UC Irvine

UC Irvine Previously Published Works

Title

Associative recall properties of the trion model of cortical organization

Permalink

https://escholarship.org/uc/item/6cv654kk

Journal

Biological Cybernetics, 53(4)
ISSN
0340-1200

Authors

Silverman, DJ
Shaw, GL
Pearson, JC
Publication Date
1986-02-01
DOI
10.1007/bf00336996

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0

Peer reviewed

Associative Recall Properties of the Trion Model of Cortical Organization

D. J. Silverman ${ }^{1}$, G. L. Shaw ${ }^{1}$, and J. C. Pearson ${ }^{2}$
${ }^{1}$ Physics Department, University of California, Irvine, CA 92717, USA
${ }^{2}$ The Rockefeller University, New York, NY 10021, USA

Abstract

We developed a cooperative model of the cortical column incorporating an idealized subunit, the trion (which represents a localized group of neurons), and a discrete time step for firing. We found that networks composed of a small number of trions (with symmetric interactions) supported up to thousands of quasi-stable, periodic firing patterns (MPs) which could be selected out with only small changes in interaction strengths using a Hebb-type algorithm. Here we report a study of the associative recall properties showing striking features: By considering all possible initial firing patterns (for a given set of network connections), we find 1) It takes on the average only 2-5 time steps to recall an MP. 2) Many of the MPs can be individually accessed by thousands of different initial patterns. The variety of examples presented illustrate the rich, general nature of the model.

One of the most important problems in the theoretical studies of memory is to investigate the retrieval of information. [See, e.g., (Hinton and Anderson 1981) and the references in the review article (Kohonen et al. 1981).] The associative recall properties of any neuronal memory model are of paramount interest. Although a particular model might be able to encode or store many "pieces of information" we believe that two crucial properties of associative retrieval should also be present: 1) Rapid recall of the information and 2) access of the information from many different stimuli. Both of these properties are present in human memory retrieval as contrasted to the usual retrieval of information in the digital computer. (Unless specially programmed, the recall of information in the computer is 1) searched for serially and 2) accessed via very specific cues.) The purpose of this paper is to report the results of a study of the associative recall properties of
the trion model. Motivated by Mountcastle's organizational principle for neocortical function (Mountcastle 1978) and by Fisher's model of physical spin systems (Fisher and Selke 1980, 1981), we (Shaw et al. 1985) developed a cooperative model of the cortical column incorporating i) an idealized subunit, the trion, which represents a localized group of neurons ($\sim 30-100$), and ii) a discrete time step for firing ($\sim 30-100 \mathrm{~ms}$). We found that networks comprised of a small number of trions (with symmetric interactions) supported up to thousands of quasi-stable, periodic firing patterns (denoted as MPs) which could be selected out [as in the selection principle of Edelman (1978)] using a Hebbtype algorithm for synaptic change (Hebb 1949). In the present study of the recall properties, (for a given set of network connections) by considering all possible initial firing patterns, we find 1). It takes on the average only 2-5 time steps for any initial pattern to project onto or recall an MP. 2) Many of the MPs can be individually accessed by thousands of different initial patterns. We present a variety of interesting examples for different couplings among the trions, illustrating the rich, general nature of the trion model. For example, we find (see Tables 1 and 2) MPs having cycle length of 18 time steps which are especially easy to recall by a huge number of initial states. We believe that these phenomena are of interest to fields of neurophysiology, cellular automata (Wolfram 1983) and molecular scale processors (Yates 1984), as possibly applied to a future generation of computers.

Despite the substantial theoretical efforts and results in modeling neural networks (see, e.g., references in MacGregor and Lewis 1977; Amari and Arbib 1982; Prisco 1984) the basis for the tremedous magnitudes of the processing capabilities and the memory storage capacities of mammals remain mysteries. We believe Mountcastle's (1978) columnar organizing principle for the functioning of the neocortex will provide a basis for these phenomena and we

Table 1．Properties of the MPs for the six trion network with this set of interactions from trion j to trion i ．Reading left to right（see Fig．3）are the interactions $V_{i i-2}, V_{i i-1}, V_{i i}, V_{i i+1}, V_{i i+2}$（and similarly for W ）．The number of MPs includes just the distinguishable spatial rotations．Entries in the table give only the lowest MP pattern number（see discussion associated with Eq．2）for the set of spatially rotated MPs．The entry number of triggers denotes the percent of the 3^{12} initial patterns which project onto or trigger within 24 time steps any MP．We also give the average number of time steps for all these hits．Given here are the full firing patterns of the MPs for this network．At the top of each MP are three numbers：the number in the top row at the left simply counts the MPs，at the right is the MP pattern number and below is the number of initial patterns that trigger that MP（and its spatial rotations）．Each row of an MP specifies the firing levels S_{i} for the six trions at a given time step（time increases from top to bottom）

Interactions						
$V:$	1	1	1	0	0	
$W:$	0	-1	-1	-1	0	

Number of triggers： 82%

10	21	$3 \quad 4$	$4 \quad 13$	$5 \quad 12962$	$6 \quad 19448$
59424	31068	13452	21804	228756	74424
－－－－－	O－－－－－	OO－－－－	OOO－－－	＋－－－0＋	＋＋－－－＋
	－ーーーーー	－－－－－	－－－－－	＋＋O－－－	＋＋＋－－－
	－－000－	－－－00－	－－－－0－	$-+++--$	$-0++0-$
$\begin{aligned} & 000000 \\ & ++++++ \end{aligned}$	$+\mathrm{o}++++$	＋00 + ＋＋	＋000＋＋	$--+++0$	$---++$
$\begin{aligned} & ++++++ \\ & 000000 \end{aligned}$	＋＋＋＋＋＋	＋＋＋＋＋＋	$++++++$	＋－－ $0+$	＋－－－＋
	$t++000$	＋＋＋＋ 00	$t++++0$	$++---+$	$++0-0$
	$--0--$	－－00－－	－－000－	$0++---$	$-+++-$
000000	－－－－－－	－－－－－－	－－－－－	- －＋ $0-$	$--+++$
	$0---00$	$0----0$	$0----$	$---++$	$0--0++$
	$+++0++$	++ ＋00 +	$t++000$	＋ $\mathrm{O}-\mathrm{-}++$	
	$+++++$	＋＋＋＋＋＋	$+++++$	+++- －	
	$00+++0$	OO ++++	＋o＋＋＋＋	－＋＋＋－－	
	－－－－0－	－－－－00	－－－ 0	$--0++-$	
	－－－－	－－－－－	－－－－－	O－－－＋＋	
	$000--$	－00－－－	－－－－－	$++---+$	
	$t++++0$	$0++++0$	O O +++0	$+++\mathrm{O}-$	
	$++++++$	$++++++$	$++++++$	$-\mathrm{O}+++-$	
	＋000 + ＋	＋＋OOO＋	$+++0++$	$---++$	
$\begin{aligned} & 7 \\ & 300 \end{aligned} 66430$	867241	9132860	10265720.		
	1464	2996	49		
O－O－O－	＋－ $0-+-$	＋－＋－＋－	000000		
$\mathrm{O}-\mathrm{O}-\mathrm{O}-$	＋－O－O－				
$+-+-+-$	＋－＋－O－				
$+\mathrm{O}+\mathrm{O}+\mathrm{O}$	$+-+0+-$				
$+\mathrm{O}+\mathrm{O}+\mathrm{O}$	$t-+0+0$				
＋－＋＋－	$+-+-+0$				
	＋－＋－0－				
	$0-+-0-$				
	$0-+-+-$				
	$+-+-+0$				
	$+0+-+0$				
	＋ $0+-+-$				
	0－＋－＋－				
	O－O－＋－				
	＋－0－＋				
	$+0+-+-$				
	＋0＋0＋－				
	＋－＋ $0+-$				

Table 2. Same as Table 1

Interactions					Number of MPs: 39			
$\begin{array}{lrllll} V: & -1 & 1 & -1 & 0 & 0 \\ W: & 0 & 1 & -1 & 1 & 0 \end{array}$								
Number of triggers: 81\%					Avg. no. of timesteps to trigger: 3.4			
$\begin{array}{ll} 1 & 455 \\ 300 \end{array}$	$\begin{gathered} 2 \\ 2996 \end{gathered}$	728	$\begin{gathered} 3 \\ 1464 \end{gathered}$	1375	$\begin{gathered} 4 \\ 69228 \end{gathered}$	$\begin{gathered} 5 \\ 228756 \end{gathered}$	$\begin{gathered} 6 \\ 31068 \end{gathered}$	74056
$+0+0+0$ -----	$+++$ $---$	$-+++$	$0+$	$+0+$	$--+--+$	$\begin{aligned} & \circ-+--+ \\ & +--+-- \end{aligned}$	$\begin{aligned} & 00 \\ & +- \end{aligned}$	$-+0$
$0+0+0+$			$++$	+ + 0	O+-0+-	- + - $0+-$	- +	+ - +
$0-0-0-$			- 0	- - 0	$-++-++$	$-\mathrm{O}+-++$	00	- + -
$++++++$			+0	$+++$	$+-++-+$	+-++-+	+ -	- + 0
-0-0-0			O-	---	+ $\mathrm{O}-+\mathrm{o}-$	+ + - + $0-$	- +	+ + +
			$0+0$	$+++$	- + - - + -	- + $0-+-$	+o	O+-
			--0	---	--+--+	$--+--+$	- -	- + -
			+ 0	+ + +	$+-0+-0$	$+--+-0$	- +	+ - +
			- 0	- - -	++-++-	+ + - $0+-$	+ -	○○-
			$++$	O+ +	$-++-++$	$-++-++$	+ 0	- + -
			-	--	$\mathrm{o}-+\mathrm{o}-+$	$0-++-+$	-+	+ - +
			$++0$	+ $0+$	+--+--	+ - - + $0-$	+ -	000
			- -	- 0 -	-+ - - + -	-+--+-	+ -	- + -
			+ +	$0++$	$-0+-0+$	$-0+--+$	- +	+ - +
			--	- - 0	$+-++-+$	+ -++-0	O-	-00
			+ +	+ + 0	$++-++-$	$++-++-$	+ -	O+-
			-	- 0 -	$-+0-+0$	$-+0-++$		+ - +
774175	8	93736	9	33042	10265720			
21804	13452		59424		49			
- + - + - +	O-+	- + 0	000	000	000000			
$+-+-0-$	+-+	OO-	+ -	- + -				
+000+-	- +	+ - +	- +	+ - +				
$-+-+-+$	$00+$	- + -						
+-+-+o	+ - +	- 00						
+-000-	- + -	+ - +						
- + - + - +	+00	- + -						
$\bigcirc-+-+-$	$0-+$	$-+0$						
+ - + 000	- +	$+\cdots+$						
$-+-+-+$	+-0	O+-						
+O+-+-	$00+$	- + -						
$0-+-00$	- + -	+ - +						
$-+-+-+$	+-+	O-						
+ - $0-+-$	+00	- + -						
$00+-+0$	- +	+ - +						
$-+-+-+$	+ - +	-0 0						
+ - + $0+-$	+-0	O+-						
000-+-	$-+$	+ - +						

construct the trion model based on it. Following Mountcastle (1978), we consider the cortical column (roughly 500 microns in diameter) to be the basic network in the cortex which is comprised of small irreducible processing subunits (trions). These subunits are connected into columns or networks having the capability of complex spatial-temporal firing patterns. The creation and transformation of such patterns constitute the basic events of short-term memory and information processing. We strongly emphasize this assumption: that higher, complex mammalian cortical processes involve complex spatial-temporal network
firing patterns; this is in contrast to the usual assumption that the "coding" only involves sets of neurons firing with high frequency. We are not suggesting that average firing is not important or that it is not a communication code. In fact, we presume that there are several codes in the central nervous system for communication among various regions with the sophistication of the code being related to the sophistication of the information processing involved and to the urgency of the information. For example, the sensing of perilous information must be responded to immediately and presumably would involve a simple alerting

Fig. 1A and B. Single-unit data from visual area III of cat from the published work of Morrell (1967) and Morrell et al. (1983). A1, A2, and A3 are derived from Figs. 11, 14, and 12 respectively of Morrell (1967). B1 and B2 are derived from Fig. 2 of Morrell et al. (1983). A All stimuli were presented during the 0 to 50 ms interval. In A1 and A2 (L) denotes a light line, (C) denotes an auditory click, and $(L+C)$ denotes simultaneous presentation of the light line and the click. In A3 the same light line was presented to the left eye (L), the right eye (R), and to both eyes $(R+L)$. In A2 spont. denotes the spontaneous or background level of discharge. The data displayed in each histogram were acquired in consecutive sets of 20 trials, as indicated. The calibration bar at time 0 equals 20 spikes. B The visual stimulus was a light line presented during the time marked below the axis. The calibration bar indicates 20 spikes and about 150 trials were given. In B1 the light line was vertical while in B2 it was horizontal. These data demonstrate possible complex coding occuring at burst intervals of roughly 50 ms with burst levels of large, small or no peaks
code of high neuronal population firing producing a response such as the removal of a hand from a hot stove. In the opposite extreme, the composing (or recall) of a Beethoven symphony must involve incredibly precise, sophisticated spatial-temporal neuronal processes. Most processing of information probably involves several simultaneous types of coding with cortical-cortical coding and processing being more sophisticated than cortical-subcortical. We believe that the key to finding the more complex coding lies in designing multielectrode experiments (in sensory cortex) not only looking at the appropriate spatial and temporal "separations" (we suggest $\sim 50-200 \mu$ and $\sim 30-100 \mathrm{~ms}$, respectively) but also presenting the appropriately simple, yet sophisticated stimuli.

We developed the trion model from the level of individual neurons to the next level or scale of phenomenological relevance which we believe to be a subunit of perhaps $\sim 30-100$ neurons (with only three levels of revelant firing output) and a synchronous time step $\sim 30-100 \mathrm{~ms}$. In making this change of scale we
drew on the cortical principle of Mountcastle, our previous theoretical studies (Little and Shaw 1975, 1978; Shaw 1978; Roney and Shaw 1980) using a physical spin analogy (Ising model), the exciting work of Fisher who showed that a simple extension of the Ising model led to an enormous increase in richness of the solutions, our studies (Shaw et al. 1982) which suggest a subunit size of $\sim 30-100$ neurons, and experiments (see, e.g., Shaw et al. 1983; Morrell 1967) which show a time step of $\sim 50 \mathrm{~ms}$ for groups of neurons bursting. [For a recent anatomical study which shows evidence for a spatial scale relevant to our trion size, see Fig. 12a of Gilbert and Wiesel (1983) which shows a clustering of axonal boutons at spacings of 90μ.]

The concept of a synchronous discrete time step $\tau \sim 50 \mathrm{~ms}$ for groups of neurons to burst is crucial to our model. This should be constrasted to essentially all other models of neuronal networks (see, e.g., Hopfield 1982) in that they specifically have no "clock-like" timing. To establish the plausibility of such a τ, we note
the observation of periodic bursting in cortex has a long history see, in particular, Morrell (1967) and Morrell et al. (1983) who found multipeak responses in cat visual cortex with peak separation of approximately 50 ms . In addition, Morrell (1967; Morrell et al. 1983) observed dramatic changes in these bursting patterns when he paired stimuli in conditioning experiments. Some of these data are shown in Fig. 1. We suggest that these burst pattern data might be consistent with exciting or enhancing different periodic firing patterns (MPs) in our trion model. In addition to the simulation studies reported in this paper, we have conducted neurophysiological experiments (Shaw et al. 1983; Pearson 1985) to test certain assumptions of the model. We presented in Fig. 2 of Shaw et al. (1985) some of our data from cat primary visual cortex recording from a group of 2-3 neurons which show four equally spaced peaks in the post-stimulus histogram in response to a flashed bar [also see Fig. 1 of (Shaw et al. 1983)]. These peaks are separated by approximately 50 ms in close agreement with Morrell's data in Fig. 1. Also, as a result of showing time sequences of different bar orientations we observed burst patterns which might be consistent with exciting MPs. An excellent example of these data is given in Fig. 2. Clearly, it would be very interesting to record simultaneously from two or more closely spaced microelectrodes to test our assumption of a discrete time step τ.

The following features of the trion model are all necessary for its qualitative richness:
a) Finite fluctuations due to the random nature of synaptic transmission as well as other sources of noise.
b) Three possible firing states S (of each trion) denoted by $+(+1), 0,-(-1)$ which represent, respectively, a large "burst" of firing, an average burst, and a below average firing.
c) Associated with each of the three trion states S is a statistical weighting term $g(S)$ with $g(0) \gg g(+)$, $g(-)$ which takes into account the number of equivalent firing configurations of the trion's internal neuronal constituents. (For example, in a group of 90 neurons, firing levels of,+ 0 , and - could correspond to $90-61,60-31,30-0$ neurons firing. There are many more combinatorial ways of generating the $60-31$ level.) This crucial feature $g(0) \gtrdot g(+), g(-)$ gives the firing patterns stability.
d) Synchronous discrete time steps τ ($>$ the firing time $\sim \mathrm{ms}$ of the individual neurons). We update the state of the system at time $n \tau$ in a probabilistic way related to the states at the two previous time steps $(n-1) \tau$ and $(n-2) \tau$.
e) A highly symmetrical interplay of inhibition and excitation among the interactions connecting the trions.

Fig. 2A-D. Spike firing responses of a cluster of three neurons in area 17 of a cat to four different time sequences of an oriented, flashed bar [see Shaw et al. (1983) and Pearson (1985) for more details]. There were 30 (continuous) cycles of 619 ms duration for each poststimulus histogram. The on times for the flashed bar on each cycle are denoted by the bars (33 ms duration) on the time axis and the subscripts a, b, c, d, e represent orientation angles of $0^{\circ}, 36^{\circ}, 72^{\circ}, 108^{\circ}, 144^{\circ}$ respectively. We point out two major experimental results indicated by these data, revelant to our trion model. i) In response to each bar, there are two peaks, separated by $\sim 100 \mathrm{~ms}$ in the presentations \mathbf{A} and \mathbf{B} of a single bar per cycle and by $\sim 50 \mathrm{~ms}$ in the clockwise \mathbf{C} and counter clockwise \mathbf{D} series of 5 bars. ii) The response in the counterclockwise sequence \mathbf{D} is substantially greater than that for the clockwise sequence \mathbf{C}. We believe that both these striking effects i) and ii) for these preliminary data are consistent with exciting MPs in our trion model with a time step $\tau \sim 50 \mathrm{~ms}$

The probability $P_{i}(S)$ of the $i^{\text {th }}$ trion attaining state S at time $n \tau$, is given by:

$$
\begin{align*}
P_{i}(S) & =\frac{g(S) \cdot \exp \left[B \cdot M_{i} \cdot S\right]}{\sum_{s} g(s) \cdot \exp \left[B \cdot M_{i} \cdot s\right]}, \tag{1}\\
M_{i} & =\sum_{i}\left[V_{i j} \cdot S_{j}^{\prime}+W_{i j} \cdot S_{j}^{\prime \prime}\right]-V_{i}^{T},
\end{align*}
$$

Fig. 3. Shown schematically is a network of N trions at three time steps. Each trion i has connections (solid lines) in one time step $(n-1) \tau$ to $n \tau$ from itself with strength $V_{i i}$, its nearest neighbors with strength $V_{i i \pm 1}$ and its next-nearest neighbors $V_{i i \pm 2}$. There are similar connections (dotted lines) $W_{i j}$ in two time steps, $(n-2) \tau$ to $n \tau$. The probability for the firing level S_{i} of trion i is determined by the shown connection strengths, and the firing levels S_{j}^{\prime} and $S_{j}^{\prime \prime}$ (of the connected trions) at times ($n-1$) τ and ($n-2$) τ through (1). There are cyclic or ring-like boundary conditions so that trion $i=$ trion $i+N$
where S_{j}^{\prime} and $S_{j}^{\prime \prime}$ are the states of the $j^{\text {th }}$ trion at times $(n-1) \tau$ and $(n-2) \tau$ respectively. $V_{i j}$ and $W_{i j}$ are the interactions between trions i and j between time $n \tau$ and times $(n-1) \tau$ and ($n-2$) τ respectively. V_{i}^{T} is an effective firing threshold. [Following (Little and Shaw 1978; Roney and Shaw 1980), $V_{i}^{T}=\left[2 V_{i}-\sum\left(V_{i j}+W_{i j}\right)\right]$ with V_{i} the threshold for the firing of the $i^{\text {th }}$ trion.] B is inversely proportional to the level of noise, "temperature", or random fluctuations in the system. The deterministic limit is taken by letting B approach infinity, (analogous to the noise approching zero), in
which case the $S=0$ states vanish. (See the discussion below associated with Fig. 4.)

Equation (1) completely determines our trion model. All the networks that we consider in this paper have $g(+)=1, g(0)=500, g(-)=1, V_{i}^{T}=0$, six trions, and cyclic boundary conditions (i.e., the trions connected in a ring). The $V_{i j}$ and $W_{i j}$ are considered out to (including) next nearest neighbours as illustrated in Fig. 3. For a given set of parameters, $V_{i j}, W_{i j}, g(S)$, and B, we examine all $3^{6+6}=531,441$ possible firing configurations of the first two time steps. The computer is

Table 3. Same as Table 1. We note that only interactions lasting one time step are present. Thus there are really only 3^{6} initial patterns. However, to keep a format similar to the other tables, we consider all 3^{12} time step patterns

Interactions			Number of MPs: 172		
$V: \begin{array}{llllll}1 & 0 & 2 & 0 & -1\end{array}$					
$W: \quad 0 \begin{array}{llllll}0 & 0 & 0 & 0 & 0\end{array}$					
Number of triggers: all			Avg. no. of timesteps to trigger: 1.8		
5840	212410	318250	4 ` 18980	525550	632120
39366	13122	13122	39366	13122	4374
+ + - - -	+ + O---	- + + - - -	+ + + - -	$++-\mathrm{O}-$	$++00-$
737960	838690	940880	1043070	1145260	1247450
4374	13122	19683	13122	39366	13122
$0++0-$	+ + + O--	+ - - + - -	+ $0-+$	+ + - + -	$+-\mathrm{O}+--$
1349640	1451830	1553290	1654020	1755480	1856210
4374	13122	13122	39366	4374	13122
+00+--	$++0+--$	- - + + - -	+ - + + - -	$\bigcirc 0++$ -	$+\mathrm{O}++-$
1957670	$20 \quad 58400$	2170810	2284680	2390520	24102200
13122	39366	39366	$4374 \quad 13$	122	2187
$0+++-$	$++++-$	O+O-O-	+ + - $00-$	$0+000-$	+ $0-+0-$
25104390	26108040	27110230	28143080	29143810	30163520
13122	13122	39366	2187	13122	19683
$++-+0-$	OOO+0-	$0+0+0-$	$0+-0+-$	$++-0+-$	+ + - + + -
$\begin{aligned} & 31265720 \\ & 6561 \end{aligned}$					
000000					

then instructed to search for all the quasi-stable, periodic firing patterns (MPs) which have a high probability of cycling. The MPs are found by computing the most probable temporal evolution of the trion states from each of the possible initial conditions using (1) and determining if that evolution leads to a pattern that repeats after some time steps with a high probability (an MP). Thus this calculation for a given network (set of parameters) yields all the MPs as well as how many of the 531,441 initial conditions lead to each MP and how many time steps it takes. We have computed more than 40 examples of such six trion networks, each of which takes several hours of VAX 780 time.

Listed in Tables $1-6$ are 6 examples of six trion networks [all with $g(\pm)=1, g(0)=500$, and $V_{i}^{T}=0$]. All MPs having a probability of cycling $>10 \%$ for (fluctuation parameter) $B=10$ are given in each table. The MP pattern number is a two time step firing configuration number as a 12 digit ternary number (with $-=0,0=1$ and $+=2$) converted to a base 10 number and (along with the interaction strengths) completely defines the pattern. Thus the first MP in Table 1 has pattern number 0 which is $-\quad-\quad-\quad-\quad$ as the starting configuration. The given interactions are readily used in (1) to calculate the full 6 cycle MP as

-	-	-	-	-	-
-	-	-	-	-	-
0	0	0	0	0	0
0	0	0	0	0	0
+	+	+	+	+	+
+	+	+	+	+	+

In Table 1, the second MP has pattern number 1 corresponding to $\begin{array}{rllll}0 & - & - & - \\ - & - & - & \text { and the time evo- }\end{array}$
lution leads to an 18 cycle pattern. For this 18 cycle MP there are 18 equivalent starting positions (or time rotations), only the lowest pattern number is listed. In addition, this MP has 6 inequivalent spatial rotations; we regard each individual trion as distinguishable. Thus we consider this MP to have 5 additional distinguishable spatial rotations; however only the lowest pattern number is listed. [Note that MP pattern number 0, (2), has no distinguishable spatial rotations.] We list the number of starting conditions which lead to that MP (along with all the MP's time and spatial rotations). Since the major computing effort is to find the MPs for a given network, these tables represent a valuable data base for readily performing many other calculations in the trion model, e.g., reinforcing individual MPs using the Hebb algorithm (3). [Substantial changes ($\$ 20 \%$) in the interactions away from the "symmetric" values listed in the tables introduce no new MPs.] As another example, Fig. 4 gives the probabilities of cycling for two of the MPs in Table 6 as a function of the fluctuations parameter B for the symmetric interaction case and a somewhat asymmetric case. (This figure was readily calculated using the MP pattern numbers from Table 6.) Figure 4 illustrates an important feature of the trion model: Both for small fluctuations (large B) and large fluctuations [small B, where roughly we compare $\exp \left(B M_{i}\right)$ in (1) to $g(S)]$, the probabilities of cycling go to zero (for asymmetry in the interactions) for any MP having $S=0$ (together with $S= \pm 1$) levels. Thus finite fluctuations are crucial for the full richness of the model.

Now we discuss the striking results of our calculations:

1) Rapid Nature of the Recall Process. The average number of time steps that it takes a starting configuration to trigger an MP ranges from $\sim 2-5$. Each of the 3^{12} starting configurations is followed (for a given network) for up to 24 time steps until it triggers or excites an MP, and an average number of time steps is

Table 4. Same as Table 1

Table4 (continued)

$\begin{array}{ll}7 & 1184 \\ 516\end{array}$	$\begin{array}{ll} 8 & 1208 \\ 384 & \end{array}$	$\begin{array}{ll} 96 & 1295 \end{array}$	$\begin{array}{cc}10 & 1367 \\ 516 & \end{array}$	$\begin{array}{cc} 11 & 1375 \\ 660 \end{array}$	$\begin{array}{cc} 12 & 1424 \\ 132 & \end{array}$
+0+0+0	t-t+ + 0	$++++-+$	$++0+0+$	$0++{ }^{+}+$	+-+0+ +
$0----$	O-----	O----	O---- -	- - - - -	- - - - -
+ + $0+0+$	$0+0++$	+ + + $0+-$	$+0+0+0$	+ $\mathrm{O}+++-$	+ + - + + +
-0-0-0	$-+---0$	$----+$	- - - - -	$0--$ -	- + - 0
$0+t++t$	$0+t++$ +	$0++t++$	$0+++++$	$0++++$	$0+t+++$
- - $0-0-$	O-0---	$--0-+$	-0-0-0	- $0---+$	- - + - -
131439	$14 \quad 1447$	151700	16.2102	177748	1820888
96	660	132	132	2568	498
$++-+++$	$0+0+4+$	+ + + + + -	$+\mathrm{O}+\mathrm{+}+$	$+++0+0$	$++0++0$
0-----	0-----	+-----	+ - - - - -	0-0---	O--0--
+ - + $0++$	+ - + + + 0	+ $0++0+$	+ + + + + -	$+0++0+$	+O++0+
- - + - - -	$0-0---$	$----+$	-0--0-	- - - - -	$--0--0$
$0+1+t+$	$0+++t+$	$-+++++$	$-+++++$	$0+0+1+$	$0++0++$
- + - $0-$	- + - - -	- $0--0-$	- - - - +	$-0--0-$	- $0--0-$
1921056	$20 \quad 27908$	2128262	2240880	2341033	2441048
498	7968	7968	1422	67824	23736
+0+ $+0+$	+ + $00+-$	+ - + + - +	+ - - + - -	+-+ + + -	+ + - + + -
$0-$ - - -	+-00--	+-00--	$+--+--$	+-- + - -	+ - - + - -
$++0++0$	+ - + + + +	+ +00 +	000000	$0+-+-+$	+ - + + - +
-0--0-	- -00- +	$-+--+-$	$-++-++$	$-+-\mathrm{O}-+$	- - + - - +
$0++0++$	$-+00++$	$-+00++$	$-++-++$	$-++-++$	$-++-++$
- $0--0$	$-+--+-$	$--00 \cdots+$	000000	$0-+-+-$	- + - - + -
2541216	$26 \quad 41384$	2743070	2843232	2943564	$30 \quad 45260$
5250	23736	1248	3852	3852	912
+00+00	+ - + + - +	+ $0-+--$	+o- + + -	$000+\cdots+$	+ + - + - -
+--+--	+ - - + - -	+0-+--	+ $0-+--$	+ $0-+-$ -	+ + - + - -
+00+00	+ + - + + -	000000	OOO+-+	+ $0-++-$	000000
-00-00	- + - - + -	$-0+-++$	$-\mathrm{O}+--+$	OOO-+-	$--+-++$
$-++-++$	$-++-++$	$-0+-++$	$-\mathrm{O}+-++$	$-0+-++$	$--+-++$
-00-00	$--+--+$	000000	OOO-	$-\mathrm{O}+--+$	000000
3145394	3245506	3347450	3473811	3574182	3682040
672	672	1248	93504	110088	270
$0+-0+-$	$+-0+-0$	$+-0+--$	+ - + - + -	$000+-+$	$+00+00$
+ + - + - -	+ + - + - -	$+-0+--$	+-+-0-	+ - + - -	00-00-
+ - - + +	$-+-++-$	000000	OOO + - +	+-+-+-	$0+00+0$
$0-+0-+$	$-+0-+0$	$-+0-++$	$-+-+-+$	OOO-+-	-00-00
$--+-++$	- - + + +	$-+0-++$	$-+-+0+$	$-+-+0+$	$00+00+$
$++-+-$	+-+--+	000000	OOO-+-	$-+-+-+$	$0-00-0$
3782096	3893494	39102200	$40 \quad 102256$	41102368	$42 \quad 103660$
270	71724	2340	510	510	1728
$0+00+0$	+ - + - -	$+\mathrm{O}-\mathrm{O}-$	$\mathrm{O}+-\mathrm{o}+-$	+-0 + - 0	$0+-+0-$
00-00-	+-+00-	+0- $+0-$	$+\mathrm{O}-\mathrm{O}-$	+ $0-+0-$	$\mathrm{O}+\mathrm{-}+\mathrm{O}-$
+00+00	OO- $0-+$	000000	+-0+-0	$0+-0+-$	000000
0-00-0	$-+-+-+$	$-0+-0+$	$\mathrm{O}-+\mathrm{O}-+$	$-+0-+0$	$\mathrm{O}-+-\mathrm{O}+$
$00+00+$	$-+-00+$	$-0+-0+$	$-\mathrm{O}+-\mathrm{O}+$	$-0+-0+$	$\mathrm{O}-+-\mathrm{O}+$
-00-00	$00+-+-$	000000	$-+0-+0$	$0-+0-+$	000000
43132860	$44 \quad 265720$				
83820	49				
$+\cdots+-+-00000$					
+ - + - + -					
000000					
$-+-+-+$					
$-+-+-+$					
000000					

Table 5. Same as Table 1

Interactions					
$V:$	0	-1	1	1	0
$W:$	-1	0	-1	0	1

Number of triggers: 100%
Number of MPs: 85

$\begin{array}{lll}1 & 0\end{array}$	${ }_{2}^{2} 9491$	$\begin{array}{cc} 3 & 5856 \\ 114198 & \end{array}$	$\begin{array}{cc} 4 & 12444 \\ 20958 \end{array}$	$\underset{12312}{5} 18300$	$\begin{gathered} 6 \\ 105954 \end{gathered}$
------	O-0-0-	-++---	-++0--	$-\mathrm{o}++$	$-+++-$
		+ + - - -	+ + $0--$	$0++$ - -	$+++--$
000000	-0-0-0	+----+	+o---+	+ +---0	$++---+$
$++++++$	$0+0+0+$	$----++$	$0---++$	+---0+	$+---++$
$++++++$	$++++++$	$--++$	$---++0$	$---0++$	$-+++$
000000	+o+o+0	++- -	$--++0-$	$--0++$	-
738064	838796	940992	1040993	1143206	1251972
2232	12312	19914	34056	32376	20844
$-\mathrm{O}+\mathrm{+}$ -	$-+++0-$	- + - + -	- + - - + -	-+-0+-	$-++0+-$
$0++0-$	$+++0-$	+--+--	+--+--	+ $0-+--$	$++0+-$
$++0--0$	$++0--+$	O-+ $0-+$	$--+0-+$	+-+--+	$+0+--+$
+0--0+	+ $0--++$	$-++-++$	$-++-+0$	$-+0-++$	$0+--++$
$0--0++$	- --+++	$++-++-$	$++-++-$	$0+-++-$	$+--++0$
$--0++0$	$--+++0$	$+-0+-0$	$+-0+-+$	$+-++--$	$--++0+$
		$--+--+$	$--+-0+$	$-0+--+$	
		-+--+-	$-+--+-$	$-+--+0$	
		+ $0-+0-$	+ $0-+--$	$+--++-$	
		+-++-+	+-+0-+	- - + + - +	
		$-++-++$	$-++-++$	$-++-\mathrm{o}+$	
		$0+-\mathrm{o}+-$	$0+-++-$	+ + - - +	
		+--+--	+-0+--	+ - - + -	
		$--+--+$	--+- +	$--+0-+$	
		$-+0-+0$	$-+--+0$	$-++-+-$	
		+ + - + + -	+ $0-++$ -	$++-+0-$	
		+ - + + - +	$+-++-+$	$+-0+-+$	
		$-0+-0+$	$-++-0+$	$--+-++$	
1353436	1457828	1558560	1666430	1766521	18132860
20844	20958	114198	28	44	54
$-\mathrm{o}-++$	$-\mathrm{o}+++-$	$-++++-$	O-O-O-	+ - + - + -	$+-+-+$
- - + + - -	$0+++-$	+ + + + - -	$0-0-0-$	O-O-0-	$+-+-+$
-++- -	+ + + - - 0	$+++--+$	000000	-0-0-0	000000
+ + - - -	+ + - - $0+$	$++--++$	$0+0+0+$	$-+-+-+$	$-+-+-+$
+--0-+	+--0+ +	+--+++	$0+0+0+$	$0+0+0+$	$+-+-+$
- - $0-++$	$--0+++$	$--++++$	000000	$+0+0+0$	000000
19265720					
1					
000000					

computed from that (large) percentage of the 3^{12} that trigger in the 24 time steps.
2) MPs Recalled by Many Initial Patterns. We note that large numbers of individual MPs are accessed or triggered by many thousands of initial configurations.
3) Long Time Cycle MPs Triggered by Huge Number of Initial States. MPs with cycle lengths of 18τ are given in Tables 1, 2, and 5. Especially interesting are MPs 12962 in Table 1 and 41329 in Table 2 each of
which is accessed by almost half of the 3^{12} initial patterns!
4) Rich, general nature of the trion model. These examples of networks with different connections among the trions illustrate the great variety of different behaviour possible in the model: We examined six trion networks that supported very large numbers of MPs. For example the network having interactions V: 01010 and $\mathrm{W}:-1000-1$ (see Table 1 for notation) had 1804 MPs ; the network with V :

Fig. 4. Plot of probability P of cycling versus fluctuation parameter B for two MPs from Table 6. The solid curves correspond to the symmetric Vs and Ws given in Table 6; the dotted curves correspond to the perturbed values of the interactions given by

V	0	1.05	1.00	0.94	0
W:		-0.95			

These curves are calculated using (1). Small B corresponds to large fluctuations, and large B to small fluctuations. We see that the probability P for MP 10272 (with 8 zero firing states) goes to zero both at large and small B for the perturbed interactions whereas P for MP 19032 (with no zero firing states) remains large in the deterministic limit. This demonstrates that fluctuations are crucial to obtain large probabilities of cycling for most of the MPs in our model

01110 and W:-1-1 1-1 - $\mathbf{~} \mathbf{1}$ had 861 MPs. Then we note the many simple 1 cycle MPs in Table 3 as contrasted to the complex 18 cycle MPs in Tables 1 , 2, and 5. Perhaps networks of the type given in Table 3 with only limited temporal patterning might be more relevant for primary sensory areas of cortex whereas the quite complex 18 cycle patterns might be relevant in the higher association area. Along this latter point see the discussion below on the association or sequencing between MPs.

We have seen that the initial patterns which are just parts of the full MP cycle can be a very small percentage of the patterns which excite the MP. Thus we have a very general "associative" recall capability of the network. The rapid projection of initial patterns onto individual MPs, as demonstrated in Tables $1-6$, is one level or mode by which the Trion model supports associative recall. This mode essentially specifies the mapping between the external signals which set the initial states and the MPs which represent them. We have also investigated another "higher" level or mode of associative recall, whereby one MP can recall another (Pearson 1985).

The sequence of states making up a MP is the most probable sequence, and, as shown in Fig. 4, they have a high probability of repeating. However, due to the stochastic nature of (1), there is a small but finite probability that an "error" will occur at some point in the propagation of a MP. This "error" then initiates a new sequence of states which leads to the triggering of another MP. There are many $\left(3^{6}-1\right)$ possible errors at each time step, and if external signals are involved any one of them is likely. However, if one considers errors caused by chance, then by far the most likely errors are those in which only one of the six trions is different from its MP value. It is this class of single trion errors which we have studied. There are three key features of such noise induced transitions between MPs: 1) The number of time steps between the exit from the initial

Table 6. Same as Table 1

Interactions			Number of MPs: 246			
$V: 100101010$						
$W: 00-1$	$\begin{array}{lll}-1 & -1 & 0\end{array}$					
Number of triggers: all			Avg. no. of timesteps to trigger: 4.1			
0	2	$3 \quad 4$	413	5756	6	5840
83820	110088	71724	93504	67824	912	
--	O-	OO-	○○0---	---0-	+ +	-
000000	--000-	---00-	----0-	+ + - - - +	-0	000
$++++++$	$0+++++$	$00++++$	$000+++$	$+++0++$	-	+ + +
$++++++$	$++++++$	$++++++$	$++++++$	$\bigcirc++++$	--	+ + +
000000	$++000+$	$+++00+$	$++++0+$	$--+++-$	000	-00

Table 6 （continued）

7 672	$\begin{array}{lr} 8 & 6320 \\ 672 \end{array}$	$\begin{array}{ll} 9 & 8268 \\ 288 & \end{array}$	$\begin{array}{ll} 10 & 8295 \\ 384 & \end{array}$	${ }_{96} 8322$	$\begin{array}{cr} 12 & 8511 \\ 132 \end{array}$
$-++-$	＋－－－－＋	$-+---0$	－＋－0－0	$-+-+-0$	－＋－－－＋
＋＋－－－	$++---$	＋－ $0-$	＋－0	＋－0	－0
＋ $0--0+$	$0++0--$	$-+-+-+$	$-+-0-+$	－＋－－－＋	$-+-+-0$
＋－－＋＋＋	$-++++-$	＋－＋＋＋ 0	$+-+0+0$	$+-+-+0$	$+-+++-$
$--+++$	$--+++$	$-+0+++$	$-+0+++$	$-+0+1+$	$-+0+++$
$-0++0-$	O－－ $0+$	$+-+-+-$	$+-+0+$	$+-+++$	$+-+-+0$
138538	148565	159552	169968	1710272	$18 \cdot 10700$
660	288	3852	3852	7968	7968
$-+-0-+$	$-+-+-+$	$-0++-$	＋ $0---+$	－00＋－－	$++---+$
＋－0－－－	＋－ $0--$	000	000－－	＋ 00	＋00－
$-+-0-0$	$-+---0$	＋o－－－＋	$-0++-$	＋＋－－＋	－00＋－－
＋－＋0＋－	$+-+-+-$	＋0－－＋＋	$-0+++-$	＋oo－t＋	$--+++$
$-+0+++$	$-+0+++$	$000+++$	$\bigcirc 00+++$	$-00+++$	$-00+++$
＋－＋0＋0	＋-+++0	$-0+1+$	＋ $0--++$	$--+++$	＋00－＋＋
1911680	$20 \quad 12410$	2113911	2214127	2314154	2414370
1728	1248	132	384	660	96
$0+0--$	$++0$	－＋－－－－	$-+-\mathrm{O}-\mathrm{O}$	$-+-+-0$	$-+-\mathrm{O}-+$
$0+0--$	$++0-$－	O－	O－＋－－	O－＋ーー	O
000000	000000	$-+-0-+$	$-+-+-0$	$-+-0-0$	＋－＋－
$0-0+++$	$--0+++$	$+-+-++$	＋－＋ $0+0$	＋－＋－＋ 0	＋－＋ $0+-$
O－O＋＋＋	$--0+++$	$0+-+++$	$0+-+++$	$0+-+++$	$0+-+++$
000000	000000	＋－＋0＋	$+-+-+0$	＋－＋ $0+0$	＋－＋－＋＋
2514640	$26 \quad 15072$	2718250	2818980	2919032	3019240
132	132	1248	1422	23736	5250
＋－＋	－－－＋	$0++-$	$+++$	$-++$	$0+00-0$
＋－＋－－	＋－＋－－－	$0++--$	＋＋＋－－－	＋＋＋－－－	＋＋＋－－－
$\mathrm{O}+-\mathrm{O}-+$	$-+0+-0$	000000	000000	＋＋－－－	$0+00-0$
＋－＋－＋＋	＋－＋＋＋－	$0--++$	－ーー＋＋＋	＋－－－＋＋	$0-00+0$
$-+-+++$	$-+-+++$	O－－＋＋＋	- －+++	$---++$	$---++$
$\mathrm{O}-\mathrm{O}+$－	＋－ $0-+0$	000000	000000	$-++$	$\mathrm{O}-\mathrm{OO}+\mathrm{O}$
3119448	3237960	3338064	3438168	3566612	$36 \quad 66615$
23736	2340	510	510	300	516
$++---+$	$0++0--$	$-0++0$	＋＋ $0-0$	－0－0－0	$-+-0-0$
＋＋＋－－－	$0++0-$	$0++0--$	$0++0-$	O－O－O－	$0-0-0-$
$+++-$	000000	$++0-0$	$-0++0-$	$-+-+-+$	$-0-+-+$
$--+++$	$\mathrm{O}-\mathrm{O}++$	＋0－－0＋	$-\mathrm{o}$	$+0+0+0$	$+-+0+0$
- －-++	$0--0++$	$0--0++$	$0--0++$	$0+0+0+$	$0+0+0+$
＋－－＋＋	000000	$--0++0$	＋ $0-0+$	＋－－－－	＋0＋－＋－
$37 \quad 66642$	3867368	3976128	4076336	4195056	4295160
516	2568	498	498	270	270
$-+-+-0$	$-\mathrm{O}-+-0$	$-+0+-0$	$0+-0-+$	$0+00-0$	$-00+00$
O－O－0－	＋－0－0－	＋0＋－0－	＋ $0+-0-$	$00+00-$	$00+00-$
$-\mathrm{O}-\mathrm{O}-+$	$0+-0-+$	$0+-\mathrm{O}-+$	$-+0+-0$	$-00+00$	$0+00-0$
＋－＋－＋ 0	＋ $0+-+0$	$+-0-+0$	$0-+0+$	$0-00+0$	＋00－00
$0+0+0+$	$-+0+0+$	$-0-+0+$	$-0-+0+$	00－00＋	$00-00+$
＋O＋O＋－	$\mathrm{O}-\mathrm{O}+-$	$0-+0+-$	＋－0－＋0	＋00－00	$0-00+0$
43133224	44265720				
7988	49				
$-+-+-+$	000000				
－＋－＋－					

MP (due to the error) to the triggering of the final MP is small (e.g. average 1-5). Thus, as with the input mapping type of recall shown in Tables 1-6, recall is rapid. 2) The probability of the most probable sequence of states between MPs is very high. Thus, once an error is made in an initial MP, the identity of the final MP is almost certain - i.e., such transitions are reliable. 3) The MPs are organized into classes. Each class is defined by the MPs which it can trigger, and by the MPs which can trigger it. Thus, even though these transitions are triggered by chance events, they form an ordered "sequence" when viewed as a whole. As an example of these sequences of spontaneous transitions among MPs, see Fig. 1 of Shaw et al. (1985) which shows a Monte Carlo simulation (of the network in Table 1) with 6 rapid transitions.

Previously, we had shown (Shaw et al. 1985) that introducing an idealized substructure, the trion, in modeling the cortical column led to a selective, adaptive network. Networks composed of a small number of trions (with symmetric interactions) supported up to thousands of MPs, any of which could be selected out with only small changes in interaction strengths using the Hebb-type algorithm

$$
\begin{align*}
& \Delta V_{i j}=\varepsilon \sum_{\text {cycle }} S_{i}(\tau) S_{j}(\tau-1) \tag{3}\\
& \Delta W_{i j}=\varepsilon \sum_{\text {cycle }} S_{i}(\tau) S_{j}(\tau-2), \quad \varepsilon>0 .
\end{align*}
$$

We note that the 18 cycle MPs in Tables 1, 2, and 5 found in the present study were also able to be enhanced using (3). We speculate that these symmetrical interactions might be specified genetically giving a "naive" network which could initially respond to many different input signals. Experience or learning could then modify the connections via a Hebb type mechanism (3) to select out (as in the work of Edelman 1978) the appropriate responses or MPs.

The striking results presented here on the associative recall properties of the trion model give further encouragement to continued theoretical studies on this rich, general model which we believe embodies a basis for a theory of information processing and memory. However, the success of this (or any model) rests on possible experimental verification. Experiments which present dynamical sequences of stimuli to awake animals and record spikes from multiple microelectrodes in (somatosensory) cortex will be performed in the laboratory of M. Merzenich. We believe that the results of these experiments (looking for spatialtemporal neuronal firing patterns) will indeed test the trion model. We conclude by stressing the importance in our model (of the cortical column, $\sim 500-100 \mu$ diameter) of having both a spatial subunit scale
($\sim 50-200 \mu$) and a clock-like temporal scale ($\sim 30-100 \mathrm{~ms}$) present. Clearly there is no conclusive evidence for these scales, however, more and more supportive data are being found in the central nervous system of mammals in both anatonical and physiological experiments (Gilbert and Wiesel 1983; Morrell 1967; Morrell et al. 1983; Mountcastle 1978; Pearson 1985; Shaw et al. 1982, 1983).

Acknowledgements. We thank M. E. Fisher, M. M. Merzenich, J. Patera, and J. C. Ward for helpful discussions.

References

Amari S, Arbib MA (eds) (1982) Competition and cooperation in neural nets. Springer, Berlin Heidelberg New York
Edelman GM (1978) Group selection and phasic reentrant signaling: a theory of higher brain function. In: Edelman GM, Mountcastle VB (eds) The mindful brain. MIT, Cambridge, pp 51-100
Fisher ME, Selke W (1980) Infinitely many commensurate phases in a simple Ising model. Phys Rev Lett 44:1502-1505
Fisher ME, Selke W (1981) Low temperature analysis of the axial next-nearest neighbour Ising model near its multiphase point. Philos Trans R Soc Lond Ser A302:1-44
Gilbert CD, Wiesel TN (1983) Clustered intrinsic connections in cat visual cortex. J Neurosci 3:1116-1133
Hebb DO (1949) The organization of behavior. Wiley, New York
Hinton GE, Anderson JA (eds) (1981) Parallel models of associative memory. Lawrence Erlbaum, Hillsdale
Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554-2558
Kohonen T, Oja E, Lehtiö P (1981) Storage and processing of information in distributed associative memory systems. In: Hinton GE, Anderson JA (eds) Parallel models of associative memory. Lawrence Erlbaum, Hillsdale, pp 105-143
Little WA, Shaw GL (1975) A statistical theory of short and long term memory. Behav Biol 14:115-133
Little WA, Shaw GL (1978) Analytic study of the storage capacity of a neural network. Math Biosci 39:281-290
MacGregor RJ, Lewis ER (1977) Neural modeling. Plenum Press, New York
Morrell F (1967) Electrical signs of sensory coding. In: Quarton GC, Melnechuk T, Schmitt FO (eds) The neurosciences: a study program. Rockefeller University, New York, pp 452-469
Morrell F, Hoeppner TJ, de Toledo-Morrell L (1983)Exp Neurol 80:111-146
Mountcastle VB (1978) An organizing principle for cerebral function: the unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain. MIT, Cambridge, pp 1-50
Pearson JC (1985) Information processing within cortical columns: the role of interacting assemblies. Ph D Thesis, University of California, Irvine
Prisco GVD (1984) Hebb synaptic plasticity. Prog Neurobiol 22:89-102
Roney KJ, Shaw GL (1980) Analytic study of assemblies of neurons in memory storage. Math Biosci 51:25-41

Shaw GL (1978) Space-time correlations of neuronal firing related to memory storage capacity. Brain Res Bull 3:107-113
Shaw GL, Harth E, Scheibel AB (1982) Cooperativity in brain function: assemblies of approximately 30 neurons. Exp Neurol 77:324-358
Shaw GL, Rinaldi PC, Pearson JC (1983) Processing capability of the primary visual cortex and possible physiological basis for an apparent motion illusion. Exp Neurol 79:293-298
Shaw GL, Silverman DJ, Pearson JC (1985) Model of cortical organization embodying a basis for a theory of information processing and memory recall. Proc Natl Acad Sci USA 82:2364-2368

Wolfram S (1983)Statistical mechanics of cellular automata. Rev Mod Phys 55:601-644
Yates F (ed) (1984) Proccedings of conference on chemically based computer design. University of California, Los Angeles
Received: October 1, 1985
Dr. G. L. Shaw
Physics Department
University of California
Irvine
CA 92717
USA

[^0]
[^0]: Verantwortlich für den Textteil: Prof. Dr. W. Reichardt, Max-Planck-Institut für biologische Kybernetik, Spernannstr. 38, D-7400 Tübingen. Verantwortlich für den Anzeigenteil: E. Läckermann, Springer-Verlag, Heidelberger Platz 3, D-1000 Berlin 33, Fernsprecher: (030)8207-1, Telex: 01-85411. Springer-Verlag, Berlin . New York . Tokyo. Druck der Brühlschen Universitätsdruckerei, Gießen. Printed in Germany. - © Springer-Verlag Berlin Heidelberg 1986

