
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Protein-folding via divide-and-conquer optimization

Permalink
https://escholarship.org/uc/item/6cw172tv

Authors
Oliva, Ricardo
Crivelli, Silvia
Meza, Juan

Publication Date
2004-07-11

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6cw172tv
https://escholarship.org
http://www.cdlib.org/

1

Protein folding via
divide-and-conquer

optimization

Ricardo Oliva
collaborators

Silvia Crivelli, Juan Meza

Computational Sciences Division

Lawrence Berkeley National Laboratory

This premise brings the protein-folding problem into the
realm of numerical optimization algorithms (e.g. LBFGS)

 Compute an X* that minimizes E(X),
where X is the vector of atom coordinates,
and E is a potential energy function (e.g. Amber).

This is a challenging problem:
• Potential function E is only a model.
• Large-scale problem (size 103--106)
• Many local minima.

Working assumption:
 The “natural” conformation of a protein corresponds to
a configuration that minimizes an energy potential.

Protein-folding via numerical optimization

€

EAMBER = EBonds + EAngles + EDihedrals + ENonBonded

EBonds = Bi(ri − r i
Bonds
∑)2

EAngles = Ai θi −θ i()
2

Angles
∑

EDihedrals = Di 1+ cos(niφi −δi)()
Dihedrals
∑

ENonBonded = εij
σ ij

rij

12

− 2
σ ij

rij

6

+
qiq j

rij

 j> i

∑
i
∑

Amber Energy Potential (Model) Movie
with Cristina Siegerist
(Visualization Group)

• atoms move in
 clusters.

• slow “adjustment of
positions” rather than
large displacements

Two observations

Color ~ || Δ posn. ||
 (speed)

2

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-900

-850

-800

-750

-700

-650

-600

-550

-500

Energy vs iterations

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-900

-850

-800

-750

-700

-650

-600

-550

-500

Energy vs iterations

0 500 1000 1500 2000 2500 3000 3500 4000 4500
-900

-850

-800

-750

-700

-650

-600

-550

-500

1000 1500 2000 2500 3000 3500 4000 4500
-870

-865

-860

-855

-850

-845

-840

-835

-830

-825Energy vs iterations

Observation:

• Atoms appear to move slowly and in small clusters during
numerical minimization process.

Idea: To “optimize” these clusters in parallel, keeping the other
 atoms fixed. Is is possible?

Questions:
• How to define clusters -- i.e. how to divide the atoms ?

• What’s the right energy function wrt these atoms.

3

A : active atomsArray of
positions X:

Defining E w.r.t. a subset of “active atoms”

E(A;X) = Sum of all energy terms in E(X)
 that involve at least one atom in A

1. Distribute atoms among P processors:
Subset Ai is active on Pi

2. In parallel, each Pi minimizes Ai using Ei = E(Ai ; X)

3. Combine the results of each Pi.

Basic “Divide and conquer” (parallel) optimization approach:

€

A1

€

A2

€

A3

in P1

in P2

in P3X

X

X

Basic “Divide and conquer” (parallel) optimization approach:

€

A1

€

A1*

€

A2
*

€

A2

€

A3

€

A3
*

in P1

in P2

in P3X

X

X

Basic “Divide and conquer” (parallel) optimization approach:

4

€

A1

€

A2

€

A3

€

A1*

€

A2
*

€

A3
*

X *

in P1

in P2

in P3

€

A1*

€

A2
*

€

A3
*

X

X

X

Basic “Divide and conquer” (parallel) optimization approach:

1. Distribute atoms among P processors:
Subset Ai is active on Pi

2. In parallel, each Pi lowers the energy of Ai (i.e. E(Ai ; X) by
performing a small number k of optimization iterations.

3. Combine results of each Pi on each process (“all-gather”).

4. Stop upon convergence, else go to step 2 and repeat.

“Divide and conquer” (parallel) optimization with
global updates:

€

A1

€

A2

€

A3

X ‘

in P1

in P2

in P3X

X

X

€

A1'

€

A2
'

€

A3
'

€

A3
'

€

A2
'

€

A1'

“Divide and conquer” (parallel) optimization with updates:

k

k

k

Example 1

Protein 1e0m
593 Atoms
Initial E > 1e+6

k = 50

P = 2

5

P1 P2

P1 P2

Initial
configuration

P1 & P2
combined

6

with 2P With 1P

After 50it

-500 -400 -300 -200 -100 0

Energy @ 50 iterations

P=1
P=2
P=4
P=8
P=16

How do energy values compare when parallel results are combined?

-700 -600 -500 -400 -300 -200 -100 0

Energy @ 100 iterations

P=1
P=2
P=4
P=8
P=16

How do energy values compare when parallel results are combined?

-1000 -800 -600 -400 -200 0 200

Energy @ 500 iterations

P=1
P=2
P=4
P=8
P=16

How do energy values compare when parallel results are combined?

7

Divide and conquer optimization with correction steps:

1. Distribute atoms among P processors:
Subset Ai is active on Pi

2. In parallel, each Pi lowers Ai using Ei = E(Ai ; X) by
performing a small number k1 of optimization iterations.

3. Combine the results of each Pi.

4. Correction Step: Carry on a small number k2 of optimization
iterations using on the full system E(X).

5. Stop upon convergence, else go to step 2 and repeat.

“Divide and conquer” (parallel) optimization with corrections:

€

A1

€

A2

€

A3

€

A1'

€

A2
'

€

A3
'

in P1

in P2

in P3X

X

X

X”

in Pi

X’

 k1

 k1

 k1

 k2

Results on 1e0m (same protein as before)
using k1=30, k2 = 3:

Energy @ 3300 iter Time (min)

0.0 5.0 10.0 15.0 20.0 25.0-900 -850 -800 -750 -700 -650 -600 -550 -500 -450 -400

P=1
P=2
P=4
P=8
P=16

E=-850

P=8 P=1

1500it

8

A caveat:

In parallel step, time of per iteration is reduced,
but (total) energy drop per iteration is also lowered.

Q: can we balance these two effects and get
significant reduction in time for a given energy
value? Energy Time (min)

Time to reach E = -800

-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

P=1
P=2
P=4
P=8
P=16

Energy Time (min)

Time to reach E = -800

-1000 -900 -800 -700 -600 -500 -400 -300 -200 -100 0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

P=1
P=2
P=4
P=8
P=16

Gain can be significant
for larger proteins…

Example 2

Large protein
(T146)

5053 atoms

Time to E=-6000
with k1=30, k2=3 :

P=128
P=64

 51 min
 49 min
> 9 hrs!P=1

9

with P=64

with P=128

Configuration@ E=-6000 Conclusions:

• A parallel divide-and-conquer scheme with global corrections
can significantly reduce the computational time required for
lowering the (Amber) energy of some protein configurations.

• A few full-size optimization corrections appear to keep the
 parallel optimization in line with its serial equivalent,
 even for proteins as large as 5000 atoms.

 • In general, the approach has two opposites effects:
1. Reducing the time per iteration, and
2. Reducing the energy drop per iteration,

 with increasing number of processors (parallel scale issue).

Improvements & future work:

• More testing! (results are preliminary --only a few examples)

• Grouping atoms according to structure (by amino, or per coils,
alpha-helix, or beta sheets) --should improve parallel E reduction.

• Using clusters of “active atoms” (e.g. using ||gradient||)
 --motivating idea.

• Partitioning protein by spatial location --some proteins come in
 multiple “lumps” of atoms.

• Developing better strategy for setting the parameters k1, k2
 (possibly adapting these during optimization).

END

