THE MOLECULE-SUBSTRATE VIBRATION OF CO ON Ni(100)
STUDIED BY INFRARED EMISSION SPECTROSCOPY

S. Chiang, R.G. Tobin, P.L. Richards, and P.A. Thiel

November 1983
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE MOLECULE-SUBSTRATE VIBRATION OF CO ON Ni(100)
STUDIED BY INFRARED EMISSION SPECTROSCOPY

S. Chiang,* R. G. Tobin, P. L. Richards, and P. A. Thiel**
Department of Physics, University of California, Berkeley
and Materials and Molecular Research Division,
Lawrence Berkeley Laboratory
Berkeley, California 94720

Abstract

We have used a novel infrared emission technique to make the
first measurement of the linewidth of a molecule-substrate
vibrational mode on a well characterized single crystal surface.
At saturation coverage, the observed linewidth of the C-Ni mode of
CO on Ni(100) is 15 cm⁻¹. This result is in agreement with
predictions for broadening due to de-excitation by two-phonon
emission.

PACS numbers: 68.45.-v
63:20.-e
78.30:-

* Present address: IBM Research Laboratory, 5600 Cottle Road, San
Jose, California 95193.

** Present address: Department of Chemistry, Iowa State
University, Ames, Iowa 50011.
The usefulness of vibrational spectroscopy in the identification of surface species, the determination of adsorbate structures, and the study of dynamical processes has been thoroughly demonstrated. Although electron energy loss spectroscopy (EELS) has been a popular technique because of its inherently high surface sensitivity and large spectral range, its relatively poor resolution of 30 to 100 cm\(^{-1}\) makes the measurement of linewidths and lineshapes extremely difficult. Infrared spectroscopists find it easy to obtain resolution less than 5 cm\(^{-1}\), but have had to struggle for adequate sensitivity. They have generally been unable to observe modes at frequencies less than 1000 cm\(^{-1}\). Other techniques, such as inelastic tunneling spectroscopy, surface Raman spectroscopy, and surface non-linear optical techniques, all have specific advantages and particular limitations due to sample configuration, sample temperature, or sensitivity.

Infrared emission spectroscopy offers certain advantages over other types of infrared surface spectroscopy in sensitivity and versatility. For substrates that are not strongly absorbing, such as metals, it provides a reduction in background, compared to reflection-absorption spectroscopy. The method is equally applicable to smooth or rough surfaces, can be used with transparent substrates as well as metals, and can be used with high pressures and elevated sample temperatures. Several groups
have previously used infrared emission to study adsorbed monolayers, but our experiment is the first to apply the technique to sub-monolayer coverages of adsorbates on well characterized single crystal metal surfaces in ultrahigh vacuum. Our apparatus is also the first to extend the infrared spectroscopy of single crystal surfaces into the frequency range of a few hundred cm\(^{-1}\), which contains important adsorbate-substrate modes. Sample configurations different from ours would be required or preferred in order to use emission spectroscopy to study systems other than metal surfaces in vacuum.

The infrared emission apparatus that we have developed uses a liquid helium temperature grating spectrometer to measure the radiation from a sample in thermal equilibrium near room temperature. Since a detailed description of the apparatus is to be published elsewhere, we give only a brief summary of the technique here. Figure 1 shows a diagram of the apparatus. The Ni(100) sample, from the Materials Research Laboratory of Cornell University, was mounted on a manipulator in an ultrahigh vacuum chamber, with a base pressure of 10\(^{-10}\) torr, which was equipped with conventional surface preparation and characterization facilities. It was cleaned by argon ion sputtering to remove sulfur, by heating to 800° C for annealing, and by oxygen treatments to remove residual carbon. The best indicator of sample cleanliness was the observation of a sharp c(2×2) low
energy electron diffraction (LEED) pattern when the surface was saturated with CO. During infrared measurements, the sample temperature was held constant within ±0.05 K at approximately 310 K.

Thermal radiation emitted by the sample is focused by a lens onto the entrance slit of the spectrometer. The light is collimated, diffracted from a grating and refocused onto a Rockwell Si:Sb photoconductive detector. Liquid nitrogen temperature baffles around the sample provide contrast to observe the sample emission, and the spectrometer is maintained at 5 K to minimize infrared background radiation. The present experiments are made in the dc mode and are limited by slow drifts. Significant improvements in signal-to-noise ratio, potentially by a factor of 10-100, may be achieved by implementing an appropriate modulation. The detector noise is negligible compared to the statistical fluctuations in the photon stream of 10¹⁰ photons/sec reaching the detector from the sample.

A reference spectrum of the clean nickel surface is first measured by recording the detector signal as a function of the grating position, which is under computer control. After the sample has been dosed with CO, its emission spectrum is measured again. The ratio of the spectrum of Ni with CO to the reference spectrum is computed to obtain the adsorbate spectrum. Wavelengths are measured relative to the 24th order diffraction of light from a He:Ne laser.
Figure 2 shows infrared emission spectra from a Ni(100) surface saturated with CO at room temperature, in the frequency range of the molecule-substrate mode. The two curves were measured with different sample preparation procedures. In both cases a sharp 1x1 LEED pattern was observed before the sample was dosed with CO. Curve (a) was obtained from a disordered CO layer on a surface with significant residual contamination. The c(2x2) LEED pattern expected for CO on clean Ni(100) was not seen. Infrared emission spectra measured in the C=O stretch frequency range showed that for this surface the CO was in bridge-bonded as well as linearly bonded sites. The data in curve (a) represent the average of 30 spectra from 5 separate experimental runs, with a total integration time per point of 30 seconds. The peak frequency of 475 ± 5 cm⁻¹ is in good agreement with EELS results. The line is well resolved; the observed linewidth (full width at half maximum) is 15 ± 1 cm⁻¹, while the instrumental resolution is approximately 2.5 cm⁻¹. The greater uncertainty in the peak frequency is due to errors in the absolute calibration of the grating angle.

Curve (b) was measured after refined cleaning procedures had improved the state of the surface. Although our available Auger system could not distinguish between the two surfaces, thermal desorption spectroscopy showed that the surface used for curve (b) had significantly less surface carbon. A sharp c(2x2) LEED pattern was observed when a saturation dose of CO was added.
Spectra from the C=O stretch range showed only linearly bonded CO as is expected for the ideal c(2×2) structure. The absence of the bridge-bonded CO suggests that this surface was significantly cleaner than those previously used for vibrational studies of the CO/Ni(100) system.10,11 The spectrum shown in curve (b) represents a single experimental run, and a total of 10 seconds of integration per point. The signal-to-noise ratio for curve (b) is significantly less good than for curve (a). The feature at 490 cm-1 in curve (b), for example, is likely to be noise.

The peak frequencies and the linewidths of the two spectra are the same, within experimental error. For the ordered c(2×2) overlayer, [curve (b)], the peak frequency is 476±5 cm-1, and the linewidth is 16±2 cm-1. The intensity of the line is about a factor of two greater in curve (b) than that observed in curve (a). The difference could arise from incomplete surface coverage in the disordered case, or from better sample positioning for the spectrum of the ordered overlayer. Using the theory described by Ibach,12 suitably adapted for our experiment, and assuming a rigid surface, we calculate a screened effective charge for the c(2×2) layer of $e^\ast = 0.17$, in reasonable agreement with Ibach's12,13 published value of $e^\ast = 0.21$.
The spectra in figure 2 represent the first measurements of the linewidth of the low frequency adsorbate-substrate mode of a molecular adsorbate on a well characterized single crystal metal surface. They strikingly demonstrate the ability of our infrared emission technique to bring high resolution and monolayer or sub-monolayer sensitivity to a wide range of vibrational frequencies. Previous measurements of such modes for molecular adsorbates have been made only with high surface area polycrystalline samples.14-16 The only infrared measurements of adsorbate-substrate modes on single crystal surfaces have used atomic hydrogen, which has a high vibrational frequency, and have relied on special properties of the experimental system in order to obtain adequate sensitivity. The vibration of hydrogen on tungsten(100) was measured with a technique that exploited the coincidence of the vibrational frequency with a CO\textsubscript{2} laser band.17 An internal reflection geometry, useful for transparent substrates, has been used to resolve the vibration of hydrogen on single crystal silicon.18,19

Our instrument has also been used9,20 to obtain spectra with excellent signal-to-noise ratio in the higher frequency range of the carbon-oxygen stretching vibration of CO, at -2000 cm-1. It easily measures signals from as little as 0.05 monolayer of CO in one minute, with a resolution of 15 cm-1. Improved resolution would result in some loss in sensitivity.
For relatively high frequency intramolecular modes, such as the carbon-oxygen vibration of adsorbed CO, the most plausible explanation for the observed linewidths seems to be the coupling of the vibration to the electrons in the metal, via an adsorbate-induced resonance in the density of states at the Fermi level. Because the volume of momentum space accessible to the electron-hole pairs is proportional to the vibrational energy, and because the absorption strength is believed to be related to the degree of vibrational coupling to the electron gas, it is expected from this model that the carbon-metal stretching vibration, with its lower frequency and intensity, would be much narrower than the C=O stretching mode. In fact, however, the modes have comparable widths, which suggests that other mechanisms dominate the width of the carbon-metal vibration.

Three other line-broadening processes must be considered. Inhomogeneous broadening cannot be absolutely excluded. The measurement of the same linewidth for a well ordered c(2×2) overlayer as for a disordered layer minimizes the likelihood of disorder-induced broadening, but a more direct demonstration that the linewidth is intrinsic—for example by measuring the temperature dependence of the linewidth—is certainly important, and will be attempted.
A second possibility is that the linewidth is dominated by the dephasing process, in which variations in the phase of vibration of an excited molecule, due to elastic collisions with phonons, broaden the line without shifting its frequency. Persson has estimated that the broadening due to dephasing should be thirty times smaller than that due to de-excitation by phonon emission, for the C-Ni mode in question.

Vibrational decay by the excitation of substrate phonons is not important for the C=O stretching vibration, but it is expected to be more important at lower frequencies. Since the maximum phonon frequency of bulk nickel is -300 cm\(^{-1}\), the -2000 cm\(^{-1}\) intramolecular mode must decay via at least a seven-phonon process. The 475 cm\(^{-1}\) molecule-substrate mode, however, can decay by the emission of only two phonons. Ariyasu, et al., have calculated the linewidth due to the two-phonon process, for the C-Ni mode of CO on Ni(100) at 300 K, and found a value of 13.9 cm\(^{-1}\), in excellent agreement with our experimental value. Their calculation also predicts a linear temperature dependence for the linewidth above 300 K. We will test this prediction in future experiments.

In summary, we have advanced the technique of infrared emission spectroscopy for surface vibrational studies by applying it to adsorbates on well characterized single crystal metal surfaces, and by extending it into the important frequency range of a few hundred cm\(^{-1}\). We have made the first measurement of the
linewidth of the molecule-substrate vibrational mode of c(2×2) CO on Ni(100). The observed linewidth appears to be explained by a process of vibrational damping by two-phonon emission, in contrast to the electronic mechanism that seems to dominate at higher frequencies. Experiments to verify the decay mechanism are in progress. We anticipate that the data presented here, and future measurements of adsorbate-substrate modes, will stimulate further discussion and understanding of the important broadening mechanisms involved.

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U. S. Department of Energy under Contract number DE-AC03-76SF00098.
REFERENCES

23. B. N. J. Persson, to be published.

Figure captions

1. Optical layout of the infrared emission apparatus, with LHe-cooled spectrometer on the left and ultrahigh vacuum system on the right.

2. Infrared emission spectra from a saturation coverage of CO on Ni(100) at 310 K. The instrumental resolution was 2.5 cm\(^{-1}\), and a linear baseline has been subtracted from the curves. The solid lines are obtained by computer smoothing of the data. (a) Spectrum of a disordered CO layer on a partially contaminated surface. (b) Spectrum of an ordered c(2×2) CO overlayer on a clean surface.
Figure 2
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.