Lawrence Berkeley National Laboratory
Recent Work

Title
OPTIMIZATION OF NESTED SQL QUERIES REVISITED

Permalink
https://escholarship.org/uc/item/6cv595r9

Authors

Ganski, R.A.
Wong, H.K.T.

Publication Date
1987-04-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/6cv5q5r9
https://escholarship.org
http://www.cdlib.org/

X A

LBL-22396

c'

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing
Sciences Division

RECEIVED
LAVIRENCE
Eoryrem

A UOTTE TN n”m‘»(.'[_uq
. STORY

[£e}
i

To be presented at the SIGMOD-87 Conference, JUit 9 1987
San Francisco, CA, May 27-29, 1987

OPTIMIZATION OF NESTED SQL
QUERIES REVISITED

R.A. Ganski and H.K.T. Wong

TR

April 1987

TWO-WEEK LOAN COPY

. : . _This is a Library Circulating Copy
which may be borrowed for two weeks. o \

- D

nNbher — 1277

Prepared for the U.S. Depariment of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

LBL-22396

Optimization of Nested SQL Queries Revisited

Richard A. Gansld
Department of Computer Science
San Francisco State University

Harry K.T. Wong
Lawrence Berkeley Laboratory
~ University of California
Berkeley, California

Abstract

Current methods of evaluating nested querics in the SQL language can be
inefficient in a vaniety of quary and data base contexts, Previous rescarch in
the area of nesied quary optimization which sought methods of reducing
cvaluation costs is summarized, including a classification scheme for nested
querics, algorithms designed w ransfoem cach type of query w a logically
equivalert form which may then be evaluaed more efficiendy, and a
descripgon of a major bug in one of these algorithms. Further examination
reveals another bug in the same algonthm. Solutions 0 these bugs are
proposed and incorporated into a new transformation algorithm, and exten-
sions are proposed which will allow the ransformation algocithms to handle
& larger class of.predicates. A recursive algonithm for processing a general
nested query is presented and the action of this algodthm is demonstrated.
This algonithm can be used W transform any nested query.

1. Introduction

SQL is a block-strucrured query language for data remieval
and manipulaton developed at the [BM Rescarch Laboratory
in San Jose, California [AST 75]. SQL was incorporated into
System R, the reladonal data base management system, also
developed at the IBM San Jose Research Laboratory [AST 76].

One of the most powerful features of SQL is the nesting of
query blocks. For demonszadon purposes, assume the follow-
ing reladons:

S(SNO.SNAME STATUS.CITY) — the Suppliers relation
P(PNO PNAME .COLOR WEIGHT.CITY) — the Pants reladon
SP(SNOPNOQTY,ORIGIN) — the Shipment relation

The primary keys for these relations are SNO, PNO, and
SNO.PNQ respectively. If we wanted the names of all suppliers
who supply part P2 we could say:

Supported by the Office of Energy Research, U.S.

DOE under Contract No. DE-AC03-76SF00098.

SELECT SNAME
FROM S 1)
WHERE SNOIN (SELECT SNO

FROM spP

WHERE NO='P2°);

This is an example of a query with a single level of nestdng.
The basic structure of a SQL query is a query block, which
consists principally of a SELECT clause, a FROM clause, and
zero or more WHERE clauses. The first query block in a nested
query is known as the ourer query block and the next query
block is known as the inner query block. The WHERE clause
specifics the predicates which the tuples retrieved must sadsfy.
One type of predicate which can appear in the WHERE clause
is a nested predicate, which is of the form [Ri.Ck op QJ, where
Q is a query block (KIM 82:445]. Q will always be a form of
the SELECT statement. The op may be a scalar or set member-
ship operator. A relaton referred to in the inner query block
shall be designated as an inner relation, and a relation referred
to in the outer query block shall be designated as an owser rela-
fion. Queries can be nested to an arbigiry depth.

In his 1982 paper “On Opdmizing an SQL-like Nested
Query™ {KIM 82], Won Kim showed thut the convendonal tech-
niques used in implementing query nesting, i.c. the techniques
used in System R [SEL 79:33), can be very inefficient: wubles
referenced in the inner query block of a nested query may have
10 be retrieved once for each tuple of the reladon referenced in
the outer query block (KIM 82:450]. As a soludon to this
problem, Kim proposed query transformation algorithms that
would improve the efficiency of nested query evaluation, some-
tmes by orders of magnitude. His approach was to tansform a
nested query 10 a logically equivalent single-level query (i.e.
without nesting): this query could then be examined by a query
optimizer, such as that described in [SEL 79], for altematve
methods of processing, including different methods of perform-
ing joins. To introduce Kim's results, his system of classifica-
tion for nested queries is dutined below.

2. Types of Nested Queries

Won Kim developed a classification of nested query types,
four of which are relevant to this paper. They are described
here bricfly for single-level nested queries, as presented in

(KIM 82].

2.1. Type-A Nesting

A nested predicate is type-A if the inner query block Q does
not contain a join predicate that references a relation in the out-
er query block, and if the SELECT clause of Q consists of an
aggregate function over a column in an inner reladon [KIM
82:446]. The following is an example of a type-A nested query
of depth one:

SELECT SNO

FROM SP
WHERE PNO= (SELECT MAX(PNO) @
FROM P);

Since the inner query block of a type-A nested query does
not reference a relation of the outer query block, it may be
evaluated independently of the outer query block, and the result
of its evaluation will be a single constant [SEL 79:33].

22. Type-N Nesting

A nested predicate is type-N if the inner query block Q does
not contain a join predicate which references a reladon in the
outer block, and the SELECT clause of Q does not contain an
aggregate function (KIM 82:447]. The following is an example
of a type-N nested query:

SELECT SNO

FROM SP

WHERE PNOISIN (SELECT PNO Q)
FROM | 4
WHERE WEIGHT > 50);

Evaluation of a Type-N Nested Query. This kind of nested
query would be processed in System R by first processing the
inner query block Q, resulting in a list of values X which can
then be subsdtuted for the inner query block in the nested
predicate, so that PNO IS IN Q becomes PNO IS IN X. The
resulting query is then evaluated by nested iteration [SEL
79:33}.

2.3. Type-J Nesting

A type-] nested predicate results when the WHERE clause of
the inner query block contains a join predicate which referen-
ces the relation of an outer query block, and the relation is not
mentoned in the inner FROM clause. Another condition is that
the SELECT clause of the inner query block does not contain
an aggregate functon {KIM 82:448). The following is an ex-
ample of type-J nesting: ‘

SELECT SNAME
FROM S
WHERE SNOISIN (SELECT SNO @)
FROM SP

WHERE QTY > 100 AND

SP.ORIGIN = S.CITY),
2.4. Type-JA Nesting

Type-JA nesting is present when the WHERE clause of the
inner query block contains a join predicate which references

the relation of an outer query block, and the inner SELECT
clause consists of an aggregate function over an inner relation

[KIM 82:449]:

~—— Select names of parts which have the highest part number
in the city from which they are supplied.
SELECT PNAME
FROM P _
WHERE PNO= (SELECT MAX(PNO) &)

FROM SP

WHERE SP.ORIGIN = PCITY);

Evaluation of Type-J and Type-JA Nested Queries. Type-
J and rype-JA nesting are processed in System R by the nested
iteration method: the inner query block is processed once for
cach tuple of the outer relation which satisfies all simple
predicates on the outer relation [SEL 79:33]. This method has
the obvious disadvantage that the inner relation (SP in example
4) may have to be retrieved many times: in examnple 4, it must
be retrieved once for each tuple of the outer relation S, since
there are no simple predicates in the outer query block. It is this
inefficiency which motivated Kim to develop alternative algo-
rithms for processing nested queries.

3. Kim’s Algorithms for Processing Nested Queries

Kim observed that for type-N and type-J nested queries, the
nested iteration method for processing nested queries is equiv-
alent to performing a join between the outer and inner reladons
[KIM 82:451]. But nested iteration is only one way of perform-
ing a join; for single-level queries System R also performs
joins by the merge join method, with the decision as to which
method to use made by the query optimizer [SEL 79:28]. Kim
showed that nested queries could be mansformed to logically
equivalent single-level queries contaning single-level join
predicates explicitly, and that now the query optimizer can
choose a merge join method in implemznting the joins, often at
a great reduction of cost over the nested iteration method [KIM
82:461). Kim's wransformation algorithms are summarized in
the present section.

3.1. Processing a Type-N or Type-J Nested Quéry

In his Lemma 1 [KIM 82:451], Kim states that a type-N
nested two-relation query is equivalent to a canonical two-rela-
tion query with a join predicate:

Let Ql be

SELECT RiCk
FROM RiRj
WHERE Ri.Ch = Rj.Cm;

and let Q2 be

SELECT RiCk
FROM Ri .
WHERE Ri.ChISIN (SELECT RjCm
' FROM Rj);
(KDM 82:451)

Kim's Lemma 1 states that Q1 dnd Q2 are equivalent; that is,

they yield the same result [KIM 82:451]). Kim’s proof of

" lemma 1 calls attention to the fact that by definition the inner

block of Q2 can be evaluated independently of the outer block,
resulting in a list of values. Since this list contains values from
column Rj.Cm, the predicate is equivalent to the join predicate
Ri.Ch = Rj.Cm (KIM 82:451-452]). From Lemma | Kim
develops the following algorithm:

Algorithm NEST-N-J
1. Combine the FROM clauses of all query blocks into one
FROM clause.
2. AND together the WHERE clauses of all query blocks,
replacing IS IN by =.
3. Reuain the SELECT clause of the outermost query block.
(KIM 82:452]

The result is a canonical query logically equivalent to the
original nested query. The algorithm applies to type-N or type-J
nested queries with one or more levels of nesting.

3.2. Processing a Type-JA Nested Query
In his Lemma 2 [KIM 82:455], Kim asserts that a type-JA

nested query can be transformed to a type-J nested query which
references a new temporary relation:

Let Q3 be

SELECT RIiCk

FROM Ri :

WHERE Ri.Ch= (SELECT AGG(Rj;.Cm)
FROM Rj .
WHERE Rj.Cn=Ri.Cp)

and let Q4 be

SELECT RiCk

FROM Ri

WHERE RiCh= (SELECT RuC2

FROM © Rt
WHERE RuCl=Ri.Cp)

where Rt is a temporary table obtained by

RyC1.C2)= (SELECT Rj.Cn,AGG(R;.Cm)
FROM Rj
GROUPBY Rj.Cn); .
{KIM 82:454-455])

Kim’s Lemma 2 states that Q3 and Q4 are equivalent [KIM
82:455). His proof postulates that the action of the nested itera-
ton processing of a type-JA query can be captured in a tem-
porary table formed with a GROUP BY clause, as in Rt for
cach tuple of Ri, a tuple is retrieved from Rt whose C! (for-
merly Cn) value matches the Cp value of the Rt tuple. The C2
value of the Rt tuple will contain the aggregate value obtained
by the GROUP BY clause, and this can be matched with Ri.Ch.
[KIM 82:455]

Lemma 2 leads to an algorithm which transforms a type-JA
nested query of depth one to an equivalent type-J nested query
of depth 1. Assume a type-JA nested query as follows:

SELECT RI1.Cn+2

FROM R1
WHERE RI1Cn+l= (SELECT AGG®R2.Cn+l)
FROM R2
WHERE R2.CI=RI1.C1 AND
R2.C2 =R1.C2AND
R2.Cn=R1.Cn);
[KIM 82:455)
Algorithm NEST-JA

1. Generate a temporary relation Rt(Cl....,Cn,Cn+1) from
R2 such that Rt.Cn+1 is the result of applying the ag-
gregate function AGG on the Cn+1 column of R2 which
have marching values in R1 for C1,C2, etc.

.2. Transform the inner query block of the inidal query by
changing all references to R2 columns in join predicates
which also reference Rl to the cormresponding Rt
columns, The result is a type-J nested query, which can
be passed to algorithm NEST-N-J for transformation to
its canonical equivalent.

) (KIM 82:455-456)

4. Costs of Kim’s Algorithms: Rationale for
Transformation

Kim's analyses of his algorithms [KIM 82:461-464] com-
pare the costs of processing N, J, and JA-type nested queries
using the nested iteradon method and the transformation
method followed by merge joins. Kim develops cost functions
for each method and for each type of nesting, using vanables
such as the sizes of relations, available memory buffer space,
and selectivity factors. He demonstrates the cost reductions at-
tainable by his wansformation method with examples of queries
and data base conditions for each type of nesting. The follow-
ing table summarizes the results Kim obtained in three of his
examples (KIM 82:462-463]:

Example Nested lieraion Transformation Followed by
Type-N 10220 720
Type-J 10,120 550
Type-JA 3.050 : $15

Figure 1: Page I/O’s Required in Kim's Examples

The comparative costs will of course vary with different
queries and data base conditions, but Kim has shown that cost
savings of 80% to 95% are possible with his ransformaton
method.

§. Bugs in Kim’s Algorithm NEST-JA and their
Solutions

5.1. The COUNT bug

In a 1984 U.C. Berkeley Memorandum [KIE 84], Wemner
Kiessling revealed a problem with Kim’s algorithm NEST-JA.
The problem arises when a type-JA nested query contains the
COUNT function. To illustrate his arguments, Kiessling defines
two relations:

PARTS(PNUM.QOH)
SUPPLY(PNUM.QUAN SHIPDATE)

The following instandadons of these relations are assumed:

PARTS: SUPPLY:
BNLUM QOH ENUM QUAN SHIPDAIE
3 6 3 4 7-3-79
10 1 3 2 10-1-78
8 0 10 1 6-83-78
10 2 8-10-81
8 5 5-7-83
{KIE 84:2]

Kiessling defines Query Q2 as follows:
Query Q2:

Find the part numbers of those parts whose quantties on
hand equal the number of shipments of those pans before
1-1-80:

SELECT PNUM
FROM PARTS
WHERE QOH = (SELECT COUNT(SHIPDATE)
FROM SUPPLY
WHERE SUPPLY.PNUM = PARTS PNUM AND
SHIPDATE < 1-1-80)
{KIE 84:4]

Given the example tables PARTS and SUPPLY defined
above, query Q2 will give the following result when evaluated
using nested iteradon:

Result: PARTS PyIM
10
8

[KIE 84:4)

Applicadon of Kim's algorithm NEST-JA to Query Q2
results in the following ransformaton:

TEMP (SUPPNUM.CT) =
(SELECT PNUM, COUNT(SHIPDATE)
FROM SUPPLY
WHERE SHIPDATE < !-1-80
GROUP BY PNUM)

SELECT PNUM

FROM PARTS. TEMP

WHERE PARTS.QOH = TEMP’.CT AND
PARTS PNUM = TEMP.SUPPNUM

{KIE 84:4)
TEMP evaluates to
TEMP: suppNiM T
3 2
10 1

and the final result is

PARTS PNUM
10

{KIE 84:5)

This result differs from that obtained using nested iteration.
The reason why the transformation fails is that in the formation
of the temporary relation, no tuples appear which do not match
the predicates applied to the inner reladon. Thus, the COUNT
function will never retum zero, since the only groups it is ap-
plied to are groups of tuples matching the predicates. Thus CT
in the temporary relation will never be zero.

Kiessling explored a trial correction of the bug which in-
volved ORing a predicate to the WHERE clause of the
transformed query in order to a posteriori find where an empty
set occurs to satisfy the predicate, but the trial correction failed
on a query with more than one level of nesting [KIE 84:5]. Kiess-
ling concludes that in attempting to use Kim’s algorithm
NEST-JA for tansforming type-JA nested queries, “...there
seems to be no general way to recover values lost by COUNTs
on a correlaton level greater than 1.” [KIE 84:7]. While this
does seem to be true in the context of the SQL language as
specified in [AST 76], the problem can be solved if the outer
join operation is available in the processing of the query.

5.2. Solution to the COUNT bug using outer joins

If cither intermally or through extensions to the query
language an outer join operation may be specificd as the join
operation, the COUNT bug can be solved by performing an
outer join in the creation of the wemiporary reladon. The opera-
tion of outer join is defined in {COD 79:407}: the outer join in-
cludes all values from columns partcipating in join, with
NULLs in the opposite column if there is no match for a

column value. For example, assume the following reladons:

R X S: X
A B

B C

E

An outer join between R and S, which will be designated R.X
=+ S.Y,will have the following result:

X

m > @ >

A
B
C
A

where A is the special null value. The outer join operaton is
implemented in at least one commercial data base management
system with which the authors are familiar [ORA 86].

To solve the COUNT bug an-outer join may be used in the
creation of the temporary reladon. Kiessling’s query Q2 could
be transformed to give the following:

TEMP3 (SUPPNUM.CT) =
(SELECT PARTS PNUM, COUNT(SUPPLY.SHIPDATE)

FROM PARTS.SUPPLY
WHERE SUPPLY.SHIPDATE < 1-1-80 AND
PARTS PNUM =+ SUPPLYPNUM
GROUP BY PARTS.PNUM);
Query T3:
SELECT PNUM
FROM PARTS, TEMP3
WHERE PARTS.QOH = TEMP3.CT AND
PARTS PNUM = TEMP3.SUPPNUM;

Before looking at the result of this new query, let us look at
the result of the outer join between PARTS and SUPPLY with
the conditions given in the creation of the temporary relation

TEMP3:
3 6 3
3 6 3
10 ! 10
8 0 A

SUPPLYQUAN SUPPLY.SHIPDATE

4 7-3-79
2 10-1-78
1 6-8-78
A A

Note that the condition which applies to only one relation
(SUPPLY.SHIPDATE < 1-1-80) must be applied before the
join is performed. Otherwise the join would not contain the last
row, and the result would be incorrect. This may happen if the
join is performed first to take advantage of indices on the join
columns. To ensure reswriction, we can explicitly build a tem-
porary table applying simple predicates. This temporary table
will be a restriction and projection of the inner table:

TEMP2 (PNUM)= (SELECT PNUM
FROM SUPPLY
WHERE SHIPDATE < 1-1-80).
and TEMP3 is changed to
TEMP3 (SUPPNUM,CT) =
(SELECT PARTS.PNUM, COUNT(TEMP2 SHIPDATE)
FROM PARTS . TEMP2
WHERE PARTS.PNUM =+ TEMP2.PNUM
GROUP BY PARTS.PNUM);

Thus, TEMP3 will look like this:

TEMPY: SUBEMUM T
)) 2
J 10 |
8 0

and the result of query T3 will be:

BARTS PNUM
10
8

which matches the result obtained by nested iteradon. This
solution has been tested successfully on queries with more than
a single level of nesting, including Kiessling’s query Q3 [KIE
84.6].

If the type-JA query with a COUNT functon contains a
nested join predicate with a scalar comparison operator other
than equality, the correct result is obtained if the scalar operator
is used in the outer join operation to create the temporary rela-
tion and the join predicate in the original query is changed to
equality.

§.2.1. Query Blocks with COUNT(®)

If the SELECT clause of the inner query block contains
COUNT(*) instead of COUNT(column name) then this ap-
proach must be modified. For example, if query Q2 contained a
COUNT(*) instead of a COUNT(SHIPDATE), then the tem-

porary table would look like this:
TEMP3: SUPPNUM T
3 2
10 1
8 1

“This would be semantically incorrect, and the final result would
. be incorrect. To avoid this error the SELECT clause used in the

creation of the table must contain COUNT(col-name) instead

" of COUNT(*), where col-name is the name of some column in

the inner relation. Since the join column of the inner relation
will always be present in the originul query and may be the
only one that is, let col-name be the name of the join column of
the inner relation. In our example it would be
COUNT(TEMP2.PNUM).

53. Another Bug: Relations other than Equality

For aggregate functions other than COUNT Kim’s algorithm
NEST-JA works correctly for nested join predicates conmining
the equality operator. However, if we consider other operators,
we discover another bug in Kim's algorithm.

Assume the PARTS and SUPPLY tables:

PARTS: SUPPLY:
ENIM QQH ENUM QUAN SHIPDATE
3 0 3 4 7-3-79
10 4 3 2 10-1.78
8 4 10 1 6-8.78
9 S 3-2.79

and the following type-JA query:

Query QS:

SELECT PNUM
FROM PARTS
WHERE QOH = (SELECT MAX(QUAN)
FROM SUPPLY
WHERE SUPPLY.PNUM < PARTS.PNUM AND
SHIPDATE < 1-1-80):

This is the same as Kiessling's query Q1 {KIE 84:1] except for
the substitution of the “<” operator for “=" operator in the join
predicate. The result according to nested iteration semantcs,
assuming MAX({}) = NULL, is

BAKTS PNIM
8

Kim's algorithm results in the following temporary table and
transformed query:

TEMPS (SUPPNUM, MAXQUAN)= SELECT PNUM, MAX(QUAN)
FROM SUPPLY
WHERE SHIPDATE < 1-1-80
GROUP BY PNUM,

Query TS:

SELECT PNUM

FROM PARTS, TEMP

WHERE QOH = TEMP.MAXQUAN AND
TEMP.SUPPNUM < PARTS.PNUM;

and the following results:

TEMPS: : final resuit:
SUPPNUM MAXQUAN PARTS PN
3 4 10
10 1 8

9 b

which does not match the results obtained by nested iteration.
The problem is that the temporary table created by Kim's algo-
rithm contains only aggregate information about tuples with the
same join column value, whereas query QS asks for aggregate
information about a range of join column values.

53.1 Solution to the Relations-other-than-Equality Bug

The solution to this bug is similar to the solution to the
COUNT bug: perform a join in the creation of the temporary
relation, only this time it need not be an outer join, unless the
aggregate function is COUNT. The join in effect causes the
temporary table to include aggregate values over the proper
range of join column values. As before, the join predicate in the
original query must be changed to equality. This implies that
only the equality operator may bethe outer relation and the
temporary relation.

If this solution is applied to query Q5 and the last SUPPLY
table, the outcome is:

TEMP6 (SUPPNUM, MAXQUAN) =
SELECT PARTS PNUM, MAX(SUPPLY.QUAN)
FROM PARTS, SUPPLY
WHERE SHIPDATE < 1-1-80 AND
SUPPLYPNUM < PARTS.PNUM
GROUP BY PARTS.PNUM;

and query QS is transformed to
Query T6:
SELECT PNUM
FROM PARTS. TEMP
WHERE PARTS.QOH = TEMPMAXQUAN AND
PARTS PNUM = TEMP.SUPPNUM:

with the following results:

TEMPG: final result:
SUPPNUM MAXQUAN BARTS PNUM
10 .] 8
8 4

This martches the result obtained by nested iteration.
§.4. A Problem with Duplicates

The methods outlined above to solve the COUNT bug work
correctly if the outer relation of the nested query contains no
duplicates in the join column, but a problem arises if it does
contain duplicates. Assume the following PARTS and SUPPLY
relations:

PARTS: SUPPLY:
3 6 3 4 8/14/11
3 2 3 2 u/mas
10 1 10 1 622776
10 0
8]

For this example let us again assume Kiessling's query Q2. If

‘we apply query Q2 to the above relagons, the result by nested

iteration would be:

PARTS ENUM
3
10
8

If we apply our new modified version of Kim’s algorithm, the
results would be:

TEMP3: SUPPNUM (T Gnalresult PARTS PNUM
. 8

3 4
10 2
8 0

This does not match the result obtained by nested iteration. The
problem arises because duplicates in the outer relation increase
the COUNT over that column in the temporary relation. This

-t

N

)

problem does not arise with the MAX and MIN funcdons, but
it does arise with the COUNT, AVG and SUM functons.

5.4.1. Solution to the Duplicates Problem

In order to match the results obtained by nested iteration
semantics for relations with duplicates in the outer join column.
our algorithm must be modified to remove duplicates before
the join in the creation of the temporary table is performed.
This can be accomplished by projecting the join column of the
outer relaton, and using the projecdon instead of the outer rela-
ton in any join required to build a temporary table. This is part
of the procedure followed in INGRES [STO 76] for nested
QUEL queries [KIE 84:8]. The efficiency of the algorithm can
be improved by applying all simple predicates to the outer rela-
tion in the creation of the projection. In query Q2 this rule will
have no effect since there are no simple predicates in the outer
query block.

Using Kiessling’s query Q2 as an example again, let TEMP1
be defined as follows:

TEMPI(PNUM) = (SELECT DISTINCT PNUM
FROM PARTS);

TEMPI is the projection of the PNUM column from PARTS.
TEMP3 will now be defined as:

TEMP3 (SUPPNUM.CT) =
(SELECT TEMP!.PNUM, COUNT(SUPPLY.SHIPDATE)
FROM TEMPI.SUPPLY)
WHERE SUPPLY.SHIPDATE < 1-1-80 AND
TEMP1.PNUM =+ SUPPLY.PNUM
GROUP BY TEMPLPNUM);

and query T3 remains the same. The results are:

TEMPI: TEMP3: final result:
BNLM SUPPAIIM food PARTS PNLM
3 3 . 2 3
10 10 1 10
8 8 0 8

which matches the result obtained by nested iteration.

6. Modified algorithm NEST-JA2
6.1 The Algorithm

The solutions to the bugs described in the previous section
suggest a modified algorithm for wanstorming type-JA nested
queries, which shall be called algorithm NEST-JA2. This algo-
rithm consists of three major parts:

Algorithm NEST-JA2

1. Project the join column of the outer relation, and restrict
it with any simple predicates applying to the outer rela-

. ton.

2. Create a temporary relation, joining the inner relation
with the projection of the outer relation. If the aggregate
function is COUNT, the join must be an outer join, and
the inner relation must be restricted and projected before

the join is performed. If the aggregate function is
COUNT(*), compute the COUNT function over the join
column. The join predicate must use the same operator as
the join predicate in the original query (except that it
must be converted to the corresponding outer operator in
the case of COUNT), and the join predicate in the
original query must be changed to =. In the SELECT
clause, select the join column from the outer table in the
join predicate instead of the inner table. The GROUP BY
clause will also contain columns from the outer relation.
3. Join the outer relation with the termporary relaton, ac-
cording to the ransformed version of the original query.

To illustrate the action of algorithm NEST-JA2, let us apply
it to Kiessling's query Q2. The three steps are then as follows:

DISTINCT PNUM
PARTS;

PNUM

SUPPLY

SHIPDATE < 1-1-80);

1. TEMP1 (PPNUM) a SELECT
' FROM
2. TEMP2 (PNUM) = (SELECT
FROM
WHERE

TEMP3 (PNUMCT) =
(SELECT TEMPI1.PNUM. COUNT(TEMP2.SHIPDATE)
FROM TEMPI, TEMP2
WHERE TEMPL.PNUM =+ TEMP2.PNUM
GROUP BY TEMP1.PNUM);

3.SELECT PNUM

FROM PARTS.TEMP3
WHERE PARTS.QOH = TEMP3.CT AND
PARTS PNUM = TEMP3 PNUM;

If these three steps are applied to the PARTS and SUPPLY
relations with duplicates considered above, the results are:

TEMPI: TEMP3: final result
3 3 2 3
10 10 1 10
8 8 0 8

which matches the result obtained by nested iteration.
7. Analysis of Modified Algorithm NEST-JA2

The total cost of processing a type-JA nested query using the

new algorithm NEST-JA2 will consist of three major sub-costs:

1. The projection and reswiction of the outer table Ri,
resultng in temporary table Re2.

2. The creation of temporary relation Rt by projecting and
restncting inner relation Rj, joining this with temporary
table Rt2, and performing a GROUP BY operation on the
result.

3. Joining temporary table Rt with outer table Ri.

These costs will be examined in detail below. For simplicity it
will be assumed that nested queries are of depth one. The
analyses will be presented using Kim's notation {KIM 82:462]:
Ri denotes the relation of the outer query block, Rj the reladon
in the FROM clause of the inner query block, and Rt the tem-
porary relation obtained by intermediate processing on Rj. Pk

is the size in pages of relation Rk, and Nk is the number of
tuples in Rk. Let f(i) denote the fraction of the tuples of Ri that
satisfy all simple predicates on Ri. B denotes the size in pages
of available main-memory buffer space. When it is necessary
to sort a relation, a (B-1)-way multi-way merge sort is used,
which requires 2*P*logg P page I/O's to sort a reladon R
[KIM 82:462). The measure of performance is the number of
disk page [/O's required, and for simplicity relations Ri and Rj
are scanned sequentially.

7.1. Projection and Restriction of the Outer Table

The cost of creating a projection and restriction Rt2 from Ri,
with duplicates removed, is

Pi + P2 + 2°P12*logy. PR page VO's

where the last term is the cost of removing duplicates using a
(B-1)-way merge sort. This also sets up Rt2 in join column or-
der for a merge join. P22 will be some fraction of Pi. Since R2
contains only tuples satsfying the simple predicates on Ri, P2
will be some fracton of f(i)*Pi, the fraction depending on the
size of the column compared to the size of a tuple.

7.2. Creation of Temporary Table Rt

In the modified algorithm NEST-JA2, a join is required in
the creation of the temporary relation from the inner relaton. If
the aggregate function in the inner block is COUNTY(), this join
will be an outer join. The inner relation is denoted Rj and Rt3
will designate a temporary relation created by projecting and
restricting Rj. Rt3 is used to perform the join with Re2, fol-
lowed by the GROUP BY operation, to create the temporary
relation Rt .

The cost of this join will depend on whether the nested itera-
tion or the.merge join method is used. The nested loops method
will be efficient if the temporary relation Rt3 can fit into B-1
memory pages, with a cost of

Pj+ P2 + P4 page [/O's,

where Rtd is the result of the join. If, however, Rt3 does not fit
into B-1 pages, Rt3 will have to be retrieved once for each
tuple of Re2, since Rt2 has already been restricted. The cost
will be

Pj+ P13 + P12 + N2°P13 + Pid page 1/O's,

where the first two terms are the cost of creating Rt3,
If the merge join method is used, the cost will be

Pj + P + 2°P13%logs. P + P12 + P13 + P14 page V/O's,

where the first three terms are the cost of building Rt3, sorting
it and removing duplicates, and the last three terms are the cost
of merge joining Rt2 with Rt3 and storing the result. The cost
of sorting R12 is not included in the merge join cost, since this
cost is subsumed by the cost of creaung it with duplicates
removed. In addition, performing a merge join to create Ri4
obviates the need to sort it for the GROUP BY operadon, since
the GROUP BY column is the join column.

If the aggregate function in the inner SELECT clause is
COUNT(), an outer join must be used in the creation of tem-
porary table Rtd4. The merge join method of performing an
outer join will have a cost function idendcal to that for a stan-
dard join, since the two relations are scanned in sorted order,
and no extra cost is involved in determining which tuples have
no matching tuples in the opposite relatdon. Rt4, the result of
the join, may be slighdy larger than if a standard join were
performed, adding a small amount to the cost of the join. As in
Kim's analyses, the joins performed following ransformation
will be assumed to be merge joins. '

7.3. Join of Rt and Ri

The cost of joining temporary table Rt and outer table Ri
will also depend on the kind of join used. but as will be seen
below, a merge join of these relations can be particularly effi-
cient, since Rt is already in join column order: a merge join
will cost

2*Pi*logg.; Pi + Pi + Pt page fetches,

assuming Ri is not reduced in size, while a nested iteradon join
would cost

Pi + [(i)*Ni°P1 page fewches.
7.4. Total Cost

The total' cost of processing a single-level type-JA nested
query using the modified algorithm NEST-JA2 will depend on
the type of join used to create temporary relation Rt4 as shown
above; it will also depend on the type of join used between the
outer relation Ri and the temporary relatdon Rt. Thus there are
four possible total costs for a single-level query, each of which
may be estimated by the optimizer. One of these evaluaton
methods in particular is worthy of note: the use of two merge
joins in the evaluaton of the query. In evaluating the query by
this method there will be cost savings in the merge joins from
sorting relatons earlier in the process: Rt2 is created in join
column order, so it does not have to be sorted for the join with
Rt3; Rid is created in GROUP BY column order, so it does not
have 1o be sorted for the GROUP BY operation; and Rt is
created in join column order, so it does not have to be sorted
for the merge join with Ri. The total cost for this method is

Pi+ P2 + 2°PQ2%l0gg. P2 +
Pj+ P3 +2°P3%0gp PB+ PR+ A3+ 2°P14 + Pt 4+
2*Pi®logs. Pi+ Pi+ Pt

assuming Ri is not reduced in size, and where the first three
terms are the cost of projecting and restricting Ri, resulting in
Rt2; the next cight terms are the cost of creating temporary
able Rt, including the GROUP BY operation; and the last three
terms are the cost of performing the final join.

The modified algorithm can be compared to the nested itera-
tion method in the following example. Let the query to be
evaluated be Kim's query Q3 [KIM 82:454) where the ag-
gregate function is MAX(). Let Pi =50, Pj =30,PR2 =7,Pt3 =
10, P14 =8, Pt = 5, B = 6, and f(i)*Ni = 100. The nested itera-
tion method of processing Q3 costs 3050 page fetches in the

-t

&

J

worst case. The transformation approach, using the modified
algorithm and rwo merge joins, costs about 475 page fetches. .

8. Extensions: the Predicates EXISTS, NOT
EXISTS, ANY, and ALL

In presenting his wansformation algorithms, Kim considered
nested predicates containing scalar and set inclusion operators.
If the language is extended to include the useful operators
EXISTS. ANY, and ALL, some extensions to the transforma-
tion algorithms must be implemented. The extensions proposed
in this secdon are transformations of the predicates to
predicates containing simple scalar or set containment
operators. The query can then be processed by the transforma-
tion algorithms presented above.

8.1 EXISTS and NOT EXISTS
A nested predicate of the form
(SELECT selitems

FROM fromilems
WHERE whereitems)

WHERE EXISTS

., can be tansformed to the semantically equivalent nested

predicate

WHEREO< (SELECT COUNT (selitems)
FROM fromitems

WHERE whertitems)
Similarly, a nested predicate of the form
(SELECT selitems

FROM fromitems
WHERE whercilems)

WHERE NOT EXISTS

is transformed to the semantically equivalent predicate

WHEREO= (SELECT COUNT (selitems)

FROM fromilems
WHERE whercitems)

The resulting predicate is then processed as a type-A or type-JA
predicate, depending on the details of the inner query block.

82 ANYand ALL

A predicate of the form

<ANY (SELECT seliiem
FROM fromitems
WHERE whereitems)

can be transformed to the logically (but not necessarily seman-
tically) equivalent form :

< (SELECT MAX(sclitem)
FROM fromitems
WHERE = whercitems)

The same transformation is performed when the operator is <=
or !>, Conversely, '

<ALL (SELECT selitem
FROM fromiiems
WHERE whereitems)

is transformed to the logically equivalent predicate

< (SELECT MIN(selitem)
FROM fromitems
WHERE whereitems)

and the same wransformation is performed when the operator is
<= or !>. If the operator is >, >=, or !<, the ransformatdon is
the reverse:

> ANY (SELECT selitem
is transformed to

> (SELECT MIN(selitem)
and

> ALL (SELECT selitem
is transformed to

> (SELECT MAX (selitem),

More simply, a predicate of the form =ANY is transformed to
IN, and a predicare of the form !=ANY is transformed to NOT
IN. :

9. Processing a General Nested Query

Algorithm NEST-JA2 applies 1o rype-JA queries with a
single level of nesting. The extension of the algorithm to type-
JA queries with more than one level of nesting is not as simple
as it was for algorithm NEST-N-J: the aggregate function and
the join predicate may appear at any level of nesting, and not
necessanily at the same level. Kim approaches the problem by
means of query graphs: his algorithm NEST-G for transform-
ing a general nested query gives the correct canonical result by
inspecting and reducing the query graph for the query [KIM
82:465]. Rather than going into Kim's notations and methods,
we will propose an alterative method for processing a general .
nested query, a direct postorder recursive algorithm which we
believe is conceptually simple and which solves the problem of

-processing type-JA quenies with greater than a single level of

nesting.

9.1. Processing a General Nested Query: a Recursive
Approach

The recursive version of algorithm NEST-G is described in
the following pseudocode procedure nest_g(query_block),
where the parameter query_block is a pointer to a SQL query
block, possibly with descendant inner query blocks nested
within it. The procedure is initially called with a pointer to the
outermost query block (the beginning) of the query.

°

procedure nest_g(query_block)
for each predicate in the WHERE clause of query_block
if predicate is a nested predicate (i.e. contains inner query block)
nest_g(inner_guery_block)
P
* Determine type of nesting, and call appropriate
* ransformation procedure. ’
*/
if SELECT clause of inner_query_block contains aggregate function
if inner_query_biock contains join predicale referencing a relation
which is not in its FROM clause
’
® nesting is type-JA
o/
nest_ja2(inner_query_block)
nest_n_j(query_block.inner_query_block)
else
P
® nesting is type-A
*/
nest_a(inner_query_block)
else
nest_n_j(query_block.inner_query_block)
return

Three procedures are called by nest_g(): nest_a(), which
evaluates inner_query_block, replacing it with the result-
ing constant; nest_ja2(), which executes algorithm NEST-JA2;
and nest_n_j(), which executes Kim's algorithm NEST-N-J,
combining the two query blocks query_block and
inner_query_block. In explaining procedure nesr_g() it is
useful to model a nested query with a multd-way tree whose
nodes are query blocks, where the outermost query block (the
beginning of the SQL statement) is the root and the innermost
query blocks are the leaves. Procedure nesr_g() searches down
through the levels of a nested query from the outermost query
block until it finds the innermost query blocks (the leaves of
the query wee). It then examines the leaf block to determine the
type of nesting present, and transforms the parent to canonical
form by calling the appropriatc transformation procedures.
After this is done for all nested predicates in query_block, the
recursion then unwinds one level and the query block
immediately above is processed in the same way, continuing
the unwinding until lastly the outermost, or root, query block is
transformed.

The algonithm represented in procedure nest_g() solves the
problem of correctly wansforming a type-JA query with
multiple levels of nesting. To demonstrate this, let us assume
the following query tree:

A)

l A
(é)/ \(m
/

(E)

Figure 2: Example Query Tree

The edges of the tree are labelled with the kind of nesting '

present at that level. Query block B contains an aggregate
function in its SELECT clause, and both C and E contain join
predicates referencing tables in query blocks at a higher level.
So far the most important feature with regard to processing the
query has not been mentoned: does C or E conuain a reference
10 a table in the FROM clause of A? This is important because
it indicates whether there is typ-JA nesting present in the query:
if one of the inner blocks, including B, contains a reference to a
table in A, then type-JA nesting is present. In other words, a
join predicate reference must span a query block containing an
aggregate function for type-JA nesting to be present.

For example, assume the example query tree contins a
reference in B, C, or E 10 a table in the FROM clause of A. Let
us assume that E contains this reference, in a join predicate.
Procedure nesr_g() will travel down to E, unwind and apply
algorithm NEST-N-J, combining C and E. This moves the
reference to the table in A to block C. Then blocks C and B are
combined, then blocks D and B. Now query block B has
inherited the join predicate in block E, so that it contains both
an aggregate function and a join predicate which references a
table not found in the FROM clause of B: this is the defininon
of type-JA nesting. Thus, procedure nest_ja2(} is called, which
creates a temporary table with a GROUP BY clause as
specified in algorithm NEST-JA2, and removes the aggregate
functon, replacing it with a reference to the column in the
temporary table which results from the application of the
aggregate functon. This reduces the type-JA nesting to type-J
nesting, and procedure nest_n_j() is immediately called to
finish the job of reducing the query to canonical form. Thus

_type-JA nesting of deeper than one level can be detected by

examining a single query block, which has inherited the “trans-
aggregate” join predicate by the recursive transformation of
inner query blocks, and the type-JA nested query can be
transformed to canonical form by applying the single-level
algorithm NEST-JA2.

From this example it can be seen 1hat the advantage of the
recursive algorithm presented in procedure nest_g() s
simplicity: the informatdon needed to transform a query block
containing a nested predicate is confined to two levels of the
query: the outer level (the level containing the nested
predicate) and the inner.

10. Summary

The nested iteration method of evaluating nested SQL
queries can be inefficient for many queries: a reladon referred
to in an inner query block may have to be retrieved many
tmes, possibly once for each tuple in the outer query block.
Won Kim classified nested queries and proposed algorithms to
reduce the cost of evaluating them [KIM 82]. The objective of
his algorithms is to reduce the nested query to an equivalent
single-level, or canonical, form. The resulting canonical query
will contain explicit joins which capture the nested-iteration
semantics of the original query, and can now be passed to a
query optimizer which will determine an efficient order and
method for the evaluation of the query. Kim compared the cost

of evaluating a nested query by nested iteration and the cost of

evaluating a transformed query using merge joins in several
examples. The transformation method resulted in costs
sometimes an order of magnitude smaller than the costs
required by the nested iteration method. However, a bug in

10

v

Kim's algorithm NEST-JA was discovered by Werner Kiessling
[KIE 84]. Another bug in the same algorithm has been
demonstrated in secton 5. These bugs can be solved by
performing a join in the creation of the temporary table which
contains the aggregate informadon. If the aggregate function is
COUNT, the join must be an outer join. This solution requires
the join to be performed on a projection of the outer table in
order to avoid an increase in the aggregate values due to
duplicates in the outer table. The solutions to these bugs are
incorporated into algorithm NEST-JA2, which retains Kim’s
strategy of building a temporary table to capture aggregate
informadon, and which yields a cost reduction similar to that
achieved by Kim in his example. The transformation
algorithms have been extended to handle a larger class of
predicates, and a recursive algonithm has been presented which
will apply the transformadons to a nested query of arbitrary
complexity:

Acknowledgements

The authors would like to thank Professors Bruce J.
McDonald and Marguerite C. Murphy for their helpful
comments on an earlier version of this paper.

References

{AST 75) Astrahan, M. M., and Chamberlin, D. D. Implementation of
a sguctured English query language. Commun. ACM 18, 10
(Ocr1975), 580-588.

[AST 76) Astrahan, M. M., Blasgen, M. W,; Chamberlin, D. D,
Eswaran, K. P, Gray, J. N., Gniffiths, P. P, King, W. F,
Lorie, R. A., McJones, P. R., Mehl, J. W, Puizolu, G. R.,
Traiger, I. L., Wade, B. W.,, and Watson, V. System R:
Relatonal approach 1o daiabase management. ACM Trans.
Database Syst. 1, 2 (June 1976), 97-137.

[COD79] Codd, E. F. Extending the database relational mode!l to
capture more meaning. ACM Trans. Dawabase Syst. 4, 4
(Dec. 1979), 397-434,

[KIE 84) Kiessting, W. SQL-Like and Quel-like correlation queries
with aggregates revisitd UCB/ERL Memo 84/75,
Electronics Research Laboratory, Univ. Califomia, Berkeley
(Sept 1984).

{KIM 82) Kim, W. On optimizing an SQL-like nested query. ACM
Trans. Daiabase Sysi. 7.3 (Sept. 1982), 443-469.

[ORA 86) Oracle Corporation. Private product demonstration (Sept.
1986).

[SEL 79] Selinger, P.G., Astrahan, M. M., Chamberlin, D. D., Lorie, R.
A., and Price, T. G. Access path selection in a relational
daabase system. In Proc. ACM Inter. Conf. Management of
Daua, Boston, Mass. (May 1979), 23-34. .

(STO 76) Stonebraker, M., Wong, E., and Kreps, P. The design and
implementauon of INGRES. ACM Trans. Database Syst. 1.3
(Sepe 1976), 189-222.

11

A\

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

¥
&

.

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

