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ABSTRACT: In this paper, we revisit and extend a formula to predict the compensation of space
charge in positive DC ion beams of non-relativistic energy, as they are for example found in the
injector beam lines of heavy ion accelerator facilities.The original formula was presented in 1975
by Igor Gabovich et al. and takes into account the de-compensation through Coulomb collisions
of the primary beam ions and the compensating electrons. We extend its usability to arbitrary
(positive) charge states of the ions and non-quasineutral beams.The resulting formula compares
well with measurements using a retarding field analyzer and a multi-species generalization of it
was incorporated into beam transport simulations using the particle-in-cell code WARP.
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1 Introduction

Space charge and space charge compensation (neutralization) are important factors in the transport
of medium to high intensity low energy ion beams. Space charge arises from the charges of the
beam ions themselves and the resulting electric self field acts defocusing on the beam (the magnetic
self field can be neglected for non-relativistic ion beams). Simulation codes can take into account
space charge either through a linear analytical model (as for example presented in Reiser [1]) or by
treating the beam fully three-dimensional through particle-in-cell (PIC) methods (e.g. OPAL [2] or
WARP [3, 4]). On the other hand, as the beam travels along the beam line, the beam ions interact
with the residual gas mainly through two processes:

Aq+ +X0→ A(q−1)+ +X+ (charge-exchange)

Aq+ +X0→ Aq+ +X+ + e− (ionization)

where A is a beam ion and X a residual gas molecule [5]. The resulting slow secondary ions
are expelled by the beam, while the electrons are trapped in the potential well. The to first order
stationary electrons are lowering the beam potential which decreases the defocusing effect of the
self electric field. If the beam is approximated as a uniform cylindrical charge distribution, the
radial potential distribution can readily be written down as:

φ(r) =

{
∆φ

(
1+2ln rp

rb
− r2

r2
b

)
for r ≤ rb

∆φ 2ln rp
r for rb ≤ r ≤ rp

(1.1)

with
∆φ =

Ib

4πε0vb
. (1.2)

Here, Ib is the beam current in electrical Amperes (A), ε0 the vacuum permittivity (≈ 8.854 ·10−12

F/m), vb the beam velocity in m/s, rb the beam radius in m, and rp the radius of a grounded pipe
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sorrounding the beam. In the simplest model, space charge compensation can be expressed in form
of a space charge compensation factor fe, modifying the total beam current in equation (1.2):

∆φ =
Ib · (1− fe)

4πε0vb
. (1.3)

In 1975 Gabovich, Katsubo, and Soloshenko published a paper presenting a formula to predict fe

taking into account decompensation by Coulomb interaction of the beam ions with the compensa-
ting electrons [6]. In 1977 Gabovich published a detailed review article on the processes involved
in compensation and decompensation of positive and negative high intensity ion beams consider-
ing dynamic- and self-decompensation of the ion beams as well as collective processes in the beam
plasma [7]. In the following years Soloshenko presented several papers on the same topics [8–10].
Their work compared well to measurements of high intensity proton [11] and H+

2 [6] beams, which
can be considered highly compensated. However, comparison of simulated and measured emit-
tances as well as measurements of the ion beam potential in the Low Energy Beam Transport
(LEBT) lines of Electron Cyclotron Resonance Ion Sources (ECRIS) suggested beams far from
fully compensated [12, 13]. Hence one of the major assumptions in Gabovich’s work no longer
holds: quasi-neutrality. In addition, all derivations were performed for one singly charged ion
species (e.g.: protons, H+

2 , He+). In ECRIS, a multitude of ion species is produced at the time
and most often a highly charged ion is the desired beam ion. In this paper the formula presented
by Gabovich et al. for self decompensation by Coulomb collisions of the beam ions with the com-
pensating electrons will be extended so it can be applied to ECRIS beam lines. To establish the
framework for the manuscript, the original formula by Gabovich et al. is re-derived for an arbi-
trary charge-state q in section 2. SI units are used throughout the paper for clarity and consistency.
In section 3 a simple generalization is made from quasi-neutrality to a non-neutral beam plasma.
This formula can be used to estimate the space charge compensation factor attainable for a typical
ECRIS beam, not taking into account dynamic decompensation due to beam instabilities and the
more complex collective effects (plasma oscillations) as described by Gabovich [7]. However it
will provide us with a best case scenario under optimal conditions. The results of the extended
formula are compared to measurements in section 6. In the presented publication, we shall restrict
ourselves to positive DC ion beams of low energy (20−70 ·q keV, q being the charge state of the
ions) and medium intensity (100 eµA - 10 emA) as they are provided by ECRIS like SuSI [14, 15]
and VENUS [16, 17], and off-resonance microwave sources like the Low-Energy Demonstration
Accelerator (LEDA) injector source [18, 19] and Versatile Ion Source (VIS) [20].

2 Re-derivation of the Gabovich formula in SI units

The energy necessary for the secondary electrons to leave the potential created by the beam is
given by: (

dE
dt

)
out

= L
rb∫

0

2πr dr

eϕ(r)∫
0

f (E)(eϕ(r)−E) dE (2.1)

with L the length of the beam, rb the radius, ϕ(r) the potential at radius r, and f (E) the secondary
electron energy distribution. On the other hand, a fast beam (vb > ve) will transfer energy mostly
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through Coulomb collisions. In simple classical Coulomb collisions, the rate of transfer of energy
per unit length for one beam particle of energy Ekin = mbv2

b/2 to stationary target particles can be
written as

dE
d`

= nt

(
QbQt

4πε0

)2 4π

mtv2
b
· ln
∣∣∣∣bmax

bmin

∣∣∣∣ (2.2)

which, for electrons as target species becomes

dE
d`

= ne
q2e4

4πε2
0

1
mev2

b
· ln
∣∣∣∣bmax

bmin

∣∣∣∣
where bmin and bmax are appropriate lower and upper limits of the impact parameter, and q the
charge state of the primary ion beam. We can now write the energy transfer to the electrons per
unit time for the sum of all beam particles Nb = nbr2

bπL with velocity vb as(
dE
dt

)
in

=
nbneq2e4r2

bL
4meε2

0vb
· ln
∣∣∣∣bmax

bmin

∣∣∣∣ . (2.3)

Since the main contribution to the process comes from small angle scattering, a good choice for
bmin is b90, the impact parameter, where the incident particle is scattered by 90◦. b90 for ion-electron
collisions is given by

b90 =
−qe2

4πε0

1
mrv2

b
(2.4)

with mr the reduced mass, which for ion-electron collisions is mr ≈ me. The secondary electrons
are not bound to nuclei and essentially form a low density electron plasma. A good value for bmax

is then

bmax =
vb

ωpe
=

vb

e
·
√
ε0me

ne
(2.5)

with ωpe the electron plasma frequency. We expect the effectiveness of the collisions to fall off
because of dielectric effects for b > bmax = vb/ωpe. Substituting expressions (2.4) and (2.5) for
bmin and bmax, respectively, we obtain

L̃= ln

(
4πε

3/2
0

m3/2
e v3

b

qe3n1/2
e

)
(2.6)

where we call L̃ a Coulomb logarithm. Hence(
dE
dt

)
in

=
nbneq2e4r2

bLL̃
4meε2

0vb
. (2.7)

In steady-state, expressions (2.1) and (2.7) have to be equal in order to conserve energy:

L
rb∫

0

2πr dr

eϕ(r)∫
0

f (E)(eϕ(r)−E) dE =
nbneq2e4r2

bLL̃
4meε2

0vb

or:
rb∫

0

r dr

eϕ(r)∫
0

f (E)(eϕ(r)−E) dE =
nbneq2e4r2

bL̃
8πmeε2

0vb
. (2.8)

– 3 –
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Let us now solve the integrals on the left hand side. At this point, Soloshenko et al. [9] and
Gabovich [7] make an approximation for f (E):

f (E) ∝
1

(eΦi +E)2 (2.9)

with eΦi the ionization energy of the gas molecules. They determine the proportionality constant
by requiring:

∞∫
0

f (E)dE =
∂ne

∂ t
= nbvbn0σe

with n0 the neutral gas density, and σe the electron creation cross -section. This expression can be
readily solved to yield

f (E) =
nbvbn0σe · eΦi

(eΦi +E)2 . (2.10)

And the energy integral in equation (2.8) can be solved to:

eϕ(r)∫
0

f (E)(eϕ(r)−E) dE = η ·
eϕ(r)∫
0

eϕ(r)−E
(eΦi +E)2 dE

= η ·
[

ϕ(r)2−Φ2
i

Φi(Φi +ϕ(r))
+1− ln

(
1+

ϕ(r)
Φi

)]
= η ·

[
ϕ(r)−Φi

Φi
+1− ln

(
1+

ϕ(r)
Φi

)]
= η ·

[
ϕ(r)
Φi
− ln

(
1+

ϕ(r)
Φi

)]
(2.11)

where η was introduced for convenience as

η = nbvbn0σe · eΦi

η is considered constant in r and E in our simplified view of the problem. The potential ϕ(r) inside
a homogeneously charged cylinder inside a beam pipe of radius R is given by equation (1.1):

ϕ(r) =
Ib

4πε0vb
·
(

1+2ln
rp

rb
− r2

r2
b

)
with Ib the beam current and ε0 the vacuum permittivity. Computing ∆ϕ = ϕ(rb)−ϕ(0) yields

∆ϕ =
Ib

4πε0vb
.

Since, for our considerations, we are only interested in ∆ϕ , which is independent of the beam pipe
radius, we can set rp = rb, and

ϕ(r) = ∆ϕ ·
(

1− r2

r2
b

)
. (2.12)
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Now we can carry out the radial integral in equation (2.8):

rb∫
0

r ·
[

ϕ(r)
Φi
− ln

(
1+

ϕ(r)
Φi

)]
dr =

rb∫
0

r ·
{

∆ϕ

Φi

(
1− r2

r2
b

)
− ln

[
1+

∆ϕ

Φi

(
1− r2

r2
b

)]}
dr

=
∆ϕ

Φi

(
r2

b
2
−

r2
b
4

)
−

rb∫
0

r · ln
[

1+
∆ϕ

Φi

(
1− r2

r2
b

)]
dr

=
∆ϕ

Φi

r2
b
4
− Φi

∆ϕ

r2
b
2

[
−∆ϕ

Φi
+
(

1+
∆ϕ

Φi

)
ln
(

1+
∆ϕ

Φi

)]
=

r2
b
2

[
∆ϕ

2Φi
+1−

(
1+

Φi

∆ϕ

)
ln
(

1+
∆ϕ

Φi

)]
. (2.13)

Expanding the logarithm for ∆ϕ/Φi < 1 yields

ln
(

1+
∆ϕ

Φi

)
=

∆ϕ

Φi
− 1

2

(
∆ϕ

Φi

)2

+
1
3

(
∆ϕ

Φi

)3

+O(4).

Substituting into the solution of equation (2.13), carrying out the multiplication and dropping the
terms of order 3 and higher gives

r2
b
2

[
∆ϕ

2Φi
+1−

(
1+

Φi

∆ϕ

)
·

(
∆ϕ

Φi
− 1

2

(
∆ϕ

Φi

)2

+
1
3

(
∆ϕ

Φi

)3

+O(4)

)]
≈

r2
b

12
(∆ϕ)2

Φ2
i
.

And thus

rb∫
0

r dr

eϕ(r)∫
0

f (E)(eϕ(r)−E) dE = η ·
r2

b
12

(∆ϕ)2

Φ2
i

= nbvbn0σeeΦi ·
r2

b
12

(∆ϕ)2

Φ2
i

= nbvbn0σee ·
r2

b
12

(∆ϕ)2

Φi
. (2.14)

Then, equation (2.8) becomes

(∆ϕ)2 =
3q2Φinee3L̃

2πmev2
bn0σeε2

0
. (2.15)

The only unknown quantity now is the electron density. Here, Gabovich and Soloshenko use quasi-
neutrality:

ne = q ·nb +ni (2.16)

and the secondary ion balance equation (number of secondary ions created in the beam is equal to
the number of ions leaving the beam per unit time):

2rbπniv̄i = r2
bπnbvbn0σi (2.17)

with v̄i the average secondary ion velocity. Thus the electron density is

ne = q ·nb +
nbvbn0σirb

2v̄i
. (2.18)
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We can now rewrite (2.15):

(∆ϕ)2 =
3q2Φie3L̃

2πmev2
bn0σeε2

0
·
(

q ·nb +
nbvbn0σirb

2v̄i

)
=

3q2Φinbe3L̃
2πmev2

bε
2
0
·
(

q
n0σe

+
vbσirb

2v̄iσe

)
. (2.19)

Finally, we use the non-relativistic kinetic energy of the primary beam

qeU0 =
mbv2

b
2

,

with U0 the source voltage, to replace v2
b and obtain the formula presented in [9] (but in SI units

and for an arbitrary charge-state q of the primary ion beam):

(∆ϕneut)2 = 3Lmb

me

Φi

U0

nbqe2

(4πε0)2

(
q

n0σe
+

vbσirb

2v̄iσe

)
. (2.20)

Note that we have absorbed a factor 4π into the definition of L (L = 4πL̃) to be consistent
with [9]. We also use equation (2.18) to replace the electron density in the Coulomb logarithm
(equation (2.6)). We now have an explicit expression for ∆ϕ in terms of quantities either experi-
mentally accessible or calculable by theoretical models. The neutralization factor fe can now be
obtained by substituting the (partially) neutralized ∆ϕneut (equation (2.20)) into equation (1.3):

fe = 1− ∆ϕneut

∆ϕfull
(2.21)

where (with βc = vb the beam velocity):

∆ϕfull =
Ib

4πε0vb
. (2.22)

3 Extension of the Gabovich formula to lower compensation factors

One of the drawbacks of the result presented in section 2 is the assumption of quasi-neutrality
which naturally limits the usefulness of the formula to highly compensated beams. To remedy this,
we propose a simple modification to equation (2.16) to reflect the fact that the electron density is
only a fraction of the combined primary and secondary ion densities (corresponding to the level of
neutralization) we can write it as:

ne = f e · (q ·nb +ni) . (3.1)

This only adds a factor
√

fe to the definition of ∆ϕneut and the new equation for calculation of the
compensation factor is:

fe = 1−
√

fe ·
∆ϕneut

∆ϕfull
(3.2)

where equation (2.20) was used:

∆ϕneut =

√
3L· mb

me
· Φi

U0

nbqe2

(4πε0)2

(
q

n0σe
+

vbσirb

2v̄iσe

)
.

– 6 –
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Substituting

χ =
∆ϕneut

∆ϕfull
.

Equation (3.2) can easily be solved for fe:

fe = 1+
χ2

2
− χ

2

√
χ2 +4 . (3.3)

4 Discussion

Let us now examine a few of the properties of the formula for fe. Substituting nb = Ib/(r2
bπvbqe)

in equation (2.20) yields:

(∆ϕneut)2 = 3Lmb

me

Φi

U0

Ibe
(4πε0)2π

(
q

n0σevbr2
b

+
σi

2v̄iσerb

)
.

One can see that the space charge compensation factor fe mainly depends on three variables (aside
from fixed parameters like the cross-sections, beam energy, and residual gas composition):

• Beam current Ib. Trend: rising fe with increasing beam current. This is not immediately
visible, but becomes clear when one takes into account that ∆φfull also includes Ib (cf. equa-
tion (2.22)).

• Beam radius rb. Trend: rising fe with increasing beam size.

• Residual gas density n0. Trend: rising fe with increasing pressure.

In the LEBT of typical ECR ion sources, the currents are usually < 5 mA, and the pressure is
usually< 10−6 Torr to prevent beam loss due to charge-exchange. The formula then predicts space
charge compensation as low as 5% and as high as 80% depending on the three parameters (this
compares well with experiments, as is shown in section 6). Additionally, the calculated value
can vary considerably locally along the LEBT due to the change in beam radius, beam losses on
apertures, and the changing pressure profile. Consequently, these factors should be taken into
account when trying to accurately simulate the beam transport (cf. section 7).

5 Cross-sections

One of the main sources of uncertainty in the prediction using the presented formula are the cross
sections for electron production (σe) and ion production (σi). As mentioned in the introduction, the
two main processes are charge-exchange and ionization:

Aq+ +X0→ A(q−1)+ +X+ (charge-exchange)

Aq+ +X0→ Aq+ +X+ + e− (ionization)

where A is a beam ion and X a residual gas molecule. As can be seen, charge-exchange contributes
to σi and ionization to both σi and σe, thus:

σe ≈ σionization

σi ≈ σionization +σcharge-exchange

– 7 –
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Figure 1. Relevant cross-sections for production of slow H+
2 ions and electrons. The vertical dashed line

denotes the lower limit of applicability of the prediction by Kaganovich et al. [25]. The experimental data
denoted as “Measured” are from [23], while the solid green line is a fit to the difference of measured total
H+

2 ion production cross-section and measured σionization. It can be seen that the measured cross-sections
agree well with the fit down to the limit. Below, the fit underestimates the cross-section. It can also be
seen, that the cross-section for the production of secondary electrons is a bit higher than the cross-section
for ionization. This is due to other processes contributing as well.

Data on both processes is sparse and usually comes with large error-bars. Data for proton, helium
and lithium beams in the desired range of 10 keV to 100 keV can be found for gaseous hydrogen,
helium and lithium targets [21–23], because the cross-sections are interesting for fusion research.
For sufficiently low projectile energies (< 20 keV/amu), charge-exchange can be predicted with
the Müller-Salzborn scaling law [24] and dominates over ionization in this regime (see for exam-
ple figure 1). For other projectiles and targets, cross-section measurements exist at significantly
higher energies. Based on classical and quantum theories, several models have been developed
and compared to the existing measurements. A good summary of previous efforts was given by
I.D.Kaganovich et al. in several papers between 2003 and 2005 [25–27]. He presents a scaling law
that seems to fit the data very well. Unfortunately, for the energy regime of typical ECRIS low
energy beam transport systems the situation is problematic, as the combination of lower extraction
voltage (10-30 kV) and higher mass-to-charge ratio leads to significantly lower projectile energy
in keV/amu. (cf. figure 2). If the velocity of the incident particle becomes too low, the interaction
time of projectile and target electron increases enough for tunneling effects to become an impor-
tant factor in the ionization process and the Kaganovich fit underestimates the cross-section (this
can be seen in figure 1 for the proton case). The difficulty becomes even more clear in figure 2,
where the ionization cross-sections for argon and oxygen impinging on N2 (cf. section 6 on exper-
imental verification) are plottet versus energy. The lower limit of applicability (as given in [26]) is
marked with a dot. This is far higher than the projectile energies during the measurements (vertical
lines). On the positive side, in this energy regime the Müller-Salzborn scaling law is a good ap-

– 8 –
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Figure 2. Prediction of ionization and charge exchange for argon and oxygen impinging on N2. The curves
are the prediction using the scaling law of Kaganovich et al. [25] with the lower cut-off denoted by a dot.
The horizontal lines are the prediction using Müller-Salzborn fit [24]. The vertical lines are the projectile
energies for a 4.8 keV/amu Ar8+ beam (left) and a 9 keV/amu O6+ beam (right) used during experiments
reported on in section 6.

proximation for σcx (which clearly dominates over σionization. Comparing with RFA measurements
(cf. next section) and with the saturation current of the RFA used in the measurements (which di-
rectly depends on σionization +σcx [11]), the authors found the value for the ionization cross-section
σionization at the lower limit of applicability (red dot) a reasonable first order approximation of the
cross-section at the respective projectile energies in the measurements. This is, of course a very
crude approximation and a better fit is desirable.

6 Experimental verification

The original formula by Gabovich et al. was compared to measurements with the LEDA injec-
tor source by Ferdinand et al. [11] and showed good agreement for a 50 -130 mA proton beam
at 75 keV (space-charge compensation was > 90%, so quasi neutrality was justified). The cross-
sections displayed in figure 1 were used. Similar measurements were done using the same source
but extracting significantly lower beam current to benchmark the extended formula [28, 29]. Good
agreement was found as well. Following these encouraging results, the formalism was applied to
more complex systems such as ECRIS transport systems. Measurements of ion beam space charge
compensation were performed at the National Superconducting Cyclotron Laboratory (NSCL) at
Michigan State University (MSU) in the low energy beam transport line of the LEDA injector
source [18, 19] and the Superconducting Source for Ions (SuSI) [14, 15] using a Retarding Field
Analyzer (RFA). Details about the setup and the measurements are reported elsewhere [28–30] and
shall only be summarized briefly here: by using the RFA to measure the energy distribution of sec-
ondary ions from beam-residual gas interaction, the beam potential distribution can be calculated.

– 9 –
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Figure 3. Neutralization factors of a 200 eµA Ar8+ and a 700 eµA O6+ beam at different vacuum pressures
in the LEBT of the SuSI source at NSCL. The dashed lines indicate the model description with the shaded
areas being the uncertainty due to the not well known cross sections. From [30].

Comparing the measured beam potential with the theoretical value of an uncompensated beam, fe

is obtained. The results from the LEDA injector source compared well with earlier measurements
by Ferdinand et al. [11] and with the theoretical predictions. The results from the measurements
in the SuSI LEBT agreed reasonably as well (an example for Ar8+ and O6+ is shown in figure 3).
The rather large error bars on both measurement and theoretical prediction are due to uncertainties
in beam current, residual gas pressure and ion/electron production cross-sections.

7 Incorporation into computer simulations

The good agreement between the model and the measurements presented in the previous section led
to the idea of including the formalism into beam transport simulations of the SuSI LEBT using the
particle-in-cell code WARP [3, 4] in 2D “XY-Slice” mode. Under the over-simplified assumption
that all beam species in a multispecies beam have the same radius, generalization of equation (3.3)
for multiple ion species is straight-forward. At each time-step of the simulation, an algorithm then
gathers the average 2-RMS beam radius and each species’ beam current, velocity, mass, and charge
state. From these and additional user inputs (residual gas pressure, σi, σe), fe is calculated using
the above-mentioned multispecies generalization of the Gabovich formula to be used as scaling
factor for the beam current in the subsequent time-step. First results of this technique have been
presented elsewhere [28–30]. In this paper, the argon beam used during the measurements shown in
figure 3 (4.5 mA current, extracted at 24 kV, with Ar3+ to Ar12+ measureably present in the beam)
is chosen as an example for the simulation technique . The desired ion (Ar8+) was transported
to the location of the neutralization monitor, passing the following beam line elements: SuSI (ion
source), EL (einzel lens at -20 kV), Dipole (90◦bending magnet), C1-C5 (collimators and slits),
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Figure 4. Space charge compensation factors along the beam line for five different beam line pressures
calculated by WARP during the simulation of the SuSI LEBT. The lowest fe corresponds to the lowest
pressure and fe increases with higher pressure. The relevant beam line elements are: SuSI (ion source), EL
(einzel lens), Dipole (90◦bending magnet), C1-C5 (collimators and slits), S1-3 (solenoid magnets). Note
that inside the einzel lens, fe was forced to 0 to account for loss of the compensating electrons due to the
lens’ electrostatic field. Abrupt drops in fe are usually at collimator positions (“C”) where the beam current
can drop fast.

S1-3 (solenoid magnets). In figure 4 the space charge compensation factor along the LEBT is
shown for five different pressures inside the beam line. The horizontal beam envelopes of the
argon beam at 10−6 Torr can be seen in figure 5. Of course, all simulation settings were identical
to the settings during the experiment. Overall, the results of these preliminary simulations using
the extended Gabovich formula for space charge compensation are promising. The trends seen in
the measurements with a retarding field analyzer at C5 are reproduced and the beam profiles at C4
compare well with slit scans performed during the experiments for argon (round profile) as well as
oxygen beams (triangular profile). However, it should be noted that in order to obtain the correct
beam sizes at C4, an additional reduction of fe to 80% of the Gabovich prediction was necessary
inside the dipole. It is not surprising that the formula is less accurate inside a dipole as it does
not account for the magnetic field and there is a large deviation from cylindrical symmetry. This
is certainly an area of development. Further improvements could include the generalization of the
formula for multi-species with different radii, and incorporating realistic pressure profiles along the
beam line.
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Figure 5. Horizontal beam envelopes of the SuSI LEBT simulation of an argon beam going through a beam
line with base pressure of 1.0 ·10−6 Torr. Ar8+ (light blue) is selected using the dipole magnet and a set of
slits. The solid lines represent the 2-rms beam envelopes and the dashed lines the maximum beam envelopes.
A large percentage of the beam current is lost at this point and the consequence is a drop in fe which can be
observed in figure 4.

8 Conclusion

In this paper we revisited and extended a formula for the prediction of the space charge compen-
sation factor fe in DC ion beams first presented by Gabovich et al. in 1975. The formula was
re-derived in more detail than previously presented, highlighting the various assumptions and sim-
plifications that were used. In addition, a simple generalization of the formula to non-neutral beam
plasmas ( fe ≤ 90%) was proposed. This formula does not take into account beam instabilities and
collective effects that can further decrease the space charge compensation and is strictly speaking
only valid for uniform round beams. However, the extended formula was compared to measure-
ments conducted at the NSCL (MSU) and reasonable agreement was found between theory and
experiment even for non-rotationally symmetric beams. The formula relies heavily on the cross-
sections for electron and ion production through beam-residual gas interaction which are not well
known and impose a large uncertainty on the prediction. Even within the rather large uncertain-
ties, an interesting observation could be made about beams in the LEBT of the ECRIS SuSI at the
NSCL: the measured values of fe were consistently below 60% at the location of the measurement
and sometimes as low as 0%. These results agree with the prediction by the extended Gabovich
formula. According to the formula, the space charge compensation factor depends on three vari-
ables: the beam intensity, the beam radius, and the residual gas pressure in the beam line. In the
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ECRIS regime, this leads to an fe that can vary considerably along the LEBT due to the change in
beam radius and beam losses on apertures as well as with the changing pressure profile. As was
shown in section 7, the Gabovich formula can be implemented in beam transport codes like WARP
to include a first order approximation of the space charge compensation factor into the simulations.
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