
Lawrence Berkeley National Laboratory
Recent Work

Title
OPTIMIZATION OF NESTED SQL QUERIES REVISITED

Permalink
https://escholarship.org/uc/item/6cv5q5r9

Authors
Ganski, R.A.
Wong, H.K.T.

Publication Date
1987-04-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6cv5q5r9
https://escholarship.org
http://www.cdlib.org/

LBL-22396

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA, BERKELEY

Information and Computing
Sciences Division

To be presented at the SIGMOD-87 Conference,
San Francisco, CA. May 27-29, 1987

OPTIMIZATION OF NESTED SQl
QUERIES REVISITED

R.A. Ganski and H.K.T. Wong

April 1987

,JW! 9 1987

TWO-WEEK LOAN COpy

. This is.a ~ib~ary Cir~u/ating Copy", _.
which may pe borrowed for two weeks .. . ~

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

C".~

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

..

LBL-22396

Optimization of Nested SQL Queries Revisited

Richard A. Ganslci
Department of Computer Science

San Francisco State University

Harry K.T. Wong
Lawrence Berkeley Laboratory

University of California
Berkeley, California

Abstract

Current mclhods of evaluating ncszed qucric:s in the SQL language can be
ind6cient in • .,ariety o(query and daIa base CORlCllts. PrcYious racarch in
the area o(ne.SICd query optimiuUon whidl sought methods 0(n:ducing
e.,.luation costS is summarized. including a c1assi6ation scheme: (or nested
queria. algorithms cbignc:d to tranSform each type of query to • logically
equivalent form which may Ihc:n be evaluated more el6ciently, and a
description of • major bug in one 0(thc:se algorithms. Funha examination
n:vc:als anod>cr bug in \he same algorithm. Solutions to these bugs are
proposed and inc:orpor.u.od into a new tranSformation algorithm. and eJucn·
sions are proposed which wiU allow the tranSformation algorithms 10 handle
• Larger class O(.jmdic.aICS. A n:cw-siYC algorithm (or processing. gener:a.l
nested query is JnSCRted and \he action of this algorithm is dcmonsU"aIcd.
nus algorithm can be used to tn.nslonn any nc.sted query.

1. Introduction

SQL is a block·structured query language for data retrieval
and manipulation developed at the [EM Resezch Laboratory
in San Jos.e. California (AST 75). SQL was incorporated inlO
System R. the relational data b~e management system. also
developed at the [EM San Jose: Research labOratory [AST 76).

One of the most powerful fearures of SQL is the nesting of
query blocks. For demonstr.ltion purposes. assume the follow­
ing relations:

S(SNO.SNAME.5TATUS.Cm') - the Supp!i= rel.uion

P(PNO.rNAME.COLO~.WEIGlrr.CTTY) - the P.lltS felloon

SP(S:-':O.r:-':O;QTI'.ORIG C\') - the Shipmenlrelltion

The primary keys' for these relations are SNO. PNO. and
SNO.PNO respectively. If we wanted the names of all suppliers
Who supply p3J1 P2 we could say:

Supported by the Office of· Energy Research, U.S.
DOE under Contract No. DE-AC03-7GSFOOO98.

SELECT SNAME
FROM S (I)

WHERE SNO IN (SELECT SNO
FROM SP

WHERE NO - 'Pl'):

This is an example of a query with a single level of nesting.
The basic stJUcrure of a SQL query is a qlUry block. which
consists principaUy of a SELECf cl:luse. a FROM clause, and
zero or more WHERE clauses. The first query block in a nested
query is known as the OUler query block and the next query
block is known as the innt:r query block. The WHERE clause
specifies the predicates which the tuples reuieved must satisfy.
One type of predicate which can appear in the WHERE clause
is a nested prt:dicatt:. which is of the form [Ri.Ck op QJ. where
Q is a query block (KIM 82:445). Q will always be a fOIlD of
the SELECf statement. The op may be a scalar or s.et member­
ship operator. A relation referred to in the inner query block
shall be designated as an inner rt:lation. and a relation referred
10 in the outer query block shall be designated as an OUIer rt:la­
non. Queries can be nested to an arbiC':Lry depth.

In his 1982 paper "On Optimizing an SQL·like Nested
Query" [KIM 82). Won Kim showed th:a the conventional tech·
niques used in implementing query nesting. i.e. the techniques
used in System R (SEL 79:33). can be very inefficient: tables
referenced in the inner query block of :l nested query may have
to be reuieved once for each tuple of the relation referenced in
the outer query block (K1M 82:450]. As a solution to this
problem. Kim proposed query C'ansfomution algorithms thJt
would improve the efficiency of nested query evalu:ltion. some·
times by orders of magnitude. His approach was to tr.lnsform J
nested query to a logically equivalent single-level query (i.e.
without nesting): this query could then be examined by a query
optimizer. such as that described in [SEL 79). for alternative
methods of processing. including different methods of perform­
ing joins. To introduce Kim's results. his system of c1assifica·
tion for nested queries is 1:>utlined below.

2. Types of Nested Queries

Won Kim developed a classification of nested query types.
four of which arc relevant to this paper. They arc described
here briefly for single·level nested queries. as pres.ented in
(KIM 82).

2.1. Type-A Nesting

A nested predicate is type-A if the inner query block Q does
not contain a join predicate that references a relation in the out­
er query block. and if the SELECT clause of Q consists of an
aggregate function over a column in an inner relation [KIM
82:446]. The following is an example of a type-A nested query
of depth one:

SELECT SNO
FROM SP

WHERE PNO. (SELECT MAX(PNO)
FROM P);

(2)

Since the inner query block of a type-A nested query does
not reference a relation of the outer query block. it may be
evaluated independently of the outer query block. and the result
of its evaluation will be a single constant (SEL 79:33).

l.l. Type-N Nesting

A nested predicate is type-N if the inner query block Q does
not con lain a join predicate which references a relation in the
outer block. and the SELECT clause of Qdoes not contain an
aggregate function [KIM 82:447]. The following is an example
of a type-N nested query:

SELECT SNO
FROM SP

WHERE PNO IS IN (SELECT PNO (3)

FROM P
WHERE WEIGHT> SO);

Evaluation of a Type-N Nested Query. This kind of nested
query would be processed in System R by first processing the
inner query block Q. resulting in a list of values X which can
then be substituted for the inner query block in the nested
predicate. so that PNO [S IN Q becomes PNO [S IN X. The
resulting query is then evaluated by nested iteration [SEL
79:33].

2.3. Type.] Nesting

A type-] nested predicate results when the WHERE clause of
the inner query block contains a join predicate which referen­
ces the relation of an outer query block. and the relation is not
mentioned in the inner FROM clause. Another condition is that
the SELECT clause of the inner query block does not contain
an aggregate function [KIM 82:448). The following is an ex­
ample of type-] nesting:

SELECT SNAME
FROM S

WHERE SNO IS IN (SELECT SNO

2.4. Type-JA Nesting

FROM SP

WHERE QTY > 100 AND
SP.OR/GIN. S.CITY);

(4)

Typc·]A nesting is present when the WHERE clause of the
inner query block contains a join predicate which references

the relation of an outer query block. and the inner SELECT
clause consists of an aggregate function over an inner relation
[KIM 82:449]:

Select names of parts which have the highest pan number
in the city from which they are supplied.
SELECT PNAME
FROM P

WHERE PNO= (SELECT MAX(PNO) (S)

FROM SP

WHERE SP.OR/GIN = P.CITY);

Evaluation of Type.J and Type-JA Nested Queries. Type­
] and type-JA nesting are processed in System R by the nested
iteration method: the inner query block is processed once for
each tuple of the outer relation whlch satisfies all simple
predicates on the outer relation [SEL 79:33]. This method has
the obvious disadvanlage that the inner relation (SP in example
4) may have to be reaieved many times: in example 4. it must
be reaieved once for each tuple of the outer relation S. since
there are no simple predicates in the outer query block. It is this
inefficiency which motivated IGm to develop alternative algo­
rithms for processing nested queries.

3. Kim's Algorithms for Processing Nested Queries

Kim observed that for type-N and type-I nested queries. the
nested iteration method for processing nested queries is equiv­
alent to perfonning a join berween the outer and inner relations
[KIM 82:451]. But nested iteration is only one way of perform­
ing a join; for single-level queries System R also performs
joins by the ~rge join method. with the decision as to which
method to use made by the query optimizer [SEL 79:28]. IGm
showed that nested queries could be rransformed to logically
equivalent single-level queries containing single-level join
predicates explicitly. and that now the query optimizer can
choose a merge join method in itnplerr:.:nting the joins. often at
a great reduction of cost over the nesteJ iteration method [KlM
82:461]. IGm's transformation algorithms are summarized in
the present section.

3.1. Processing a Type-N or Type-] l"esled Query

In hls Lemma 1 [KIM 82:451 J. Kim states thill a type-N
nested two-relation query is ~uivaJent to a canonical rwo-rela­
tion query with a join predicate:

LctQlbc

SELECT Ri.CIt

FROM Ri.Rj
WHERE Ri.Ch • Rj.Cm;

and let Q2 be

SELECT Ri.CIt

FROM Ri

WHERE Ri.Ch IS IN (SELECT Rj.Cm
FROM Rj);

[KIM 82:451)

Kim's Lemma 1 Slales that QI and Q2 are equivalent; that is.

2

:J

J

they yield the same result [KIM 82:451]. Kim's proof of
lemma 1 calls attention to the fact that by definition the inner
block of Q2 can be evaluated independently of the outer block,
resulting in a list of values. Since this list contains values from
column Rj.Cm. the predicate is equivalent to the join predicate
Ri.Ch = Rj.Cm [KIM 82:451-452]. From Lemma 1 Kim
develops the following algorithm:

Algorithm NEST.N.J
1. Combine the FROM clauses of all query blocks into one

FROM clause.
2. AND together the WHERE clauses of all query blocks.

replacing IS IN by =.
3. Retain the SELEcr clause of the outermost query block.

[KIM 82:452]

The result. is a canonical query logically equivalent to the
original nested query. The algorithm applies to type-N or type-I
nested queries with one or more levels of nesting.

3.2. Processing a Type.JA Nested Query

In his Lemma 2 [KIM 82:455]. Kim assens that a type·IA
nested query can be transformed to a type-I nested query which
references a new temporary relation:

Let Q3 be

SELECT' Ri.Ck
FROM Ri
WHERE Ri.Ch. (SELECT' AGG(Rj.Cm)

FROM Rj
WHERE Rj.Cn • Ri.Cp);

and let Q4 be

SELECT' Ri.Ck
FROM Ri

WHERE Ri.Ch. (SELECT' RLCl

FROM RI
WHERE RLCI. Ri.Cp);

where Rt is a temporary table obtained by

RI(CI.C) • (SELECT' Rj.Cn. AGG(Rj.Cm)
FROM Rj

GROUP BY Rj.Cn):

(KIM 82:4S4-455I

Kim's Lenuna 2 states that Q3 and Q4 are equivalent (KIM
82:455]. His proof postulales that the action of the nested itera­
tion processing of a type-IA query can be captured in a tem·
porary table formed with a GROUP BY clause. as in Rt: for
each tuple of Ri. a tuple is retrieved from Rt whose CI (for­
merly Cn) value matches the Cp value of the Rt tuple. The C2
value of the Rt tuple will contain the aggregate value obtained
by the GROUP BY clause. and this can be matched with Ri.Ch.
(KIM 82:455]

Lemma 2 leads to an algorithm which transforms a type-IA
nested query of depth one to an equivalent type-I nested query
of depth I. Assume a type-IA nested query as follows:

SELECT' RI.Cn+2
FROM Rl

WHERE Rl.Cn+I- (SELECT' AGG(R2.Cn+1)

FROM R2

WHERE R2_CI = R I.CI AND
R2.Cl = RI.Cl AND

R2.Cn = R I.Cn);

(KIM 82:455J

Algorithm NEST·JA
1. Generate a temporary relation Rt(Cl Cn.Cn+l) from

R2 such that RtCn+ 1 is the result of applying the ag­
gregate function AGO on the Cn+1 column of R2 which
have matching values in R 1 for Cl.C2. etc .

. 2. Transform the inner query block of the initial query by
changing all references to R2 columns in join predicates
which also reference Rl to the corresponding Rt
columns. The result is a type-I nested query. which can
be passed to algorithm NEST-N-I for transformation to
its canonical equivalenL

[KIM 82:455-456)

4. Costs ot Kim's Algorithms: Rationale tor
Transformation

Kim's analyses of his algorithms (KIM 82:461-464) com­
pare the costs of processing N. I. and lA-type nested queries
using the nested iteration method and the transformation
method followed by merge joins. Kim develops cost functions
for each method and for each type of nesting. using variables
such as the sizes of relations. available memory buffer space.
and selectivity factors. He demonstrates the COS! reductions at­
tainable by his transformation method with examples of queries
and data base conditions for each type of nesting. The follow­
ing table summarizes the results Kim obtained in three of his
examples (KIM 82:462-463]:

Eumple
QI&ay
"JYpe·N
"JYpe-1
"JYpe.JA

NCSIed (Leralion

~uo:v
10.220
10.120
3.050

Tr:IIlsfonnaiion FoUowed by

.Mwc 19jn ~ lLQ:j)
720

550
615

FiPR 1: Pace 1I0's Required iD Kim's Examples

The comparative costs will of course vary with different
queries and data base conditions. but .Kim has shown that cost
savings of 80% to 95% are possible with his transformation
method.

S. Bugs in IGm's Algorithm NEST·JA and their
Solutions

5.1. The COUNT bug

In a 1984 U.C. Berkeley Memorandum [KIE 84). Werner
Kiessling revealed a problem with Kim's algorithm NEST-IA.
The problem arises when a type-IA nested query contains the
COUNT function. To illustrate his arguments. Kiessling defines
two relations:

3

PARTS(PNUM.QOH)
SUPPLY(PNUM.QUAN.SHIPDAT'E)

The following instantiations of these relations are assumed:

PARTS: SUPPLY:

~ QQH WUM QUM S~Qm
3 6 3 4 7·3·79

10 I 3 2 10-1· 78

8 0 10 1 6-8·78

10 2 8-10-81

8 5 5·7·83
{KIE84:2)

Kiessling defines Query Q2 as follows:

QueryQ2:

Find the pan numbers of those parts whose quantities on
hand equal the number of shipments of those p~ before
1·1·80:

SELECT PNUM
FROM PARTS

COUNT(SHIPDATE)
SUPPLY

WHERE QOH. (SELECT
FROM
WHERE. SUPPLY.PNtJM • PARTS.PNUM AND

SHIPDATE < I·I·SO)
[K1E 84:4)

Given the example tables PARTS and SUPPLY defined
above, query Q2 will give the following result when evaluated
using nested iteration:

RcsuJe f6m.~

10
8

[K1E84:4)

Application of Kim's algorithm NEST·JA to Qu~ry Q2
results in the following transformation:

1eMP' (SUPP!l.1JM.cn •
(SELECT PNUM. COUNT(SHIPDATE)
FROM SUPPLY
WHERE SHIPDATE < I·I·SO
GROlJP BY PNUM)

SELECT PNUM
FROM PARTS. TEMP'
WHERE PARTS.QOH • TEMP'.CT AND

PARTS.J>!'.1lJ}.1 • TEMP'.SUPPNUM

TEMP' evaluates to

nMP': SupP'1.1',1 cr
3 2

10

and the final result is

(XIE 84:41

[KlE 84:51

This result differs from that obtained using nested iteration.
The reason why the transformation fails is that in the formation
of the temporary relation, no tuples appear which do not match
the predicates applied !o the inner relation. Thus, the COUNT
function will never return zero, since the only groups it is ap·
plied to are groups of tuples matching the predicates. Thus CT
in the temporary relation will never be zero.

Kiessling explored a trial correction of the bug which in­
volved ORing a predicate to the WHERE clause of the
transformed query in order to a posteriori find where an empty
set occurs to satisfy the predicate, but the trial correction failed
on a query with more than one level of nesting [KIE 84:51. Kiess·
ling concludes that in attempting to use Kim's algorithm
NEST·JA for transforming type·JA nested queries, " ... there
seems to be no general way to recover values lost by COUNTs
on a correlation level greater than I." [KJE 84:7). While this
does seem to be true in the context of the SQL language as
specified in (AST 76], the problem can be solved if the outer
join operation is available in the processing of the query.

5.1.. Solution to the COUNT bug using outer joins

If either intemally or through extensions to the query
language an outer join operation may be specified as the join
operation, the COUNT bug can be solved by perfonning an
outer join in the creation of the temporary relation. The opera·
tion of outer join is defined in (COD 79:4071: the outer join in­
cludes all values from columns participating in join, with
NULLs in the opposite column if there is no match for a
column value. For example, assume the following relations:

R: X
A
B

S: X
B
C
E

An outer join between R and S, which will be designated R.X
=+ S. y, will have the following result:

X
A
B

"

"
B
C

E "

where 1\ is the special null val ue. The oUler join oper:ltion is
implemented in at least one commercial data base management
system with which the authors arc familiar [ORA 861.

To solve the COUNT bug an outer join may be used in the
creation of the temporary relation. Kiessling's query Q2 could
be transformed to give the following:

4

1n1P3 (SUPPNUM.cn ..
(SELECT PARTS.PNUM. COUNT(SUPPLY.SHIPDATE)
FROM PARTS.5UPPLY
WHERE SUPPLY.SHIPDATE < 1·1·80 AND

PARTS.PNUM o. SUPPLY.PNUM
GROUP BY PARTS.PNUM);

QueryT3:

SELECT PNUM
FROM PARTS.1n1P3
WHERE PARTS.QOH • TEMP3.CT AND

PARTS.PNUM • TEMP3.SUPPNUM;

Before looking at the result of this new query, let us look at
the result of the outer join between PARTS and SUPPLY with
the conditions given in the creation of the temporary relation
TEMP3:

PAIm·~ ~,QQIi .uzm.y,e!llM
3 6 3
3 6 3

10
8

1
o

10 ,.

~.Ql!AH ~.SHIPp.m

.. 7·3·79
2 10-1·78

6-8·78 ,. ,.

Note that the condition which applies to only one relation
(SUPPLY.SHIPDATE < 1·1·80) must be applied before the
join is performed. Otherwise the join would not contain the last
row, and the result would be incorrect. This may happen if the
join is perfonned first to take advantage of indices on the join
columns. To ensUre resoiction, we can explicitly build a tem·
porary table applying simple predicates. This temporary table
will be a resoiction and projection of the inner table:

TEMP2 (PNUM) • (SELECT PNUM
FROM SUPPLY
WHERE SHIPDATE< 1·1.80);

and TEMP3 is changed to

1n1P3 (SUPPNUM.cn •
(SELECT PARTS.PNUM. COUNT(TEMP2.SHIPDATE)
FROM PARTS.TEMP:!
WHERE PARTS.PNUM -. TEMP2.PNUM
GROUP BY PARTS.PNUM);

Thus, TEMP3 will look like this:

'JeMP3: StlPPNUM

3
10
8

c:
2
1

o

and the result of query T3 will ~:

EARrSaruM
10
8

which matches the result obtained by nested iteration. This
solution has been tested successfully on queries with more than
a single level of nesting, including Kiessling's query Q3 [KIE
84:6].

If the type-IA query with a COUNT function contains a
nested join predicate with a scalar comparison operator other
than equality, the correct result is obtained if the scalar operator
is used in the outer join operation to create the temporary rela­
tion and the join predicate in the original query is changed to
equality.

5.2.1. Query Blocks with COUNT(-)

If the SELECT clause of the inner query block contains
COUNTC-) instead of COUNT(column name) then this ap·
proach must be modified. For example, if query Q2 contained a
COUNTC-) instead of a CO UNT(S HIPDATE) , then the tem·
porary table would look like this:

'1C.MP3: SWNUM c:
3 2

10
8

This would be semantically incorrect. and the final result would
be incorrect. To avoid this error the SELECT clause used in the
creation of the table must contain COUNT(col-name) instead
of COUNT(-), where col· name is the name of some column in
the inner relation. Since the join column of the inner relation
will always be present in the origin;!1 query and may be the
only one that is, let col-name be the name of the join column of
the iMer relation. In our example it would be
COUNT(TEMP2.PNUM).

5.J. Another Bug: Relations other th;Jn Equality

For aggregate functions other than COUNT Kim's algorithm
NEST·1A works correctly for nested join predicates contJining
the equality operator. However, if we consider other operators,
we discover another bug in Kim's algorithm.

Assume the PARTS and SUPPLY tables:

PARTS: SUPPLY:

~ QQll ~ QllAtf SHIPPm;;
3 0 3 4 7·3·79

10 4 3 2 10-1·78
8 4 10 1 6-8·78

9 S 3·2·79

and the following type·1A query:

5

Query Q5:

SELECT PNUM
FROM
WHERE

PARTS
QOH .. (SELECT

FROM
WHERE

MAX(QUAN)
SUPPLY
SUPPLY.PNUM < PARTS.PNUM AND

SHIPDATE < 1·1·80);

This is the same as !Gessling's query QI [KlE 84:1) except for
the substitution of the "<" operator for "=" operator in the join
predicate. The result according to nested iteration semantics,
assuming MAX({}) = NULL. is

Kim's algorithm results in the following temporary table and
transformed query:

TEMPS (SUPPNUM. MAXQUAN) • SELECT PNUM. MAX(QUAN)

QueryTS:

SELECT PNUM
FROM PARTS. TI:MP

FROM SUPPLY
WHERE SHIPOATI: < 1·1·80
GROUP BY PNUM;

WHERE QOH .. TI:MP.MAXQUAN AND

TEMP.SUPPNUM < PARTS.PNUM;

and the following results:

TI:MPS: final result:
SLlEfNUM MM~ fAm·~

3 4 10
10 1 8
9 .5

which does not match the results obtained by nested iteration.
The problem is that the temporary table created by Kim's algo­
rithm contains only aggregate information about tuples with the
same join column value. whereas query QS asks for aggregate
information about a range of join column values.

503.1 Solution to the Relalions-other.than.Equalily Bug

The solution to this bug is similar to the solution to the
COUNT bug: perform a join in the creation of the temporary
relation, only this time it need not be an outer join, unless the
aggregate function is COUNT. The join in effect causes the
temporary table to include aggregate values over the proper
range of join column values. As before, the join predicate in the
original query must be changed to equality. This implies that
only the equality operator may bethe outer relation and the
temporary relation.

If this solution is applied to query Q5 and the last SUPPLY
table, the outcome is:

TEMP6 (SUPPNUM. MAXQUAN),.
SELECT PARTS.PNUM. MAX(SUPPLY.QUAN)
FROM PARTS. SUPPLY
WHERE SHIPOATI: < \·\·80 AND

SUPPLY.PNUM < PARTS.PNUM
GROUP BY PARTS.PNUM;

and query Q5 is transfOrmed to

QueryT6:

SELECT PNUM
FROM PARTS. TI:MP
WHERE PARTS.QOH • TEMP.MAXQUAN AND

PARTS.PNUM • TEMP.SUPPNUM;

with the following results:

TEMP6:
SlJPPNUM

10
8

final result:

rAm..eruM
8

This matches the result obtained by nested iteration.

5.4. A Problem with Duplicates

The methods outlined above to solve the COUNT bug worle
correctly if the outer relation of the nested query contains no
duplicates in the join column. but a problem arises if it does
contain duplicates. Assume the following PARTS and SUPPLY
relations:

PARTS: SUPPLY:

aruM QQH Wllhl. ~ SHIl!I:l~
3 6 3 4 81\4{17

3 2 3 2 11/11/78
10 1 10 6122f76
10 0

8 0

For this example let us again assume Kiessling's query Q2. If
we apply query Q2 to the above relations, the result by nested
iteration would be:

fAm·eruM
3

10
8

If we apply our new modified version of !Gm's algorithm, the
results would be:

TEMP3: SI.!l!e'lllM a final result WIS·~
3 4 8

10 2
8 0

This does not match the result obtained by nested iteration. The
problem arises because duplicates in the outer relation increase
the COUNT over that column in the temporary relation. This

6

.. 1

problem does not arise with the MAX and MIN functions, but
it does arise with the COUNT, AVG and SUM functions.

5.4.1. Solution to the Duplicates Problem

In order to match the results obtained by nested iteration
semantics for relations with duplicates in the outer join column.
our algorithm must be modified to remove duplicates before
the join in the creation of the temporary table is performed.
This can be accomplished by projecting the join column of the
outer relation. and using the projection instead of the outer rela­
tion in any jOin required to build a temporary table. This is pan
of the procedure followed in INGRES [STO 76) for nested
QUEL queries [KIE 8~:8). The efficiency of the algorithm can
be improved by applying all simple predicates to the outer rela­
tion in the creation of the projection. In query Q2 this rule will
have no effect since there are no simple predicates in the outer
query block.

Using Kiessling's query Q2 as an example again, let TEMPt
be defined as follows:

TEMPI(PNUM). (SELEcr DISro;cr PNUM
FROM PARTS);

TEMPt is the projection of the PNUM column from PARTS.
TEMP3 will now be defined as:

TEMP3 (Sl1PPNUM.cn -
(SELEcr TEMPJ.PNUM. COUNT(SUPPLY.SHIPDATE)
FROM TEMPI.SUPPLY
WHERE SUPPLY.SHIPDATE< 1·1-80 AND

TEMPI.PNm.f -. SUPPLY.PNUM
GROUP BY TEMPI.Pl'o'UM);

and query T3 remains the same~ The results are:

TEMPI: TEMP3: 6na1 result:

Wl.!M S1.TI!~r:M c: ~~
3 3 2 3

10 10 I 10
8 8 0 8

which matches the result obtained by nested iteration.

6. Modified algorithm NEST·JA2

6.1 The Algorithm

The solutions to the bugs described in the previous section
suggest a modified algorithm for transforming type-JA nested
queries, which shall be called algorithm N£ST'-JA2. This algo­
rithm consists of three major pans:

Algorithm NEST-JAl
t. Project the join column of the outer relation. and restrict

it with any simple predicates applying to the outer rela-
_ tion.
2. Create a temporary relation. joining the inner relarion

with the projection of the outer relation. If the aggregate
function is COUNT, the join must be an outer join, and
the inner relation must be restricted and projected before

the join is performed. If the aggregate function is
COUNT(*), compute the COUNT function over the join
column. The join predicate must use the same oper:ttor as
the join predicate in the origina:Jquery (except that it
must be converted to the corresponding outer operator in
the case of COUNT), and the join predicate in the
original query must be changed to =. In the SELECT
clause, select the join column from the outer table in the
join predicate instead of the inner table. The GROUP BY
clause will also contain columns from the outer relation.

3. Join the outer relation with the temporary relation, ac­
cording to the transformed version of the original query.

To illustrate the action of algorithm NEST-JA2. let us apply
it to Kiessling's query Q2. The three steps are then as follows:

J. TEMPI (pPNUM) .. SELEcr

FROM
2. TEMP2 (PNUM):I (SELEcr

FROM

DISTINcr PNUM
PARTS;
PNUM
SUPPLY

WHERE SHIPDATE< 1·1·80);

TEMP3 (PNUM.cn ..
(SELEcr TEMPI.PNUM. COUNT(TEMP2.SHIPDATE)
FROM TEMPI. TEMPl

WHERE TEMP1.PNUM ". TEMP2.PNUM
GROUP BY TEMPJ.PNUM);

3. SELEcr PNUM
FROM PARTS.TEMP3
WHERE PARTS.QOH = TEMP3.cr AND

PARTS.PNUM • TEMP3.PNUM;

If these three steps are applied to the PARTS and SUPPLY
relations with duplicates considered aoove, the results are:

TEMPI: TEMP3: final result;

~ Sl.!EI!IIIU>.1 ~ ea&IS~
3 3 ~ 3

10 10 I 10

8 8 0 8

which matches the result obtained by nested iter:ttion.

7. Analysis of Modified Algorithm NEST·JA2

The toW cost of processing a type-JA nested query using the
new algorithm NEST-JA2 will consist of three major sub-costs:

I. The projecrion and restriction of the outer table Ri.
resulting in temporary table Rt2.

2. The creation of temporary relation Rt by projecting and
restricting inner relation Rj. joining this with temporary
table Rt2. and performing a GROUP BY operarion on the
resulL

3. Joining temporary table Rt with outer table Ri.
These costs will be examined in detail below. For simplicity it
will be assumed that nested queries are of depth one. The
analyses will be presented using Kim's notation [KI1t 82:4621:
Ri denotes the relation of the outer query block. Rj the relation
in the FROM clause of the inner query block. and Rt the tem­
porary relation obtained by intermediate processing on Rj. Pk

7

is the size in pages of relation Rk, and Nk is the number of
tuples in Rk. Let f(i) denote the fraction of the tuples of Ri that
satisfy all simple predicates on Ri. B denotes the size in pages
of available main-memory buffer space. When it is necessary
to son a relation, a (a-I)-way multi-way merge son is used,
which requires 2-P-logB.\P page I/O's to son a relation R
[KIM 82:462]. The measure of performance is the number of
disk page I/O's requ~, and for simplicity relations Ri and Rj
are scanned sequentially.

7.1. Projection and Restriction or the Outer Table

The cost of creating a projection and restriction Rt2 from Ri,
with duplicates removed, is

where the last term is the cost of removing duplicates using a
(B-l)-way merge son. This also setS up Rt2 in join column or­
der for a merge join. Pt2 will be some fraction of Pi. Since Rt2
contains only tuples satisfying the simple predicates on Ri, Pt2
will be some fraction of ((i)-Pi, the fraction depending on the
size of the column compared to the size of a tuple.

7.2.. Creation or Temporary Table Rt

In the modified algorithm NEST-JA2, a join is requ~ in
the creation of the temporary relation from the inner relation. If
the aggregate function in the inner block is COUNTO. this join
will be an outer join. The iMer relation is denoted Rj and Rt3
will designate a temporary relation created by projecting and
restricting Rj. Rt3 is used to perform the join with Rt2, fol­
lowed by the GROUP BY operation, to create the temporary
relation RL

The cost of this join will depend on whether the nested itera­
tion or the.merge join methoo is used. The nested loops method
will be efficient if the temporary relation Rt3 can fit intO B·l
memory pages, with a cost of

Pj + PI2 + Pl4 page UO's,

where Rt4 is the result of the join. If, however, Rt3 does not fir
into B·I pages, Rt3 will have to be retrieved once for each
tuple of Rt2, since Rt2 has already been restricted. The cost
will be

Pj + Pt3 + Pt2 + Nt2"Pt3 + Pt4 page UO's,

where the first two terms are the cost of creating Rt3.
If the merge join method is used, the cost will be

Pj + Pt3 + 2"P\3"!oga.lP\3 + Pt2 + Pt3 + Pl4 page VO's,

where the first three terms are the cost of building Rt3, sorong
il and removing duplicates, and the last three terms are the cos I
of merge joining Rt2 with Rt3 and storing the result. The cost
of sorting Rt2 is not included in the merge join cost, since this
cost is subsumed by the cost of creating it with duplicates
removed. In addition, performing a merge join to creale RI4
obviates Ihe need 10 son it for Ihe GROUP BY operation, since
the GROUP BY column is Ihe join column.

If the aggregale function in the inner SELECt" clause is
COUNTO, an outer join must be used in the creation of tem­
porary table R14. The merge join method of performing an
outer join will have a cost function identical 10 thaI for a stan­
dard join. since the two relations are scanned in soned order,
and no extra cost is involved in determining which tuples have
no matching tuples in the opposite relation. RI4, the result of
the join. may be slightly larger than if a standard join were
performed, adding a small amount to the cost of the join. As in
Kim's analyses, the joins performed following transformation
will be assumed to be merge joins.

7.3. Join or Rt and Ri

The cost of joining temporary table Rt and outer table Ri
will also depend on the kind of join used, but as will be seen
below, a merge join of these relations can be particularly effi­
cient, since Rt is already in join column order. a merge join
will cost

assuming Ri is not reduced in size, while a nested iteration join
would cost

7.4. Total Cost

The total" cost of processing a single·level type-JA nested
query using the modified algorithm NEST-JA2 will depend on
the type of join used to create temporary relation Rt4 as shown
above; il will also depend on the type of join used between the
outer relation Ri and the temporary relation Rio Thus there are
four" possible total costs for a single-level query, each of which
may be estimated by the optimizer. One of these evaluation
methods in particular is wonhy of nOlc: the use of two merge
joins in the evaluation of the query. In evaluating the query by
this method there will be cost savings in the merge joins from
sorting relations earlier in the process: Rt2 is created in join
column order, so il does not have to be soned for the join with
Rt3; Rt4 is created in GROUP BY column order,so it does not
have to be soned for the GROUP BY operation; 3lld Rt is
created in join column order. so it does not have to be soned
for the merge join with Ri. The total cost for this method is

Pi + Pt2 + 2"Pt2"loga. I Pt2 +
Pj + Pt3 + 2"P\3"loga. I PtJ + Pt2 + P\3 + 2"Pl4 + PI +
2"pj"loga.1Pi + Pi + PI.

assuming Ri is not reduced in size, and where the first three
terms are the cost of projecting 3lld restricting Ri. resulting in
Rt2; the next eight terms are the cost of creating temporary
table Rt. including the GROUP BY operation; and the last three
terms are the cost of performin g the final join.

The modified algorithm can be compared to the nested itera­
tion method in the following example. Let the query to be
evaluated be Kim's query Q3 [KIM 82:454] where the ag­
gregate function is MAXO. Let Pi = 50, Pj = 30, P12 = 7, Pt3 =
10, Pt4 = 8, Pt = 5, B = 6. and f(i)-Ni = 100. The nested itera­
tion method of processing Q3 costS 3050 page fetches in the

8

l

"

worst case. The iransformation approach. using the modified
algorithm and two merge joins. costs about 475 page fetches.

8. Extensions: the Predicates EXISTS, NOT
EXISTS, ANY, and ALL

In presenting his transformation algorithms. Kim considered
nested predicates containing sCalar and set inclusion operators.
If the language is extended to include the useful operators
EXISTS. ANY. and ALL. some extensions to the transforma­
tion algorithms must be implemented. The extensions proposed
in this section are transformations of the predicates to
predicates containing simple scalar or set containment
operators. The query can then be processed by the transforma­
tion algorithms presented above.

8.1 EXISTS and NOT EXISTS

A nested predicate of the fonn

WHERE EXISTS (SELECT
FROM
WHERE

sditems
fromilCms
wllereilCms)

can be transformed to the semantically equivalent nested
~cate

WHERE 0 < (SELECT COUNT (selitems)
FROM fromilCms
WHERE wllereilCms)

Similarly. a nested predicate of the form

WHERE NOT EXISTS (SELECT
FROM
WHERE

seJitems
fromilCms
whereilCms)

is transformed to the semantically equivalent predicate

WHERE 0 • (SELECT COUNT (selitems)
FROM CromilCms
WHERE whcreilCms)

The resulting predicate is then processed as a type-A or type-JA
predicate. depending on the details of the inner query block.

8.2 ANY and ALL

A predicate of the form

<ANY (SELECT
FROM
WHERE

selilCm
CromilCms
wherc'lCms)

can be transformed to the logically (but not necessarily seman­
tically) equivalent form

< (SELECT MAX(sc!item)
FROM CromilClnS
WHERE whereilCms)

The same transformation is performed when the operator is <=
or !>. Conversely.

<ALL. (SELECT
FROM
WHERE

selitem
fromilCms
whcreilCms)

is transformed to the logically equivalent predicate

< (SELECT MIN(selitem)
FROM fromilCms
WHERE whereilCms)

and the same transformation is performed when the operator is
<= or !>. If the operator is >. >=. or !<. the transformation is
the reverse:

> ANY (SELECT selitem

is transformed to

> (SELECT MIN(selitem)

and

> ALL. (SELECT selitem

is transformed to

> (SELECT MAX(selilCm).

More simply. a predicate of the form =ANY is transformed to
IN. and a predicate of the form !=A;\'Y is transformed to NOT
IN.

9. Processing a General Nested Query

Algorithm NEST-JA2 applies to type-JA queries with a
single level of nesting. The extension of the algorithm to type­
JA queries with more than one level of nesting is not as simple
as it was for algorithm NEST-N·J: the aggregate function and
the join predicate may appear at any level of nesting. and not
necessarily at the same level. Kim approaches the problem by
means of query graphs: his algorithm NEST-G for transform­
ing a general nested query gives the correct canonical result by
inspecting and reducing the query graph for the query [KTht
82:465). Rather than going into Kim's noutions and methods.
we will propose an alternative method for processing a general.
nested query. a direct postorder recursive algorithm which we
believe is conceptually simple and which solves the problem of
·processing type·JA queries with greater than a single level of
nesting.

9.1. Processing a General Nested Query: a Recursive
Approach

The recursive version of algorithm NEST-G is described in
the following pseudocode procedure nest ..s(query _block}.
where the parameter query _block is a pointer to a SQL query
block. possibly with descendant inner query blocks nested
within it The procedure is initially called with a pointer to the
outermost query block (the beginning) of the query.

9

procedure MS'J(quezy_block)
for each predica&e in !he WHERE clause of query _block

II predicate is a neSIed predicate (i.e. contains inner query block)
MSt J{inner_quezy _block) ,.

• Der.ennine Iype oC nesting. and call appropriate

• lr3I1Sformalion procedure.
./
II SELECT claiise oC inner_query _block contains aggregate function

II inner_query _block concains join prcdica1e referencing a relation
which is IIOl in ilS FROM clause ,.

• nesting is type-JA
./
MSt Ja2(inner_query _block)
MSI_flJ(quezy_block.inner_quuy_block)

else ,.
• nesting is type-A
./
MSt _ a(inner_query _block)

else
lIeS' _ flJ(quezy _block.innu_query _block)
Murll

Three procedures are called by nest-80: ~st_a(). wltich
evaluates inner_query_block. replacing it with the result­
ing constant; ~t.Ja2(). which executes algorithm NEST-IA2;
and ~st_n.J(). wltich executes Kim's algorithm NEST-N-J.
combining the two query blocks query _block and
inner_query_block_ In explaining procedure ~stJ() it is
useful to model a nested query with a multi-way tree whose
nodes are query blocks. where the outermost query block (the
beginning of the SQL statement) is the root and the innermost
query blocks are the leaves. Procedure ~st J{) sean:hes down
through the levels of a nested query from the outermost query
block until it finds the innermost query blocks (the leaves of
the query tree). It then examines the leaf block to determine the
type of nesting present, and transforms the parent to canonical
form by calling the appropriate transformation procedures.
After this is done for all nested predicates in query_block. the
recursion then unwinds one level and the query block
immediately above is processed in the same way. continuing
the unwinding until lastly the outermost. or root. query block is
transformed.

The algorithm represented in procedure n~s(J() solves the
problem of correctly transforming a type-JA query with
multiple levels of nesting. To demonstrate this. let us assume
the following query tree:

Fieurf 2: Example Quer1 Tree

The edges of the tree are labelled with the kind of nesting
present at that level. Query block B contains an aggregate
function in its SELECT clause. and both C and E contain join
predicates referencing tables in query blocks at a higher level.
So far the most imponant feature with regard to processing the
query has not been mentioned: docs C or E contain a reference
to a table in the FROM clause of A? This is important because
it indicates whether there is typ-JA nesting present in the query:
if one of the inner blocks. including B. contains a reference to a
table in A. then type-JA nesting is present. In other words. a
join predicate reference must span a query block containing an
aggregate function for type-JA nesting to be present.

For example. assume the example query tree contains a
reference in B. C. or E to a table in the FROM clause of A. Let
us assume that E contains this reference. in a join predicate.
Procedure n~stJ() will travel down to E, unwind and apply
algorithm NEST-N-J. combining C and E. This moves the
reference to the table in A to block C. Then blocks C and B are
combined. then blocks 0 and B. Now query block B has
inherited the join predicate in block E. so that it contains both
an aggregate function and a join predicate which references a
table not found in the FROM clause of B: this is the definition
of type-IA nesting. Thus. procedure ~st.Ja2() is called. which
creates a temporary table with a GROUP BY clause as
specified in algorithm NEST-JA2. and removes the aggregate
function. replacing it with a reference to the column in the
temporary table which results from the application of the
aggregate function. This reduces the type-JA nesting to type-J
nesting. and procedure ~st_n.J() is immediately called to

finish the job of reducing the query to canonical form. Thus
type-JA nesting of deeper than one level can be detected by

. examining a single query block. which has inherited the "trans­
aggregate" join predicate by the recursive transformation of
inner query blocks. and the type-] A nested query can be
transformed to canonical form by applying the single-level
algorithm NEST-IA2.

From this example it can be seen I:lat the advantage of the
recursive algorithm presented in procedure nest J{) is
simplicity: the information needed to transform a query block
containing a nested predicate is confined to two levels of the
query: the outer level (the level containing the nested
predicate) and the inner.

10. Summary

The nested iterntion method of evaluating nested SQL
queries can be inefficient (or many queries: a relation referred
to in an inner query block may have to be retrieved many
times. possibly once (or each tuple in the outer query block.
Won Kim classified nested queries and proposed algorithms to
~uce the cost of evaluating them [KIM 82). The objective of
his algorithms is to reduce the nested query to an equivalent
single-level. or canonical. (orm. The resulting canonical query
will contain explicit joins which capture the nested-iteration
semantics o(the original query. and can now be passed to a
query optimizer which will determine an efficient order and
method for the evaluation of the query. Kim compared the cost
of evaluating a nested query by nested iterntion and the cost of
evaluating a transformed query using merge joins in severnl
examples. The transformation method resulted in COStS
sometimes an order of magnitude smaller than the costS
required by the nested iter:ltion method. However. a bug in

10

Kim's algorithm NEST-IA was discovered by Werner Kiessling
[KIE 84). Another bug in the same algorithm has been
demonstrated in section S. These bugs can be solved by
performing a join in the creation of the temporary table which
contains the aggregate information. If the aggregate function is
COUNT, the join must be an outer join. This solution requires
the join to be performed on a projection of the outer table in
order to avoid an increase in the aggregate values due to
duplicates in the outer table. The solutions to these bugs are
incorporated into algorithm NEST-JA2. which retains Kim's
strategy of building a temporary table to capture aggregate
information, and which yields a COSt reduction similar to that
achieved by Kim in his example. The transformation
algorithms have been extended to handle a larger class of
predicates. and a recursive algorithm has been presented which
will apply the transformations to a nested query of arbitrary
complexity;

Acknowledgements

The authors would like to thank Professors Bruce 1.
McDonald and Marguerite C. Murphy for their helpful
comments on an earlier version of this paper.

References

(AST 7S] Asnhan. M. M .• and Chamberlin. D. D. Implementation of
• SIrUClured English query language. COIMIIUI. ItCM 18, 10
(OcLl97S). S8~S88.

lAST 76) Asnhan. M. M.. Blasgen, M. W., Chamberlin, D. D.,
Uwar1lll. K. P .• Gray, J. N .• Griffiths, P. P.. lUng, W. F .•
Lorie. R. A., Mclones. P. R .• MellI. J. W .• Putzolu. G. R ..
Traiger. I. L .. Wade. B. w .. and Watson. V. Syscem R:
Relational approach to dalabase managemenL iteM rrQlU.
DalabasdYSI. 1.2 (June 1976),97·137.

(COD 791 Codd. E. F. Excendlng the database relational model to
capture more meaning. !.Of rrQlU. DQlQbQs~ Syn. 4, 4
~. 1979).397434.

(KIE 841 Kiessling, W. SQL·Like and Quel·lilte correlation queries
.,ith aggregaces re\'isilCd. UCBIERL Memo 84nS,
ElectronIcs Research Laboratory, Univ. California, Berkeley
(Sept. (984).

[KIM 821 Kim. W. On optimizing an SQL·like nesled query. ItCM
rrQlU.DOlabasdysl. 7.3 (SepL (982).443469.

(ORA 861 Oracle Corporalion. Private product demonstration (Sept.
1986).

(sa 791 Selinger. PG .• Astralian. M. M .• Chambetlin. D. D .• Lorie. R.

(S1'O 761

A .• and Price. T. G. Access path selection in a relational
dal.1base syslem. In ?roc. ACM Ifllu. Can{. MlJNJg~_1I1 of
DaJo. BOSlon, "'1ass. ~1.1y (979).23.34.

Stonebraker. M .. Wong. E .• and Kreps. P. The design and
implemenl.l1Jon of L'IGRES. ACM rrQlU. Dal4ixu~ Sysi. 1.3
(Sept. (976). 189·222,

11

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable.

r

,.t;.." '". P,

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

~

~

