UC San Diego

UC San Diego Previously Published Works

Title

Genome wide association study identifies variants in NBEA associated with migraine in bipolar disorder

Permalink https://escholarship.org/uc/item/6cw0w7bc

Authors

Jacobsen, Kaya K Nievergelt, Caroline M Zayats, Tetyana <u>et al.</u>

Publication Date 2015-02-01

DOI

10.1016/j.jad.2014.10.004

Peer reviewed

HHS Public Access

Author manuscript *J Affect Disord*. Author manuscript; available in PMC 2016 March 29.

Published in final edited form as:

J Affect Disord. 2015 February 1; 172: 453-461. doi:10.1016/j.jad.2014.10.004.

Genome Wide Association Study Identifies Variants in *NBEA* Associated with Migraine in Bipolar Disorder

Kaya K. Jacobsen^{a,b,c}, Caroline M. Nievergelt^d, Tetyana Zayats^{a,b,c}, Tiffany A. Greenwood^d, Verneri Anttila^{e,f,g}, BiGS Consortium, Hagop S. Akiskal^{d,h}, IHG Consortium, Jan Haavik^{a,c,i}, Ole Bernt Fasmer^{c,i,j}, John R. Kelsoe^{d,h}, Stefan Johansson^{a,b,c,k}, and Ketil J. Oedegaard^{c,i,j}

^aDepartment of Biomedicine, University of Bergen, Norway ^bCenter for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway ^cK. G. Jebsen Center for Research on Neuropsychiatric Disorders, University of Bergen, Norway ^dDepartment of Psychiatry, University of California San Diego, USA ^eAnalytical and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA ^fProgram in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA ^gInstitute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland ^hDepartment of Psychiatry, VA Hospital, San Diego, USA ⁱDivision of Psychiatry, Haukeland University Hospital, Bergen, Norway ^JDepartment of Clinical Medicine, Section for Psychiatry, Faculty of Medicine and Dentistry, University of Bergen, Norway ^kDepartment of Clinical Science, University of Bergen, Norway

Abstract

Background—Migraine is a common comorbidity among individuals with bipolar disorder, but the underlying mechanisms for this co-occurrence are poorly understood. The aim of this study was to investigate the genetic background of bipolar patients with and without migraine.

Methods—We performed a genome-wide association analysis contrasting 460 bipolar migraneurs with 914 bipolar patients without migraine from the Bipolar Genome Study (BiGS).

Results—We identified one genome-wide significant association between migraine in bipolar disorder patients and rs1160720, an intronic single nucleotide polymorphism (SNP) in the *NBEA* gene ($P=2.97\times10^{-8}$, OR: 1.82, 95% CI: 1.47-2.25), although this was not replicated in a smaller sample of 289 migraine cases.

Limitations—Our study is based on self-reported migraine.

Corresponding author: Kaya Kvarme Jacobsen, kja098@biomed.uib.no.

Conflicts of interest: None of the authors report any conflict of interest.

Contributions: The co-authors contributed in the following manner: JRK, HSA, SJ and KJOe designed and conceived the project. KKJ, TZ, CMN, TAG and SJ provided methodological expertise. KKJ performed the statistical analyses. HSA, JRK and the BiGs consortium collected the BiGS data. VA and the IHGC collected the IHGC data. OBF, JH, JRK and KJOe defined and interpreted the clinical information included. KK, SJ and KJOe wrote the manuscript. All authors reviewed, edited and approved the manuscript.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conclusions—*NBEA* encodes neurobeachin, a scaffolding protein primarily expressed in the brain and involved in trafficking of vesicles containing neurotransmitter receptors. This locus has not previously been implicated in migraine per se. We found no evidence of association in data from the GWAS migraine meta-analysis consortium (n=118 710 participants) suggesting that the association might be specific to migraine co-morbid with bipolar disorder.

Keywords

Bipolar disorder; migraine; genetics; NBEA; neurobeachin

Introduction

Migraine is a common neurological disorder, affecting approximately 12-15% of populations of European ancestry and costing close to \$ 20 billion in the United States and € 27 billion in Europe each year (Andlin Sobocki et al., 2005; Holland et al., 2012). Among neurological disorders, it accounts for the greatest number of years lived with disability (YLDs), ranking eighth among all human disorders (Vos et al., 2012). Migraine is 3-4 times more common in women, and its estimated heritability is between 40% and 65% (Anttila et al., 2008; Holland et al., 2012; Schürks et al., 2010). The diagnosis of common migraine includes recurrent attacks of disabling unilateral headaches along with nausea, vomiting, photo- and phonophobia, and about 20-30 % have accompanying aura symptoms (Freilinger et al., 2012; Holland et al., 2012).

Mendelian forms of familial hemiplegic migraine (FHM) are rare. Most are caused by mutations in the *CACNA1A*, *ATP1A2* and *SCN1A* genes (Di Lorenzo et al., 2012). Non-familial migraine is perceived to be polygenic, with considerable diversity regarding both the number as well as the severity and duration of attacks (Maher and Griffiths, 2011). Linkage and candidate gene studies of non-familial migraine have yielded few replicable results. Recently, genome wide association studies (GWAS) have provided new insights into the disorder, with several associated genes such as the ion channel gene *TRPM8* (Chasman et al., 2011; Di Lorenzo et al., 2012; Freilinger et al., 2012; Maher and Griffiths, 2011), as well as *FHL5*, *ASTN2* and *LRP1* (Anttila et al., 2013).

Bipolar disorder (BPD) has a prevalence of about 1% and a heritability close to 60% (Oedegaard et al., 2010). BPD has a high socioeconomic impact and is the sixth most common cause of YLDs within neurological disorders (Vos et al., 2012). Sufferers of BPD experience periods of elevated and lowered mood in a cyclic pattern, sometimes peaking in full-blown mania and psychosis or severe depression (Chen et al., 2013; Holland and Agius, 2011; Lee et al., 2012). A comprehensive meta-analysis of candidate gene studies in BPD by Seifuddin et al. did not confirm consistent association with any of the genes examined (Seifuddin et al., 2012). GWAS analyses of BPD have pointed to *CACNA1C*, *ZNF804A*, *NCAN*, *ODZ* and *ANK3* as strong candidates, with replication across several studies (Green et al., 2012; Lee et al., 2012; Offord, 2012). In addition, numerous other genes have also been found to be significant in one of the studies of BPD, but, so far, failed to replicate (Green et al., 2012; Lee et al., 2012; Offord, 2012).

Both clinical and population based studies have shown that the prevalence of migraine in patients with BPD is 2-3 times higher than in the overall population (Dilsaver et al., 2009; Hirschfeld et al., 2003; McIntyre et al., 2006). It has also been noted that migraine attacks are more frequent in sufferers of BPD compared to those of unipolar depression (Fasmer, 2001). In addition, BPD patients with migraine have earlier onset of bipolar symptoms, more comorbid anxiety, greater use of medical services, more medications and disability payments, and a lower rating of subjective health compared to bipolar patients without migraine (Mahmood et al., 1999; McIntyre et al., 2006). Both migraine and BPD can evolve from irregular occurrences into a drug resistant, more constant disorder, namely transformed migraine and rapid cycling BPD (Low et al., 2003). In addition, anti-epileptic drugs, such as valproate, are used to treat both migraine and BPD (Oedegaard et al., 2010); and both disorders have been linked to genes encoding ion channels in the serotonergic and glutamatergic neurotransmitter systems, including voltage gated calcium channels (Anttila et al., 2010; Freilinger et al., 2012; Oedegaard et al., 2010). These strong links between migraine and bipolar disorder, suggest either common etiology or co-morbid migraine as a sub-phenotype of bipolar disorder.

In this study, we aimed to search for genetic variants associated with increased risk for migraine in individuals with BPD through genome wide association analyses.

Materials and Methods

Subjects

Subjects for this study were derived from the Bipolar Genetics Study (BiGS) Consortium, collected as wave 5 of the National Institute of Mental Health (NIMH) Genetics Initiative for Bipolar Disorder. Wave 5 consists of bipolar I singletons and healthy controls genotyped in two phases by the Translational Genomics Institute (TGEN): TGEN1 and TGEN2. All bipolar patients were interviewed using the Diagnostic Interview for Genetic Studies (DIGS), which included questions regarding migraine. Questions about aura symptoms were not included in the DIGS. Controls for the BiGS, which were ascertained through a separate recruitment effort, did not answer these questions about migraine, and, thus, were excluded from association analyses (Sanders et al., 2010). The recruitment process and interviews are described in more detail in Greenwood et al (Greenwood and Kelsoe, 2013). Replication was attempted in the bipolar I sample that was genotyped as part of the Genetics Association Information Network (GAIN), and a part of the overall BiGS sample. All subjects were of European descent. Written informed consent was obtained for each subject following a detailed description of study participation in accordance with local Institutional Review Board protocols.

Genotyping and quality control

All subjects in both TGEN and GAIN were genotyped on the Affymetrix Genome-Wide Human SNP array 6.0 chip (Affymetrix Inc., Santa Clara, CA, USA), using the standard protocol. For details, see the two papers by Smith et al (Smith et al., 2009; 2011). Quality control (QC) thresholds were set to exclude individuals with > 5% failed genotypes and markers with less than 95% genotyping rate, minor allele frequency (MAF) below 1% and

out of Hardy-Weinberg Equilibrium (*P*-value < 0.0001). Additionally, individuals displaying heterozygosity rate outside the range of three standard deviations of the mean were also excluded. Identity by state (IBS) was used to identify cryptic relatedness. An X chromosome inbreeding estimate was applied to confirm gender. Genetic homogeneity of the sample was assured by multidimensional scaling (MDS). We did not find any batch effects between TGEN1 and TGEN2 when comparing the first three MDS components using a t-test, this is also shown in the three dimensional MDS-plot (Supplementary figure 1). Thus TGEN1 and TGEN2 were pooled for quality control analyses; GAIN was screened separately, except for identification of cryptic relatedness, which was done across all datasets combined. All genotype analyses were performed in PLINK version 1.07 (Purcell et al., 2007).

Statistical analyses and Imputation

Genome-wide association was tested using logistic regression with an additive genetic model implemented in PLINK, with and without gender as a covariate. Manhattan-plots, MDS-plots and QQ-plots were generated in R-software (http://www.R-project.org). A genome wide significance level of 5×10^8 was chosen in accordance with recommended general GWAS significance thresholds and specific thresholds for the Affymetrix 6.0 chip (Dudbridge and Gusnanto, 2008; Li et al., 2012). Power calculations were done using the Genetic Power Calculator (Purcell et al., 2003). Imputation and statistical analyses of the top locus on chromosome 13 were performed using Impute2, GTOOL and PLINK, based on HapMap build 36 data (Freeman and Marchini, 2007; Howie et al., 2009; International HapMap Consortium, 2003). We applied the recommended cut-off for the 'info' confidence measure (0.3) and the default cut-off settings for the genotype probability (0.9) in Impute2 and GTOOL, and used the same model of logistic regression in PLINK as for the main analysis to assess association between migraine and the imputed SNPs. As the results showed no genomic inflation ($\lambda = 1.00$), we did not use any MDS-components in the regression analyses.

Replication in the GAIN sample

The GAIN sample, which is further described in our previous paper, contains information about both self-reported migraine and doctor-diagnosed migraine (Oedegaard et al., 2010). Doctor-diagnosed migraine phenotype was not available in the discovery TGEN sample; thus, self-reported migraine was used for replication. Logistic regression analysis of rs1160720 was performed in the same manner as in TGEN.

Evaluation of NBEA region in the International Headache Genetics Consortium (IHGC) sample

In order to evaluate the possible role of NBEA in migraine, and whether its association is more pronounced in migraine co-morbid with BPD or migraine in itself, we selected all genotyped and imputed SNPs with $P < 10^{-4}$ in the 5 Mb *NBEA* region and tested them in the GWAS meta-analysis of International Headache Genetics Consortium (IHGC) which included 23 285 migraine patients and 95 425 controls (Anttila et al., 2013). Association of

rs1160720 only was examined in all migraine cases as well as subgroups of migraine with and without aura. Data on bipolar co-morbidity was not available for this dataset.

Results

Initial discovery set: TGEN

In total, 1 411 bipolar disorder patients were available for the analyses. After excluding 15 heterozygosity outliers and 22 subjects due to cryptic relatedness, association was tested in a total of 460 bipolar migraineurs (mig⁺) and 914 bipolar patients without migraine (mig⁻). All individuals reported European-American ethnicity and there were no outliers in MDS analyses. There was a lower percentage of males among mig⁺ (23 %) compared to mig⁻ (41 %).

Overall, 723 224 SNPs remained for analyses after excluding 587 SNPs that failed HWE test and 182 789 with low genotyping rate or MAF below 1%. A QQ plot shows an excess of strong associations, without any genomic inflation (Fig. 1). Figure 2 represents the Manhattan plot of our results. All loci with *P*-value less than 1×10^{-4} are reported in Table 1. We found one genome-wide significant SNP, rs1160720 ($P = 2.97 \times 10^{-8}$, OR = 1.82, 95% confidence interval (CI) = 1.47-2.25) in the Neurobeachin (*NBEA*) gene on chromosome 13 (Fig. 3). The results remained similar, albeit slightly weaker, when gender was included as a covariate in the model (OR = 1.76, 95% CI = 1.42-2.18, $P = 2.5 \times 10^{-7}$). Gender stratified analyses showed that the size and direction of effect were similar between males and females, with *P*-value of 2.77×10^{-6} (OR = 1.81, 95% CI = 1.41-2.33) in women compared to *P*-value of 0.03 (OR = 1.61, 95% CI = 1.05-2.48) in men.

Replication in a second bipolar sample: GAIN

After QC, the GAIN sample consisted of 289 mig⁺ and 697 mig⁻ individuals with bipolar disorder. This resulted in approximately 80 % power to nominally detect an OR > 1.3 from the primary study, given a minor allele frequency of 0.2. We found no evidence of an association between rs1160720 and self-reported migraine in this sample of bipolar patients (OR = 0.93, 95% CI = 0.72-1.20, P = 0.57).

Imputation of top locus

Imputation of the region spanning from 32 to 37 Mbp for the chromosome 13 *NBEA* locus resulted in a total of 1 618 imputed SNPs with 98.3% overall concordance cross validation. Figure 3 illustrates the results from the candidate region on chromosome 13 after imputation. One imputed SNP showed a marginally stronger association than the genotyped discovery variant ($P = 1.91 \times 10^{-8}$ and OR = 1.85 (95% CI = 1.49-2.29)). Both the imputed SNPs info measure (level of certainty of imputation) and average maximum posterior call were > 99%, indicating good quality of the imputation.

Evaluation of NBEA region in the IHGC sample

In the IHGC migraine GWAS meta-analysis, rs1160720 showed no association with migraine overall (P = 0.11, OR = 0.98, 95% CI = 0.95-1.01), migraine without aura (P = 0.74, OR = 0.99, 95% CI = 0.94-1.04), or migraine with aura (P = 0.02, OR = 0.93, 95% CI

= 0.88-0.99). None of the other examined top SNP yielded significant association with migraine in the IHGC sample (data not shown).

Discussion

Here, we present the results of a GWAS on migraine in bipolar disorder, culminating in a genome-wide significant association with the *NBEA* locus. The top SNP was rs1160720 (*P*-value 2.97×10^{-8} , OR = 1.82, 95% CI = 1.47-2.25), with several other SNPs in linkage disequilibrium (LD) showing a trend for association, including an imputed SNP with *P*-value of 1.91×10^{-8} .

Interestingly, our top hit, rs1160720, did not show any association with migraine (IHGC sample in this study) nor bipolar disorder itself (P = 0.19 in PGC meta-analysis, http:// www.broadinstitute.org/mpg/ricopili/). Thus, the only significant result noted in this study was that of NBEA and migraine among bipolar disorder patients. These observations may suggest possible etiological specificity of this gene to such combined phenotype, confirming our initial hypothesis of co-morbid migraine in BPD being a distinct syndrome with slightly different genetic risk factors than common migraine itself or isolated bipolar disorder.

NBEA is located on chromosome 13q13, and encodes two isoforms. It harbors another gene, *MAB21L1*, in intron 41 of the long isoform, that contains a fragile site (FRA13A) (Tsang et al., 2009). The top SNP of our analyses is located in a LD-region surrounding intron 36 of the long isoform of *NBEA*. *NBEA* encodes neurobeachin (NBEA), a BEACH (BEige And Chediak-Higashi) scaffolding protein primarily expressed in the brain (Lauks et al., 2012). Cellular studies show that NBEA is involved in trafficking of vesicles containing neurotransmitter receptors, specifically GABA and glutamate receptors (Lauks et al., 2012; Nair et al., 2013). In addition, it interacts with a glycine receptor in inhibitory neurons (del Pino et al., 2011). Changes in NBEA function due to partial or complete knockout of the gene cause functional and morphological alterations in neuronal spines and synapses (Medrihan et al., 2009; Niesmann et al., 2011). Nair et al showed that *Nbea^{-/-}* neurons have lower level of glutamate- and GABA receptors on their surface, and that these receptors accumulate at the post-Golgi site where *Nbea* would normally be located (Nair et al., 2013). In addition, *NBEA* has been linked to autism and autism symptoms (Castermans et al., 2003; Nuytens et al., 2013; Smith et al., 2002).

Studies on *MAB21L1* gene indicate a possible role in neurodevelopmental disorders, probably due to expansion of CAG repeats, which could also influence *NBEA* (Meira-Lima et al., 2001). However, the close proximity makes it difficult to separate effects of the two genes (Cullinane et al., 2013; Tsang et al., 2009). Moreover, the identified associated region is also physically close to *DCLK1*, a gene which has been implemented in neurodevelopment, vesicle transport, verbal memory, schizophrenia and attention deficit/ hyperactivity disorder (ADHD) (Håvik et al., 2012; Smith et al., 2002). However, there is a recombination hot spot between *NBEA* and *DCLK1*, and we found no LD between a previously reported significant SNP in *DCLK1* and our top hit ($r^2 = 0.001$ and D'=0.035). Thus, it is unlikely that these associations represent the same signal.

Migraine aura is thought to be caused by cortical spreading depression, a wave of neuronal depolarization or hyperexcitability followed by a period of decreased neuronal activity(Cutrer and Smith, 2013; Stuart et al., 2012). The exact cause of cortical spreading depression is not known, but a disturbance of glutamate homeostasis in the brain is thought to be involved (Lighart et al., 2011). Previous GWA studies in migraine have found an association with genes of the glutamatergic system, including MTDH, which in turn regulates SLC1A2, a major glutamate transporter in the brain (Anttila et al., 2010; Ligthart et al., 2011). The glutamate system is also associated with bipolar disorder through several studies, such as genetic association, abnormal mRNA expression and increased glutamate levels in magnetic resonance spectroscopy (Cherlyn et al., 2010; Gigante et al., 2012). Notably, Sklar et al found an association between bipolar disorder and MYO5B, which encodes a vesicle transportation protein involved in the trafficking of glutamate receptors (Lisé et al., 2006; Sklar et al., 2008). Based on the knowledge that glutamate is important in both disorders studied, it is striking that our top SNP is located in a gene with such direct involvement in the glutamatergic system. Thus, we may hypothesize that NBEA-caused disturbances of this system might lead to the development of a specific bipolar disorder subphenotype, represented by its co-occurrence with migraine.

Limitations

Our study should be viewed in the light of some limitations. First it is based on self-reported migraine, while the gold standard is a physician diagnosis. Nonetheless, Schürks et al. verified doctor-diagnosed migraine in more than 87% of women with self-reported migraine, indicating a high validity of such records (Schürks et al., 2009). Still, we must assume a certain level of phenotypic heterogeneity in our sample, which affects both the power within our study and the chances of replication in samples with stricter diagnostic criteria, such as the IHGC. Secondly, we unfortunately did not have access to bipolar comorbidity information in the IHGC migraine meta-analysis sample, and thus, could not test for a putative interaction with bipolar diagnosis. The data however, clearly show that the NBEA-locus is not associated with common migraine. The similar allele frequency of rs1160720 across the samples without the combination of bipolar disorder and migraine (Table 2) support the notion that *NBEA* is not a major risk factor for either bipolar disorder or migraine, but that it is a risk factor for a specific bipolar disorder phenotype, where comorbid migraine is one of the features. Such a hypothesis is in line with the epidemiological findings of a more severe phenotype among bipolar patients with migraine.

Thirdly, although the results in the current study are at the whole genome significance level, we were not able to replicate our top hit in the smaller GAIN sample. This could indicate that the true effect size is considerably over-estimated in the TGEN sample (i.e. "winner's curse") and this would consequently lead to an over estimation of our power to replicate rs1160720 in GAIN sample. Despite TGEN and GAIN being by far the largest published GWAS collections of bipolar patients with information on co-morbid migraine, they may be considered small compared to most GWA studies performed to date and the divergent findings show that much larger samples are needed. One could also be concerned about the validity of the genotyping, however the QC, including Hardy-Weinberg equilibrium tests in both cases and controls, and the strong LD-structure with support from several other SNPs

in close vicinity does not support genotype error as a cause of false association. Furthermore, there might be clinical differences between the samples, as they have been collected with slightly different recruitment strategies.

Conclusion

We report a genome-wide significant association between a SNP in *NBEA* and risk of migraine among individuals with BPD. In contrast, there was no association observed between this variant and common migraine nor BPD itself. Thus, a shared genetic component between these two disorders within a specific subgroup of patients may be hypothesized. The likely involvement of NBEA gene in both migraine and BPD highlights the role of the glutamatergic system as a putative pathway leading to the development of comorbid migraine and BPD (Cherlyn et al., 2010; Ligthart et al., 2011).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank the participants in the study, without whom this work would not be possible.

Data and biomaterials were collected in four projects that participated in the National Institute of Mental Health (NIMH) Bipolar Disorder Genetics Initiative. From 1991-98, the Principal Investigators and Co-Investigators were: Indiana University, Indianapolis, IN, U01 MH46282, John Nurnberger, M.D., Ph.D., Marvin Miller, M.D., and Elizabeth Bowman, M.D.; Washington University, St. Louis, MO, U01 MH46280, Theodore Reich, M.D., Allison Goate, Ph.D., and John Rice, Ph.D.; Johns Hopkins University, Baltimore, MD U01 MH46274, J. Raymond DePaulo, Jr., M.D., Sylvia Simpson, M.D., MPH, and Colin Stine, Ph.D.; NIMH Intramural Research Program, Clinical Neurogenetics Branch, Bethesda, MD, Elliot Gershon, M.D., Diane Kazuba, B.A., and Elizabeth Maxwell, M.S.W.

Data and biomaterials were collected as part of ten projects that participated in the National Institute of Mental Health (NIMH) Bipolar Disorder Genetics Initiative. From 1999-2007, the Principal Investigators and Co-Investigators were: Indiana University, Indianapolis, IN, R01 MH59545, John Nurnberger, M.D., Ph.D., Marvin J. Miller, M.D., Elizabeth S. Bowman, M.D., N. Leela Rau, M.D., P. Ryan Moe, M.D., Nalini Samavedy, M.D., Rif El-Mallakh, M.D. (at University of Louisville), Husseini Manji, M.D. (at Wayne State University), Debra A. Glitz, M.D. (at Wayne State University), Eric T. Meyer, M.S., Carrie Smiley, R.N., Tatiana Foroud, Ph.D., Leah Flury, M.S., Danielle M. Dick, Ph.D., Howard Edenberg, Ph.D.; Washington University, St. Louis, MO, R01 MH059534, John Rice, Ph.D, Theodore Reich, M.D., Allison Goate, Ph.D., Laura Bierut, M.D.; JohnsHopkins University, Baltimore, MD, R01 MH59533, Melvin McInnis M.D., J. Raymond DePaulo, Jr., M.D., Dean F. MacKinnon, M.D., Francis M. Mondimore, M.D., James B. Potash, M.D., Peter P. Zandi, Ph.D, Dimitrios Avramopoulos, and Jennifer Payne; University of Pennsylvania, PA, R01 MH59553, Wade Berrettini M.D., Ph.D.; University of California at Irvine, CA, R01 MH60068, William Byerley M.D., and Mark Vawter M.D.; University of Iowa, IA, R01 MH059548, William Coryell M.D., and Raymond Crowe M.D.; University of Chicago, IL, R01 MH59535. Elliot Gershon, M.D., Judith Badner Ph.D., Francis McMahon M.D., Chunyu Liu Ph.D., Alan Sanders M.D., Maria Caserta, Steven Dinwiddie M.D., Tu Nguyen, Donna Harakal; University of California at San Diego, CA, R01 MH59567, John Kelsoe, M.D., Rebecca McKinney, B.A.; Rush University, IL, R01 MH059556, William Scheftner M.D., Howard M. Kravitz, D.O., M.P.H., Diana Marta, B.S., Annette Vaughn-Brown, MSN, RN, and Laurie Bederow, MA; NIMH Intramural Research Program, Bethesda, MD, 1Z01MH002810-01, Francis J. McMahon, M.D., Layla Kassem, PsyD, Sevilla Detera-Wadleigh, Ph.D, Lisa Austin, Ph.D, Dennis L. Murphy, M.D.

Håkon Gjessing is thanked for providing help with QQ-plotting.

Dale Nyholt is thanked for his help with statistical methods.

Funding bodies: Bergen: The Kristian Gerhard Jebsen Foundation and University of Bergen, Norway

Author Manuscript

San Diego: This work was supported by grants to JRK from the NIMH and NHGRI (MH68503, MH078151, MH081804, MH059567 supplement) and by the Genetic Association Information Network (GAIN) and the UCSD General Clinical Research Center (M01 RR00827). CMN was supported by R01 MH093500 and U01 MH092758, TAG was funded by K01 MH087889.

AUTHOR DISCLOSURES & CONTRIBUTIONS

BiGS Consortium Co-Authors include: John R. Kelsoe, Tiffany A. Greenwood, Caroline M. Nievergelt, Rebecca McKinney, Paul D. Shilling, Erin N. Smith, – University of California, San Diego, CA, USA;

Nicholas J. Schork, Cinnamon S. Bloss - Scripps Translational Science Institute, La Jolla, CA, USA;

John I. Nurnberger, Jr., Howard J. Edenberg, Tatiana Foroud, Daniel L. Koller - Indiana University, Indianapolis, IN, USA;

Elliot S. Gershon, Judith A. Badner - University of Chicago, Chicago, IL, USA;

Chunyu Liu, University of Illinois at Chicago, Chicago, IL, USA;

William A. Scheftner - Rush University Medical Center, Chicago, IL, USA;

William B. Lawson, Evaristus A. Nwulia, Maria Hipolito - Howard University, Washington, D.C., USA;

James Potash, William Coryell – University of Iowa, Iowa City, IA, USA;

John Rice - Washington University, St. Louis, MO, USA;

William Byerley - University of California, San Francisco, CA, USA;

Francis J. McMahon, - National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA;

Wade H. Berrettini - University of Pennsylvania, Philadelphia, PA, USA;

Peter P. Zandi, Pamela B. Mahon - Johns Hopkins School of Medicine, Baltimore, MD, USA;

Melvin G. McInnis, Sebastian Zöllner, Peng Zhang - University of Michigan, Ann Arbor, MI, USA;

David W. Craig, Szabolics Szelinger - The Translational Genomics Research Institute, Phoenix, AZ, USA;

Thomas B. Barrett – Portland Veterans Affairs Medical Center, Portland, OR, USA Thomas G. Schulze - Georg-August-University Göttingen, Germany

IHG Consortium Co-Authors include: Juho Wedenoja, Mari A Kaunisto, Kauko Heikkilä, Jaakko Kaprio, Maija Wessman - University of Helsinki, Helsinki, Finland;

Mikko Kallela, Markus Färkkilä, Ville Artto - Helsinki University Central Hospital, Helsinki, Finland;

Arpo Aromaa, Johan G Eriksson - National Institute for Health and Welfare, Helsinki, Finland;

Bendik S Winsvold, John-Anker Zwart - University of Oslo, Oslo, Norway;

Padhraig Gormley, Aarno Palotie - Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK;

Tobias Kurth, Lynda M Rose, Julie E Buring, Paul M Ridker, Daniel I Chasman - Harvard Medical School, Boston, MA, USA;

Francesco Bettella, Stacy Steinberg, Hreinn Stefansson, Kari Stefansson - deCODE Genetics, Reykjavik, Iceland;

George McMahon, George Davey-Smith - University of Bristol, Bristol, UK;

Rainer Malik, Tobias Freilinger, Heinz Erich Wichmann, Martin Dichgans - Ludwig-Maximilians-Universität, Munich, Germany;

Bertram Muller-Myhsok - Max Planck Institute of Psychiatry, Munich, Germany Thomas Meitinger - Technische Universität München, Munich, Germany;

Boukje de Vries, Gisela Terwindt, Anine H Stam, Rune R Frants, Nadine Pelzer, Claudia M Weller, Ronald Zielman, Michel D Ferrari, Arn M J M van den Maagdenberg - Leiden University Medical Centre, Leiden, The Netherlands;

Sarah E Medland, Grant W Montgomery, Nicholas G Martin, Dale R Nyholt -Queensland Institute of Medical Research, Brisbane, Queensland, Australia;

Unda Todt, Guntram Borck, Christian Kubisch - University of Ulm, Ulm, Germany Lydia Quaye, Frances M K Williams, Lynn Cherkas - King's College London, London, UK;

Markku Koiranen, Anna-Liisa Hartikainen, Anneli Pouta, Marjo-Riitta Jarvelin -University of Oulu, Oulu, Finland;

M Arfan Ikram, Joyce van den Ende, Andre G Uitterlinden, Albert Hofman, Najaf Amin, Cornelia van Duijn - Erasmus University Medical Centre, Rotterdam, The Netherlands;

Terho Lehtimäki - Fimlab Laboratories and University of Tampere School of Medicine, Tampere, Finland;

Lannie Ligthart, Jouke-Jan Hottenga, Jacqueline M Vink, Brenda W Penninx, Dorret I Boomsma - VU University Medical Centre, Amsterdam;

Markus Schürks - University Hospital Essen, Essen, Germany;

Finnbogi Jakobsson - Landspitali University Hospital, Reykjavik, Iceland;

Jean Schoenen - Liège University, Liège, Belgium;

Andrew C Heath, Pamela A F Madden - Washington University School of Medicine, St. Louis, MO, USA;

Hartmut Göbel, Axel Heinze, Katja Heinze-Kuhn - Kiel Pain and Headache Center, Kiel, Germany;

Stefan Schreiber - Christian Albrechts University, Kiel, Germany;

Verneri Anttila, Mark J Daly - Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA;

Michael Alexander - University of Bonn, Bonn, Germany;

Olli Raitakari - Turku University Hospital, Turku, Finland;

David P Strachan - University of London, London, UK.

References

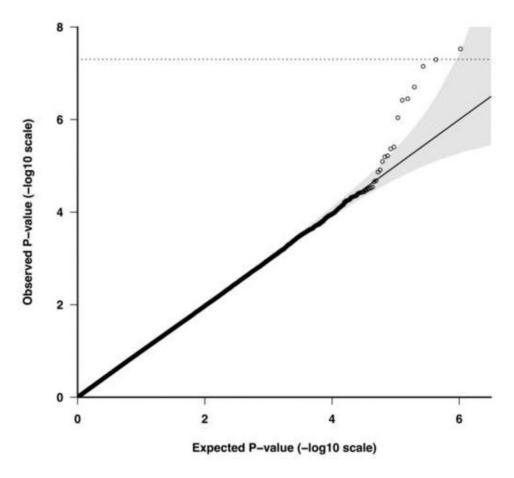
- Alliey-Rodriguez N, Zhang D, Badner JA, Lahey BB, Zhang X, Dinwiddie S, Romanos B, Plenys N, Liu C, Gershon ES. Genome-wide association study of personality traits in bipolar patients. Psychiatr Genet. 2011; 21:190–194. [PubMed: 21368711]
- Andlin Sobocki P, Jönsson B, Wittchen HU, Olesen J. Cost of disorders of the brain in Europe. Eur J Neurol. 2005; 12:1–27. [PubMed: 15877774]
- Anttila V, Nyholt DR, Kallela M, Artto V, Vepsäläinen S, Jakkula E, Wennerström A, Tikka-Kleemola P, Kaunisto MA, Hämäläinen E, Widén E, Terwilliger J, Merikangas K, Montgomery GW, Martin NG, Daly M, Kaprio J, Peltonen L, Färkkilä M, Wessman M, Palotie A. Consistently replicating locus linked to migraine on 10q22-q23. Am J Hum Genet. 2008; 82:1051–1063. [PubMed: 18423523]
- Anttila V, Stefansson H, Kallela M, Todt U, Terwindt GM, Calafato MS, Nyholt DR, Dimas AS, Freilinger T, Müller-Myhsok B, Artto V, Inouye M, Alakurtti K, Kaunisto MA, Hämäläinen E, de Vries B, Stam AH, Weller CM, Heinze A, Heinze-Kuhn K, Goebel I, Borck G, Göbel H, Steinberg S, Wolf C, Björnsson A, Gudmundsson G, Kirchmann M, Hauge A, Werge T, Schoenen J, Eriksson JG, Hagen K, Stovner L, Wichmann HE, Meitinger T, Alexander M, Moebus S, Schreiber S, Aulchenko YS, Breteler MMB, Uitterlinden AG, Hofman A, van Duijn CM, Tikka-Kleemola P, Vepsäläinen S, Lucae S, Tozzi F, Muglia P, Barrett J, Kaprio J, Färkkilä M, Peltonen L, Stefansson K, Zwart JA, Ferrari MD, Olesen J, Daly M, Wessman M, van den Maagdenberg AMJM, Dichgans M, Kubisch C, Dermitzakis ET, Frants RR, Palotie A, International Headache Genetics Consortium. Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet. 2010; 42:869–873. [PubMed: 20802479]
- Anttila V, Winsvold BS, Gormley P, Kurth T, Bettella F, McMahon G, Kallela M, Malik R, de Vries B, Terwindt G, Medland SE, Todt U, McArdle WL, Quaye L, Koiranen M, Ikram MA, Lehtimäki T, Stam AH, Ligthart L, Wedenoja J, Dunham I, Neale BM, Palta P, Hamalainen E, Schürks M, Rose LM, Buring JE, Ridker PM, Steinberg S, Stefansson H, Jakobsson F, Lawlor DA, Evans DM, Ring SM, Färkkilä M, Artto V, Kaunisto MA, Freilinger T, Schoenen J, Frants RR, Pelzer N, Weller CM, Zielman R, Heath AC, Madden PAF, Montgomery GW, Martin NG, Borck G, Göbel H, Heinze A, Heinze-Kuhn K, Williams FMK, Hartikainen AL, Pouta A, van den Ende J, Uitterlinden AG, Hofman A, Amin N, Hottenga JJ, Vink JM, Heikkilä K, Alexander M, Muller-Myhsok B, Schreiber S, Meitinger T, Wichmann HE, Aromaa A, Eriksson JG, Traynor BJ, Trabzuni D, Rossin E, Lage K, Jacobs SBR, Gibbs JR, Birney E, Kaprio J, Penninx BW, Boomsma DI, van Duijn C, Raitakari O, Jarvelin MR, Zwart JA, Cherkas L, Strachan DP, Kubisch C, Ferrari MD, van den Maagdenberg AMJM, Dichgans M, Wessman M, Smith GD, Stefansson K, Daly MJ,

Nyholt DR, Chasman DI, Palotie A, North American Brain Expression Consortium, UK Brain Expression Consortium, International Headache Genetics Consortium. Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat Genet. 2013; 45:912–917. [PubMed: 23793025]

- Bedford L, Hay D, Devoy A, Paine S, Powe DG, Seth R, Gray T, Topham I, Fone K, Rezvani N, Mee M, Soane T, Layfield R, Sheppard PW, Ebendal T, Usoskin D, Lowe J, Mayer RJ. Depletion of 26S Proteasomes in Mouse Brain Neurons Causes Neurodegeneration and Lewy-Like Inclusions Resembling Human Pale Bodies. Journal of Neuroscience. 2008; 28:8189–8198. [PubMed: 18701681]
- Castermans D, Wilquet V, Parthoens E, Huysmans C, Steyaert J, Swinnen L, Fryns JP, Van de Ven W, Devriendt K. The neurobeachin gene is disrupted by a translocation in a patient with idiopathic autism. J Med Genet. 2003; 40:352–356. [PubMed: 12746398]
- Chasman DI, Schürks M, Anttila V, de Vries B, Schminke U, Launer LJ, Terwindt GM, van den Maagdenberg AMJM, Fendrich K, Völzke H, Ernst F, Griffiths LR, Buring JE, Kallela M, Freilinger T, Kubisch C, Ridker PM, Palotie A, Ferrari MD, Hoffmann W, Zee RYL, Kurth T. Genome-wide association study reveals three susceptibility loci for common migraine in the general population. Nat Genet. 2011; 43:695–698. [PubMed: 21666692]
- Chen DT, Jiang X, Akula N, Shugart YY, Wendland JR, Steele CJM, Kassem L, Park JH, Chatterjee N, Jamain S, Cheng A, Leboyer M, Muglia P, Schulze TG, Cichon S, Nöthen MM, Rietschel M, BiGS. McMahon FJ, Kelsoe JR, Greenwood TA, Nievergelt CM, McKinney R, Shilling PD, Schork NJ, Smith EN, Bloss CS, Nurnberger JI, Edenberg HJ, Foroud T, Koller DL, Gershon ES, Liu C, Badner JA, Scheftner WA, Lawson WB, Nwulia EA, Hipolito M, Coryell W, Rice J, Byerley W, McMahon FJ, Chen DT, Berrettini WH, Potash JB, Zandi PP, Mahon PB, McInnis MG, Zöllner S, Zhang P, Craig DW, Szelinger S, Barrett TB, Schulze TG. Genome-wide association study meta-analysis of European and Asian-ancestry samples identifies three novel loci associated with bipolar disorder. Mol Psychiatry. 2013; 18:195–205. [PubMed: 22182935]
- Cherlyn SYT, Woon PS, Liu JJ, Ong WY, Tsai GC, Sim K. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: A decade of advance. Neuroscience and biobehavioral reviews. 2010; 34:958–977. [PubMed: 20060416]
- Cullinane AR, Schäffer AA, Huizing M. The BEACH is hot: a LYST of emerging roles for BEACHdomain containing proteins in human disease. Traffic. 2013; 14:749–766. [PubMed: 23521701]
- Cutrer FM, Smith JH. Human studies in the pathophysiology of migraine: genetics and functional neuroimaging. Headache. 2013; 53:401–412. [PubMed: 23278104]
- del Pino I, Paarmann I, Karas M, Kilimann MW, Betz H. The trafficking proteins Vacuolar Protein Sorting 35 and Neurobeachin interact with the glycine receptor β-subunit. Biochemical and Biophysical Research Communications. 2011; 412:435–440. [PubMed: 21821005]
- Di Lorenzo C, Grieco GS, Santorelli FM. Migraine headache: a review of the molecular genetics of a common disorder. J Headache Pain. 2012; 13:571–580. [PubMed: 22940869]
- Dilsaver SC, Benazzi F, Oedegaard KJ, Fasmer OB, Akiskal HS. Is a family history of bipolar disorder a risk factor for migraine among affectively ill patients? Psychopathology. 2009; 42:119–123. [PubMed: 19246955]
- Dudbridge F, Gusnanto A. Estimation of significance thresholds for genomewide association scans. Genet Epidemiol. 2008; 32:227–234. [PubMed: 18300295]
- Fasmer OB. The prevalence of migraine in patients with bipolar and unipolar affective disorders. Cephalalgia. 2001; 21:894–899. [PubMed: 11903283]
- Freeman, C.; Marchini, J., editors. [accessed 8.23.13] GTOOL URL. 2007. http://www.well.ox.ac.uk/ ~cfreeman/software/gwas/gtool.html
- Freilinger T, Anttila V, de Vries B, Malik R, Kallela M, Terwindt GM, Pozo-Rosich P, Winsvold B, Nyholt DR, van Oosterhout WPJ, Artto V, Todt U, Hämäläinen E, Fernández-Morales J, Louter MA, Kaunisto MA, Schoenen J, Raitakari O, Lehtimäki T, Vila-Pueyo M, Göbel H, Wichmann E, Sintas C, Uitterlinden AG, Hofman A, Rivadeneira F, Heinze A, Tronvik E, van Duijn CM, Kaprio J, Cormand B, Wessman M, Frants RR, Meitinger T, Müller-Myhsok B, Zwart JA, Färkkilä M, Macaya A, Ferrari MD, Kubisch C, Palotie A, Dichgans M, van den Maagdenberg AMJM, International Headache Genetics Consortium. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet. 2012; 44:777–782. [PubMed: 22683712]

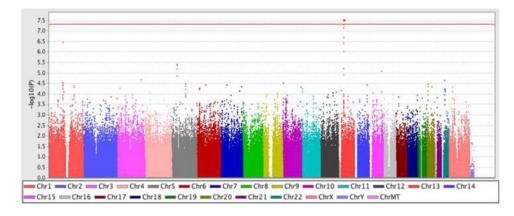
- Gigante AD, Bond DJ, Lafer B, Lam RW, Young LT, Yatham LN. Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord. 2012; 14:478–487. [PubMed: 22834460]
- Green EK, Hamshere M, Forty L, Gordon-Smith K, Fraser C, Russell E, Grozeva D, Kirov G, Holmans P, Moran JL, Purcell S, Sklar P, Owen MJ, Donovan MCOA, Jones L, WTCCC, Jones IR, Craddock N. Replication of bipolar disorder susceptibility alleles and identification of two novel genome-wide significant associations in a new bipolar disorder case–control sample. Mol Psychiatry. 2012:1–6. [PubMed: 21483438]
- Greenwood TA, Kelsoe JR. Genome-wide association study of irritable vs. elated mania suggests genetic differences between clinical subtypes of bipolar disorder. PLoS ONE. 2013
- Håvik B, Degenhardt FA, Johansson S, Fernandes CPD, Hinney A, Scherag A, Lybæk H, Djurovic S, Christoforou A, Ersland KM, Giddaluru S, O'donovan MC, Owen MJ, Craddock N, Mühleisen TW, Mattheisen M, Schimmelmann BG, Renner T, Warnke A, Herpertz-Dahlmann B, Sinzig J, Albayrak Ö, Rietschel M, Nöthen MM, Bramham CR, Werge T, Hebebrand J, Haavik J, Andreassen OA, Cichon S, Steen VM, Le Hellard S. DCLK1 variants are associated across schizophrenia and attention deficit/hyperactivity disorder. PLoS ONE. 2012; 7:e35424. [PubMed: 22539971]
- Hirschfeld RMA, Calabrese JR, Weissman MM, Reed M, Davies MA, Frye MA, Keck PE, Lewis L, McElroy SL, McNulty JP, Wagner KD. Screening for bipolar disorder in the community. J Clin Psychiatry. 2003; 64:53–59. [PubMed: 12590624]
- Holland J, Agius M. Neurobiology of bipolar disorder lessons from migraine disorders. Psychiatr Danub. 2011; 23(Suppl 1):S162–5. [PubMed: 21894127]
- Holland PR, Akerman S, Andreou AP, Karsan N, Wemmie JA, Goadsby PJ. Acid-sensing ion channel 1: A novel therapeutic target for migraine with aura. Ann Neurol. 2012; 72:559–563. [PubMed: 23109150]
- Howie BN, Donnelly P, Marchini J. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLoS Genet. 2009; 5:e1000529. [PubMed: 19543373]
- International HapMap Consortium. The International HapMap Project. Nature. 2003; 426:789–796. [PubMed: 14685227]
- Kasperaviciute D, Catarino CB, Heinzen EL, Depondt C, Cavalleri GL, Caboclo LO, Tate SK, Jamnadas-Khoda J, Chinthapalli K, Clayton LMS, Shianna KV, Radtke RA, Mikati MA, Gallentine WB, Husain AM, Alhusaini S, Leppert D, Middleton LT, Gibson RA, Johnson MR, Matthews PM, Hosford D, Heuser K, Amos L, Ortega M, Zumsteg D, Wieser HG, Steinhoff BJ, Kramer G, Hansen J, Dorn T, Kantanen AM, Gjerstad L, Peuralinna T, Hernandez DG, Eriksson KJ, Kalviainen RK, Doherty CP, Wood NW, Pandolfo M, Duncan JS, Sander JW, Delanty N, Goldstein DB, Sisodiya SM. Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study. Brain. 2010; 133:2136–2147. [PubMed: 20522523]
- Lauks J, Klemmer P, Farzana F, Karupothula R, Zalm R, Cooke NE, Li KW, Smit AB, Toonen R, Verhage M. Synapse associated protein 102 (SAP102) binds the C-terminal part of the scaffolding protein neurobeachin. PLoS ONE. 2012; 7:e39420. [PubMed: 22745750]
- Lee KW, Woon PS, Teo YY, Sim K. Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt? Neuroscience and biobehavioral reviews. 2012; 36:556–571. [PubMed: 21946175]
- Li MX, Yeung JMY, Cherny SS, Sham PC. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet. 2012; 131:747–756. [PubMed: 22143225]
- Ligthart L, de Vries B, Smith AV, Ikram MA, Amin N, Hottenga JJ, Koelewijn SC, Kattenberg VM, de Moor MHM, Janssens ACJW, Aulchenko YS, Oostra BA, de Geus EJC, Smit JH, Zitman FG, Uitterlinden AG, Hofman A, Willemsen G, Nyholt DR, Montgomery GW, Terwindt GM, Gudnason V, Penninx BWJH, Breteler M, Ferrari MD, Launer LJ, van Duijn CM, van den Maagdenberg AMJM, Boomsma DI. Meta-analysis of genome-wide association for migraine in six population-based European cohorts. Eur J Hum Genet. 2011; 19:901–907. [PubMed: 21448238]

- Lisé MF, Wong TP, Trinh A, Hines RM, Liu L, Kang R, Hines DJ, Lu J, Goldenring JR, Wang YT, El-Husseini A. Involvement of myosin Vb in glutamate receptor trafficking. J Biol Chem. 2006; 281:3669–3678. [PubMed: 16338934]
- Low NCP, Fort Du GG, Cervantes P. Prevalence, clinical correlates, and treatment of migraine in bipolar disorder. Headache. 2003; 43:940–949. [PubMed: 14511270]
- Maher BH, Griffiths LR. Identification of molecular genetic factors that influence migraine. Mol Genet Genomics. 2011; 285:433–446. [PubMed: 21519858]
- Mahmood T, Romans S, Silverstone T. Prevalence of migraine in bipolar disorder. J Affect Disord. 1999; 52:239–241. [PubMed: 10357039]
- McIntyre RS, Konarski JZ, Wilkins K, Bouffard B, Soczynska JK, Kennedy SH. The prevalence and impact of migraine headache in bipolar disorder: results from the Canadian Community Health Survey. Headache. 2006; 46:973–982. [PubMed: 16732843]
- Medrihan L, Rohlmann A, Fairless R, Andrae J, Döring M, Missler M, Zhang W, Kilimann MW. Neurobeachin, a protein implicated in membrane protein traffic and autism, is required for the formation and functioning of central synapses. The Journal of Physiology. 2009; 587:5095–5106. [PubMed: 19723784]
- Meira-Lima IV, Zhao J, Sham P, Pereira AC, Krieger JE, Vallada H. Association and linkage studies between bipolar affective disorder and the polymorphic CAG/CTG repeat loci ERDA1, SEF2-1B, MAB21L and KCNN3. Mol Psychiatry. 2001; 6:565–569. [PubMed: 11526470]
- Moskvina V, Craddock N, Holmans P, Nikolov I, Pahwa JS, Green E, Owen MJ, O'donovan MC. Gene-wide analyses of genome-wide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk. Mol Psychiatry. 2008; 14:252–260. [PubMed: 19065143]
- Nair R, Lauks J, Jung S, Cooke NE, de Wit H, Brose N, Kilimann MW, Verhage M, Rhee J. Neurobeachin regulates neurotransmitter receptor trafficking to synapses. J Cell Biol. 2013; 200:61–80. [PubMed: 23277425]
- Niesmann K, Breuer D, Brockhaus J, Born G, Wolff I, Reissner C, Kilimann MW, Rohlmann A, Missler M. Dendritic spine formation and synaptic function require neurobeachin. Nat Commun. 2011; 2:557. [PubMed: 22109531]
- Nuytens K, Gantois I, Stijnen P, Iscru E, Laeremans A, Serneels L, Van Eylen L, Liebhaber SA, Devriendt K, Balschun D, Arckens L, Creemers JWM, D'Hooge R. Haploinsufficiency of the autism candidate gene Neurobeachin induces autism-like behaviors and affects cellular and molecular processes of synaptic plasticity in mice. Neurobiol Dis. 2013; 51:144–151. [PubMed: 23153818]
- Oedegaard KJ, Greenwood TA, Johansson S, Jacobsen KK, Halmøy A, Fasmer OB, Akiskal HS, Bipolar Genome Study (BiGS). Haavik J, Kelsoe JR. A genome-wide association study of bipolar disorder and comorbid migraine. Genes Brain Behav. 2010; 9:673–680. [PubMed: 20528957]
- Offord J. Genetic approaches to a better understanding of bipolar disorder. Pharmacol Ther. 2012; 133:133–141. [PubMed: 22004838]
- Purcell S, Cherny SS, Sham PC. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics. 2003; 19:149–150. [PubMed: 12499305]
- Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, De Bakker PIW, Daly MJ, Sham PC. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81:559–575. [PubMed: 17701901]
- Sanders AR, Levinson DF, Duan J, Dennis JM, Li R, Kendler KS, Rice JP, Shi J, Mowry BJ, Amin F, Silverman JM, Buccola NG, Byerley WF, Black DW, Freedman R, Cloninger CR, Gejman PV. The Internet-based MGS2 control sample: self report of mental illness. The American journal of psychiatry. 2010; 167:854–865. [PubMed: 20516154]
- Schürks M, Buring JE, Kurth T. Agreement of self-reported migraine with ICHD-II criteria in the Women's Health Study. Cephalalgia. 2009; 29:1086–1090. [PubMed: 19735535]
- Schürks M, Rist PM, Kurth T. 5-HTTLPR polymorphism in the serotonin transporter gene and migraine: a systematic review and meta-analysis. Cephalalgia. 2010; 30:1296–1305. [PubMed: 20959425]

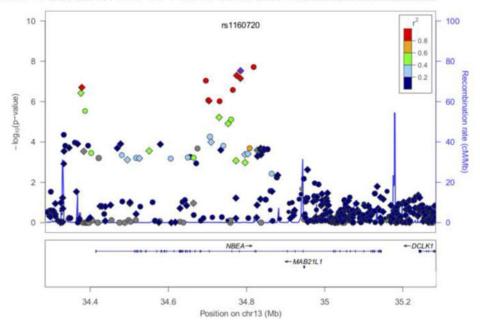

- Seifuddin F, Mahon PB, Judy J, Pirooznia M, Jancic D, Taylor J, Goes FS, Potash JB, Zandi PP. Metaanalysis of genetic association studies on bipolar disorder. Am J Med Genet. 2012; 159B:508–518. [PubMed: 22573399]
- Sklar P, Smoller JW, Fan J, Ferreira MAR, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A, de Bakker PIW, Ogdie MN, Thase ME, Sachs GS, Todd-Brown K, Gabriel SB, Sougnez C, Gates C, Blumenstiel B, Defelice M, Ardlie KG, Franklin J, Muir WJ, McGhee KA, Macintyre DJ, McLean A, VanBeck M, McQuillin A, Bass NJ, Robinson M, Lawrence J, Anjorin A, Curtis D, Scolnick EM, Daly MJ, Blackwood DH, Gurling HM, Purcell SM. Wholegenome association study of bipolar disorder. Mol Psychiatry. 2008; 13:558–569. [PubMed: 18317468]
- Smith EN, Bloss CS, Badner JA, Barrett T, Belmonte PL, Berrettini W, Byerley W, Coryell W, Craig D, Edenberg HJ, Eskin E, Foroud T, Gershon E, Greenwood TA, Hipolito M, Koller DL, Lawson WB, Liu C, Lohoff F, McInnis MG, McMahon FJ, Mirel DB, Murray SS, Nievergelt C, Nurnberger J, Nwulia EA, Paschall J, Potash JB, Rice J, Schulze TG, Scheftner W, Panganiban C, Zaitlen N, Zandi PP, Ilner SZO, Schork NJ, Kelsoe JR. Genome-wide association study of bipolar disorder in European American and African American individuals. Mol Psychiatry. 2009; 14:755–763. [PubMed: 19488044]
- Smith EN, Koller DL, Panganiban C, Szelinger S, Zhang P, Badner JA, Barrett TB, Berrettini WH, Bloss CS, Byerley W, Coryell W, Edenberg HJ, Foroud T, Gershon ES, Greenwood TA, Guo Y, Hipolito M, Keating BJ, Lawson WB, Liu C, Mahon PB, McInnis MG, McMahon FJ, McKinney R, Murray SS, Nievergelt CM, Nurnberger JI, Nwulia EA, Potash JB, Rice J, Schulze TG, Scheftner WA, Shilling PD, Zandi PP, Zöllner S, Craig DW, Schork NJ, Kelsoe JR. Genome-wide association of bipolar disorder suggests an enrichment of replicable associations in regions near genes. PLoS Genet. 2011; 7:e1002134. [PubMed: 21738484]
- Smith M, Woodroffe A, Smith R, Holguin S, Martinez J, Filipek PA, Modahl C, Moore B, Bocian ME, Mays L, Laulhere T, Flodman P, Spence MA. Molecular genetic delineation of a deletion of chromosome 13q12→q13 in a patient with autism and auditory processing deficits. Cytogenet Genome Res. 2002; 98:233–239. [PubMed: 12826745]
- Stuart S, Cox HC, Lea RA, Griffiths LR. The role of the MTHFR gene in migraine. Headache. 2012; 52:515–520. [PubMed: 22375693]
- Tsang WH, Shek KF, Lee TY, Chow KL. An evolutionarily conserved nested gene pair Mab21 and Lrba/Nbea in metazoan. Genomics. 2009; 94:177–187. [PubMed: 19482073]
- Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, Shibuya K, Salomon JA, Abdalla S, Aboyans V, Abraham J, Ackerman I, Aggarwal R, Ahn SY, Ali MK, Alvarado M, Anderson HR, Anderson LM, Andrews KG, Atkinson C, Baddour LM, Bahalim AN, Barker-Collo S, Barrero LH, Bartels DH, Basáñez MG, Baxter A, Bell ML, Benjamin EJ, Bennett D, Bernabé E, Bhalla K, Bhandari B, Bikbov B, Bin Abdulhak A, Birbeck G, Black JA, Blencowe H, Blore JD, Blyth F, Bolliger I, Bonaventure A, Boufous S, Bourne R, Boussinesq M, Braithwaite T, Brayne C, Bridgett L, Brooker S, Brooks P, Brugha TS, Bryan-Hancock C, Bucello C, Buchbinder R, Buckle G, Budke CM, Burch M, Burney P, Burstein R, Calabria B, Campbell B, Canter CE, Carabin H, Carapetis J, Carmona L, Cella C, Charlson F, Chen H, Cheng ATA, Chou D, Chugh SS, Coffeng LE, Colan SD, Colquhoun S, Colson KE, Condon J, Connor MD, Cooper LT, Corriere M, Cortinovis M, de Vaccaro KC, Couser W, Cowie BC, Criqui MH, Cross M, Dabhadkar KC, Dahiya M, Dahodwala N, Damsere-Derry J, Danaei G, Davis A, De Leo D, Degenhardt L, Dellavalle R, Delossantos A, Denenberg J, Derrett S, Jarlais Des DC, Dharmaratne SD, Dherani M, Diaz-Torne C, Dolk H, Dorsey ER, Driscoll T, Duber H, Ebel B, Edmond K, Elbaz A, Ali SE, Erskine H, Erwin PJ, Espindola P, Ewoigbokhan SE, Farzadfar F, Feigin V, Felson DT, Ferrari A, Ferri CP, Fèvre EM, Finucane MM, Flaxman S, Flood L, Foreman K, Forouzanfar MH, Fowkes FGR, Franklin R, Fransen M, Freeman MK, Gabbe BJ, Gabriel SE, Gakidou E, Ganatra HA, Garcia B, Gaspari F, Gillum RF, Gmel G, Gosselin R, Grainger R, Groeger J, Guillemin F, Gunnell D, Gupta R, Haagsma J, Hagan H, Halasa YA, Hall W, Haring D, Haro JM, Harrison JE, Havmoeller R, Hay RJ, Higashi H, Hill C, Hoen B, Hoffman H, Hotez PJ, Hoy D, Huang JJ, Ibeanusi SE, Jacobsen KH, James SL, Jarvis D, Jasrasaria R, Jayaraman S, Johns N, Jonas JB, Karthikeyan G, Kassebaum N, Kawakami N, Keren A, Khoo JP, King CH, Knowlton LM, Kobusingye O, Koranteng A, Krishnamurthi R, Lalloo R, Laslett LL, Lathlean T, Leasher JL, Lee YY, Leigh J, Lim SS, Limb E, Lin JK, Lipnick M, Lipshultz SE, Liu W, Loane

M, Ohno SL, Lyons R, Ma J, Mabweijano J, MacIntyre MF, Malekzadeh R, Mallinger L, Manivannan S, Marcenes W, March L, Margolis DJ, Marks GB, Marks R, Matsumori A, Matzopoulos R, Mayosi BM, McAnulty JH, McDermott MM, McGill N, McGrath J, Medina-Mora ME, Meltzer M, Mensah GA, Merriman TR, Meyer AC, Miglioli V, Miller M, Miller TR, Mitchell PB, Mocumbi AO, Moffitt TE, Mokdad AA, Monasta L, Montico M, Moradi-Lakeh M, Moran A, Morawska L, Mori R, Murdoch ME, Mwaniki MK, Naidoo K, Nair MN, Naldi L, Narayan KMV, Nelson PK, Nelson RG, Nevitt MC, Newton CR, Nolte S, Norman P, Norman R, O'Donnell M, O'Hanlon S, Olives C, Omer SB, Ortblad K, Osborne R, Ozgediz D, Page A, Pahari B, Pandian JD, Rivero AP, Patten SB, Pearce N, Padilla RP, Perez-Ruiz F, Perico N, Pesudovs K, Phillips D, Phillips MR, Pierce K, Pion S, Polanczyk GV, Polinder S, Pope CA, Popova S, Porrini E, Pourmalek F, Prince M, Pullan RL, Ramaiah KD, Ranganathan D, Razavi H, Regan M, Rehm JT, Rein DB, Remuzzi G, Richardson K, Rivara FP, Roberts T, Robinson C, De Leòn FR, Ronfani L, Room R, Rosenfeld LC, Rushton L, Sacco RL, Saha S, Sampson U, Sanchez-Riera L, Sanman E, Schwebel DC, Scott JG, Segui-Gomez M, Shahraz S, Shepard DS, Shin H, Shivakoti R, Singh D, Singh GM, Singh JA, Singleton J, Sleet DA, Sliwa K, Smith E, Smith JL, Stapelberg NJC, Steer A, Steiner T, Stolk WA, Stovner LJ, Sudfeld C, Syed S, Tamburlini G, Tavakkoli M, Taylor HR, Taylor JA, Taylor WJ, Thomas B, Thomson WM, Thurston GD, Tleyjeh IM, Tonelli M, Towbin JA, Truelsen T, Tsilimbaris MK, Ubeda C, Undurraga EA, van der Werf MJ, van Os J, Vavilala MS, Venketasubramanian N, Wang M, Wang W, Watt K, Weatherall DJ, Weinstock MA, Weintraub R, Weisskopf MG, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams SRM, Witt E, Wolfe F, Woolf AD, Wulf S, Yeh PH, Zaidi AKM, Zheng ZJ, Zonies D, Lopez AD, Murray CJL, AlMazroa MA, Memish ZA. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012; 380:2163-2196. [PubMed: 23245607]

Xu C, Aragam N, Li X, Villla EC, Wang L, Briones D, Petty L, Posada Y, Arana TB, Cruz G, Mao C, Camarillo C, Su BB, Escamilla MA, Wang K. BCL9 and C9orf5 Are Associated with Negative Symptoms in Schizophrenia: Meta-Analysis of Two Genome-Wide Association Studies. PLoS ONE. 2013; 8:e51674. [PubMed: 23382809]


Highlights

- Migraine is a common comorbidity in bipolar disorder, increasing symptom symptom levels.
- We investigated the genetic background of migraine comorbidity in bipolar patients.
- Association with a gene involved in glutamate receptor trafficking was found.
- The glutamate network has been implicated in both migraine and bipolar disorder.
- Results suggest overlapping mechanisms between the two disorders.


Figure 1.

Quantile-Quantile plot (QQ-plot) of observed and expected P-values, -log transformed. The genetic inflation factor (λ) was 1. The dashed horizontal line indicates a p-value of 5×10⁻⁸. The grey shading indicates a 95% Confidence Interval.

Figure 2.

Manhattan plot of results of logistical regression analyses. Chromosomes are pictured along the x-axis in alternating colors. $-\log 10$ P-values are plotted on y-axis. Red line indicates genome wide significance at 5×10^{-8} . A locus on chromosome 13 surpasses the threshold for genome wide significance.

Figure 3.

LocusZoom plot of the candidate region on chromosome 13. Imputed SNPs are shown as circles, directly genotyped SNPs as diamonds. The color scheme indicates linkage disequilibrium (LD) structure across the region. The blue line indicates recombination rate. P-values are –log transformed. The top SNPs are in intronic regions of neurobeachin (*NBEA*). Rs1160720 is marked by a purple diamond (P-value 2.97×10⁻⁸, OR: 1.82, 95% CI: 1.47-2.25).

Table 1

Top associated loci with P-value $< 1 \times 10^{-4}$

All loci with p-value < 1×10-4 from logistical regression analysis. Some loci have more than one SNP associated; only the top marker is reported. A brief dbSNP. Otherwise it is reported as intergenic. Alleles, odds ratios and P-values are all from our current study. Allele frequency is from CEU HapMap. search of the literature was performed to report putative gene function. Genes are reported when the marker resides within the gene, as annotated in referring to the allele tested. Position refers to genome build 36.

Jacobsen et al.

Chr	SNP	Position	Gene	Gene function or previous gene association from literature	Allele*	CEU freq	OR⁺	95% CI [‡]	P-value
-	rs10875290	100626343	CDC14A	Cell cycle control	Т	0.35	1.53	1.30-1.80	3.55E-07
-	rs1571346	110478611	Intergenic		IJ	0.48	1.38	1.18-1.62	7.94E-05
-	rs6667692	182820193	C1orf21	No putative function	C	0.39	0.71	0.61-0.84	4.01E-05
ŝ	rs3860579	21539353	ZNF385D	Among top hits in partial epilepsy GWAS (Kasperaviciute et al) and GWAS on negative symptoms in schizophrenia (Xu et al)	A	0.36	0.7	0.59-0.83	5.36E-05
ю	rs10936719	173485820	FNDC3B	Various non-psychiatric traits like height.	IJ	0.52	0.7	0.59-0.83	2.09E-05
4	rs4832800	36033902	Intergenic		А	0.21	0.65	0.52-0.81	8.90E-05
5	rs350033	40240372	Intergenic		Т	0.11	1.9	1.45-2.50	3.91E-06
5	rs17167531	99329060	Intergenic		C	0.33	0.69	0.58-0.82	3.17E-05
9	rs1474618	18763549	Intergenic		С	0.32	0.69	0.57-0.83	5.52E-05
9	rs4644033	67614614	Intergenic		Т	0.37	1.42	1.20-1.68	3.73E-05
٢	rs2854843	45897660	IGFBP1	Binds Insuline-like growth factor (IGF)	C	0.17	1.58	1.27-1.96	3.81E-05
7	rs6949094	136934899	DGKI	Diacyl glycerol kinase, iota type. Associated with dyslexia (Matsson et al), and schizophrenia (Moskvina et al)	C	0.05	2.05	1.44-2.92	7.19E-05
7	rs2058448	150077753	Intergenic		Т	0.27	0.67	0.56-0.81	4.47E-05
6	rs1529191	101885729	ERP44	Regulation of serotonin transporter (Freyaldenhoven et al)	А	0.45	0.72	0.61-0.85	9.41E-05
10	rs10904109	3886686	Intergenic		IJ	0.00	2.51	1.62-3.86	2.99E-05
10	rs11016132	129908545	Intergenic		ŋ	0.05	0.38	0.24-0.61	4.68E-05
11	rs2344350	6281254	Intergenic		Т	0.16	0.59	0.46-0.77	5.64E-05
11	rs2682095	6393280	APBB1	APP binding protein, possibly regulating cell cycle and transcription.	IJ	0.24	1.4	1.18-1.66	8.37E-05
12	rs11106592	91417726	Intergenic		A	0.05	0.55	0.40-0.74	8.62E-05
12	rs6490045	114872013	Intergenic		А	0.10	1.73	1.32-2.27	8.09E-05
13	rs1887894	20505600	LATS2	Mitosis regulating protein.	А	0.26	1.43	1.19-1.70	6.98E-05
13	rs1160720	34784675	NBEA	Involved in neuronal post-Golgi trafficking, including neurotransmitter receptors.	IJ	0.16	1.82	1.47-2.25	2.97E-08

-
∕
H
5
\leq
~
\geq
0
P
IUE
nu
snug
anusc
IUS
IUSC
IUSC

Chr	Chr SNP	Position Gene	Gene	Gene function or previous gene association from literature	Allele*	Allele* CEU freq OR [†] 95% CI [‡] P-value	OR∱	95% CI [‡]	P-value
				D					
4	rs2282031	89800696	PSMC1	Proteasome subunit, with chaperone-like activity. Associated with formation of Lewy bodies (Bedford et al).	U	0.32	0.69	0.69 0.59-0.83	3.77E-05
)				
15	rs8026848	27361149		FAM189A1 No putative function	IJ	0.24	1.45	1.45 1.20-1.75	9.04E-05
15	rs7168815	85238303	AGBL1	Variants associated with Fuchs comea dystrophy.	А	0.09	0.41	0.41 0.27-0.61	8.05E-05
20	rs41392045	13022330	SPTLC3	Subunit of SPT, catalyzing sphingolipid synthesis. Trend in bipolar disorder with agressiveness/hostility (Alliey-Rodriguez et al).	C	0.04	2.07	2.07 1.46-2.91	3.38E-05
20	rs4635580	40383245	PTPRT	Possible role in signal transduction and cell adhesion in CNS.	Т	0.06	0.34	0.21-0.57	4.50E-05
22	rs6004447	23869631	KIAA1671	Decreased expression in thyroid cancer	IJ	0.32	1.47	1.47 1.23-1.75	2.20E-05
23	rs5972211	30609088	GK	Phosphorylates glycerol, initiating its metabolism.	А	0.30	0.67	0.67 0.55-0.81	4.79E-05

* :Tested allele in this study.

 † : OR = Odds ratio.

 \ddagger :95% CI = 95% Confidence Interval

References for Table 1: (Alliey-Rodriguez et al., 2011; Bedford et al., 2008; Kasperaviciute et al., 2010; Moskvina et al., 2008; Xu et al., 2013)

Table 2Overview of alle frequencies of rs1160720

Minor allele frequency of rs1 160720 in the three cohorts examined in this study. TGEN: Translational Genomics Institute data, GAIN: Genetics Association Information Network data, IHGC: International Headache Genetics Consortium data. Bp: Bipolar patient. Mig+: Individuals with migraine. Mig-: Individuals without migraine. TGEN/GAIN controls are screened for bipolar disorder, but not migraine. IHGC patients and controls are not screened for bipolar disorder.

Sample	Minor allele frequency	Sample size
TGEN bp mig+	0.218	460
TGEN bp mig-	0.135	914
TGEN controls	0.163	479
GAIN bp mig+	0.167	283
GAIN bp mig-	0.178	686
GAIN controls	0.184	1014
IHGC mig+	0.168	23285
IHGC mig-	0.171	95425
HapMap CEU	0.155	113