to 3, and Greek indices indicate 1 and 2.

Latin

10



11

1.2 The Field Equations and Thermodynamic Laws

Consider two configurations of a deformable body on its path of
deformation from an initial state characterized by at most an isotropic
state of stress to a final configuration (see Figure I.1). These are
called configurations 1 and 2. The volume, boundary surface and the
coordinates of the material points of the body in the initisl, first
and second configurations are denoted by V}E@E&, v,a,zi, and V,A,ZA

respectively. The balance of energy in configuration 1 can be written

D_ f“ 1 1 -—_]—- 1— 1, .— [l — e
0 J O(2 VoV T U)av = J po( £V, r)dv + | ( t v - n)da (1.1)
v v a

where %E- represents the material derivative holding E& fixed, Eg

. 1
is the mass density in the initial state, Vv ig the velocity, U,

L? s lr are the internal energy, body force, and rate of heat produc-

tion, respectively, per unit mass, lf' is the traction in configuration
1 measured per unit of area a , (see Figure I.2), and h is the rate
of heat flux per unit of area a

The invariance requirement of the energy equality (I.1) under

superposed uniform translational and angular velocities leads to the

following equations [38]: the equations of equilibrium
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FINAL STATE
" - CONFIGURATION 2
CONFIGURATION 1
vJja
INITIAL STATE
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and

1 1
Sij = Sji , (1.3)
Cauchy's equation
3z ‘
ltk = lSi. Tli;l (I.4)
3 9z,
]
and heat flux equation
h = qn (1.5)

kk
where lsij are the components of the Piola symmetric stress tensocr,
the dot over Vi denotes material derivative of Vi n is the unit
normal vector to surface a (see Figure 1.2), and la# is the rate
of heat flux in configuration 1 across a converted coordinate surface

which in the initial state is perpendicular to base vector i The

ok
. . 1 . . ,
Piola symmetric stress tensor Sij is assocciated with the deformed

base vectors g (see Figure I.2). For example, lsmn denotes a force

~

~

acting on configuration 1 parallel to base vector g and on a surface
which had unit area in the initial state and which was perpendicular to
base wvector Em, Therefore, this stress acts in configuration 1 but is
measured per unit of area in the initial configuration. Another field
equation denotes the conservation of mass which has already been assumed

in (I.1). Substitution of (I.2), (I.3), (I.4) and (I.5) in (I.1) leads

to the following local energy equality.

1 lé 1= _
Sk ke U,k

1 1

0T EO U+ 0 (1.6)

1 . , . ; .
where € 18 the Lagrange strain tensor in configuration 1.
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The second law of thermodynamics states that

is the temperature,

is the entropy per unit mags, and 8

where lS
Substitution of (I.5) into (I.7) results in the following local

expression for the second law of thermodynamics

h-
1 q, 8
— 1o — T Lo k™ 'k
-5 =4 - > .8
Po S P 7B qk,k B 20 (1.8)
Helmholtz free energy function lA is defined by

tho=tu - tse (1.9)
Substitution of (I.9) into (I.6) and (I.8) gives
— 1 —_ 1 1 e 1= 1— 1 1e _
o T - po( A+ 786 + 786) - 9y * s, g, =0 (1.10)
and
la 5
— 1 1.» 1 1 k" °k ;
-0 (TA+ 788) + Sio Erg B > 0 (1.11)
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1.3 The Principle of Virtual Work

A generic point p in the initial state will occupy positions p
and P in configurations 1 and 2, respectively. The displacement vec-
tors between these positions are shown in Figure I.1. The equations of
equilibrium at configurations 1 and 2 can be written in the form of the
expressions of virtual work in different manners depending on the choice
of the reference configuration for the variables involved, and also on
the vectors in terms of which the virtual displacements are expressed.
For example, the variables in configuration 1 can be written with ref-
erence to the coordinates of any configuration desired; also the virtual
displacements for point p can be written as 5(13) or 63 and for
point P can be written as 65 or 6(23). Three incremental expres-
gions of virtual work are considered. The first one in which configu-
ration 1 is taken as the reference and 65 as the virtual displacement
is derived in this chapter and used in the subsequent developments.

The second expression of virtual work uses the initial configuration as
the reference and 613, 623 as the virtual displacements. For hyper-
elastic materials this formulation can be recast in the form of the
variation of the incremental internal energy. The third expression of

virtual work uses the initial configuration and &u. These last two

expressions are derived in Appendix C.



17

The expression of virtual work Wv at configuration 2 is

wvzfgasudA-%-ijaé;udv (1.12)

where T 1is the surface traction per unit of area A , p is the mass
density in configuration 2, and F is the body force per unit of mass.
Equation (I.12) can be written in terms of the coordinates of con-

figuration 1 by choosing proper definitions for traction and body force.

One such traction is defined by
t =T = (1.13)

where EE is the traction in configuration 2 and measured per unit of
area in configuration 1, and da is the element of surface area in con-
figuration 1.

The stresses associated with traction ZE can be defined in various
ways, one of which is the symmetric Piola stress tensor. Consider the
neighborhood of a generic point p of the deformable body in configura-
tion 1 and the same neighborhood in configuration 2. For simplicity of
presentation a two dimensional picture of such neighborhcod is shown in
Figure I.,3, although the theoretical development is carried out for a
three dimensional body. The Cauchy stresses in this neighborhood in
configuration 1 are Tij which are agsociated with the unit base vec-~

tors The Piola symmetric stresses of our interest which act in

x
2
the same neighborhood in configuration 2 are called Sij . These

stresses are associated with the deformed base vectors Gi . For example

~
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~

-Smn denotes a force acting in configuration 2 on a surface which
had a2 unit area in configuration 1 and was perpendicular to base vector

im , and which is parallel to the base vector G . Therefore, these

stresges are in configuration 2 but are measured per unit area in con-
s . . . 2 2 .
figuration 1. The relationship between t and the stresses Sij is

of the same form as equation (I.h).

37
o 2 k
b, = 515 sz n, (1.14)

where n 1s the unit normal vector to surface a

The magnitude of the components of stress tensor 2Sij can be

arbitrarily divided into two parts (see Figure I.k).
s,, = T,, +5s,_. (1.15)

in which Tij have the same magnitude as the corresponding Cauchy
stresses in configuration 1 but are associated with the base vectors

Q , and Sij are symmetric stress components which have magnitudes
equal to the difference between the stresses 2sij and Tij ., Substi-

tution of equations (I.15), (I.14), and (I.13) into the first integral

on the right hand side of equation (1.12) results in
8%

j’T © Su dA =_/-(T,q+ s..) —~£1L Su. da (1.16)
N by ij i37 8z, i Tk
A a J

This surface integral can be replaced by an equivalent volume

integral by means of Gauss transformation. In view of the symmetry of
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s.. and T,, , the final result is
iy iJ
T-sudn= | (%s.. 7 ), 0udv +
DooomesE Sig “k,301%%Y
A v
: (1.17)
f(r.. + 5., )8e, . dv
1) 1J Jt
-

in which Eij is the Lagrangian strain from configuration 1 to 2.

1
e..==(u, . +u, . +u .u .) (1.18)
2 " i,] Jsi k,i k,j

Considering the law of conservation of mass, the second integral

on the right hand side of equation (I.12) can be written as

f pF * Su dv = [po’ ka (Suk av (1.19)

v v

where gfk denotes the body force per unit mass acting in configuration

2, but measured in terms of the coordinates in configuration 1.

Substitution of (I,17) and (I.19) into (I.12) yields

2 2
= ) .
W j (Tij + sij)deij av +f [( 5. ; Zk,j' i P fk]éuk av (1.20)

The integrandin the second integral on the right hand gide is the

expression for the equilibrium of the body and is equal to zero. There-

fore
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or
fgtu Su, da +ﬁ3 “r. 8w, av = f(r., + syl 8., av (1.21)
i i o i1 ij iJ By
a v v
The expression for virtual work at configuration 1 can be written
as
1 1
t, Su, da + [p "f., Su, dv = |T1,, Se,, dv (1.22)
i i o} i i i ij
a v v
. . 1 . . . . 1 .
in which ti is the traction acting per unit of area of a , fl is
the body force acting per unit of mass in configuration 1, and eij is

the linear part of Lagrangian strain between configurations 1 and 2.
1
e.. =7z (u , +u ) (1.23)

Subtraction of (I.22) from (I.21) gives

f(gtv _ Yo )su da f o (°r. - tr )ou av = [(T.uén.. + s, 8¢, av
i 1 i o i i i ijo i ij iJ
a. v e

(1.24)

where

1 .
nij = Eij - eij =3 uk,i uk,j (1.25)

is the nonlinear part of the increment of Lagrangian strain between

configurations 1 and 2.

Let

and + * * (1.26)
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which denote the increments of traction and body force between configur-
ations 1 and 2 both measured in terms of the coordinates of configuration
1, Substitution of these in the relation (1.2k4) &ields

fti Su; da + f Py Ty Suydy = f(Tij U T T L (1.27)
v

a v

This is the incremental expression of virtual work which in effect
is a statement of the equilibrium equations of the body at configuration
2 ipn terms of the variables which are expressed in the coordinates of
configuration 1. The proof that (I.27) leads to the incremental equi-
librium equations and the corresponding boundary conditions is given in
Appendix A where the principle of virtual work is derived in curvilinear
coordinaﬁes.

Equation (I.27) is an expression for equilibrium of the deformable

body. It is not restricted to any particular constitutive law which

the material of the continuum may obey.



23

I.4 Incremental Constitutive Equations of Elasticity

The constitutive equations of the continuum are written based on
mathematical approximations of physical observations subject to the laws
of thermodynamics, and some invariance requirements like the principle
of material frame indifference [37], [LO]. For an elastic continuum it

can be shown that

1 _
s, oy 1 , (1.28)
J 3. .
1J
1
I (1.29)
and
where
h= Facte, L0
1J
e - ls(le..,e)
ij \
(1.31)
1 1 1
ij Sig Ekl’e)
- -1
q‘i - qi( Eij’e’e’k)

For the deformable body in Figure I.l, the laws of thermodynamics

for a variable configuration 2 can be written as




Eggr - po<2A * gé@) B a£,k sy fp 0 (1.32)
and o
— 2 2_s, 2= 2o 290y (1.33)
- p (A +786) + T e ) - ——5— 20
in which
2y = QA(lelj,Eij,G) ,
% = slle 08,000
E*AJ - gggj(lglg’gij’e) ’
25& - Zaﬁ(lgkz’gkz’e’e’k) ’
2r = 2r(l€k£, zkz,e,e,k) >
ggéj is the Piola symmetric stress tensor in configuration 2 measured

per unit of area a (see Figure I.2), and Eij is defined in Appendix

3
B as

E.. = S T (1.35)

Tt is possible to divide the functions in (I.3k4) into two parts

°p = Tacte, ,0) + a(te, €

6)
i3 ij? ij

Do 1 1 e 1
s .. (Te. . L ( eij,gij,e) (1.36)

— 1
6,6 ) + Q,( ER,Q,,gKQ,’e,G’k)

o)
i
o)

5 NS S AN

(Ye. £ ,8,8, )

€0:8:05 ) ¥ v 005,0,0,8,,
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Substitution of (1.36) into (I.33) results in
2

‘ 1 1 a, 6
1 e 97A 1l - 1 d7AL 2 k ’k 2— — JA °
(Tspg = P01 Vg~ P US + 350 - g+ (s -0y e )y
a3’ kg
k2
o A 1l- —_ oA\ 2
(5,0 = 04 -gf——) wg = P (8 + 5516 >0, (1.37)
12
which in view of (I.28) and (I1.29) becomes
Za 6
D — QA ¢ - 9A | 1= o oA 2 Kk ’k
(Tsy g - 00 58— e+ (s, =0 ) &,y - 0 (5 + 55)8 - —3 >0
®e kL SEKQ/
(1.38)
Tn the same manner the energy equality (I.32) reduces to
Tr+pA+bs+ed) - . -5 E. -5 =0 (1.39)
o o k,k k& “ki k% k& ’

Te ® ®
Since g gk% , and 6 can be chosen arbitrarily, following a

similar argument presented by Coleman and Noll [40] it can be concluded

that
—  _ — A
Skl = QO al€ s (I.MO)
k4
P — oA
g g p —— E) (I ul)
kL o 0 "
_ o ,
S = - %6 s (I.h2>
and
°3, 8, >0 - (1.43)
k T’k - ’

These are the incremental constitutive eguations for an elastic

continuum.




26

A1l the discussion in this section has dealt with stresses
1 Do - . . -,
Sij > 8. and Sij which are measured per unit of area a in
the initial state. In order to be able to use the constitutive
equations (I.40), and (I.41) in the expression of virtual work (I.2T),
they must be expressed in terms of stresses gsij , and sij which are

measured per unit of area a in configuration 1. The following trans-

formations hold between the Cauchy stress tensor in configuration 2 and

2 2
the Piola stresses s., and ‘s.. [29], [31].
1J 1]
p 3z, 9z,
e, - o _1 __J
5157 BZM BZN Tay ° (T.hh)
0% 97y
=L _M_N 2
Ty T 9z 3z Smn (1.45)
0 m - n
Substitution of (1.45) into (I.Lk) gives
e -
% =2, o T (1.46)
i o, i,m j,n “mn

and also substitution of (I.15), and (1.36)3 into (I.L6) results in

po J— R
g§,, = == 7, z s (T.u7)
i~ im g,n mn

2
The incremental constitutive equations in terms of Sij and Sij

can be obtained by substituting (I.L6), and (I.47) into (I.40) and (I.h1).

> dA
513 7 Po Pim’iom 3E__ (T.48)
s..=p_ 2z, 2, L (1.49)
1 o 1,m j,n 818

mn
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I.5 Constitutive Eguations in Curvilinear Coordinates

In some problems it is necessary to use curvilinear coordinates.
Compared with the constitutive equations in Cartesian coordinates, the
constitutive equations in curvilinear coordinates are difficult to write,
to interpret physically, and to use in the solution of practical prob-
lems . It has been shown by Carroll [41],[L42] that for isotropic and
transversely isotropic simple solids the constitutive equations in
terms of Cauchy stress in Cartesian coordinates remain invariant in
orthogonal curvilinear coordinates if the Cartesian tensors are replaced
by the physical components of the curvilinear tensors. This invariance
is demonstrated in this section for elastic materials when the consti-
tutive equations are expressed in terms of Piola symmetric stress
tensor. The form invariance of Piola symmetric stress tensor simplifies
the proof. In Chapter II it is proved that the invariance of constitu-
tive equations also holds for a special theory of plasticity.

If the curvilinear coordinate system in the initial state ii is
orthogonal then the transformation between the local Cartesian coordi-
nates (associated with unit base vector) on ii and the global Cartesian
coordinate system Ei can be performed by the orthogonal transformation

matrix Rij having the property

Ry ij = dij (1.50)

where éij is the Kronecker delta.
The physical components of the Piola symmetric stress tensor in

orthogonal curvilinear coordinates are defined in Appendix D. They

are given by

[AS Fuu

= (g, L) sij (no sum) . (1.51)
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The physical components of the Lagrangian strain tensor are defined as

£
% -
oo ( )2 te

i g 55 15 (no sum) . (1.52)

Mt

Since these physical components are associated with unit base vectors
in the curvilinear coordinates in the initial configuration, they trans-

form to their global Cartesian counterparts by

1% 1
®i3 T iijn mn (1.53)
* 1 ‘
ro-r r, e (I.5k4)
i im jn Tmn
1 1 . .
where S.n and €n are the stress and strain tensors in the global
Cartegsian coordinate system.
The Cartesian form of the constitutive equations is
1 1 .1
Sij = "s( Ekﬁ) (I.55)

If the material is isotropic then (I.55) must remain invariant under
any orthogonal transformation. In particular for the orthogonal

trans formation Rij then

1 1 1
R Rjn S35 = S(Rik RjQ am) . (1.56)

Substitution of (I.53) and (I.5L) into (I.56) results in

1% 1 1%
Sy = 8¢ Eij) (1.57)
Comparison of (I.57) and (I.55) indicates that the form of the consti-

tutive equation has remained invariant. This result is very helpful

in dealing with the shell problem.
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CHAPTER II: LARGE DISPLACEMENTS, SMALL DEFORMATIONS

II.1 Isotropic Elastic Materials

The constitutive eqguations

1
3a(Te, &, )
5 =7 K7 TER (1.%0)
k% 0 Ble
k4
and
1
- _7p 84(7e p281) (1.41)
SkL o 3E ’
%)

are quite general. If the free energy function A 1is known in terms

1 - 2 . ,
of gk& and Ek% then S1a, and S1g, can be determined. Assuming

that A is an analytic function it can be expanded as a power series

1

of £ and Ekﬂ . In particular for isotropic materials A can be

k2

1
expressed as a function of the invariants of £ and gkl . For

kL

certain problems a finite number of terms in the power series expansion
is enéugh to approximate A and hence the constitutive equations
accurately. TIn the special case where deformations are infinitesimal
but displacements and rotations are not, the retention of the terms

in the power series of A up to the second power of 18

1 and gkﬁ

is enough. Then equations (I.40) and (I.L1) will lead to linear

) 25 and the strains le and

relations between the stresses s Ko )

kg

gk% ’

. . . . 2 .
For isotropic elastic materials A can be written as

)(25,,.) (11.1)
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where A and U are the Lame's constants. In (17.1) the strain gea

13
is limited to infinitesimal deformations
2 2 1,2 2 2 2 2
= + = + + .
€13 ®ij 2 ek = €k Yki wikwkj) (11.2)
where

e =X+
ij 2 1,3 J,.1

o 10— o~

w,, == (" . -"u, .)
iy 2 i,] J,i

o
The displacements U being in the direction of coordinate systems of

the initial configuration (see Figure I.1). Tt is shown in appendix B

that
2 1
= + .
Eij Eij gij , (11.3)
where
Eij = Zm,izn,j 8mn (1.35)
Substitution of (II.3) and (I.35) into (II.1) results in
2A(zew) = lA(leH) + A(ls..,i.,) (11.L)
1J 1J 1J7°71)
where
1 AL 2 1 1
o I.
PA =3 ( sil) +p eij)( eij) , (I1.5)
and
A L2 Al 1
==& . +uég. g+ 20z + 3 . II.6
PA=FE U £15545 (2 Eii;jj U ijiij) ( )
Equations (1.40) and (1.41) become
- (1T.7)

pg T MO By T By o
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=6 (Pe.) +2u (Pe ) (11.8)

Sk g, k2 i1 k4

and the constitutive equations (I.48) and (I.49) become

0
2. .9 2 >
51375 Zix 2y,0 MOy (TEgy) w2m (T )] (11.9)
O
and
pO
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I7.2 Remarks on Some Recent Developments in the Theory of Plasticity

The study of plastic deformations of materials has been under
consideration for almost a century. However, most of the investigations
have been limited to infinitesimal deformations and even then the
diversity of opinions and observations has led to various special
theories of plasticity. Detailed account of these 1s given in Hill's
book [59] and the review papers by Naghdi [43] and Koiter [44]. Only
very recently the construction of a large deformation theory of plas-
ticity, based on the principles of thermodynamics and the invariance
requirements in continuum mechanics was undertaken by some investigators.
A brief review of some of the recent developments in the theory of
inviscid plasticity is given in this section and some remarks are made
to show the relationship among them.

Since many assumptions existed in the theory of plasticity, it was
desirable to introduce concepts from which several of the assumptions
could be derived consistently. One such hypothesis, now called Druck-
er's postulate, was presented by Drucker [45]. It states that the work
done by an external agency on an elasto-plastic material going through

a closed cycle of stress is non negative. That is,
W >0 . (11.11)

The Mises-Prager plastic potential stress-strain relations and the
convexity of loading surface are derived from this postulate. Later,
I1'iushin, who was motivated by the observation that in general
Drucker's postulate does not assert the irreversibility of plastic

deformations, introduced another postulate [46] which states that the



work done by an external agency on an elasto-plastic material going

through a closed cycle of strain is positive. In particular

wI > WD >0 . (11.12)

This hypothesis leads to normality rule, however, it implies the
sufficiency rather than the necessity of convexity of the yield surface.
The use of the laws of thermodynamics in the construction of the
theory of plasticity i1s a more logical approach than the other methods
which use the conclusions based on a limited class of physical cbser-
vations. The investigations in this area prior to 1960 are very few
and are mainly on infinitesimal theory of plasticity [43]. Sedov
recognized three configurations in the process of elasto~plastic defor-
mations of the continuum [47] (see Figure IT.1): an initially free of
stress state, a current configuration with complete elasto-plastic
deformations, and an intermediate configuration which is obtained when
the stresses in the body at current configuration are released. Thus
the total deformation is composed of an elastic part which is between
configurations (c¢) and (b) and a plastic part between (a) and (b). In
general the intermediate state is not Euclidean. BSedov develops a
theory of plasticity based on this kinematical model and some thermody-
namical considerations. Drucker's postulate is used in a thermodynamical
context and the associated flow rule is derived. Backman also intro-
duced the concept of the three configurations [48]. However, he defines
the elastic and plastic components of strains directly in terms of the

displacement gradients., Due to the non-Buclidean character of the
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intermediate configuration the definition of elastic and plastic com-

ponents of strain in terms of the kinematice of deformation is not in
. B | N N - - e N

general correct, Lee, and Liu [49] recognize the non-Euclidean char-

acter of the intermediate configuration and define the kinematics of

deformation by

(7] = [#°1[F") (11.13)
where
37
[F] = ~~:—~/é : (11.14)
0z
J
P.

and [Fe] , and [F ] are linear transformations between configura-
tions (b) and (c¢) and (a) and (b) respectively (see Figure II.1).
These transformations are not in general the displacement gradients
between the corresponding configurations. Lee and Liu develop a par-
ticular theory of plasticity for the application to a one-dimensional
wave propagation problem,

Recently Green and Naghdi [50], [51] developed a general non-
linear theory of plasticity which utilizes the thermodynamical laws
and the invariance requirements in the theory of continuum mechanics.
For the kinematics of deformation it is assumed that Lagrangian strain

tensor can be divided into two parts as

£.. =€, + 8}?‘ (11.15)

e P . .
where €.. , and Eij are called the elastic and plastic components of
strain respectively and they have the same invariance properities as
e P

¢ . . No kinematical interpretation is given for E;j an €55
iJ i

o
n
93
=}
o
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they are found from the constitutive equations only. It can be shown
that the kinematic idea in [LT], [49], and [50] are equivalent.

The Lagrangian strain between configurations (a) and (c) can be written

as follows in matrix notation

[F] - [T] (11.16)

where [I] 1is the identity matrix. Substitution of (II1.13) into

(11.16) gives

ole] = [# 181N IFRI0FT ] - (1] . (17.17)

Subtraction and addition of the product [FP11[FP] from (II.17) and

rearrangement of the terms on the right hand side results in

P.

orel = (P15 1FF T - 1) + (515 rr 1 F®] - [IDIF ) . (11.18)

The first and second terms on the right hand side of (II.18) can be

defined as plastic and elastic parts of strain. Thus
[e] = [7] + [€°] (11.19)

which is the same as (II.15).

It is shown by Green and Naghdi [50] that the second law of ther-
modynamics puts a restriction on the plastic deformation. This
restriction is more genersl than Drucker's postulate. In particular
it is shown that for the infinitesimal uniaxial tension test the
plastic volume change is not zero unless Drucker's postulate 1s adopted
[52). Thus they conclude that Drucker's postulate 1s not general

enough but is a2 good assumption for some materials like metals. In the
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same paper [52] they specialize the general non-linear theory and obtain
a bilinear stress-strain representation for a uniaxial tension testa%
The theory of plasticity in [50] has been extended for the elastic-
plastic multipolar continua [53], and also to Cosserat surface [54].
Following Coleman and Noll's approach [LO], Dillon [55] has
arrived from the second law of thermodynamicg at the result that the
loading and unloading stress-strain relations are different for mate~
rials in which the dependent thermodynamical variables are functions of
deviators of stress and strain. Thus, he rationally arrives at a
feature essential in plasticity. Another apprcoach in the study of the
theory of plasticity was followed by Pipkin and Rivlin [56] who use a
functional theory for the rate independent materials and esgentially

dynamical concepts. They use Il'iushin's plasticity postulate.

*
It seems that the assumed form of the hardening parameter in [50] leads

at most to a bilinear stress-strain characteristic in uniaxial tension,
The hardening parameter must be given a more general form in order to
obtain a curvilinear one-dimensional stress-strain representation.



11,3 A Special Form of the Theory of Plasticity

The general theory of plasticity developed by Green and Naghdil
[50] can be specialized for application to specific problems. For any
material it is possible to introduce further constitutive restrictions
and hence reduce the general theory to a more tractable form. For
example, in the case of metals Drucker's postulate and von Mises
yield condition are good constitutive assumptions which simplify the
general theory appreciably.

In this section after a short review of the general equations,
the elastic-plastic constitutive equations for homogeneous and
initially i1sotropic materials are studied. Drucker's postulate and
von Mises yield condition are assumed and specific forms of the hard-
ening law are considered. The treatment will be limited to isother-
mal processes.

Consider a deformable body on its path of deformation from an ini-
tial state to a final configuration (see Figure I.1). At time t the
material points of the continuum have coordinates Z, and all together
form configuration 1. In this configuration the isothermal yield
function which is a regular surface containing the origin in the stress

gpace may be expresssd by

f(7s.., €..) =« (11.20)

-4

L
do

s

where « 1is the hardening parameter depending on the whole history of

=

motion of the body and lsgj is called the plastic strain tensor and

is given by




.
e, = le?g + 1ge§ (11.21)
1J 1] i
, ; 1 e - , , 1 1
in which liiﬁ is the elastic strain tensor. Both Efj and Leij
J 1
have the same invariant properties as leij but they are determined

only from the constitutive relations and not the kinematics of defor-

mation.
Green and Naghdi [50] have shown that if there exists a linear
o ) 1P 1l
relationship between Eﬁj and Sij then
e , . .
T O J: S x>0 (11.22)
ij ij Sls mn
mn
during loading where
f=k,K#0 of 1. 5o (11.23)
1 mn
a7s
mn
. , . 1 1P .
In (II.22) A 1is a scalar function of s and "€, and B.. is
mn mn ij

a symmetric tensor which can be written as the derivative of some

1P
€.

]
tential i -
potential function gl Sij ) i3 )
61 = ~%§ﬂ~ (II.2h)
J 37 s, .,
1J
Therefore,
1P -
S (1T.25)
+d 815
1]
where
T=o 2L , (17.26)
1 mn



As in the infinitesimal theory of plasticity three types of behavior
are postulated for the material., These are:

Loading, during which légj # 0 and is given by (II.22) and

. 9f 1

f=x ,K#0, als S 0 (11.23)
mn
a o as . 1.P
Neutral loading for which Eij =0 , and
@ T e
f=x,K=0, ?f s = 0 (11.27)
97s i
mn
Unloading from a plastic state during which léfj = 0 , and
F=0,k=0, 22 1 <o
alS mn
or e (11.28)

In general the measure of hardening kK is a functional of the
entire history of deformation and temperature. A representation of K

for isothermal deformations 1is

t
‘ = F(f 5) (11.29)
el
Bo=n(ts, ., TP, te L, R (11.30)
1] 1J 1J 1J

@
For an inviscid continuum h 1is independent of the time scale and

7. P

homogeneous of degree one in Sij , and Eij . Then in view of

(171.22) « can be written as
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v

(11.31)

~
i
ea|
—
=
Ca
oy
=

dh = dh (‘ls”a le?f, dle?ﬂ‘
1J 1J 1J

(II.32)
The initial yileld surface is only a function of stresses, and for
initially isotropic materials it is a function of invariants of stress
tensor. In particular it has been found that for metals hydrostatic
stregs of the order of the yield stress does not affect the yielding and

plastic deformation [57]. Therefore, the initial yield surface can be

written ag

J.) =k (11.33)

where k 1s a constant and J and J are the second and third

2 3
invariants of the deviatoric Cauchy stress tensor Tij
I, = %- Ty Ty (I1.3L)
Jy= T Tl T (I1.35)
ij = Ty - %-613 Ty (I1.36])

Experimental evidence indicates that for metals the yield function can

be approximated by von Mises yield criterion [U43, 58] which is

Equation (II.20) shows the set of all loading surfaces. The shape
of these surfaces depends on the scalar functional K . In the
infinitesimal theory of plasticity different mathematical models,

called hardening rules, have been proposed to approximate the form
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of the subsequent yield surfaces after the initial yielding [L3]. These
hardening rules can be used in the large deformation theory also. One
of these is the isotropic hardening law which asserts that the shape of
the yield surfaces at higher stresses is a uniform expansion of the

initial yield surface. Mathematically this can be written as
f(7s.,) = K (I11.38)

For von Mises yield condition the isotropic hardening law is of the

form (see Figure II1.2)

where (II1.39)

V3. =0

Two simple measures of hardening have been proposed in the
infinitesimal theory of plasticity [57]. The first one states that «k
is a function of plastic work, and the second states that it is a
function of the so-~called equivalent plastic strain. It is assumed
in this work that these two measures can be used also in the large
deformation theory. If the increments of plastic work and equivalent

plastic strain are defined by

aw_ = lsva a le?, R (I1.40)
P 1j 1

and

N

¥ 2 * ? )] (TT.h1)

G = [2a (P )y a (P
3 13 J

respectively then the functional «k in (II.31) can be written as
1P
£, .

1]
K o= FS[' de) (11.L2)
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and

1P
€,

iy
K = HKJ( dEP) (I1.43)

In the solution of problems the form of the function K as determined
from some experiment, e.g., simple tension test is used (see Figure IT.3).
Another constitutive assumption which simplifies the general theo-
rv appreciably is Drucker's normality rule which asserts that the
increment of plastic strain vector is normal to the yield surface. This
requirement indicates that the plastic potential g in (II.2L) is the

same as f , and equation (II.25) becomes

dls?a = dn of . (TT.hl)
1 81

of _ _of mn (I1.k45)
ats . a1t ofs
ij mn ij
1! P
= 3 m (-2 g z_ )
2 _C,j__ —UO n,i NeJ
Since
Py 1 1 1 , \
' = — (2 .7 _-=8 C..) "s.. , (I1.46)
mn Db m,i n,j 3 mn ij ij
Therefore,
3s,. 20 Y
1]



o Po21 1
w(%*") (le C°'§ C c ) (I1.L48)

and
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IT.4 Stress-Strain Relations

The relationship between the stress and elastic part of strain can

be written as

1 _ 1 e .
a( Sij) = Aiij, af €k2> (11.50)
where
Bigeg =M S5y S+ 8y Syp 84y 8100, (I1.51)
During loading
if d(lsi.) = w%5§-d(l€§°) . (11.52)
97s, ., J IS J
i iJ

T Tt .
ax = — ( o 57 : (II1.53)

A
1 TP 7 i3%8
9 Sy 9 ey 514

Hence the plastic strain increment (II.LY4) becomes

of of 2
Ly NI rtk{
1P, i3 rt 1 ‘
a( eij) = = a( EkQ) (1T.54)
where
b= if ( iKP + if A ) (I1.55)
3 3¢ 3s upa
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Substitution of (II.54), and (II.21), into (II.50) gives

a(ts. ) =c . atte ) (11.56)
1] 1JPa ra

where

c.. =a.. -vta . & of _of
ijpa ijpa ijk& Tuvpqg 3ts ot
uv

(11.57)

Sk

JK
The derivative ——p— in (II.55) depends on the form of harden-

97 e
Pa
ing parameter K . For work hardening (II.L2) this derivative can be
written as
1
iKP = Smn XK (11.58)
e W
mn

K
o can be determined from a simple tension test where it will be the

oW
slope of the hardening curve F' (see Figure II,3(a)). Therefore

Y v )
T F' s (11.59)
e
mn
For strain hardening (II.L3) the derivative lKP can be written as
3 Eij
—P
iKP = T . 0 = (IT.60)
D e o

where H' is the slope of the stress-plastic strain curve in simple
tension (see Figure II.3(b)). The relationship between awt  and
d5%  can be determined as follows. Substitution of (II.4L) into

(I1.41) results in
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1
ge = [2(a7)F 2 9L g2 (11.61)
3 1 1
37s.. 3 s
1J J
from which dA can be found
—P
ar = de T (11.62)
2 9f af -
<§' 1 T )2
a7 s,, 3 8.,
1J 1d

Substitution of (II.62), (IT.4k4), (II.47) and (II1.40) into (II.60)

gives
ok _almr 1 (II.63)
1P~ = Sm> '
3 € a
mn
where
1 1
R B S S
o .. ..
o = ijk® 1J§t ?2 rt (11.64)

B g
pauv pa uv
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IT.5 Constitutive Equations in Curvilinear Coordinates

The form invariance of the constitutive equations in Cartesian
and orthogonal curvilinear coordinates discussed in section I.5 also
holds for inviscid plastic materials with constitutive relation (11.22).
Substitution of (II.21) into (II.50) gives

(teF )

1
( A Ek%

L) = AL a(~e - A, II1.6
®i] ijpa pq) i3k8 ( 5)

Since this is an isotropic relationship the corresponding equation in

curvilinear coordinates in terms of Cartesian components would be

i 1 1P .
al( sij)* = (Aiqu)* al( epq)* - (Aijkz)* al( 8k2>* (11.66)

where the asterisks over the tensors indicates Cartesian components.

Blsq.
1]

1 .
Due to the linear relationship between d eij and of in (II.4k)

then

)E (11.67)

dk is a scalar and can be written in terms of the physical components
of the tensors in (II.53). Therefore, substitution of (II.67) in

(I1.65) gives

als. % =(c. . )% a(te )x (11.68)
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11,6 Approximate Constitutive Equations

The time rate of change of stress and straln lsij and 18,0
1J
can be written as
2 1 -
1 Suv B Suv Suv
s,y = lim (—-~797—~—~—) = 1lim ("ZG? (I1.69)
At>0 At>0
- ‘
1e Cav T lguv guv
€4y = Lim (““"“ZE""‘“”) = 1im.(~7§;) (II.70)
At+0 At~0

The stress-strain relationship (II.56) can be approximated by substitu-

(1 (lE } . Then

ting s for 4
uv

s ) and § for d
uv uv uv

s,., = C,, (IT1.71
ij ijpa qu )

Substitution of (I.35), and (I.47) into (II.71) results in

= I.72
Sk% :T'(Zk,m ZQ,n Cmnrs Zu,r ngs) Euv (11.72)

The corresponding relation in curvilinear coordinates is

e ML CUR L L R L (11.73)
pO

where the asterisk over the tensors signifies the physical components.

The physical components of the displacement gradients can be written as

, k
(5 )% = (X

romm——— g
¥ o= v T 1 ‘ 3
o 8§m> g, &M X5 (no sum). (IT.74)
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If an initially orthogonal convected curvilinear coordinate system is

used, then

_ gk ,
Xy = 6m (11.75)
Substitution of (II.7h) and (II.75) into (II.73) gives
P
‘o -kk -2, -1 -5 8 kirs %
= /égkkg gy e, & e, e )(C J¥(e ) (I1.76)
P
o
For simplicity define
k&
S = ()%
= %
€ g (ers) , (II.77)
kArs

Cklrs ( ¥

and
P .
_ o ~ -kk . -9 -1y -85 klrs .\,
Ci%rs - /{gkkg )(gﬁﬁg )(grrg )(gssg )(c *
po
then equation (II.73) becomes
(11.78)

- 1
%) Ck%rs €rs
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CHAPTER IIT: LARGE DEFLECTION ANALYSIS OF ELASTIC-PLASTIC

AXTSYMMETRIC SHELLS OF REVOLUTION

Many investigators have tried to construct general non-linear
bending theories for shells. The problem is not yet resolved complete-
ly and certain fundamental questions like the reduction of the general
three-dimensional constitutive equations for thin shells, or the devel-
opment of a general two-dimensional theory present difficulties.

Indeed there is not yet a unique definition for a shell type continuum.
A complete review of the developments in the nonlinear theory of shells
is out of the scope of this work, however, some major contributions
will be'mentioned.

Two different approaches have been followed in the construction
of linear and nonlinear bending theories of shells. The first method
consists of reducing the general three—dimensional equations for
shells in which one geometric dimension is much smaller than the other
two. Synge and Chien [61] developed an intrinsic theory for elastic
shells; they treated linear constitutive equations. Green and Zerna
[62], and Naghdi [61] have expressed the non-linear kinematics in terms
of displacements and treated linear elastic constitutive relations.

A theory of elastic shells with small deformations and non-linear

elastic response was constructed by Wainwright [63]. Naghdi and Nord-
gren [64] developed a particular theory subject to Kirchhoff's hypothesis;
they consider large displacements and non-linear elastic constitutive
equations. Recently Green, Laws, and Naghdi [65] have constructed non-

linear thermodynamical theories for rods and shells using the
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three~dimensional theory of classical continuum mechanics.

In the second approach the shell is considered as a Cosserat
gsurface, 1.e., a two-dimensional continuum to each point of which a
director is assigned. The kinematicg of a shell considered as a
Cosserat surface was given by Ericksen and Truesdell [66]. Special
theories in which the director is identified with the inextensional
normal to the surface and which remains normal after deformation,
corresponding to the usual Kirchhoff's hypothesis, were developed by
Sanders [67], Leonard [68] and Koiter [69]. A general theory of s
Cosserate surface wag constructed by Green, Naghdi, and Wainwright [70]
who discuss both the kinematics and the constitutive equations for the
surface. Green, Naghdi, and Osborn have developed the elastic-plastic
constitutive equations for a Cosserat surface [54].

The eguations for the non-linear analysis of shells of revolution
can be derived from any of the above theories. A set of equations,
which have been widely used by investigators in solving practical
problems, have been derived by E. Reissner [T1l] for linearly elastic
shells of revolution, He assumes Kirchhoff's hypothesis and his
development is restricted to infinitesimal deformations but large
displacements.

The importance of nonlinear analysis of shells of revolution was
discussed before. In practical problems closed form solutions for
such cases do not exist and resort must be made to numerical techniques.
In this chapter after a review of the numerical methods of solution
of shells of revolution, shallow caps, and circular plates, the incre-
mental approach developed in Chapters 1 and 2 is specialized for the
large deflection elastic~plastic analysis of axisymmetrically deformed

thin shells of revolution. The formulation is suitable for the direct
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numerical methods of analysis of variational problems, and in Chapter

L the problem will be solved by the finite element technique.
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TI1.1. Review of Numerical Methods

In this section the numerical methods of analysis of shells of
revolution are considered. Three forms of this structure, namely, circular
plates, shallow spherical caps and axisymmetric. shells of revolution are
discussed separately. The division in presentation is not intended to show
the diversity of the general methods used in analyzing. the nonlinear behavior
of these structures, but rather it is dietated because. of the existence of

rather vast amount of literature for each case.

I11.1.1. Axisymmetric shells of revolution

Several numerical methods such as finite difference, invariant
imbedding, and finite element techniques have been used for the large de-
flection bending and membrane analysis of shells of revelution. Finite
difference method with iterative schemes has been used-by some investigators
for linearly elastic shells of revolution [72-76]. Witmer, et al., [77]
used finite difference together with a lumped parameter technique for
elastic-plastic materials. They used ven Mises yield econdition and the
associated flow rule of plasticity. Inconsistencies arise in their method
in the plastic range unless the number of lumped layers in the  thickness of
the shell is large. A combination of finite difference method and Newton-
Raphson iterative scheme was used by Stricklin, Hsu, and Pian [781.

They utilized a special theory of plasticity with the Tresca yield condi-
tion. In general, the finite difference method is diffieult to use for
certain boundary conditions and since the variation of shell geometry and
material properties must be expressed analytically the method loses its
value when these variables cannot be easily represented analytically or

by curve fitting.
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The invariant imbedding technique which reformulates the boundary
value problem into an initial value problem was applied by Kalmins and
Lestingi {79] for elastic shells of revolution. The instabilities in this
numerical technique have been pointed out by Fox [80]. The disadvantage
of the method is that instead of one problem a family of problems should
be solved [79,811.

The finite element method is capable of hacling various boundary
conditions and sharp variations or jumps in the geometrical and material
properties. The displacement formulation of the finite element method has
been used for the post buckling analysis of elastic cylindrical shells by
Schmidt, Bogner and Fox [32]. They used an iterative scheme and compatible
elements in the form of cylindrical strips. Stricklin, et al. [82,83] have
treated the symmetric and asymmetric large deflections of elastic axisym-
metric shells of revolution. Their incremental scheme is not consistent
because strains and stresses are expressed in two different configurations
of the shell., Navaratna, et al., [84] solve the linear bifurcation buckling
of elastic shells of revolution by superposing asymmetric buckling modes on
the axisymmetric prebuckling deformations.

The nonlinear membrane analysis of elastic shells of revolution
has been considered by many investigators. The case of small deformations
and large rotations has been treated by asymptotic expansions [85,89],
asymptotic expansion with the Ritz method [88], numerical integration with
an iterative scheme [86], and asymptotic integration [87].° The problem of
large deformations and rotations has been solved by matched asymptotic
expansion {90,91]. It is found in [90] that the circumferential mem-

brane force in a toroidal shell is remarkably different when both large




deformations and rotations are considered. A .general .non-linear membrane
theory of shells which includes the effect of finite strains has been
derived by Rajan [92]. Salmon [94] has treated the membrane solution of
large plastic deformations of a cylindrical shell. He utilized both the
incremental and the deformation laws of plasticity and observed that as
the length of the cylinder increases the results of the twe theories agree
rather well. His results also confirm the validity ef the approximate

method used by Weil [93] in the case of long cylinders.

I11.-1.2. Shallow caps

The analysis of spherical caps has been the subject of a great
number of investigations. The nonlinear behavior of -this structure is
sensitive to several factors such as the geometrical parameter
kQ% ViZ(l«wz) %> where Vv is the Poissen's ratic, h s the rise and ¢t
is the thickness of the shell; the type of applied lead; the initial im-
perfections; and the material property. The influence of these factors
on the pattern of displacements and buckling is so significant that up to
now there is no complete agreement between the theoretical and experimental
results. The nonlinear differential equations of shallow shells were
derived by Marguerre [95]. Also, E. Reissner gives a set of equations for
shallow caps [96]. 1In both cases the deformatiens are considered to be
infinitesimal but deflections are finite.

The problem of finite displacements and buckling of shallow
spherical caps under uniform normal load was investigated both experi-
mentally and theoretically by Kaplan and Fung in 1954 [97]. 1In the theo-
retical method axisymmetric deformations were assumed .and a perturbation

technique was used with the central deflectien as the perturbation parameter.




Great discrepancy was noted between the experimental and theoretical buck-
ling leoads for values of A > 4. Since that time a great deal of effort
has been made by many investigators to clese the gap between the experi-
mental and the theoretical results. In the early researches the mode of
deflection was assumed to be symmetric and buckling was. theught to occur
by a symmetric snap through process. The results of sueh dnvestigations
[98-101] do not agree both with the experimental resulis {97] and also
among themselves for A > 4, although they .all use the same set of dif-
ferential equations [95]. Among the various numerical procedures for the
analysis of axlsymmetric large deflection of uniformly leoaded spherical
caps the integral method of Budiansky: [101], power series method of
Weinitschke [102], the residual method of Thursten [103], and the direct
iterative technique of Archer [104] give the same upper bound solution for
the buckling load. Lower bound solutions for the buckling load were given
by Reiss, Greenberg, and Keller [98] using power series expansion and by
Thurston [103]. Budiansky [101l] and Thurston [103] studied the effect of
initial dmperfections on the axisymmetric buckling of uniformly loaded
shallow spherical shells. Budiansky, who used smoeth imperfections, con-
cluded that for A > 5 the inclusion of imperfectiens cannot close the
gap between the experimental and theoretical results. Thurston, using
rough imperfections, points out that the inclusion of imperfections in
the anzlysis of caps is important. The experimental results by Krenzke
and Kiernan [105], on highly accurate aluminum specimens, whiech show higher
buckling loads than Kaplan and Fung's experiment support Thurston's point
of view.

Since the theoretical results on the symmetrical buckling of

unitormly lcaded shallow spherical shells do not agree with experimental
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evidence for A > 5 it was concluded by some investigatoers’that the process
of buékling may be unsymmetrie although the initial-and-final configurations
are symmetric. Weinitschke [106] superimposed small asymmetric deflections
on finite axisymmetric displacements and obtained-buckling loads which are
close to experimental values of [97]. Huang [107] :solved  the variational
formulation of the unsymmetric snap through buckling numerically and ob-
tained buckling lecads higher than the experimental results in [97] but
lower than the axisymmetric theoretical calculations., His results are
close to the experimental buckling loads of Krenzke and Kiernan [105].

Contrary to uniform or partially uniform-loading, the theoretical
and experimental results of shallow spherical caps under concentrated load
agree rather well [108-112]. It is found .that, unlike the uniformly loaded
cap, the snap through.occurs at very high loads. The experimental results
in [111] indicate that symmetric smap through occurs for® A < 6.5 and
.casymmetric buckling occurs for A > 10.2. The theoretical study of spher-
ical caps under concentrated load has also revealed the fact that buckling
of the bifurcation type may occur even .before snap through -happens [110-
1147,

Experimental results of uniformly loaded spherical sandwich
shallow shells by Lin [115] -emphasize the importance-of including the non-

linear behavior of material in the buckling analysis.

. IZI.1.3. . Circular plates:

| The governing differential .equations for the bending analysis of
infinitesimal'deformationvbut‘finite deflections of thin elastic plates were
derived by von Karman [116]. 'For the case of axisymmetrically loaded and

supported circular plates the von Karman equations reduce to two coupled
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second order non-linear ordinary differential equatiens. Corresponding
equations for circular plates can be cbtained by simplifying E. Reissner's
equations for axisymmetric shells of revolution [71].

Two approaches have been followed for the selution of the differ-—
ential equations of large displacement bending analysis of elastic circular
plates. 1In the first approach the von Karman equations are further sim-
plified and then solved exactly. This method was used by Berger [117],
who neglected the strain energy due to the second invariant of middle
surface strains, and by Goldberg [118], who neglected the Gaussian curva-
ture in the compatibility equation for membrane strains. Both Berger and
Goldberg arrived at a set of uncoupled equilibrium equations. Berger's
simplification was later used for the vibration analysis of circular
plates [119] and for the problem of circular plates on elastic founda-
tions [120].

In the other approach approximate sclutions have been sought
for von Karman's or E. Reissner's equations by different mathematical
methods. Power series expansion method, where the variables are ex-—
pressed in powers of the radius from the center of the plate, was used

-

by Way [121]. Bromberg [122] used a perturbation method by expanding
R r 177
the variables in rerms of the perturbation parameter k = ——— ()
V 2. "Eh
12(1-v7)
where R, and h, are the radius and thickness of the plate, respectively,
p is the intensity of the applied uniform lead, and E and v are the
Young's modulus and Poisonn's ratio, respectively. As pointed out in [122],
the perturbation method:gives correct results for k < 1, and the power
series method for 1 < k < 15. For larger values of k, however, boundary

layer effects become important near the edge of the plate and the above two

methods fail to give accurate results. In such a case a boundary layer
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solution, employing asymptotic expansion, has been used. This method was
propoesed and used for the solution of the problem of circular plates by
Friedrichs and Stoker [123] and was later modified by Bremberg [122]. Hart
and Evans [124] have applied the method of asymptetic expansion for the
annular plates. Keller and Reiss {125] applied an iterative scheme to the
boundary layer solution in [123]. Their method together with finite dif-
ference equations have been used by Hamada and Seguchi [126] for the
analysis of annular plates.

The large deflection analysis of elastic—plastic circular plates
has been considered by several investigators. The order of geometric non-
linearity is the same as in von Karman's theory. For the material non-
linearity different constitutive laws have been employed. Rigid plastic
materials were analyzed by Sawczuk [127] for static loads and by Jones for
dynamic and impulsive loads [128,129]. Deformation theory of plasticity
was used by Ohashi and Murakami [130,131] for elastic perfectly plastic
materials. The results of their calculations fall within the range of
Budiansky's criterion for the physical validity of the deformation theory
of plasticity [132] and the comparison of their theoretical and experimen-—
tal results is satisfactory. Using the deformation law of plasticity
Naghdi [133] and Ohashi and Kamiya [134] analyze the large deflections of
circular plates with hardening materials. A lumped parameter method was
employed by Crose and Ang [135], who divide the plate thickness into three
layers. The top and bottom layers are thin and are in a state of plane
stress, and the middle layer has infinite shear stiffness and no resistance
to bending. They use flow theory of plasticity.

The observation common in all of the above dinvestigations on the

large deflection of elastic-plastic circular plates is that the effect of



membrane forces in the plastic range is significant even for relatively
small displacements, and that the load carrying capacity of the plates is

more than that given by bending collapse load.
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11T.2 The Strain-Displacement Relations

The coordinate system on the middle surface of a shell of rewvo-
lution in configuration 1 is chosen to be orthogonal and coincide with
the principal lines of curvature (see Figure II1.1). It is assumed
that the deformation of the shell follows Kirchhoff's hypothesis which
asserts that the unit normal wvector to the middle surface in configura-
tion 1 remains normal to the middle surface of the shell in configura-
tion 2 and that its length does not change. Then the convected form
of the coordinate system xi remains orthogonal and coincides with the
principal curvature lines in configuration 2 for axisymmetrically
loaded and supported shells of revolution.

It is shown in Appendix E that the strain-displacement relations
for axisymmetrically deformed shells of revolution when Kirchhoff's

hypothesis prevails are

1 2 X2 “a
s "6 T3 e t o Tl +-§;)+
s “n Wy
T o tr ) mxley, g -g ol e
s s s
» W (I11.1)
2.1 n 1 n .2
gl gty I Fg oy gty )t
8 s 5
w
1 s 2
2 (wn,s B ﬁf_) I ?
s
and
1 2 €
€gg =€ T 565t C[wr(l + ee) + ﬁg ] +
) wr . ) (111.2)
] §W‘+'§ W ] s

where
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1 _ )
eq = 7 (u cos¢ + w sing) , (IT1.3)
e (I11.4)
8
= 2 (T
X"R - W’S B ,III“S)
s
1+ es
w = cosw - 1 = 5 - 1 (II11.6)
4 ; e / 3 b 4
n (1 + 2e + ea + X)l,Z
3 s
w = sinw - (I11.7)
1
& (1 + 2e_ + e +X) /2 ’
and
ws cos¢p + wn sin¢e
W= : (111.8)
r r
ess and 866 are the physical components of meridional and circumfer-

ential strain tensor. u and 1w are the physical components of
meridional and normal displacements of the middle surface of the shell
(see Figure III.2).

If the shell is thin, expressions (III.,1) and (III.2) can be

simplified further by assuming that QE ¥ 0 , Then

1 25' wn
Ess = %5 * 2 %s * 2 * C[(ws,s * ﬁ;) *
- .
es wn o (111.9)
E fal
R ° (wo,s TR ) - X(wn,s "R 1
s s 5
and
12 8
‘ ~ 1 L . o :
€ag = € * 5 %5 * Qtwr(l + ee) + g ] . (111.10)

6

Also for thin shells whose deformations are infinitesimal such that

2 2 . ) .
eq << eg > and e_ << e, but whose rotations are large with the

o]

e no . , . . .
restriction that X << ¥, n > 2 , the strain displacement relations
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(I11.9) and (III.10) can be simplified still further. Then

1
i 2 T2 . 1 2 2 : .
(1 + e * e + X) 1 - 5—(2@;S tel *X ) (I1T.11)
L= X - Xe, s (1171.12)
Y
wo=-5 (I11.13)
and the strain-displacement equations become
_ . .
ESS EZS C KS 5 (IIT.14)
and
e ( 15
€360 €q + z Ky (I11I.15)
where
2
e = e + X (I11.16)
3 S 2
ge = &4 (IT1.17)
eS 2
= d — 3
o= Ot g P o) (I11.18)
8 S 8,8
e
. (cos9 6 1 sing 2 : ‘
Kg = (=X * Re) + 2 0= =257+ cosgley - e )x] (II1.19)

K and K are the meridional and tangential change of curvatures.

s S,

The strains € _ and 666 can be written as the sum of 2 linear and a

non-linear part

= + (111.20)
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where the linear part is

e e K@
s8 5
= +C (111.21)
]
€50 g4 Ke
and the non-linear part is
;&?
nss o Ks ’
= + (111.22)
]
0 K,

g

The linear and non-linear components of the curvature vector are

— - _— es..
Ks X’s * R
S ‘o
= . (1I1.23)
o | oozt L C0
0 LT T |
and
e
< 2R X es,s ’
= S (1T1.2L)
1 1 sind 2
Ke_ - [~ Xt cosd( o~ es)x]



I11.3. The Constitutive Equations
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The symmetry of deformations and Kirchhoff's hypothesis require

-~ _ - - . . 1
that s = 0, = 0, €:9 0, and €. = 0. 1If the strains 833
1
_ , ~ . : << <
and 633 are not assumed to be zero but are such that 833 1, 633 << 1
1 1
<< << in-di i i
and 833 E@B’ 633 EQB then the strain-displacement relationships

of Section ITIT.2. are still a good representation of the kinematics of

deformation of the shell.

1 33 33
8

that =0, and s

If the shell is thin, then it can be assumed

= 0.

With these restrictions on stresses and

strains the constitutive equations (II.78) can be written as

= '
Sag Cogys Sy + Cyagg Ea , (I11.25)
and
. 1 1
S33 = C33Y6 €y6 + 03333 €33 (111.26)
Solve (II1.26) for €33 and substitute in (III1.25) to get
SQB = C@BYS €Y6 . (111.27)
where
Cl . C',. ___Cl 1
6@6“6 aBys 3533' oB33 733y6 (I11.28)
=Y 3333

111.3.1., Strain hardening materials

For materials which obey the strain hardening law (IL.43) the

stress strain relations (II1.74) are reduced to

r "1 —
°11 | C1111
|

<

|
hszz 2211

C1122

2222 |

along the principal directions of the shell.

(111.29)

The transformation coefficients



in (II1.29) are calculated from (IIL.28). These are

3

— A E . 2

Cllll = 30 [z + (lwé)sz ] s

- B3 E 2

C2222 = ‘A—‘ ‘Q‘ [z + (l'-C)Sl ] s (I11.30)

T - C = 4B I [vz - (1-0)s,8,]

1122~ %2211 9 £)515,1

where

0 o= A-vHz + A0 (5,2 + 2985, + 8,7 (11I.31)

‘ 1 172 2 '

A = Vg gll , B = Vg, 522 (II1.32)

where §13 and gij are the metric tensors associated with the convected

orthogonal curvilinear coordinates of the shell in the initial state and

configuration 1, respectively.

coincide with 'Elj and aij’ respectively. Also
a b 2 e2
§. = v¥V3/2 — s S, = vV3/2 — . o = .
1 e 2 oe 2
a +b
1 1
a = Byjgg Syt B S
b = B 18 + B ls
2211 11 2222 22 *
2 1 1
e = a sy + b 59 .
and
e
21 2 o .2
Bl 5 61 (=)
P
0
£
3 11 1 "0 .2
81122 Boo11 =3 Gy Gy (=)
o)
v P
21 2 N
By290 3 Gy (=)
Ps

Since the curvilinear coordinate axes are convected, then C

oB

On the middle surface of the shell they

(ITII.33)

(I11.34)

(1I1T.35)

can be
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directly expressed in terms of metric tensors. In particular
1 : —11 —11 i i
-11 ,
= 811 8 s (I11.36)

and similarly

1 _ —22
622 = 8y, 8 . (I11.37)

Substitution of (III.36), (III.37), and (I1.49) into (III.35) results in

. 2 1+ 2 Ell
1111 3 1 ’
1+ 2 822
B = B = - 1 (IT1.38)
1122 2211 3 ? :
and 1+ 2 le
B .2 22
2222 3 1
1+ 2 Ell

, . ij .
The relationship between the tensors lsij and T3 in convected

coordinates is [31]

o
lsmn - .o ,mn . ‘ (I11.39)

O

©|

If these stresses are expressed in terms of their physical components
(similar to equations (D.9) and (D.12) in Appendix D) then (III.39) with

m=n= 1 becomes

—22

8y, &
22
T "1 : (ITI.40)

811 8

Substitution of (III.36), (II1.37), and (II1.49) into (II1.40) gives
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1
1 1+ 2 522 A
s,., = : T. . (I11.41)
11 1+ 2 18 11
11
Similarly
, 1
1 1+ 2 811 | B
822 = i 122 . (I11.42)
1+ 2 522

In view of equations (III.36) to (IIL1.42), then

A= 142 e , B o= /142 e, (I11.43)
1 1
o . A (Tyy =7 ) s - B (Tg2 =3 17 (TTT.44)
17 oB — © %27 oA - ’ :
a g
o = ( 1 y1/4 (I11.45)
s.2+s,2
i 2
and
E
s = 1..° +1. .2 , L = -t (T11.46)

11T.3.2. Work hardening materials

For materials which obey the work hardening law (I1.42) the trans-

formation coefficients in (I1I1.29) are

3
— A E —
€1 = 3 = FT+S8,0)
Q
— B3 E — 2
- 2. = - 1 I
C,09 n - (F' +5,7) (I11.47)
C = C, AB —— (VF' - §.5,)
1122 ~ T2211 a 1°2
where
- a = (g - %'Tzz) B = (Tyy - %’Tll)
S = — VE/O R S = — YE/o

(I1I.48)



and

= 20 L w2 — = =2 N
O = @-VHF' + (5,7 + 2v8(S,) + 5, (111.49)
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I11.4. ~The Expression for Virtual Work

The incremental equations of equilibrium between configurations
1 and 2 for the shell can be written in the form of an expression of
virtual work. The general form of the expression of virtual work in curvi-
linear coordinates is given in equation: (A.13) in Appendix A. The incre-
mental expression of virtual work for axisymmetrically deformed shells of

revolution was derived from (A.13) in Appendix ¥. 1If the shell is thin so

that -%~ << 1, and -%w << 1 ' then the equations (A.13), (F.16), (F.18),
s 8
and (F.21) reduce to the following form in terms of physical components:
[ otvITE) da [ 60VITEEY de = [ (1. 6n_ + T..6n.. +
P ss 88 807 66
a C V
T
+ ssséess + seedeeg) dv (1I11.50)
where
1 T
vlm = <uxy> , (II1.51)
Bt = < b @ > (111.52)
g “n ’ ’
and
~a T N o o~ A .
{P}7 = < N, QM > . (111.53)

the tildas over the variables in (II1.52) and (II1.53) indicate that
these quantities are specified. Substitution of (III.29) into (III.50)

and integration over the thickness of the shell leads to

[ sttt Y da + [ S{VITB) ac =
a C

T

= [ T + sterT(p1ie} da (III.54)
a

where the nonlinear part of strain vector is

T 11 ’ , ,
nt™ = < N, Mg K, Ky 2 ; (III.55)



and

and the rigidity matrix is

[D] =

b4

The components

and

< NS Ne MS Me >
o
dg
“h/2
| "o
T
88
h/2
¢ dg
~h/2
es ee KS Ke >
D11 D1y
D21 D22
[D] are
h/2
i [C(s,r)] dz ,
~h/2
h/2
p..1 = [ [C(s,0)z dz
21 ‘h/2
2%2
h/z )
/ [(C(s,z)]c” dg
“h/2

(111,

(I1I.

(11T

(111

(111

(IT1

(111,

(111

56)

57)

.58)

.59)

.60)

.61)

62)

.63)



CHAPTER IV: APPLICATION OF THE FINITE ELEMENT METHOD FOR THE

ANALYSIS OF AXISYMMETRIC SHELLS OF REVOLUTION

The application of finite element method to structural problems has
been discussed in [6, 136-138]. The direct stiffness procedure of the dis-
placement formulation of finite element method which has been widely used
for both linear and nonlinear analysis of structures has been explained and
the various requirements on the assumed displacement fields has been dis-
cussed in several references, e.g. [6,15,25,34,136,138,139]. The incre-
mental expression of virtual work given by equation (I.27) can be solved
for the displacements by the displacement formulation of the finite element
method. In this Chapter, first a nonlinear incremental procedure of solv-
ing (I.27) using the displacement approach of the finite element method is
discussed and the basic steps are explained. Then, using the direct stiff-
ness technique, the linear part of the incremental procedure is applied for

the nonlinear analysis of elastic-~plastic shells of revolution,

IV.1l. Displacement Formulation for a Non-Linear Incremental Procedure

The incremental expression of virtual work in configuration 2 is

given by Equation (I.27) as

i tiéui da + g pofic‘Sui dv = 5 (TijSHOG + sij6€au) dv

(1.27)
Assume that the material space of the body in configuration 1 is composed

of a set of simply connected subregions called finite elements. Then

Equation (1.27) can be thought of as the sum of similar expressions for
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the elements. Let the displacement increments, ui(zm),, of the points
in the elements be expressed in terms of the displacement increments,
fj(zn), of certain points or sets of points of the elements called the
nodes (which are usually at the interfaces of the elements) by some

interpolation functions Mij(zm) as

ui(zm)' = Mij(zm)rj(zn) . (IV.1)

The displacements ui(zm) are continuous in the element and vanish
beyond the boundaries of the element. Thus the element is the support
for the functions ui(zm)9 The combination of all such displacements
for all the elements comprise the total incremental displacement
field of the whole body. The element displacement and geometry
representation should be such that the rigid body motion of the
elements and the compatibility requirements at the element boundaries
be satisfied. In addition, for the uniform convergence of solutions,
the displacements must be such that uniform straining modes of the
elements exist.

In the same way the tractions and body forces are expressed
in terms of the magnitude of tractions and body forces at the nodes
by some interpolation functions such as

t \ . ;
ti(zk) = Mim(zk) Tm(zn) (Iv.2)

£

if

fi(zm) Mij(zm) Fj(zn) ; {(1Iv.3)




For materials where the relationship between séj and Eij in the
i
Lo

elements can be expressed by

Sij = Cijkﬁ ekl s (IV.4)
S + + ) (IV.5)
"KL 2 Mo T %k T YmLk Ym, g :

the substitution of (IV.1) -~ (IV.5) into (I.27) results in the following

incremental force-displacement relationship:

_ (o) (1) (2) (3) , : ,
Rk = Kkn + Kkn ) r + Kkns roro + Kknsu r I T (IV.6)
where
= M, M. T da+ i fv M. 7 dv (IV.7)
Rk im ik m 4 Pa im ik m ’ :
k- Lic + M, )M + M) dv (1v.8)
kn 4 ijri ik, jk,i” “rn,t tn,r ’ °
(1y 1 ‘ ; _
Kkn T2 £ Tij(Mmk,i + an,j + an,i Mmk,j> dv » (IV.9)
) 1
Kkns A i Cijrt[(Mik,j + Mjk,i) Mms,r an,t
+ (Mrs,t + Mts,r)(Mmk,i ansj + Mmk,j an,i)j dv ?
(IV.10)
and

3

‘More complicated constitutive relations can be assumed. The stated

relationship is sufficiently general for our purpose here.
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33 _ L # A
Kknsu T4 v Cijrt Mms,r Mmu,t (Mmk,i an,j + Mmk,j an,i) dv
(IV.11)
The stiffness matrix K(O) is due to the linear part of s, .,8¢,. in
kn iy I Ny

él), called the tangent or initial

(I.27). The stiffness matrix K a

stress stiffness matrix, is due to the Tijnij term in (I.27), and the
. 2 3 ) . R
matrices K( ) and K< ) are due to the nonlinear terms in s, ,0&, . .
kns knsu ij ij

It can be seen that the incremental force-displacement relationship in
(IV.6) consists of a linear part and an underlined nonlinear part. In
general, this relationship must be solved by successive approximations,
e.g., iteration. The linear part of (IV.7) can be used as a first
approximation in a direct incremental procedure.

When the nodal displacement increments are found from (IV.6) they
are added to the total nodal displacements at configuration 1 to give the

total nodal displacements at configuration 2
Zr (z ) = lr (z ) + r.{(z ) . (1vV.12)
i n 577 T T

Substitution of rj(zn) in (IV.1) and the result in (IV.5) and (IV.4)
gives the increments of stresses Sij' Then by (I.15), (I1.46), and

(1.45) the Cauchy stress components in configuration 2 are found.




IV.2. Discretization of Shell Geometry

The shell is subdivided into a number of doubly curved ring elements
and a cap element. Khojasteh Bakht [140] has found that doubly curved
elements for which the positions, slopes, and curvatures of the shell
meridian match at the nodes and which are described in local Cartesian
coordinate systems give very good results for small deflection analysis
of axisymmetric shells of revolution. Also, he studied a degenerate form
of this element which has all of the above properties except that meridian
curvatures do not match at the nodes. He designates these two types of
elements as FDR(2) and FDR(1l), respectively. He found that for a hemi~
spherical shell under internal pressure the results with nine FDR(1)
elements is the same as the exact solution. In the displacement method
of finite element procedure the curvatures at the nodes of adjacent elements
do not remain the same. In the present incremental method of large deflec-
tion analysis,the nodal curvatures are used in finding the varying geometry
of the elements. Therefore, in order not to introduce additional constraint
on the deformarion of elements (by matching the curvatures) FDR(1l) elements
are used in this dissertation.

The meridional profile of the middle surface of the curved element
FDR(1l) for an arbitrary shell of revolution is shown in Figure IV.1. The
local Cartesian coordinate system for this element is denoted by & and no*
£ 1is a normalized coordinate with value 0 at 1 and 1 at j. The
angles are positive as shown in the figure and the following relation

applies

e

N as a local Cartesian coordinate for an element is uded only in this
Chapter. It should not be confused with nij’ the nonlinear part of

Lagrangian strain.



FIG.IZ-1 DOUBLY CURVED ELEMENT

W .Uy

FIG. -2 CAP ELEMENT
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p+YP+B = T/2 (1v.13)
In [140] the meridian of the FDR{l) element is represented by
n = E(lvi)(al‘i‘az&) (IV.14)
where
a; = tan Bi (1v.15)
ay, = - (tan Bi + tan Bj) (1IV.16)
The parameters in (IV.15) and (IV.16) are determined from
Ar = r, - r,
i i
Az = z, - z,
i i
As = [BE% + Bz2 M2 (1V.17)
Y _ bz
sin Y ® s R cos Y = s
sin Bn =  C0S ¢n cos Y - sin ¢n sin ¥
n =1,
cos Bn = gin ¢n cos Y + cos ¢n sin ¥

81

The following relations which can be
the substitute element will be used in some

sequent presentation.

derived from the geometry of

of the equations in the sub-



[l
=

i = EA—— ==
n TS tan B
2
n' = é—%— = - www—&—gw . L dis the cord length
dg R cos™R
8
T = T + LE(sin ¥ + g-cos v)
d L ,
-5-2— - (1V.18)
1 n" 3
- = - = c05 B
RS g
cos ¢ = cos B(tan B cos Y + sin Y)

sin ¢ cos B(cos ¥ — tan B sin )




IV.3. Displacement Pattern

Following the work in [140] the displacements of the middle sur~

face of the elements will be chosen to be u and u

1 (see Figure 1IV.1).

2
These displacements are expanded in terms of the generalized displacement

coefficients O For a ring element these expansions are

u mozl-i-ocz&: s

and (1v.19)

2 3
u2~0c3+oc45é+065€ +OL6<€ ,

where 0 < £ < 1. These displacement expansions satisfy the requirements
of rigid body motion and compatibility for the elements of axisymmetri-
cally loaded shells of revolution. It can be shown that they do not give
all of the constant strains required for uniform convergence of the solu-
tion unless angle f is zero.* However, when the length of the meridian
of the curved elements is chosen to be small and approximately equal to
the cord lengths then the constant strain requirement will be satisfied
sufficiently well,

The transformation between the displacements u

is as follows

u cos B sin B u
< % = 5 (IV&ZO)

w - gin B cos B u

kS
This point was brought tco the author's attention by Mr. P. Larsen,
Graduate Student in the Division of Structural Engineering and Structural

Mechanics, University of California, Berkeley, California.
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At the top of a cap element for the axisymmetrically deformed shell
of revolution the displacement u and the rotation w vanish (see Figure
IV.2). Hence from (IV.19), (IV.13), and (IV.20)

&g

gin ¢

= - cos | o . (1v.21)

o} = - cog Y 3

1

Also, when w = 0 <then sin W= 0 and from (III.7) it can be seen that

¥ = 0. Substitution of (IV.19) and (IV.20) into (IIL.5) gives

a, = tan 1] a,. = ai (1v.22)

Hence the displacement pattern for the cap element is

[=
il

1] 1]
- cos Y @3 + u4 £
(1v.23)

sin ¥ o

[
il

' ; 2 3
3 + tan Bl a4 £ + o £E° + Q¢ 3

In the regions of the shell where the rate of change of meridional vari-
ables like meridional curvature and in plane force is high many elements
must be used so that the linear expansion for u;  can give reasonably

accurate results.
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I1V.4. . Strain-Displacement Relations

For the present numerical application the terms of the type €gXs
and esx have been neglected in the curvature terms (III.24). Then the

strain vector is

{e} = {e} + {n} (IV.24)
where
T o] o] N
{e}” = < e, &g K, Ky 7 (IV.25)
T 11
™ = <n mng k" Ky > (I11.55)
e e
o _ s o _ cos ¢ 6
Ky = x’s + R , Kg Xt R (IV.26)
s S
1 XZ 1 sin ¢ _2
“sT T 2R , Kgt o= - T X : (1V.27)
Substitution of (IV.20) in (III1.3) - (I11.5) gives
du du
cos” B 1 2
e, = 7 ( i + tan B az—-) s
e. = L (sin Y u, + cos ¥ u,) (1V.28)
5 - 1 cos ¥ u, R V.
2 du du
‘ _ cos” B 1 "2
X = g (tan B g7~ - g7 )
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IV.5. Element Stiffness Matrices

Four stiffness matrices were derived for the incremental force-

displacement relation (IV.6). For a linear incremental procedure only

(o) (1)

K and K are required. These two matrices will be derived in

this section for axisymmetric shells of revolution.

IV.5.1. Stiffness matrix k(o)

It was demonstrated in Section IV.1l. that in the general case

K(0)

the stiffness matrix is derived from the linear part of s, d€,

ij 13
k(0)

in (I.27). For the axisymmetric shells of revolution is associated
with the linear part of S{E}T[D]{E} in (ITII.54). The relationship be-
tween the linear part of strain, {e}, and the generalized coordinates

{o.'} can be found by substitution of (IV.19), (IV.28), and (IV.26) into

(IV.25). 1In matrix notation

{e} = [BE&)H{a} (1V.29)

4x1 4x4  4x1
where matrix [B(§)] dis given in Appendix G for both ring and cap elements.
Therefore, when (III.54) is written for an element of the shell and in terms

of coordinates £-n (see Figure IV.1l), then

12

1
&1 = [ us@1TEUBE @ @ HY e (1V.30)

6x6 ©

The components of the rigidity matrix [D(§)] are obtained by the
integrations in (III.61) - (IIL.63). These integrals are evaluated numer-
ically. 1In order to follow the history of deformation of the shell in the
elastic-plastic analysis sufficiently large number of points should be con-

sidered in the thickness of the shell and, therefore, simple methods of



numerical integration can be used. It has been found in [140,141] that
rectangular rule of numerical integration is satisfactory. For this pro-
cedure the shell is divided into a number of layers along its thickness
(see Figure IV.3). The material property matrices [C] are assumed to

be constant in the thickness of each layer. Then

[Dll(a)] = [ﬁi(E)] ,
2%2 2%
) ) . 1 —
~[D12(£>] = [DZl(E)] = [D,(8)] - 5 h(&) [Dl(é)] , (Iv.31)
2%2 2x2 2x2 2x2
[Dzz(a)] = [D3(£)] - h(&) [D2(5)1+ 7 b (&) [Dl(i)] ,
2x2 2%2 2%2 2%2
where
Je— n po— —
2%2 2x2
D,()] = = § [CERIIG 2 - h 5 (IV.32)
(&M= 3 =1 kK k-1 ’ :
2%2 2%2
D6 = 2 7 @EE)md -n %
3 S35 TRk k-1 ’
2x2 2%x2
h, = 1~(h - h - h)
k 2 'k k-1

If the layers have equal thickness, then



FIG. T™-3 SHELL THICKNESS

=¥
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el

o, @1 = 2B T e )

2%2 =L o
= G T S 1
[D,(E)] = ——== [ [CEh)IIk-75) (1V.33)

2%2 " k=1 2%2

3. . n

Py©1 = 25 T @E e’ -k

2%2 " k=1 2%2

The value of the material property matrix [C(E,2)] along the
meridian of the element can be expressed in terms of its magnitude at the
nodes by some suitable interpolation function. For sufficiently small

elements linear interpolation can be used. Thus

[C(E,0)1 = (1-£)[C(0,2)] + £[C(1,0)] ) (IV.34)
2%2 2%2 2%2

Tn the same manner the variation of the shell thickness can be written as

h(g) = (1-8) hi + & hj . (IV.35)

The integral in (IV.30) can be evaluated numerically. Gauss' integration

formula is used for this purpose [142].

(1)

IV.5.2. Stiffness matrix k

(1)

The initial stress stiffness matrix k is obtained from the
term d{n}T{N} in (II1.54). The components of the nonlinear strain vec-

tor {n(&)} are given in (II1.22) and (IV.27). Vector {n(&)} can be

written as

)t = [FE)] nE)t (1V.36)
4x1 44 4x1



where

. ><2 X2 X2
. X X X
{n&)} < 5 0 5 5 > R
1x4
and
1 0 0 0 l
0 0 0 0
[F(&)] = 1
4t 0 0 . 0
S N
0 0 0 — sin ¢
- r e

Also let the stress resultants in configuration 1 be expressed by

1.
ey = el o
4x71 4x4 4x1
where
1 T 1 1 1 1
v = < Ny N, M My > ,
1%4
Iy 0 0 0
S
0 lNe 0 0
I ,
hx4 0 0 Ly 0
8
1
| o 0 0 Mg |
and
T - <1 01 1 1 >
1%4
The variation of 8{n(&)} is
SMET = < xdx 0O X8x  xSx >

1x4

(1v,

(1v.

(1IVv.

(1v,

(1v.

(1Iv.

37)

38)

39)

40)

41)

42)

43)
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This variation can be written as

s = [x)1 {&x&)!} (IV.44)
4x1 lx4 434
where
ST = 6 < x(& 0 X&) xE& > (IV.45)
1x4
[ x(&) 0 0 0
0 0 0 0
[(x(&)] = s (IV.46)
0 0 x(&) O
0 0 0 ¥ (&)

Substitution of (IV.36), (IV.39) and (IV.44) into a{n}T{N} gives

sine)}t et = 5{X(€)}T [F(E)] ['N(E)] &1 . (@av.47)
1x4 4x1 1x4 b4 4xt  4x1

Also substitution of (IV.19) into (IV.28)3 gives

x@1t = [6&)] {o} (1V.48)
4x1 4x4  4x1
where Matrix [G(£)] 1is given in Appendix G for both ring and cap elements.

In view of (IV.48), expression (IV.47) becomes

st vt = st re@1’ r@1 '@ 6@ {o) .
1x4 4x1 1x4 4x4 44 44 44 4x1 (IV.49)
Substitution of (IV.49) into (IIT.54) results in the following expression

for the initial stress stiffness matrix of an element

1 )
k1 = [ ae@1 FEINE 6@ 1@ (12 ge
o]

6%6 (Iv.50)



IV.6. The Incremental Force-Displacement Relations

The displacement vector for an element is chosen to be

A

(vt =
1x3

ul(i) uz(i) x (&) > . (IV.51)

Substitution of (IV.19) and (IV.28) in (IV.51) results in

veyr = (o) Hal (IV.52)
3x]1 36 6x1

where [¢(E)] is given in Appendix G. Substitution of (IV.52) in
(ITI1.54) results in the following expression for the generalized force

of the element.

1 ,
o) = [ @M B@ir@amH? a (1v.53)
(o]

6x1
where, for a linear interpolation, the surface force vector {p&)}

can be written as

pe)r = @-o){py} + a{ﬁj} . (IV.54)
3x1 3x1 3%1
The linear incremental force-displacement relations for an

element in coordinate system {a} is

{Qa} = [ka] {al} (IV.55)
6x1 6x6 6x1
where
- (o). (1)
[ku] = [ka ] + [ka ] (IV.56)
6x6 6%6 6%6

At the nodes of the element, equation (IV.52) has the form

{q} = [A] {a} (IV.57)
6x1 6%xX6 61
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where {q} 1is the vector of nodal displacements in &-n coordinate

system

{qg} = < AP . (IV.58)
1x6

The coefficients o are obtained in terms of {q} by inversion of
(1Iv.57)
-1 ‘

{a} = [a77] {q} (IV.59)

6x1 6x6  6x1
where matrix [A"l] is given in Appendix G. The relationship between
the components of nodal point displacement vector in £&-n coordinates,
{q}, and the corresponding components in the surface coordinates, {r}

is given by

{q¢} = [1] {r} (IV.60)
6x1 6x6  6X1
where
{r}T = <y, :r, >
i J
1x6
(1IV.61)

{rL}T = <u, w, X, >

1 i 1 1
1x3

The matrix [T] 4is given in Appendix G. Transformation of (IV.55) into
surface coordinates results in the following incremental force-displace-

ment relation

{0} = [k] {r} (IV.62)
6x1 6%x6  6x1

where



for = (1t a4t {q ) , (1V.63)
6x1 6x6 6X6 6x1
{r} = (1% [a] {a} , (IV.64)

6x1 6%6 6x6  6x1

and

T 1

(k] = (717 (A" (k] (A7 (1) (1V.65)

6x6 6X6  6%X6 6%6 6%x6  6%6
Considering the equilibrium and compatibility requirements at the nodal
circles, the relations (IV.62) of the elements are combined using the
direct stiffness method and the incremental force-displacement rela-

tions for the whole shell is obtained.

{R} = [K] Ar} (IV.66)
Nx1 NxN Nx1

where N is the number of elements of the shell; {r}, and {R} are
the vectors of all incremental nodal displacements and generalized
forces; and [K] is the total incremental stiffness matrix of the

shell.
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1V.7. The Procedure of Incremental Analysis

The procedure for the analysis of large deflections of elastic-
plastic shells of revolution using the finite element scheme developed
in this chapter is outlined in this section. The incremental solution
starts from a known initial configuration where the shell is assumed to
be free of stress. Then load increments are added successively. For
each one corresponding displacement increments are obtained, and the
geometry and the material properties of the shell are renewed accordingly
to be used as the initial values for the next increment., The details of
the procedure for a typical increment of load for strain hardening
materials is as follows. The displacement increments are found from
(IV.66) and the increments of strain for each layer in the shell thick-
ness are obtained from (IV.29), (IV.48), (II1I1.14), and (III.15). The
total strains are obtained from (B.5) which for the physical components

of strains in axisymmetric shells of revolution becomes

28 = la + (1 + 215

11 11 ) €

11 11 ’
(IV.67)

2 la + (1 + 216

292 22 ) €

m
I

22 22

From (III1.29) the Piola stress increments are calculated and are used
in (I.15) to find the total Piola stresses which are then transformed

to Cauchy stresses by

ZT l l+2€ll 23
11 1+2€22 11
(1V.68)
ZT ) 1+2€22 25
22 1+2e 22

11
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The loading criterion (IL.23) is checked and for loading the plastic
increments of strain are used to find the increment in equivalent
plastic strain (IT.41) which is used to find the total equivalent

plastic strain by

= Y G W = ) (1V.69)

This strain is utilized in the uniaxial stress-strain curve to find

the tangent modulus and the equivalent stress o (see Figure II.3).

The value of 0 is used to modify the new state of stress. The tangent
modulus together with the new state of stress and strain are used in
(I11.30) and (II1.31) to find the new material properties. The new
geometry of the shell is obtained from (IV.12) and (III.7). Now the
next increment of load can be added for which the above procedure is
repeated.,

The procedure explained here is essentially a forward integration
method where the magnitude of the variables at the beginning of each
increment is used for the integration during the increment. This
method can be improved by wvarious integration techniques, see, e.g.,
[143]. It was found in [141] that a modified Euler method gives im-
proved results for the case of infinitesimal deflections of elastic-
plastic circular plates. This modification can also be used in the

present problem.




CHAPTER V: NUMERICAL EXAMPLES

In this chapter the linear incremental procedure developed in
Chapter IV ieg applied to the large deflection elastic-plastic analysis
of some axisymmetrically deformed shells of revoliution. The purpose is
to study the accuracy and convergence of the dirvect linear incremental
method and, therefore, no auxiliary numerical procedures have been intro-
duced to improve the accuracy of the results. A complete study of the
nonlinear incremental procedure of Chapter IV requires either an itera-
tion scheme or some improved integration techniques like modified EBuler
or Runge-Kutta method [143].

A brief description of the compufer program is given and then

several examples in the elastic and elastic-plastic range are solved.

V.1, Outline of Computer Program

A computer program was developed and used for the nonlinear elastic-
plastic analysis of axisymmetrically loaded and supported shells of revo-
lution. The linear incremental method of Chapter IV is used.

The program is in Fortran IV language and was used on CDC 6400
computer. The capacity of the program is limited to maintain an in-core
analysis. Examples with up to 80 elements each with 20 layers can be.
treated. The capacity can be increased by means of cut-of-core storage
facilities if required.

A concise outline of the computer program is given in Fig. V.1,
This chart,; together with the explanations in Section IV.7, is enough
to acquaint the reader with the basic steps and some details of the pro-
gram. The listing and the instructions for using the program will be

published in another report.
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Read Data
I~ number of structures to be analyzed
2—- discretization data
3~ material properties
4~ boundary conditions
5- element geometry

‘i

Construct Geometrical Parameters and

Matrices: [B], [G], [A-l][T}a [Fl,

and [¢].
{

Read Applied Load Increments in Current
Geometry and Convert to Consistent Nodal
Loads.

Construct Matrix [D], Element Stiffness
Matrix [k] = [k©] + k)]

System Stiffness Matrix [K].

, and set up

f

Impose Boundary Conditions and Solve
Equations for Displacement Increments;
Find Total Displacements.

Compute:
1- different kinds of stresses
2~ stress resultants
3- new material properties

|
Renew the Geometry:
1~ compute new geometrical parameters
2- compute total displacements in
initial configuration coordinates

* No
Are All Load Increments Applied?

Yes
¥

Are All Structures Analyzed?

¥ Yes

Stop

Fig. V.1 Concise Outline of Computer Program
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V.2, Elastic Solutions

In this section the results of the linear incremental finite element
method are compared with some other existing theovetical solutions for
elastic circular plates and shallew spherical shells. The purpose is to
check the accuracy and convergence of the present method in the elastic

range.

V.2,1. Circular Plates

The incremental method is applied to a clamped circular elastic
plate and the results of normal central deflection, and membrane and
bending stresses are compared with Way's power series expansion solution
[121] (sée Figures V.2, and V.3). Since the plots are dimensionless, the
results are applicable to any clamped circular plate with Poisson's ratio
of 0.3,

As the plots in Figures V.2, and V.3 indicate, the agreement
between the present results and Way's solution is good for both displace-
ments and stresses. There is practically no difference between the
results obtained for the load increments (a/h)é(ﬂp/E) = 0,54 and half
this value. 1In this example the cord length of aﬁ element was chosen
as 0.053a. The computer time used per increment of load per element

is 0,65 seconds.
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V.2.2. Shallow Shells

Nonlinear elastic solutions. are given for two clamped shallow
spherical shells with different parameters. A. The geometric parameter
A for shallow sh&iis is defined by A = [UlZ(lmvz)(aZ/hR)]l/z where h
is the thickness of the shell, and R and z are shown in Figure V.4,
The wvalues of A for the present examples are low enough to assure

axisymmetric deflections.

A. Comparison with Kornishin's Solution

In this example the results of the linear. incremental method are
compared with Kornishin's power series solution [144] for a shallow
spherical cap with X\ = 2,22 (see Figure V.4). The dimensionless
results in Figure V.4 apply to any shallow spherical cap as long as
A = 2.22, Poisson's ratio Vv = 0.3, and the shell is thin. Values of
0.75 and 0.375 are used for the dimensionless load increments. The load-
deflection curve in Figure V.4 Indicates that the results by the smaller
load increments are closer to Kornishin's curve for (wofh) < 2. Beyond
that the results of the larger load increments are cleser. This can be
attributed to the fact that since in a linear incremental procedure the
increments are taken along the slope to the load-deflection curve and
the true slope is more closely approximated by smaller load increments,
then in the present example near (wo/h) = 1.5 where the tangent is
almost horizontal the smaller locad increments overestimate the deflec-
tion. This problem can be overcome if instead of the present linear
incremental procedure the nonlinear incremental formulation of Section

IV.1 is used. 1t can also be treated by replacing the present linear
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incremental procedure which is actually Euler's forward integration method
by the modified Euler or Runge-Kutta method [143].

Eighteen elements were used in the present example with finevx
elements near the edge of the shell. The computer time per load increment

per element was 0.68 seconds.

B. Comparison with Kaplan and Fung's Results

The finite element solution is compared with Kaplan and Fung's
experimental results and their theoretical perturbation solution for a
shallow spherical cap with A = 4,01 [97] (see Figure V.5). The finite
element method is applied to both the initially perfect and imperfect
shallow spherical cap. The geometrical imperfections measured in [97]
were used. The result of the perfect shell agrees well with the theo-
retical solution in [97] and that of the imperfect shell is closer to
the experimental observation but does not close the gap between the
theoretical and experimental results.

Eighteen elements were used with finer elements at the boundary
of the shell. The computer time per load increment per element was 0.68

seconds.

I1V.3. Elastic~Plastic Scolution

The elastic—plastic behavieor of a torispherical shell under in-
ternal pressure is studied. The results of nonlinear elastic-plastic
analysis are reported and compared with those of nonlinear elastic and

linear elastic-plastic analysis.
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The geometrical dimensions of the shell are (see Figure V.6):

D = 100 in, diameter of head skirt

R = D radius of sphere

r = 0.20D meridional radius of torus
h = 0.008D shell thickness, uniform

The material of the shell is assumed to be elastic-perfectly plastic with
yield stress g = 30 % 103 psi; and Young's modulus and Poisson's ratio
E = 30 x 106 psi, Vv = 0,30, respectively.

The shell is divided into 36 elements and the thickness of each
element is divided into 16 equal layers. The convergence of the nonlinear
analysis in the inelastic range is studied by using three different magni~-
tudes for the load increments beyond the pressure of 390 psi (see Figure
V.6). Below this pressure the load-deflection curve is almost linear and
convergence study was considered to be unnecessary. The three locad incre-
ments are 7.5, 15, and 30 psi. The results in Figure V.6 indicate that
the convergence increases as the magnitude of load increments decreases
and that the rate of convergence is quite rapid. The results in Figures
V.7 to V.10 are for Ap = 15 psi. The average computer time used per
load increment for each element is 0.765 seconds.

The comparison of the linear and nonlinear elastic-plastic load
deflection curves in Figure V.6 indicates that for the same value of
the apex normal deflection, W the nonlinear analysis predicts higher
load carrying capacity for the shell. The difference varies from zero
to about 117 for displacements up to 0.4 inches. If deflection is used
as the controlling factor in defining the ultimate load carrving capacity

of the shell the above difference can be significant,
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The variation of the normal displacement w, meridional bending
moment Ms’ and the circumferential in-plane force NS along the
meridional curve of the shell are shown in Figures V.7, V.8, and V.9,

It can be seen in Figure V.7 that. the normal displacement of the non-
linear analysis is appreciably less than that of the linear analysis all
along the shell. The redistribution of stresses as a result of plastic
deformation can be seen in Figures V.8 and V.9. The comparisons of
linear and nonlinear elastic-plastic results in Figures V.8 indicates
that for the same value of internal pressure the bending moments due to
the nonlinear solution are appreciably less than the linear solution.
The difference in the in-plane circumferential force for the two solu-
tions can be seen in Figure V.9.

The elastic-plastic boundaries in the thickness of the shell for
both linear and nonlinear analyses are shown in Figure V.10. In both
solutions the first location in the shell which reaches the state of
plasticity is the inner face of the toroidal part near the sphere edge.
The plasticity for the linear solution sets in at p = 250 psi and for
nonlinear sclution at a pressure higher than this and less than p = 280
psi. Always the plastic regions for the linear solution propagate
faster. The pattern of propagation of plastic regions is almost the
game for both solutions. The plastic regions for the linear solution in
the spherical part lean more towards the sphere-torus junction, whereas
for the nonlinear solution they propagate faster towards the apex of

the shell,
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CHAPTER VI: SUMMARY AND CONCLUSIONS

An incremental variational method has been developed for the
analysis of large deformations and/or displacements in continuum mechanics.
Several forms of the incremental expressions of virtual work have been
derived and one of them which utilizes a moving reference configuration
has been used in the developments. It is shown that the incremental
variational formulation leads to correct equations of equilibrium and
boundary conditions.

General incremental mnonlinear constitutive equations have been
derived for elastic materials taking into consideration the invariance
requirements in continuum mechanics and the laws of thermodynamics.
Correspondingly, an incremental theory of plasticity suitable for dniti-
ally isotropic materials and for the case of small deformations but large
rotations has been developed by specializing and adding some features to
the general theory in [50]. Using the principle of objectivity and the
property of isotropy it is shown that the elastic-plastic constitutive
equations remain invariant in Cartesian and initially orthogonal convected
curvilinear cocrdinate 1f the Cartesian tensors are replaced by the phys~
ical components of their corresponding curvilinear tensors. This form
invariance is very useful from the point of view of practical consider-
ations since it makes it possible to bypass the complicated curvilinesry
tensorial form of the constitutive equations in solving problems.

The incremental method has been formulated in the finite element
form and the various stiffness matrices in the resulting incremental
force-displacement relations are demonstrated. It is shown that the

force-displacement velation for each increment consists of a linear and
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a nonlinear part. The linear part which includes an initial stress stiff-
ness matrix provides a first order approximation of the incremental rela-

ions.

ot

The developed method is quite general and can be used for the
analysis of large deformations of many structural problems. In this
dissertation it has been specialized for the solution of large deflections
of elastic-plastic thin shells of revolution with axisymmetric loading
and support conditions. The displacement procedure of the finite element
and the first order part of the nonlinear incremental equations have been
used for the solution, A convenient matrix decompeosition method has been
shown for the formulation of the tangent stiffness matrix. This method
can be easily applied when more nonlinear terms of the strain-displacement
relations are considered.

A computer program has been written for the large deflection
analysis of elastic-plastic shells of revolution. The accuracy and con-
vergence of the linear incremental procedure has been demonstrated on
some examples of circular plates, shallow shells, and shells of revolu-
tion with arbitrary meridian. It has been found that the convergence
is satisfactory when the stiffness matrix of the structure is not very
close to zero. For problems where the stiffness matrix becomes almost
singular it is advisable to augment the procedure with an iterative
scheme or an improved integration procedure. When such provisions are
made the method can be easily applied for the buckling and post buckling

analysis of elastic-plastic shells of revolution.
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APPENDIX A

A.1 The Principle of Virtual Work in Curvilinear Coordinates

Cauchy's relation between the traction and the Piola symmetric

-

stress tensor in configuration 2 can be written as [35] (see Figure

5

A1)
k) n, (A.1)

2. r . . , . . Vs
where t° are the contravariant components of traction vector which
acts in configuration 2 but which is measured per unit of area of con-
. - ik . - e
figuration 1, 58 are the contravariant components of the Piola
Symmetric stress tensor measured per unit of area in configuration 1,
T . ( , .

u are the contravariant components of the displacement increment
vector from configuration 1 to 2, and the vertical bar (]) denotes
covariant differentiation.

The expression for the virtual work in configuration 2 can be

written as

W= J[ 2t¥8u da + J( 0 Zfréukdv (A.2)
v : r o £

a v

Substitution of equation (A.1) into (A.2) and the application of

Gauss ' transformation for surface integrals into volume integrals gives
ik v T )1 257} s
W= [ g™ 0" + v )« T Su_dv +
v 2 k |x Po r
T

J(8u_ )| dv
r 1

< \
no
[o3]
e
o
[o5]
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+
<
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The integrand of the First integral of equation (A.3) consists of

the eguilibrium equations and is identically equal to zero; therefore,

_ ik, or Tooye
W, = Jfgs (6k +u Ik)(@@y)[i av . (A.h)

7

It can be written that

3(du ) < 4
(611;); = axl - gf ri (.(Su5>
or,
(6ur)!i = é(urli)

This is due to the fact that the variation is applied in configuration 2

and therefore the variation of the Christoffel symbol grsrf in con-

figuration 1 is equal to zero. The expression for virtual work becomes

ik ;. ryo- , - !
- + I < .5
WV Jr oS (ok u ]k) 6(ur[i>dv (A,5)
A
Due to symmetry of stk and the fact that = LR 0 then
4 O BY Xy oS ] gij]r g !T » Lher
ik T i _ ik r
oS u lk $ PP |1 éul]k
ik m n
= ( (
58 (g7 u )| 6‘grn u )[k
ik m T
= s Sn o | S u lk
= slk 1, s ut



133

Therefore,

ik, .r T _ 1 ik S
s (6 + v lk) 6ur|i =5 .8 (6uk!i + Su, |, 6ur|l
r‘ B
+ .
u |, st (4.6)
- ik
= oS 9%y
in which eik is the covariant component of the Lagrangian strain
between configurations 1 and 2.
e =2 (u |+ |+ ™, ul) (A.7)
ik 2 " Tk'i ik i m'k Y
Substitution of (A.6) into (A.5) gives
_ ik
WV = jQS Ssik . (A.8)
v
The stress 2slk can be divided into two parts
) . .
o ik, 3k (A.9)

S
2
. . ik , . .
in which T are in magnitude equal to the corresponding contravar-
iants components of Cauchy stresses in configuration 1 but which are
. . ik c .
associated with bagse vectors G , and s are symmetric increments

of contravariant stress components of the type of symmetric Piola

stresses.

Substitution of (A.9) and (A.8) into (A.2) yields

2 2 v i ik
Jf “tY Su_ da + J[o Tf7 Su dv = J[(le + s Y8, av . (A.10)
T o) T ik

8 v v
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The expression for virtual work at configuration 1 can be written as

J[ Y sy da + J[ o 1T suav = J[leée“,dv (A.11)
r o r ik
v

a v

in which

is the linear part of the strain increment from configuration 1 to

configuration 2.

Let the increments of traction and body force be defined by
(A.12)

Substitution of (A.12) into (A.10) and subtraction of (A.11) from
(A.10) results in the following incremental expression for the virtual

work in curvilinear coordinates

T r ik ik : ( Q)
- - + g £ . dv (\AelS)
Jr t éurda + J[ pT 6urdv J[ (1 énik 58 1k)

a v v

in which

_ 1 m , .
Ny = 30l vl (&.14)



A,2 Proof of the Validity of the Expression of Virtual Work

In this section it 1s shown that the expression of virtual work
(A.13) results in correct equilibrium equations and boundary conditions.
This proof is also applicable to the Cartesian expression of virtual
work (I.27).

The equilibrium equations in configuration 1 are

+p T =0 (A4.15)

ltr = 1t n (A,16)

The application of the principle of the balance of linear momentum to
the deformable body in configuration 2 results in the equilibrium

equations there,

fpo °r av + _[23 da = 0 (A.17)

v a,

in the volume integral, and (A.1) and (A.9)

Substitution of (AUZLE)E $

in the surface integral of (A.17) and the application of Gauss' trans-

formation results in

Jf (% + sik)(éi + uf[k>}|i + p0<1fr + ) }av = 0

v

This integral holds for any arbitrary volume, therefore,

(1 + sik)(éi + ot =0 (4.18)
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The boundary conditions in configuration 2 are given by equation

(A.1). Substitution of (A.12), (A.9) into (A.1) gives

ik ik,

T € e TR I

i ur[k)ni (4.19)

Subtraction of (A.15) from (A.18) and (A.16) from (A.19) yields the

incremental equations of eguilibrium

ik ik Ty : \
[s* (éi + ur[k) + T lkJIi + pofr = 0 (A.20)
and boundary conditions
r ik, .v r ik ot
= + + B ®
t [s77(8, + u Ik) T u ]k] n, (A.21)

It can be shown that by carrying out the appropriate variations for
the expression of virtual work (A.13), the equilibrium equations (A.20)
and the boundary conditions (A.21) are obtained. The variation of the
integral on the right hand side of equation (A.13) is done as follows

ik ik oy 1 ik o m
J[ (1776n,, + s 6e, Jdv = J(Z T &(u Iiumlk)dv +
v

v

Because of the symmetry le and slk , and the fact that Surii is

the same as (éur)li , this equation can be written as

ik ik B ik mp .
J/ (1 §n,, * 8 éaik)dv = J[ (177 u [i éum]k)dv +

v v
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The volume integrals can be changed into surface integrals by

means of Gauss transformation

ik . :
Jf (v ST s* oeik)dv = J[ T umli du_n_ da -

v a
ik m
‘["(T u Ii)[k Su_ dv +
-
, ‘ (A.22)
v/'slk(di + urlk) 6ur n, da -
a
J[ [sik(éP +u"] )1, su_ av
k k i r
-
Substitution of (A.22) in (A.13) yields
r ik, .r T ik r
J[ {t7 - [s77(5, +u ‘k) + T u \k]ni}éur da +
a
(A.23)
f {[sik(éi + urlk) § T uflk]lt e, fr}ﬁur v = 0
1
v

The integrands in (A.23) must vanish identically. Therefore, the

equilibrium equations

[Sik(ér

ik ri
k

r

+ U + T u
)

and boundary conditions

In (A.25)

ik ur[
kA

th = [sik(ﬁi + urlk) + T

are obtained which are identical to equations (A.20) and (A.21)

respectively.
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APPENDIX B

B.1 Superposition of Strains

Consider three configurations of a deformable body in the process
of deformation (see Figure B.1). The components of the Lagrangian
strain tensor between the initial and the second configuration are

defined by

-g..) (B.1)

This can be written as

e (g BB oy ax” ax> o ax”
1] T a2t ogzd T D™ 5™ ™ a3t o3
2 1.,k ax (8.2)
ij i3 Bii azd TR

in which lgij and €mn are the Lagrangian strains between the
initial and first; and the second and first configurations respectively,

Defining gi’ by

J
T S (B.3)
13 gt oyl W
and substituting in (B.2) then
e = te L+ E, (B.1)



iI39

.k\”xt kx‘*

L Ga

CONFIGURATION 1
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If convected curvilinear coordinates are used then equation (B.2)

becomes

The equivalent form of (B.2) in Cartesian coordinates is

9z 0%
ZEM = lE,., +5—:IE—§:£€mn (B.6)
1] 1J Z3 Z ;5 1
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APPENDIX C

C.1l The Principle of Virtual Work, Second Alternative

The expression of virtual work in configuration 1 can be written as

- 1= 1- - 1o 1e - 1 1 -
d[ o, I, 8 u, v+ :[ t, §( ui)da = :[ S5 §7e,, dv (c.1)

v a v

in which the bar over the variasbles indicates that the initial con-
figuration is the reference. In particular lﬁi represent the com-
ponents of the displacement vector between the initial and first con-
figurations expressed in the coordinate system of the initial config-
uration. The expression of virtual work in configuration 2 can be
written as

- 2= 2= - fz_ o- —-..f2— 2 -
fpo i S u, av + £ S ( ui)da = S.y § € av (c.2)

v a v

It is shown in Appendix B that

2 1 .
proed e Y ) Y
fi = Cpi T G (3.k)
Also define
- o -
£, = f, - lf N
i i i
and
- D —
t, = 1. - .
i i i



|
B~
]

in which {i denotes the increment of surface traction in the direc-
tion of the coordinates of the initial configuration and measured per
unit area of a , and fi is the increment of body force per unit

mass in the coordinate system of the initial configuration. Since the
virtual displacements 613 and ézg (See Figure I.1) are the same as

§ u , then

o~

in which ﬁi denote the components of the increment of displacement
between configurations 1, and 2 expressed in the coordinate system of
the initial configuration.

Subtraction of (C,1) from (C.2) and the substitution of (B.k4), (C.3),

(C.k) and (1,36)3 in the resulting equation yields

:['po fi 8 uy dv + J/.ti § uida = J[ ( i 3§ gki + iy ) Eki)dv
=z

It was shown in chapter 1 that for hyperelastic materials

- e A j.
Sip = Py 1 . (1.40)
ki
and
2~ o oA .
=P I.41)
Six o) agki ( :

Substitution of these constitutive equations in (C.5) gives

IE fasﬁcd§+j'€qdﬁ,d£=f5' § A av (c.6)
(O 1 1 1 o]

v a v
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which is an incremental expression of virtual work for elastic materials.
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C.2 The Principle of Virtual Work, Third Alternative

(%u)

The virtual displacements in section C.l were taken to be §
and 6(13) . If instead of these 6(3) is used throughout, then
another form of the expression of virtual work can be obtained. As
in section C.1 the components of u are taken in the coordinate system

of the initial configuration. The expression of virtual work in con-

figuration 1 is

Substitution of

=Tg,., == n, (c.8)

into the second integral on the right hand sgide of (CaT), and the

application of Gauss transformation results in

1 - 1. - - 1 - -
= + 1 + J[ :
W f [(Tsyy 7 )y v o Tl 60y 4y Si5 P,y 0 Vi,i &

M v (c.9)
The statement of equilibrium requires that

lS b ) S l
i3 “k,3’°%1 o "k

Therefore,

] - - L
= - d .1
WV J[ Sij Zkgj § uk,i v , or (Cc.11)

- 1 .- - /1- -—__fl . - - |
J[ ST S U, av + tk 8 U da = Sij Zk’i S uk,i dv (c.12)



The expression of virtual work in configuration 2 can be written

in the same way

- 22 = = J[z— R .[‘2— ~ -
Jf o, fk 8 u, dv + tk § u, da = s, . Zk,j § uk,i dv (C.13)

The integrand on the right hand side of (C.13) can be written as

o - 1 - -
s.. %2 .&u ,={(s.,+s )z _+uw .)S&u . (C.14
1) Tk, k,d ij 1] k,J kyJd k,i N )

Substitution of (C.14) into (C.13) and then subtraction of (C.12)

from (C,13) results in

v a, M
J[ [150, w ,8u , +s,..(z, . +1u ,)S8 Gk Jav (c.15)
- 1 Kk, k,i 1) k,J k,J 51
A2
Due to s etry of 1 and s then
1. ymm Y Sij ij N L
1 - - _ 1 - -
515 Yk,3 0 Yk,i T2 Sijﬁ( %, k,1> ’
(C.16)
- — - 1 - -
S5 %, 8 U1 T 2000 g )
and
5.z .6u . =3 (s .+ e1 .
1j k,J k,i 13 "kJ k,J  Tk,1 (c.17)
1 - 1 - ,1- - 1~ -
= - + + = +
2 SlJ<u1,j qui) 2 SlJ( Y, 3 k,i ukal Y, J)
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Define
T.o=i(E L +d, .0 LT )
ij 2 i, Jj,i k,i k,j
Ny = %-(—k,l ey (c.18)
By = Sy * ”2]:' (lak,j U gt lﬁk,i Uy y)
in which Eﬁj has the same form as the increment of Lagrangilan

strain between configurations 1 and 2 but involves displacement
components which are in the coordinate system of the initial con-

figuration. Substitution of (C.18), (C.17), and (C.16) into (C.15)

gives

fE .8 u d?;+f% S u da-'-_/'(l §n.. +s,. 8 E. )av
- o k k - k k - iJ 1j ij ij

v a v
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APPENDIX D

D.1 The Physical Components of Stress Tensors

The deformation of a continuum may be expressed in Cartesian,

and curvilinear coordinates by
7. =2 (z,) . (D.1)
and

2= ) (D.2)

respectively (see Figures D.1, and D.2 for a two dimensional pic-

ture). In Cartesian coordinates the stress tensor 7 can be

expressed in terms of Cauchy (TAB) , Piola symmetric (Sij) and
unsymmetric (TAi) components as follows.
-1 -1
= 5 ] = : = i D,
ey T s T %%y % T L T G (b.3)

in which i 1is the unit base vector, G 1is the convected base
vector, and J is the Jacobian of transformation (D.1)., The con-
vected base vectors can be written as
oR dR 9%
G, = 5— = = .1z

= ® )
i 32i BZA Bzi A TALL (D. W)

Substitution of (D.h) into (D.3) results in

-1 -1 ,
= 7 = 7 D,
g =7 Zai Si5 %m0 Tax Pk (D.5)

The same relationships in curvilinear coordinates are
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FIG. D-2



. AB - -1 iy . =1 - Ak
m=G6, T Gy = JTG, gj =J 76, T G s (D.6)
BR
e S
Jdx
A e G B D o (D.8)
31 SJ 5k

The physical components of std , and TAk are defined such that

they transform to the physical components of o by equation (D.5).

In fact the stresses in (D.5) are the physical components. In ortho-

. B
gonal curvilinear coordinates the physical components of TA and XAi
3

are
1
TZB - TAB(@(AA)@(BB)>2 (no sum) , (D.9)
and
L
Xz,i - xf*i (B pa) (112 (o sum) - (D.10)

* - * -
Ty =T Y,i VeGnegy ) X:,J -
(D.11)
=0T B,k (VG (zp)8 (xk) )
iJ

By comparison of (D.11) and (D.5) the physical components of s

and TAk are

* _ ij \
i35 = Y8(11)8(31) (no sum) , (D.12)
and
* k . 5y
it — ) S a a
“ax T YG(BB) B(kx) T (no sum) (D.13)
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APPENDIX E

The Strain Displacement Eguations for Axisymmetric Shellg of Revolution

The Lagrange strain tensor will be subjected to Kirchoff's hypo-
thesis and and will be specialized for axisymmetric shells of
revolution, Since convected coordinates are convenient to use in
axisymmetrically deformed shells of revolution (see III.L4.). This
type of coordinate system will be adopted throughout the derivations.
The Lagrange strain tensor Eij between two configurations of the
shell, say configuration 1 and 2 in Figure B.l, is defined as

- L k .
€5 = 2001y H il et ey (5.1)

where u' is the displacement vector between the material points in

~

the shell space in configurations 1 and 2. The vector u' can be

expressed in terms of its shifted components on the middle surface

of the shell space in configuration 1 as

o Y . ,OC_ ~1y0 Y ; \
u& =u uosult = (0w ) u (E.2)

"

where the space shifters are [60]
UY =8 - ><;3’b(Y (E.3)
o o T Vo ’

=1y 1 oyv oA » 3
)a T 6@K Hy (E.L)

and

= aetn)] (E.5)

in which b; are the curvatures of the middle surface at configuration 1.
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3 ‘ (E.6)
Substitution of (E.2) through (E.6) into (E.1) results in [60].

A A
26@6 = ua(uﬂlB - bXBuB) + HB(uKIIQ - bkau3)

) 5 §
+ (u5||6 - b68 u3)(u o - b, u )

3 (E.T)
VA A )
+ (u3,a + b, u\))(u356 + b6 ux) ,
2. o= UY u + (u + blu, ) +
30 O Y,3 3,0 oA (E.8)
u,3<uk|]a - bkauE) + u3,3(u3’a + D ux) R
and
N 2 A
2533 = 2u3,3 + (u3,3) + oy 3ty s (E.9)
where
u = U - F>L u
al |8 a,B aB A
(E.10)
e _ o a 6

]]B = u,B + FSB u

In axisymmetric shells of revolution where the deformations are

restricted to Kirchoff's hypothesis the only non-zerc components of the

metric tensor of the middle gurface will be

81 T 0 5, 8, =T (£.11)

where
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(E.12)

The corresponding metrics associated with the contravariant base

vectors will be

The components of the second fundamental form are

bll =~ 0 ¢,l s b22 = -1 sin ¢ .

and the corresponding principle curvatures are

1 bll 1
bl=g~"—=-ﬁ—,and
11 S
2 b22 1
bg:;m:__gm.

22 6

The Christoffel symbols which are defined as

o 1 oA
F o e -+ —
iy ~ 2% (agy T e T %y 0]
will become
[0 rr
1 T 1 1 01
F11 T oo F12 =0, Tzz T T o e
63
I
2 2 01 o
Fll 0 FlE Ty 2 F22 =0

The space shifters which are different from zero are

, o, .
1 3 711 2 _ 3 sin ©
“l = 1 + x T My = 1+ x -

(E.18)



In axisymmetrically deformed shells of revolution 612 and 623

will be equal to zero. Also if Kirchhoff's hypothesis is accepted

then 513 and 833 will vanish. Therefore, the only non zero com-

ponents of strain are ell and €op The expressions for these two

components of strain are obtained from (E.T7) after substitution of

(E.10) to (E.18) into this equation. These strains are

XB Oy, OL2
26y, = 21+ ﬁ;q[(ul,l -t ﬁ;'usj *
(E.19)
Lo g_’_l.u)+§‘.‘iu]2+(u ".1_1}.)2
2 1,1 o 1 R 73 3,1 R
a S s
%,
B ev— —~ +
e, 2(1 + Re)(rr,l u + r sin ¢ uB) |
(E.20)
(r,,u” + sin ¢ u )2
T 3
Consider the displacement vector u' , Subject to Kirchhoff's
hypothesis it can be written as (see Figure E.1)
u' = v + x3 (A - a_) (E.21)
b ~ 3 ~3

where v 1s the displacement vector of the middle surface. Let W

~

be defined as the difference between the normal unit vectors

w = §3 -8y, (E.22)
hence
ul= v+ (E.23)
= (v o+ XBwl)a + (v3 + x3w3)a

<1 ~3

Also u' can be expressed in terms of its shifted components as
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U
it

Ev = ul a; + u3 8y (E.25)
Therefore,
u' o= vl + x3 wl , and u3 = VS + x3 w3 \ (E.25)
Similarly,
u, = vyt % w, » and uy = 0 = vy ¥ = Wy (E.26)

Substitution of (E.25) and (E.26) into (E.19) and (E.20) gives

3 O, 2 v}
- R 1 o 3 ry 1
ey = 201+ RS>{(V1,1 ST R_ V3T X [ty =57 o)
2 O, 2
o Py 1 o
tamowglle = vy -5 ) + 5 v
s o s
o, 5 o (E.27)
1 [ e I - A §
1,1 o 1 RS 3
A 0 2
1 3 1
+ [(v3’l— ) + x (w3’l—R )]
s s
2e,,. = 2(1 + 2—{---)[(_r’r, vk r sin ¢ v3) + XB(PT, wl + r sin w3)]
22 R@ 1 1
(E.28)
+ [(r,lvl + sin ¢ v3) + x3(r,1 Wb+ sin ¢ wg)}g
Let v, w , ws ) wn €66 . Ess denote the physical components of
v o, W, and EuB regpectively. Then
v
1 1 3
LEvoes o=, wsy o= vy (E.29)
w
1 1 3
— — — = - Ea
Wy EwWo s ==, e o= W, (E.30)
€ £
o)
e = —22 e = L& (E.31)
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Substitution of (E.29), (E.30), and (E.31) into (E.27), and (E.28)

gives the strain-displacement relationships in terms of the physical

components.
2 w
- L 2, X 2
®ss T % o TN Cst,s * RS) *
s Oy Yy
R Te (ws,s * ﬁm) - X(wn,s - ﬁ_)] (E.32)
s s s
0 w . w
2 rl n 1 n,e 1 S\2
tE [R (ws,s * ﬁ—o * 5-(ws,s * ﬁnd - E-(wn,s - ﬁm) ]
s s s s
e W
oL .12 Sy, Btr, L2
9N ee+2e6+c[w(1+ee)+Re]+Q[R8+2wr] (E.33)
where
ey = %—(u cos o+ W sin ¢) (E.34)
= W
e = U, + R (E.35)
s
u
X = -R-—S— — W,S (E336)
w_ cos ¢ +w_ sin ¢
r r

It can be seen in Figure (E.2) that the components of the rotation

vector W can be written as

~

sin (E.38)

€
i

cos W -1 (E.39)

€
i

When Kirchhoff's hypothesis prevails, it is possible to find
ws and W in terms of the middle surface displacements u and w

Kirchhoff's hypothesis requires that
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€., =0, e, =0 . (E.L40)

Substitution of the physical components of the variables in (E.8)

and (E.9) in view of (E.L0O) results in three independent equations

w(l+e)-x(1+w)=0, (E.41)
S IS 1
1 wl’l~ ws
s lgmr ey o v I Moo, -5 =0, (B, 42)
3 ] S
we + 2w +m2:0, (E.L43)
n n S

3

from which wn , and ws can be found. The expression for ms

and W are
n

_ X :
Wy = T (E.LL)
(1 + 2es + e + X)2
1+ e
w = 5 -1 (E.L5)
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APPENDIX F

THE EXPRESSION .OF VIRTUAL WORK FOR AXISYMMETRIC SHELLS OF REVOLUTION

Let the surface of the shell in configuration 1 be denoted by a'

and the displacement wvector between the material points in the shell space

in configurations 1 and 2 be called u' (see Figure E.l1). Then, in the

absence of body forces, the expression of virtual work (A.13) can be

written as

J otfeu et = fen o+ sTee ) av (4.13)
a' v

£,

ik
The surface a' consists of the outside, inside and edge surfaces of the
shell where tractions are specified. 1In vectorial notation the surface
integral can be written as

f t °,63' da' = f t e 63' da' + f £ 63' da' + f to. 62' da' .
a

a' ” - a, a
0 i e

(F.1)

Consider the integral over the inside surface of the shell. For axi-

symmetric shells of .revolution

£ = tlg, +tog . (F.2)

g, = & (F.3)
where Mll is the space shifter defined in (E.3), then

_ 1.1 3
t nyothay + t a, . (F.4)

Also, similar to (E.24), the displacement vector u' can be written as

~




| 3
u u,a + uya . (F.5)

The relationship between the surface differential da’' on the inside
surface and the surface differential da on the middle surface of the

shell can be established by noting that

da' = g, % g, dxl dx2 . (F.6)
and
da = a; % a, dxl dxz (F.7)

Then in view of (F.3)l and (E.5)
da' = u da (F.8)

Substitution of (F.4), (F.5) amd (F.8) into the inside surface integral

of (F.l1) results in

3
N l 1 =
£ ot Su' da £ uul h/2 Suy + [ue ]__h/2 Su,) da
* (F.9)
where | ]-h/2 indicates that the variables inside the bracket are
evaluated at x, = -h/2, h being the thickness of the shell. 1If the

3

tensors in (F.9) are expressed in terms of their physieal components

then

. b3
ib £« Su' da' = £ (Tue ]y /o Sup + Tue 1y, Sug *) da
* (F.10)

where the physical components are defined as

— 1 3
ts 7 g1 °F ? T
(F.11)
* %
b s B S | ) b T
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Substitution of (E.26), (E.29), and (E.30) in (F.10) and a similar equa-

tion for the outside surface integral leads to

. . h/2 h/2
o tcdudal = [ (ue 1205, Su+ lue 15, v
a 'ta a
h/2 h/2
+ [“tsC]-h/z Swg + [Utnf_,]_h/z Sw_ ) da (F.12)
where, in view of (III1.12) and (III.13),
Sws = (l-es) Sy~ X6es , (F.13)
w = - xS . (F.14)
Let us assume that
fSwS = 0y s dwn = 0 (F.15)
then equation (F.12) becomes
i t +6u' da' = [ (B Su+p_ Sw+m Sx) da (F.16)
é '+a | B ~ a s it
o) i
where
~ ... .h/2 ~ h/2 ~ h/2
pS - [Uts]_h/2 3 Pn - [utn]«»h/Z 3 m [UCtS]—'h/z
(F.17)

In the same manner the integral over the edge surface in (F.1) can be

changed into an integral over the edge contour of the middle surface.

[t 8uda' = [ (N_Su+Qéw+ M, 6x) de (F.18)
a

C
e

where
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h/2 .

Noo= [h/z (1 + ﬁg-) t, dz

/ h/2 r

QS = {h/Z (1 + ﬁg‘) ty, 4% (F.19)
h/2 .

Moo= {h/z (1 + ﬁg-) t % dg

For axisymmetrically deformed shells of revolution, under Kirchhoff's
hypothesis, the volume integral in (A.13) reduces to
11 22

B 11 22
fe,,) dv = {‘7 (t776ng, + TN, + s 8e, +os 8e,,) dv

f (leSUu " Slk
v ik

(¥.20)

11 22 11

Let T T@@’ S.s> Sgp be the physical components of 1, 1, 8,

88
22 .
877, and Nyg> Ngg>  Egg° €06 be the physical components of ”11’ Nyos
Ell and 822. Then (F.20) becomes
f Tikﬁn + sikée ) dv = f (1T 8N+ T,.8Nyn + 8 88 + s5,.08,,) dv
‘ Y ik ik v ss  'ss 667 '66 88 88 067706

(F.21)
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APPENDIX G: Some Matrices for the Axisymmetric Shells of Revolution

G.1. [B] Matrix for a Ring Element, see Equation (IV.29).

4x6
r 1 ¥
0 P 0 n'e 2En'p
siny £ siny cosy £ cosy €2 cosy
r T T T T
12 ¥ 1
0 -n'"o 0 n'e 2En"' o~y

sinW;in@ Ny o+ isinwgin¢ coswgin¢ Y Ecoswiin¢ LY + Ezcosgsin¢

T T T T T
3€2n'p
3 cosy
2 T
38(En"d-w)
2 €BCOSWSin¢
-3E7Y eIl
2
r |
where
l 2 n”
p = N— ’ U = 3 (D = *
2(l+ﬂ'2) 22(1+n,2)3/2 22(l+ﬂ'2)5/2
v sing+n'cosy

gr (14012372
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G.2. [B] Matrix for a Cap Element, see Equation (IV.29)

4%6
0 0 0 p(1+n'tanB,) 2En'p 3€2n’o
2
0 0 0 1 &ecosy £ cosy
r cos Bl T r
0 0 0  3(n'tanf-n'") 260" 01 3E(En" 1)
n'-tanpf . , ,
0 0 0 1 ¥ o+ sing 2y 4 cosPsingd _3ey + EcosPsingd
£ A —2 -3
Er cosB1 T T ]
where
l 2 n”
p = T s b= ; ’ ® = >
(14n'%) 2% (14n12)3/? 92 (14n1%)°/?
o i .
Y= si?w+ﬂ ;oiyz ’ T o= lg
Lr(1n')

G.3. [¢(E)] Matrix for a Ring Element, see Equation (IV.52)

3x6
1 £ 0 0 0 0
0 0 1 £ EZ 53
. 2
0 n 0 -1 -2& ~-3&
2 2 2 2.
L(1+n'") 2(1+n'7) 2(1+n'7) (14’ )J
G.4. [#(E)] Matrix for a Cap Element, see Equation (IV.52)
3x6
0 0 —cosy & 0 0
0 0 siny EtanBl Ez Ej
'—.
n tanBl _2F “352
0 0 0 5 5 5
2(1+n'") 2(1+n'") 2(1+n'")




G.5. [G] Matrix for a Ring Element, see Equation (IV.48)

4x6
_ v , -
0 no 0 -0 -2&p ~3£7p
0 0 0 0 0 0
. 2
0 n'e 0 -p -2Ep -3£7p
' 2
0 n'e 0 -0 -2&p -3E7p

G.6. [G] Matrix for a Cap

Element, see Equation (IV.48)

4x6
. 5 -
0 0 0 p(n'-tanB ) -2Ep -3&7p
0 0 0 0 0 0]
2
0 0 0 p(n'-tanB ) -2Ep -3&7p
2
0 0 0 O(n'~tan81) -2Ep -3&7p
G.7. [F] Matrix, see Equation (IV.36)
44
For Ring Element: 1 0 0 0
0 0 0 0
0 0 _2 0
P
0 0 0 sind
T
For Cap Element: 1 0 0 0
0 0 0 0
0 0 -2 0]
e
0 0 0 sing
£r
where
n”
= ’ ¢ = ] /
2(l+ﬂ'2) Q2(1+ﬂ'2)5/2
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G.8.

(A]
6x6

Matrix for

a Ring Element, see Equation (IV.57)

0 0 0 0 0
0 1 0 0 0
, 2
81nBicosBi -cos Bi
T 0 7 0 0
1 0 0 0 0
0 1 1 1 1
sinf,cosR, -ZCOSZB, —cosZBD -BCOSZB,
2 [ L A
G.9. [A] Matrix for a Cap Element, see Equation (IV.57)
6X6
0 -cosy 0 0
0 siny 0 0
0 0 0 0
0 ~-cosy 1 0
0 siny tanBl 1
2
. . cos Bz(tanﬁz-tanﬁl) -2 26 -3
£ €os ®y L

COSZBZ
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G.10, [Aml] Matrix for a Ring Element, see Equation (IV.59)

6x6
1 0 0 0 0 0
~1 0 0 1 0 0
0 1 0 0 0 0
2
~-tan8i 0 -2 (1+tan Bi) tanBi 0 0
2tanBi+tanBj' -3 22(l+tan281) —(2tan8i+tan6j) 3 £(l+tan26j)
-(tanB . +tanf.) 2 —l(l+tan26 ) tanP . +tanf -2 - (l+tan28 )
] 1700 i £ 3
G.11. [A_l] Matrix for a Cap Element, see Equation (IV.59)
6x6
F 0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 cosy 0 1 0 0
-2 cosy 2
0 cosBl - COSBZ 0 —2tan81—tan62 3 2 (1+tan BZ)
1 cosy 2. .
0 COSBI COSBZ 0 tanBl+tanB2 -2 ~L(1+tan 82)
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G.12. [T] Matrix, see Equation (IV.60)

| r

Ti { 0
[T] = -————-—--—4%—-—-..-.._.
e A ]
where

—cosBi -sinB, 0]
+ AR .

[Ti] = sinBi cosBi 0 FIG.G-1
3x3

0 0 1






