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Abstract 

Current mclhods of evaluating ncszed qucric:s in the SQL language can be 
ind6cient in • .,ariety o( query and daIa base CORlCllts. PrcYious racarch in 
the area o( ne.SICd query optimiuUon whidl sought methods 0( n:ducing 
e.,.luation costS is summarized. including a c1assi6ation scheme: (or nested 
queria. algorithms cbignc:d to tranSform each type of query to • logically 
equivalent form which may Ihc:n be evaluated more el6ciently, and a 
description of • major bug in one 0( thc:se algorithms. Funha examination 
n:vc:als anod>cr bug in \he same algorithm. Solutions to these bugs are 
proposed and inc:orpor.u.od into a new tranSformation algorithm. and eJucn· 
sions are proposed which wiU allow the tranSformation algorithms 10 handle 
• Larger class O(.jmdic.aICS. A n:cw-siYC algorithm (or processing. gener:a.l 
nested query is JnSCRted and \he action of this algorithm is dcmonsU"aIcd. 
nus algorithm can be used to tn.nslonn any nc.sted query. 

1. Introduction 

SQL is a block·structured query language for data retrieval 
and manipulation developed at the [EM Resezch Laboratory 
in San Jos.e. California (AST 75). SQL was incorporated inlO 
System R. the relational data b~e management system. also 
developed at the [EM San Jose: Research labOratory [AST 76). 

One of the most powerful fearures of SQL is the nesting of 
query blocks. For demonstr.ltion purposes. assume the follow­
ing relations: 

S(SNO.SNAME.5TATUS.Cm') - the Supp!i= rel.uion 

P(PNO.rNAME.COLO~.WEIGlrr.CTTY) - the P.lltS felloon 

SP(S:-':O.r:-':O;QTI'.ORIG C\') - the Shipmenlrelltion 

The primary keys' for these relations are SNO. PNO. and 
SNO.PNO respectively. If we wanted the names of all suppliers 
Who supply p3J1 P2 we could say: 

Supported by the Office of· Energy Research, U.S. 
DOE under Contract No. DE-AC03-7GSFOOO98. 

SELECT SNAME 
FROM S (I) 

WHERE SNO IN (SELECT SNO 
FROM SP 

WHERE NO - 'Pl'): 

This is an example of a query with a single level of nesting. 
The basic stJUcrure of a SQL query is a qlUry block. which 
consists principaUy of a SELECf cl:luse. a FROM clause, and 
zero or more WHERE clauses. The first query block in a nested 
query is known as the OUler query block and the next query 
block is known as the innt:r query block. The WHERE clause 
specifies the predicates which the tuples reuieved must satisfy. 
One type of predicate which can appear in the WHERE clause 
is a nested prt:dicatt:. which is of the form [Ri.Ck op QJ. where 
Q is a query block (KIM 82:445). Q will always be a fOIlD of 
the SELECf statement. The op may be a scalar or s.et member­
ship operator. A relation referred to in the inner query block 
shall be designated as an inner rt:lation. and a relation referred 
10 in the outer query block shall be designated as an OUIer rt:la­
non. Queries can be nested to an arbiC':Lry depth. 

In his 1982 paper "On Optimizing an SQL·like Nested 
Query" [KIM 82). Won Kim showed th:a the conventional tech· 
niques used in implementing query nesting. i.e. the techniques 
used in System R (SEL 79:33). can be very inefficient: tables 
referenced in the inner query block of :l nested query may have 
to be reuieved once for each tuple of the relation referenced in 
the outer query block (K1M 82:450]. As a solution to this 
problem. Kim proposed query C'ansfomution algorithms thJt 
would improve the efficiency of nested query evalu:ltion. some· 
times by orders of magnitude. His approach was to tr.lnsform J 
nested query to a logically equivalent single-level query (i.e. 
without nesting): this query could then be examined by a query 
optimizer. such as that described in [SEL 79). for alternative 
methods of processing. including different methods of perform­
ing joins. To introduce Kim's results. his system of c1assifica· 
tion for nested queries is 1:>utlined below. 

2. Types of Nested Queries 

Won Kim developed a classification of nested query types. 
four of which arc relevant to this paper. They arc described 
here briefly for single·level nested queries. as pres.ented in 
(KIM 82). 



2.1. Type-A Nesting 

A nested predicate is type-A if the inner query block Q does 
not contain a join predicate that references a relation in the out­
er query block. and if the SELECT clause of Q consists of an 
aggregate function over a column in an inner relation [KIM 
82:446]. The following is an example of a type-A nested query 
of depth one: 

SELECT SNO 
FROM SP 

WHERE PNO. (SELECT MAX(PNO) 
FROM P); 

(2) 

Since the inner query block of a type-A nested query does 
not reference a relation of the outer query block. it may be 
evaluated independently of the outer query block. and the result 
of its evaluation will be a single constant (SEL 79:33). 

l.l. Type-N Nesting 

A nested predicate is type-N if the inner query block Q does 
not con lain a join predicate which references a relation in the 
outer block. and the SELECT clause of Qdoes not contain an 
aggregate function [KIM 82:447]. The following is an example 
of a type-N nested query: 

SELECT SNO 
FROM SP 

WHERE PNO IS IN (SELECT PNO (3) 

FROM P 
WHERE WEIGHT> SO); 

Evaluation of a Type-N Nested Query. This kind of nested 
query would be processed in System R by first processing the 
inner query block Q. resulting in a list of values X which can 
then be substituted for the inner query block in the nested 
predicate. so that PNO [S IN Q becomes PNO [S IN X. The 
resulting query is then evaluated by nested iteration [SEL 
79:33]. 

2.3. Type.] Nesting 

A type-] nested predicate results when the WHERE clause of 
the inner query block contains a join predicate which referen­
ces the relation of an outer query block. and the relation is not 
mentioned in the inner FROM clause. Another condition is that 
the SELECT clause of the inner query block does not contain 
an aggregate function [KIM 82:448). The following is an ex­
ample of type-] nesting: 

SELECT SNAME 
FROM S 

WHERE SNO IS IN (SELECT SNO 

2.4. Type-JA Nesting 

FROM SP 

WHERE QTY > 100 AND 
SP.OR/GIN. S.CITY); 

(4) 

Typc·]A nesting is present when the WHERE clause of the 
inner query block contains a join predicate which references 

the relation of an outer query block. and the inner SELECT 
clause consists of an aggregate function over an inner relation 
[KIM 82:449]: 

Select names of parts which have the highest pan number 
in the city from which they are supplied. 
SELECT PNAME 
FROM P 

WHERE PNO= (SELECT MAX(PNO) (S) 

FROM SP 

WHERE SP.OR/GIN = P.CITY); 

Evaluation of Type.J and Type-JA Nested Queries. Type­
] and type-JA nesting are processed in System R by the nested 
iteration method: the inner query block is processed once for 
each tuple of the outer relation whlch satisfies all simple 
predicates on the outer relation [SEL 79:33]. This method has 
the obvious disadvanlage that the inner relation (SP in example 
4) may have to be reaieved many times: in example 4. it must 
be reaieved once for each tuple of the outer relation S. since 
there are no simple predicates in the outer query block. It is this 
inefficiency which motivated IGm to develop alternative algo­
rithms for processing nested queries. 

3. Kim's Algorithms for Processing Nested Queries 

Kim observed that for type-N and type-I nested queries. the 
nested iteration method for processing nested queries is equiv­
alent to perfonning a join berween the outer and inner relations 
[KIM 82:451]. But nested iteration is only one way of perform­
ing a join; for single-level queries System R also performs 
joins by the ~rge join method. with the decision as to which 
method to use made by the query optimizer [SEL 79:28]. IGm 
showed that nested queries could be rransformed to logically 
equivalent single-level queries containing single-level join 
predicates explicitly. and that now the query optimizer can 
choose a merge join method in itnplerr:.:nting the joins. often at 
a great reduction of cost over the nesteJ iteration method [KlM 
82:461]. IGm's transformation algorithms are summarized in 
the present section. 

3.1. Processing a Type-N or Type-] l"esled Query 

In hls Lemma 1 [KIM 82:451 J. Kim states thill a type-N 
nested two-relation query is ~uivaJent to a canonical rwo-rela­
tion query with a join predicate: 

LctQlbc 

SELECT Ri.CIt 

FROM Ri.Rj 
WHERE Ri.Ch • Rj.Cm; 

and let Q2 be 

SELECT Ri.CIt 

FROM Ri 

WHERE Ri.Ch IS IN (SELECT Rj.Cm 
FROM Rj); 

[KIM 82:451) 

Kim's Lemma 1 Slales that QI and Q2 are equivalent; that is. 
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they yield the same result [KIM 82:451]. Kim's proof of 
lemma 1 calls attention to the fact that by definition the inner 
block of Q2 can be evaluated independently of the outer block, 
resulting in a list of values. Since this list contains values from 
column Rj.Cm. the predicate is equivalent to the join predicate 
Ri.Ch = Rj.Cm [KIM 82:451-452]. From Lemma 1 Kim 
develops the following algorithm: 

Algorithm NEST.N.J 
1. Combine the FROM clauses of all query blocks into one 

FROM clause. 
2. AND together the WHERE clauses of all query blocks. 

replacing IS IN by =. 
3. Retain the SELEcr clause of the outermost query block. 

[KIM 82:452] 

The result. is a canonical query logically equivalent to the 
original nested query. The algorithm applies to type-N or type-I 
nested queries with one or more levels of nesting. 

3.2. Processing a Type.JA Nested Query 

In his Lemma 2 [KIM 82:455]. Kim assens that a type·IA 
nested query can be transformed to a type-I nested query which 
references a new temporary relation: 

Let Q3 be 

SELECT' Ri.Ck 
FROM Ri 
WHERE Ri.Ch. (SELECT' AGG(Rj.Cm) 

FROM Rj 
WHERE Rj.Cn • Ri.Cp); 

and let Q4 be 

SELECT' Ri.Ck 
FROM Ri 

WHERE Ri.Ch. (SELECT' RLCl 

FROM RI 
WHERE RLCI. Ri.Cp); 

where Rt is a temporary table obtained by 

RI(CI.C) • (SELECT' Rj.Cn. AGG(Rj.Cm) 
FROM Rj 

GROUP BY Rj.Cn): 

(KIM 82:4S4-455I 

Kim's Lenuna 2 states that Q3 and Q4 are equivalent (KIM 
82:455]. His proof postulales that the action of the nested itera­
tion processing of a type-IA query can be captured in a tem· 
porary table formed with a GROUP BY clause. as in Rt: for 
each tuple of Ri. a tuple is retrieved from Rt whose CI (for­
merly Cn) value matches the Cp value of the Rt tuple. The C2 
value of the Rt tuple will contain the aggregate value obtained 
by the GROUP BY clause. and this can be matched with Ri.Ch. 
(KIM 82:455] 

Lemma 2 leads to an algorithm which transforms a type-IA 
nested query of depth one to an equivalent type-I nested query 
of depth I. Assume a type-IA nested query as follows: 

SELECT' RI.Cn+2 
FROM Rl 

WHERE Rl.Cn+I- (SELECT' AGG(R2.Cn+1) 

FROM R2 

WHERE R2_CI = R I.CI AND 
R2.Cl = RI.Cl AND 

R2.Cn = R I.Cn); 

(KIM 82:455J 

Algorithm NEST·JA 
1. Generate a temporary relation Rt(Cl ..... Cn.Cn+l) from 

R2 such that RtCn+ 1 is the result of applying the ag­
gregate function AGO on the Cn+1 column of R2 which 
have matching values in R 1 for Cl.C2. etc . 

. 2. Transform the inner query block of the initial query by 
changing all references to R2 columns in join predicates 
which also reference Rl to the corresponding Rt 
columns. The result is a type-I nested query. which can 
be passed to algorithm NEST-N-I for transformation to 
its canonical equivalenL 

[KIM 82:455-456) 

4. Costs ot Kim's Algorithms: Rationale tor 
Transformation 

Kim's analyses of his algorithms (KIM 82:461-464) com­
pare the costs of processing N. I. and lA-type nested queries 
using the nested iteration method and the transformation 
method followed by merge joins. Kim develops cost functions 
for each method and for each type of nesting. using variables 
such as the sizes of relations. available memory buffer space. 
and selectivity factors. He demonstrates the COS! reductions at­
tainable by his transformation method with examples of queries 
and data base conditions for each type of nesting. The follow­
ing table summarizes the results Kim obtained in three of his 
examples (KIM 82:462-463]: 

Eumple 
QI&ay 
"JYpe·N 
"JYpe-1 
"JYpe.JA 

NCSIed (Leralion 

~uo:v 
10.220 
10.120 
3.050 

Tr:IIlsfonnaiion FoUowed by 

.Mwc 19jn ~ lLQ:j) 
720 

550 
615 

FiPR 1: Pace 1I0's Required iD Kim's Examples 

The comparative costs will of course vary with different 
queries and data base conditions. but .Kim has shown that cost 
savings of 80% to 95% are possible with his transformation 
method. 

S. Bugs in IGm's Algorithm NEST·JA and their 
Solutions 

5.1. The COUNT bug 

In a 1984 U.C. Berkeley Memorandum [KIE 84). Werner 
Kiessling revealed a problem with Kim's algorithm NEST-IA. 
The problem arises when a type-IA nested query contains the 
COUNT function. To illustrate his arguments. Kiessling defines 
two relations: 
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PARTS(PNUM.QOH) 
SUPPLY(PNUM.QUAN.SHIPDAT'E) 

The following instantiations of these relations are assumed: 

PARTS: SUPPLY: 

~ QQH WUM QUM S~Qm 
3 6 3 4 7·3·79 

10 I 3 2 10-1· 78 

8 0 10 1 6-8·78 

10 2 8-10-81 

8 5 5·7·83 
{KIE84:2) 

Kiessling defines Query Q2 as follows: 

QueryQ2: 

Find the pan numbers of those parts whose quantities on 
hand equal the number of shipments of those p~ before 
1·1·80: 

SELECT PNUM 
FROM PARTS 

COUNT(SHIPDATE) 
SUPPLY 

WHERE QOH. (SELECT 
FROM 
WHERE. SUPPLY.PNtJM • PARTS.PNUM AND 

SHIPDATE < I·I·SO) 
[K1E 84:4) 

Given the example tables PARTS and SUPPLY defined 
above, query Q2 will give the following result when evaluated 
using nested iteration: 

RcsuJe f6m.~ 

10 
8 

[K1E84:4) 

Application of Kim's algorithm NEST·JA to Qu~ry Q2 
results in the following transformation: 

1eMP' (SUPP!l.1JM.cn • 
(SELECT PNUM. COUNT(SHIPDATE) 
FROM SUPPLY 
WHERE SHIPDATE < I·I·SO 
GROlJP BY PNUM) 

SELECT PNUM 
FROM PARTS. TEMP' 
WHERE PARTS.QOH • TEMP'.CT AND 

PARTS.J>!'.1lJ}.1 • TEMP'.SUPPNUM 

TEMP' evaluates to 

nMP': SupP'1.1',1 cr 
3 2 

10 

and the final result is 

(XIE 84:41 

[KlE 84:51 

This result differs from that obtained using nested iteration. 
The reason why the transformation fails is that in the formation 
of the temporary relation, no tuples appear which do not match 
the predicates applied !o the inner relation. Thus, the COUNT 
function will never return zero, since the only groups it is ap· 
plied to are groups of tuples matching the predicates. Thus CT 
in the temporary relation will never be zero. 

Kiessling explored a trial correction of the bug which in­
volved ORing a predicate to the WHERE clause of the 
transformed query in order to a posteriori find where an empty 
set occurs to satisfy the predicate, but the trial correction failed 
on a query with more than one level of nesting [KIE 84:51. Kiess· 
ling concludes that in attempting to use Kim's algorithm 
NEST·JA for transforming type·JA nested queries, " ... there 
seems to be no general way to recover values lost by COUNTs 
on a correlation level greater than I." [KJE 84:7). While this 
does seem to be true in the context of the SQL language as 
specified in (AST 76], the problem can be solved if the outer 
join operation is available in the processing of the query. 

5.1.. Solution to the COUNT bug using outer joins 

If either intemally or through extensions to the query 
language an outer join operation may be specified as the join 
operation, the COUNT bug can be solved by perfonning an 
outer join in the creation of the temporary relation. The opera· 
tion of outer join is defined in (COD 79:4071: the outer join in­
cludes all values from columns participating in join, with 
NULLs in the opposite column if there is no match for a 
column value. For example, assume the following relations: 

R: X 
A 
B 

S: X 
B 
C 
E 

An outer join between R and S, which will be designated R.X 
=+ S. y, will have the following result: 

X 
A 
B 

" 

" 
B 
C 

E " 

where 1\ is the special null val ue. The oUler join oper:ltion is 
implemented in at least one commercial data base management 
system with which the authors arc familiar [ORA 861. 

To solve the COUNT bug an outer join may be used in the 
creation of the temporary relation. Kiessling's query Q2 could 
be transformed to give the following: 
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1n1P3 (SUPPNUM.cn .. 
(SELECT PARTS.PNUM. COUNT(SUPPLY.SHIPDATE) 
FROM PARTS.5UPPLY 
WHERE SUPPLY.SHIPDATE < 1·1·80 AND 

PARTS.PNUM o. SUPPLY.PNUM 
GROUP BY PARTS.PNUM); 

QueryT3: 

SELECT PNUM 
FROM PARTS.1n1P3 
WHERE PARTS.QOH • TEMP3.CT AND 

PARTS.PNUM • TEMP3.SUPPNUM; 

Before looking at the result of this new query, let us look at 
the result of the outer join between PARTS and SUPPLY with 
the conditions given in the creation of the temporary relation 
TEMP3: 

PAIm·~ ~,QQIi .uzm.y,e!llM 
3 6 3 
3 6 3 

10 
8 

1 
o 

10 ,. 

~.Ql!AH ~.SHIPp.m 

.. 7·3·79 
2 10-1·78 

6-8·78 ,. ,. 

Note that the condition which applies to only one relation 
(SUPPLY.SHIPDATE < 1·1·80) must be applied before the 
join is performed. Otherwise the join would not contain the last 
row, and the result would be incorrect. This may happen if the 
join is perfonned first to take advantage of indices on the join 
columns. To ensUre resoiction, we can explicitly build a tem· 
porary table applying simple predicates. This temporary table 
will be a resoiction and projection of the inner table: 

TEMP2 (PNUM) • (SELECT PNUM 
FROM SUPPLY 
WHERE SHIPDATE< 1·1.80); 

and TEMP3 is changed to 

1n1P3 (SUPPNUM.cn • 
(SELECT PARTS.PNUM. COUNT(TEMP2.SHIPDATE) 
FROM PARTS.TEMP:! 
WHERE PARTS.PNUM -. TEMP2.PNUM 
GROUP BY PARTS.PNUM); 

Thus, TEMP3 will look like this: 

'JeMP3: StlPPNUM 

3 
10 
8 

c: 
2 
1 

o 

and the result of query T3 will ~: 

EARrSaruM 
10 
8 

which matches the result obtained by nested iteration. This 
solution has been tested successfully on queries with more than 
a single level of nesting, including Kiessling's query Q3 [KIE 
84:6]. 

If the type-IA query with a COUNT function contains a 
nested join predicate with a scalar comparison operator other 
than equality, the correct result is obtained if the scalar operator 
is used in the outer join operation to create the temporary rela­
tion and the join predicate in the original query is changed to 
equality. 

5.2.1. Query Blocks with COUNT(-) 

If the SELECT clause of the inner query block contains 
COUNTC-) instead of COUNT(column name) then this ap· 
proach must be modified. For example, if query Q2 contained a 
COUNTC-) instead of a CO UNT(S HIPDATE) , then the tem· 
porary table would look like this: 

'1C.MP3: SWNUM c: 
3 2 

10 
8 

This would be semantically incorrect. and the final result would 
be incorrect. To avoid this error the SELECT clause used in the 
creation of the table must contain COUNT(col-name) instead 
of COUNT(-), where col· name is the name of some column in 
the inner relation. Since the join column of the inner relation 
will always be present in the origin;!1 query and may be the 
only one that is, let col-name be the name of the join column of 
the iMer relation. In our example it would be 
COUNT(TEMP2.PNUM). 

5.J. Another Bug: Relations other th;Jn Equality 

For aggregate functions other than COUNT Kim's algorithm 
NEST·1A works correctly for nested join predicates contJining 
the equality operator. However, if we consider other operators, 
we discover another bug in Kim's algorithm. 

Assume the PARTS and SUPPLY tables: 

PARTS: SUPPLY: 

~ QQll ~ QllAtf SHIPPm;; 
3 0 3 4 7·3·79 

10 4 3 2 10-1·78 
8 4 10 1 6-8·78 

9 S 3·2·79 

and the following type·1A query: 
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Query Q5: 

SELECT PNUM 
FROM 
WHERE 

PARTS 
QOH .. (SELECT 

FROM 
WHERE 

MAX(QUAN) 
SUPPLY 
SUPPLY.PNUM < PARTS.PNUM AND 

SHIPDATE < 1·1·80); 

This is the same as !Gessling's query QI [KlE 84:1) except for 
the substitution of the "<" operator for "=" operator in the join 
predicate. The result according to nested iteration semantics, 
assuming MAX({}) = NULL. is 

Kim's algorithm results in the following temporary table and 
transformed query: 

TEMPS (SUPPNUM. MAXQUAN) • SELECT PNUM. MAX(QUAN) 

QueryTS: 

SELECT PNUM 
FROM PARTS. TI:MP 

FROM SUPPLY 
WHERE SHIPOATI: < 1·1·80 
GROUP BY PNUM; 

WHERE QOH .. TI:MP.MAXQUAN AND 

TEMP.SUPPNUM < PARTS.PNUM; 

and the following results: 

TI:MPS: final result: 
SLlEfNUM MM~ fAm·~ 

3 4 10 
10 1 8 
9 .5 

which does not match the results obtained by nested iteration. 
The problem is that the temporary table created by Kim's algo­
rithm contains only aggregate information about tuples with the 
same join column value. whereas query QS asks for aggregate 
information about a range of join column values. 

503.1 Solution to the Relalions-other.than.Equalily Bug 

The solution to this bug is similar to the solution to the 
COUNT bug: perform a join in the creation of the temporary 
relation, only this time it need not be an outer join, unless the 
aggregate function is COUNT. The join in effect causes the 
temporary table to include aggregate values over the proper 
range of join column values. As before, the join predicate in the 
original query must be changed to equality. This implies that 
only the equality operator may bethe outer relation and the 
temporary relation. 

If this solution is applied to query Q5 and the last SUPPLY 
table, the outcome is: 

TEMP6 (SUPPNUM. MAXQUAN),. 
SELECT PARTS.PNUM. MAX(SUPPLY.QUAN) 
FROM PARTS. SUPPLY 
WHERE SHIPOATI: < \·\·80 AND 

SUPPLY.PNUM < PARTS.PNUM 
GROUP BY PARTS.PNUM; 

and query Q5 is transfOrmed to 

QueryT6: 

SELECT PNUM 
FROM PARTS. TI:MP 
WHERE PARTS.QOH • TEMP.MAXQUAN AND 

PARTS.PNUM • TEMP.SUPPNUM; 

with the following results: 

TEMP6: 
SlJPPNUM 

10 
8 

final result: 

rAm..eruM 
8 

This matches the result obtained by nested iteration. 

5.4. A Problem with Duplicates 

The methods outlined above to solve the COUNT bug worle 
correctly if the outer relation of the nested query contains no 
duplicates in the join column. but a problem arises if it does 
contain duplicates. Assume the following PARTS and SUPPLY 
relations: 

PARTS: SUPPLY: 

aruM QQH Wllhl. ~ SHIl!I:l~ 
3 6 3 4 81\4{17 

3 2 3 2 11/11/78 
10 1 10 6122f76 
10 0 

8 0 

For this example let us again assume Kiessling's query Q2. If 
we apply query Q2 to the above relations, the result by nested 
iteration would be: 

fAm·eruM 
3 

10 
8 

If we apply our new modified version of !Gm's algorithm, the 
results would be: 

TEMP3: SI.!l!e'lllM a final result WIS·~ 
3 4 8 

10 2 
8 0 

This does not match the result obtained by nested iteration. The 
problem arises because duplicates in the outer relation increase 
the COUNT over that column in the temporary relation. This 
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problem does not arise with the MAX and MIN functions, but 
it does arise with the COUNT, AVG and SUM functions. 

5.4.1. Solution to the Duplicates Problem 

In order to match the results obtained by nested iteration 
semantics for relations with duplicates in the outer join column. 
our algorithm must be modified to remove duplicates before 
the join in the creation of the temporary table is performed. 
This can be accomplished by projecting the join column of the 
outer relation. and using the projection instead of the outer rela­
tion in any jOin required to build a temporary table. This is pan 
of the procedure followed in INGRES [STO 76) for nested 
QUEL queries [KIE 8~:8). The efficiency of the algorithm can 
be improved by applying all simple predicates to the outer rela­
tion in the creation of the projection. In query Q2 this rule will 
have no effect since there are no simple predicates in the outer 
query block. 

Using Kiessling's query Q2 as an example again, let TEMPt 
be defined as follows: 

TEMPI(PNUM). (SELEcr DISro;cr PNUM 
FROM PARTS); 

TEMPt is the projection of the PNUM column from PARTS. 
TEMP3 will now be defined as: 

TEMP3 (Sl1PPNUM.cn -
(SELEcr TEMPJ.PNUM. COUNT(SUPPLY.SHIPDATE) 
FROM TEMPI.SUPPLY 
WHERE SUPPLY.SHIPDATE< 1·1-80 AND 

TEMPI.PNm.f -. SUPPLY.PNUM 
GROUP BY TEMPI.Pl'o'UM); 

and query T3 remains the same~ The results are: 

TEMPI: TEMP3: 6na1 result: 

Wl.!M S1.TI!~r:M c: ~~ 
3 3 2 3 

10 10 I 10 
8 8 0 8 

which matches the result obtained by nested iteration. 

6. Modified algorithm NEST·JA2 

6.1 The Algorithm 

The solutions to the bugs described in the previous section 
suggest a modified algorithm for transforming type-JA nested 
queries, which shall be called algorithm N£ST'-JA2. This algo­
rithm consists of three major pans: 

Algorithm NEST-JAl 
t. Project the join column of the outer relation. and restrict 

it with any simple predicates applying to the outer rela-
_ tion. 
2. Create a temporary relation. joining the inner relarion 

with the projection of the outer relation. If the aggregate 
function is COUNT, the join must be an outer join, and 
the inner relation must be restricted and projected before 

the join is performed. If the aggregate function is 
COUNT(*), compute the COUNT function over the join 
column. The join predicate must use the same oper:ttor as 
the join predicate in the origina:Jquery (except that it 
must be converted to the corresponding outer operator in 
the case of COUNT), and the join predicate in the 
original query must be changed to =. In the SELECT 
clause, select the join column from the outer table in the 
join predicate instead of the inner table. The GROUP BY 
clause will also contain columns from the outer relation. 

3. Join the outer relation with the temporary relation, ac­
cording to the transformed version of the original query. 

To illustrate the action of algorithm NEST-JA2. let us apply 
it to Kiessling's query Q2. The three steps are then as follows: 

J. TEMPI (pPNUM) .. SELEcr 

FROM 
2. TEMP2 (PNUM):I (SELEcr 

FROM 

DISTINcr PNUM 
PARTS; 
PNUM 
SUPPLY 

WHERE SHIPDATE< 1·1·80); 

TEMP3 (PNUM.cn .. 
(SELEcr TEMPI.PNUM. COUNT(TEMP2.SHIPDATE) 
FROM TEMPI. TEMPl 

WHERE TEMP1.PNUM ". TEMP2.PNUM 
GROUP BY TEMPJ.PNUM); 

3. SELEcr PNUM 
FROM PARTS.TEMP3 
WHERE PARTS.QOH = TEMP3.cr AND 

PARTS.PNUM • TEMP3.PNUM; 

If these three steps are applied to the PARTS and SUPPLY 
relations with duplicates considered aoove, the results are: 

TEMPI: TEMP3: final result; 

~ Sl.!EI!IIIU>.1 ~ ea&IS~ 
3 3 ~ 3 

10 10 I 10 

8 8 0 8 

which matches the result obtained by nested iter:ttion. 

7. Analysis of Modified Algorithm NEST·JA2 

The toW cost of processing a type-JA nested query using the 
new algorithm NEST-JA2 will consist of three major sub-costs: 

I. The projecrion and restriction of the outer table Ri. 
resulting in temporary table Rt2. 

2. The creation of temporary relation Rt by projecting and 
restricting inner relation Rj. joining this with temporary 
table Rt2. and performing a GROUP BY operarion on the 
resulL 

3. Joining temporary table Rt with outer table Ri. 
These costs will be examined in detail below. For simplicity it 
will be assumed that nested queries are of depth one. The 
analyses will be presented using Kim's notation [KI1t 82:4621: 
Ri denotes the relation of the outer query block. Rj the relation 
in the FROM clause of the inner query block. and Rt the tem­
porary relation obtained by intermediate processing on Rj. Pk 
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is the size in pages of relation Rk, and Nk is the number of 
tuples in Rk. Let f(i) denote the fraction of the tuples of Ri that 
satisfy all simple predicates on Ri. B denotes the size in pages 
of available main-memory buffer space. When it is necessary 
to son a relation, a (a-I)-way multi-way merge son is used, 
which requires 2-P-logB.\P page I/O's to son a relation R 
[KIM 82:462]. The measure of performance is the number of 
disk page I/O's requ~, and for simplicity relations Ri and Rj 
are scanned sequentially. 

7.1. Projection and Restriction or the Outer Table 

The cost of creating a projection and restriction Rt2 from Ri, 
with duplicates removed, is 

where the last term is the cost of removing duplicates using a 
(B-l)-way merge son. This also setS up Rt2 in join column or­
der for a merge join. Pt2 will be some fraction of Pi. Since Rt2 
contains only tuples satisfying the simple predicates on Ri, Pt2 
will be some fraction of ((i)-Pi, the fraction depending on the 
size of the column compared to the size of a tuple. 

7.2.. Creation or Temporary Table Rt 

In the modified algorithm NEST-JA2, a join is requ~ in 
the creation of the temporary relation from the inner relation. If 
the aggregate function in the inner block is COUNTO. this join 
will be an outer join. The iMer relation is denoted Rj and Rt3 
will designate a temporary relation created by projecting and 
restricting Rj. Rt3 is used to perform the join with Rt2, fol­
lowed by the GROUP BY operation, to create the temporary 
relation RL 

The cost of this join will depend on whether the nested itera­
tion or the.merge join methoo is used. The nested loops method 
will be efficient if the temporary relation Rt3 can fit intO B·l 
memory pages, with a cost of 

Pj + PI2 + Pl4 page UO's, 

where Rt4 is the result of the join. If, however, Rt3 does not fir 
into B·I pages, Rt3 will have to be retrieved once for each 
tuple of Rt2, since Rt2 has already been restricted. The cost 
will be 

Pj + Pt3 + Pt2 + Nt2"Pt3 + Pt4 page UO's, 

where the first two terms are the cost of creating Rt3. 
If the merge join method is used, the cost will be 

Pj + Pt3 + 2"P\3"!oga.lP\3 + Pt2 + Pt3 + Pl4 page VO's, 

where the first three terms are the cost of building Rt3, sorong 
il and removing duplicates, and the last three terms are the cos I 
of merge joining Rt2 with Rt3 and storing the result. The cost 
of sorting Rt2 is not included in the merge join cost, since this 
cost is subsumed by the cost of creating it with duplicates 
removed. In addition, performing a merge join to creale RI4 
obviates Ihe need 10 son it for Ihe GROUP BY operation, since 
the GROUP BY column is Ihe join column. 

If the aggregale function in the inner SELECt" clause is 
COUNTO, an outer join must be used in the creation of tem­
porary table R14. The merge join method of performing an 
outer join will have a cost function identical 10 thaI for a stan­
dard join. since the two relations are scanned in soned order, 
and no extra cost is involved in determining which tuples have 
no matching tuples in the opposite relation. RI4, the result of 
the join. may be slightly larger than if a standard join were 
performed, adding a small amount to the cost of the join. As in 
Kim's analyses, the joins performed following transformation 
will be assumed to be merge joins. 

7.3. Join or Rt and Ri 

The cost of joining temporary table Rt and outer table Ri 
will also depend on the kind of join used, but as will be seen 
below, a merge join of these relations can be particularly effi­
cient, since Rt is already in join column order. a merge join 
will cost 

assuming Ri is not reduced in size, while a nested iteration join 
would cost 

7.4. Total Cost 

The total" cost of processing a single·level type-JA nested 
query using the modified algorithm NEST-JA2 will depend on 
the type of join used to create temporary relation Rt4 as shown 
above; il will also depend on the type of join used between the 
outer relation Ri and the temporary relation Rio Thus there are 
four" possible total costs for a single-level query, each of which 
may be estimated by the optimizer. One of these evaluation 
methods in particular is wonhy of nOlc: the use of two merge 
joins in the evaluation of the query. In evaluating the query by 
this method there will be cost savings in the merge joins from 
sorting relations earlier in the process: Rt2 is created in join 
column order, so il does not have to be soned for the join with 
Rt3; Rt4 is created in GROUP BY column order,so it does not 
have to be soned for the GROUP BY operation; 3lld Rt is 
created in join column order. so it does not have to be soned 
for the merge join with Ri. The total cost for this method is 

Pi + Pt2 + 2"Pt2"loga. I Pt2 + 
Pj + Pt3 + 2"P\3"loga. I PtJ + Pt2 + P\3 + 2"Pl4 + PI + 
2"pj"loga.1Pi + Pi + PI. 

assuming Ri is not reduced in size, and where the first three 
terms are the cost of projecting 3lld restricting Ri. resulting in 
Rt2; the next eight terms are the cost of creating temporary 
table Rt. including the GROUP BY operation; and the last three 
terms are the cost of performin g the final join. 

The modified algorithm can be compared to the nested itera­
tion method in the following example. Let the query to be 
evaluated be Kim's query Q3 [KIM 82:454] where the ag­
gregate function is MAXO. Let Pi = 50, Pj = 30, P12 = 7, Pt3 = 
10, Pt4 = 8, Pt = 5, B = 6. and f(i)-Ni = 100. The nested itera­
tion method of processing Q3 costS 3050 page fetches in the 
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worst case. The iransformation approach. using the modified 
algorithm and two merge joins. costs about 475 page fetches. 

8. Extensions: the Predicates EXISTS, NOT 
EXISTS, ANY, and ALL 

In presenting his transformation algorithms. Kim considered 
nested predicates containing sCalar and set inclusion operators. 
If the language is extended to include the useful operators 
EXISTS. ANY. and ALL. some extensions to the transforma­
tion algorithms must be implemented. The extensions proposed 
in this section are transformations of the predicates to 
predicates containing simple scalar or set containment 
operators. The query can then be processed by the transforma­
tion algorithms presented above. 

8.1 EXISTS and NOT EXISTS 

A nested predicate of the fonn 

WHERE EXISTS (SELECT 
FROM 
WHERE 

sditems 
fromilCms 
wllereilCms) 

can be transformed to the semantically equivalent nested 
~cate 

WHERE 0 < (SELECT COUNT (selitems) 
FROM fromilCms 
WHERE wllereilCms) 

Similarly. a nested predicate of the form 

WHERE NOT EXISTS (SELECT 
FROM 
WHERE 

seJitems 
fromilCms 
whereilCms) 

is transformed to the semantically equivalent predicate 

WHERE 0 • (SELECT COUNT (selitems) 
FROM CromilCms 
WHERE whcreilCms) 

The resulting predicate is then processed as a type-A or type-JA 
predicate. depending on the details of the inner query block. 

8.2 ANY and ALL 

A predicate of the form 

<ANY (SELECT 
FROM 
WHERE 

selilCm 
CromilCms 
wherc'lCms) 

can be transformed to the logically (but not necessarily seman­
tically) equivalent form 

< (SELECT MAX(sc!item) 
FROM CromilClnS 
WHERE whereilCms) 

The same transformation is performed when the operator is <= 
or !>. Conversely. 

<ALL. (SELECT 
FROM 
WHERE 

selitem 
fromilCms 
whcreilCms) 

is transformed to the logically equivalent predicate 

< (SELECT MIN(selitem) 
FROM fromilCms 
WHERE whereilCms) 

and the same transformation is performed when the operator is 
<= or !>. If the operator is >. >=. or !<. the transformation is 
the reverse: 

> ANY (SELECT selitem 

is transformed to 

> (SELECT MIN(selitem) 

and 

> ALL. (SELECT selitem 

is transformed to 

> (SELECT MAX(selilCm). 

More simply. a predicate of the form =ANY is transformed to 
IN. and a predicate of the form !=A;\'Y is transformed to NOT 
IN. 

9. Processing a General Nested Query 

Algorithm NEST-JA2 applies to type-JA queries with a 
single level of nesting. The extension of the algorithm to type­
JA queries with more than one level of nesting is not as simple 
as it was for algorithm NEST-N·J: the aggregate function and 
the join predicate may appear at any level of nesting. and not 
necessarily at the same level. Kim approaches the problem by 
means of query graphs: his algorithm NEST-G for transform­
ing a general nested query gives the correct canonical result by 
inspecting and reducing the query graph for the query [KTht 
82:465). Rather than going into Kim's noutions and methods. 
we will propose an alternative method for processing a general. 
nested query. a direct postorder recursive algorithm which we 
believe is conceptually simple and which solves the problem of 
·processing type·JA queries with greater than a single level of 
nesting. 

9.1. Processing a General Nested Query: a Recursive 
Approach 

The recursive version of algorithm NEST-G is described in 
the following pseudocode procedure nest ..s(query _block}. 
where the parameter query _block is a pointer to a SQL query 
block. possibly with descendant inner query blocks nested 
within it The procedure is initially called with a pointer to the 
outermost query block (the beginning) of the query. 
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procedure MS'J(quezy_block) 
for each predica&e in !he WHERE clause of query _block 

II predicate is a neSIed predicate (i.e. contains inner query block) 
MSt J{inner_quezy _block) ,. 

• Der.ennine Iype oC nesting. and call appropriate 

• lr3I1Sformalion procedure. 
./ 
II SELECT claiise oC inner_query _block contains aggregate function 

II inner_query _block concains join prcdica1e referencing a relation 
which is IIOl in ilS FROM clause ,. 

• nesting is type-JA 
./ 
MSt Ja2(inner_query _block) 
MSI_flJ(quezy_block.inner_quuy_block) 

else ,. 
• nesting is type-A 
./ 
MSt _ a(inner_query _block) 

else 
lIeS' _ flJ(quezy _block.innu_query _block) 
Murll 

Three procedures are called by nest-80: ~st_a(). wltich 
evaluates inner_query_block. replacing it with the result­
ing constant; ~t.Ja2(). which executes algorithm NEST-IA2; 
and ~st_n.J(). wltich executes Kim's algorithm NEST-N-J. 
combining the two query blocks query _block and 
inner_query_block_ In explaining procedure ~stJ() it is 
useful to model a nested query with a multi-way tree whose 
nodes are query blocks. where the outermost query block (the 
beginning of the SQL statement) is the root and the innermost 
query blocks are the leaves. Procedure ~st J{) sean:hes down 
through the levels of a nested query from the outermost query 
block until it finds the innermost query blocks (the leaves of 
the query tree). It then examines the leaf block to determine the 
type of nesting present, and transforms the parent to canonical 
form by calling the appropriate transformation procedures. 
After this is done for all nested predicates in query_block. the 
recursion then unwinds one level and the query block 
immediately above is processed in the same way. continuing 
the unwinding until lastly the outermost. or root. query block is 
transformed. 

The algorithm represented in procedure n~s(J() solves the 
problem of correctly transforming a type-JA query with 
multiple levels of nesting. To demonstrate this. let us assume 
the following query tree: 

Fieurf 2: Example Quer1 Tree 

The edges of the tree are labelled with the kind of nesting 
present at that level. Query block B contains an aggregate 
function in its SELECT clause. and both C and E contain join 
predicates referencing tables in query blocks at a higher level. 
So far the most imponant feature with regard to processing the 
query has not been mentioned: docs C or E contain a reference 
to a table in the FROM clause of A? This is important because 
it indicates whether there is typ-JA nesting present in the query: 
if one of the inner blocks. including B. contains a reference to a 
table in A. then type-JA nesting is present. In other words. a 
join predicate reference must span a query block containing an 
aggregate function for type-JA nesting to be present. 

For example. assume the example query tree contains a 
reference in B. C. or E to a table in the FROM clause of A. Let 
us assume that E contains this reference. in a join predicate. 
Procedure n~stJ() will travel down to E, unwind and apply 
algorithm NEST-N-J. combining C and E. This moves the 
reference to the table in A to block C. Then blocks C and B are 
combined. then blocks 0 and B. Now query block B has 
inherited the join predicate in block E. so that it contains both 
an aggregate function and a join predicate which references a 
table not found in the FROM clause of B: this is the definition 
of type-IA nesting. Thus. procedure ~st.Ja2() is called. which 
creates a temporary table with a GROUP BY clause as 
specified in algorithm NEST-JA2. and removes the aggregate 
function. replacing it with a reference to the column in the 
temporary table which results from the application of the 
aggregate function. This reduces the type-JA nesting to type-J 
nesting. and procedure ~st_n.J() is immediately called to 

finish the job of reducing the query to canonical form. Thus 
type-JA nesting of deeper than one level can be detected by 

. examining a single query block. which has inherited the "trans­
aggregate" join predicate by the recursive transformation of 
inner query blocks. and the type-] A nested query can be 
transformed to canonical form by applying the single-level 
algorithm NEST-IA2. 

From this example it can be seen I:lat the advantage of the 
recursive algorithm presented in procedure nest J{) is 
simplicity: the information needed to transform a query block 
containing a nested predicate is confined to two levels of the 
query: the outer level (the level containing the nested 
predicate) and the inner. 

10. Summary 

The nested iterntion method of evaluating nested SQL 
queries can be inefficient (or many queries: a relation referred 
to in an inner query block may have to be retrieved many 
times. possibly once (or each tuple in the outer query block. 
Won Kim classified nested queries and proposed algorithms to 
~uce the cost of evaluating them [KIM 82). The objective of 
his algorithms is to reduce the nested query to an equivalent 
single-level. or canonical. (orm. The resulting canonical query 
will contain explicit joins which capture the nested-iteration 
semantics o( the original query. and can now be passed to a 
query optimizer which will determine an efficient order and 
method for the evaluation of the query. Kim compared the cost 
of evaluating a nested query by nested iterntion and the cost of 
evaluating a transformed query using merge joins in severnl 
examples. The transformation method resulted in COStS 
sometimes an order of magnitude smaller than the costS 
required by the nested iter:ltion method. However. a bug in 
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Kim's algorithm NEST-IA was discovered by Werner Kiessling 
[KIE 84). Another bug in the same algorithm has been 
demonstrated in section S. These bugs can be solved by 
performing a join in the creation of the temporary table which 
contains the aggregate information. If the aggregate function is 
COUNT, the join must be an outer join. This solution requires 
the join to be performed on a projection of the outer table in 
order to avoid an increase in the aggregate values due to 
duplicates in the outer table. The solutions to these bugs are 
incorporated into algorithm NEST-JA2. which retains Kim's 
strategy of building a temporary table to capture aggregate 
information, and which yields a COSt reduction similar to that 
achieved by Kim in his example. The transformation 
algorithms have been extended to handle a larger class of 
predicates. and a recursive algorithm has been presented which 
will apply the transformations to a nested query of arbitrary 
complexity; 
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