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Protein folding via
divide-and-conquer

optimization

Ricardo Oliva
collaborators

Silvia Crivelli, Juan Meza

Computational Sciences Division

Lawrence Berkeley National Laboratory

This premise brings the protein-folding problem into the 
realm of numerical optimization algorithms  (e.g. LBFGS) 

  Compute an X* that minimizes E(X),
where X is the vector of atom coordinates, 
and E is a potential energy function (e.g. Amber).

This is a challenging problem:
• Potential function E is only a model.
• Large-scale problem (size 103--106)
• Many local minima.

Working assumption:
 The “natural” conformation of a protein corresponds to
a configuration that minimizes  an energy potential.

Protein-folding via numerical optimization
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Amber Energy Potential (Model) Movie
with Cristina Siegerist 
(Visualization Group)

• atoms move in
   clusters.

• slow “adjustment of
positions”  rather than
large displacements

Two observations

Color ~ || Δ posn. || 
      (speed)
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Observation:

• Atoms appear to move slowly and in small clusters during
numerical minimization process.

Idea:  To “optimize” these clusters in parallel, keeping the other
          atoms fixed.  Is is possible?

Questions:
• How to define clusters -- i.e. how to divide the atoms ?

• What’s the right energy function wrt these atoms.
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A : active atomsArray of 
positions   X: 

Defining E  w.r.t. a subset of   “active atoms”

E(A;X) = Sum of all energy terms in E(X) 
   that involve at least one atom in A

1. Distribute atoms among P processors:
Subset Ai is active on Pi

2. In parallel, each Pi minimizes Ai using Ei = E(Ai ; X)

3. Combine the results of each Pi.

Basic “Divide and conquer” (parallel) optimization approach:
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Basic “Divide and conquer” (parallel) optimization approach:

1. Distribute atoms among P processors:
Subset Ai is active on Pi

2. In parallel, each Pi lowers the energy of Ai (i.e.  E(Ai ; X) by
performing a small number k of optimization iterations.

3. Combine results of each Pi  on each process (“all-gather”).

4. Stop upon convergence, else go to step 2 and repeat.

“Divide and conquer” (parallel) optimization with
global updates:
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“Divide and conquer” (parallel) optimization with updates:
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Example 1

Protein 1e0m
593 Atoms
Initial E > 1e+6

k = 50

P = 2
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P1 P2

P1 P2

Initial
configuration

P1 & P2
combined
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After 50it

-500 -400 -300 -200 -100 0

Energy @ 50 iterations

P=1
P=2
P=4
P=8
P=16

How do energy values compare when parallel results are combined?

-700 -600 -500 -400 -300 -200 -100 0

Energy @ 100 iterations

P=1
P=2
P=4
P=8
P=16
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Energy @ 500 iterations
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How do energy values compare when parallel results are combined?
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Divide and conquer optimization with correction steps:

1. Distribute atoms among P processors:
Subset Ai is active on Pi

2. In parallel, each Pi lowers Ai using Ei = E(Ai ; X) by
performing a small number k1 of optimization iterations.

3. Combine the results of each Pi.

4. Correction Step:  Carry on a small number k2  of optimization
iterations using on the full system E(X).

5. Stop upon convergence, else go to step 2 and repeat.

“Divide and conquer” (parallel) optimization with corrections:
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Results on 1e0m (same protein as before)
using  k1=30,  k2 = 3:

Energy @ 3300 iter Time (min)
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1500it
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A caveat:

In parallel step, time of per iteration is reduced,
but (total) energy drop per iteration is also lowered.

Q: can we balance these two effects and get
significant reduction in time for a given energy
value? Energy Time (min)

Time to reach E = -800
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Gain can be significant
for larger proteins…

Example 2

Large protein 
(T146)

5053 atoms

Time to  E=-6000
with k1=30, k2=3 :

P=128
P=64

  51 min
  49 min
> 9 hrs!P=1
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with P=64

with P=128

Configuration@ E=-6000 Conclusions:

• A parallel divide-and-conquer scheme with global corrections
can significantly reduce the computational time required for
lowering the (Amber) energy of some protein configurations.

• A few full-size optimization corrections appear to keep the
  parallel optimization in line with its serial equivalent,
  even for proteins as large as 5000 atoms.

 • In general, the approach has two opposites effects:
1. Reducing the time per iteration,  and
2. Reducing the energy drop per iteration,

   with increasing number of processors (parallel scale issue).

Improvements & future work:

•  More testing! (results are preliminary --only a few examples)

•  Grouping atoms according to structure (by amino, or per coils,
alpha-helix, or beta sheets) --should improve parallel E reduction.

• Using clusters of “active atoms” (e.g. using ||gradient||)
   --motivating idea.

• Partitioning protein by spatial location --some proteins come in
  multiple “lumps” of atoms.

• Developing better strategy for setting the parameters k1, k2
  (possibly adapting these during optimization).

END




