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Abstract

How does the brain identify stimuli that are relevant for pre-
dicting important events and how does it distinguish spurious
relationships from truly predictive ones? We examined two
contrasting theoretical frameworks: in the first, learning pro-
ceeds by considering a fixed hypothesis of the environment’s
statistical structure (the set of predictive and causal relation-
ships) and adjusting strength parameters for these relationships
to optimize predictions. In contrast, the second approach di-
rectly assesses ambiguity in predictive relationships by evalu-
ating multiple hypothesis of the environment’s statistical struc-
ture. We compared these frameworks in an animal model of
aversive conditioning, allowing us to also manipulate the un-
derlying brain systems. We show that when facing novel pre-
dictive stimuli, rats initially adopt a structure learning strategy,
but switch to updating parameters during subsequent learning.
Keywords: Bayesian modeling; Animal cognition; Represen-
tation; Causal Reasoning

Introduction
To enhance their chance of survival human and nonhuman
animals learn to make predictions based on sensory cues in
their environment. However, it is not clear how they identify
stimuli that are relevant for specific predictions, or how they
distinguish predictive relationships from coincidence when
evidence about the relationship is ambiguous. How subjects
evaluate this type of ambiguity is a central question both in
the field of classical conditioning (where predominantly an-
imal subjects learn to predict impending threats or rewards
from experience), and in studies of human causal learning,
with previous research identifying many important parallel
phenomena between two the fields.

Established accounts of classical conditioning (e.g.
Rescorla & Wagner, 1972, for an overview see Pearce and
Bouton, 2001), as well as some Bayesian accounts of causal
judgments (e.g Holyoak & Cheng, 2011) have characterized
the learning process in these tasks in terms of subjects fitting
parameters in a fixed generative (or discriminative) model
of the environment, with different cues competing with each
other to predict important outcomes. Such parameter learn-
ing or cue competition approaches don’t explicitly distinguish
ambiguity in the environment’s statistical structure (the set
of all predictive and causal relationships), and uncertainty
about the strength of established associations (e.g. the prob-
ability with which an outcome follows a cue). Instead they
assume that subjects either have inherent knowledge about
which variables matter for a specific task or prediction, or
that they learn relationships between all the environmental

variables, potentially having to fit a very large number of pa-
rameters in complex real-world environments.

A drawback of such a learning strategy is that when the
structure of the environment is not known in advance (e.g.
when encountering novel stimuli), and inability to quickly
distinguish spurious from predictive relationships can lead
to incorrect predictions, especially when the sampling from
the environment is limited, or when a large number of en-
vironmental variables are present. Falsely assuming pre-
dictive relationships can lead to overfitting (so-called data-
fragmentation, Koller & Friedman 2009), by having to ex-
plain a combinatorially large space of stimulus interactions
based on a limited number of observations. This in turn can
lead to poor generalization for future predictions.

A contrasting approach is to directly evaluate competing
models of the environment’s statistical structure based on
the evidence sampled from the environment. Since structure
learning also considers sparser sets of statistical dependen-
cies between variables, it will often lead to better predictions
when some variables in the environment do not in fact corre-
late. Such a structure learning model for causal learning was
introduced by Griffith & Tenenbaum (2005), and has proven
successful in characterizing a broad range of causal judge-
ments by humans. In subsequent work Lu et al. (2008) have
also argued that strength and structure queries elicit causal
judgments that are empirically and theoretically distinguish-
able, depending on the wording of the queries, with strength
or structure learning models providing better fits respectively.

In this paper we contrasted these two learning strategies in
an implicit learning task, using animal subjects in an aversive
conditioning paradigm. We show that neither strategy alone
gives a good account of animal behavior, and instead find that
when presented with novel stimuli, animals initially pursue a
structure learning strategy, followed by a switch to parame-
ter learning on subsequent conditioning episodes. We focus
on a simple example of an ambiguous cue-outcome relation-
ship that arises when an outcome occurs both in the presence
and absence of a sensory cue, the so-called degraded contin-
gency effect (Rescorla, 1968). In the first part of the paper
we show that cue competition, a characteristic of associative
and Bayesian parameter learning models, is not required to
learn a reduced cue-outcome contingency between a novel
predictive stimulus and salient outcome. Instead, in accor-
dance with a structure learning account, we find that changes
in the strengths of different associations are dissociable. In
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our third experiment we explore a wider range of condition-
ing phenomena and perform quantitative model comparison
to show that a structure learning approach better explains
the data than a variety of (Bayesian and associative) param-
eter learning models. Finally, in Experiment 4 we show that
learning in a subsequent conditioning session is explained by
switching to parameter learning, using the distribution over
structures learned during initial exposure to the stimuli.

Experiment 1
Intermixing unsignaled outcomes with outcomes signaled by
a discrete sensory cue in classical conditioning experiments
is known to lead to reduced behavioral responding to the cue
during subsequent memory tests. This reduction has been in-
terpreted as a sign of competition between learning an as-
sociation to the conditioning Context (the static condition-
ing chamber that is continually present during the condition-
ing phase of the experiment), and the discrete predictive cue
(also referred to as conditioned stimulus, or CS). In particu-
lar, in an aversive (or fear) conditioning setting, a strong as-
sociation formed between the conditioning context and the
shock outcome (also called the unconditioned stimulus, or
US) is claimed to reduce subsequent learning of the tone-
shock association. Alternatively, a strong contextual associa-
tion has been proposed to be competing with the tone-CS at
the time of memory expression (Stout & Miller, 2007). We
first wanted to determine whether predictions of the cue com-
petition models were supported when ambiguity in the abil-
ity of a given cue to predict the outcome was high. To test
this we examined the relationship between Context and Tone
memory strengths, while also varying the order of tone shock
pairings and unsignaled shock USs.

Method
Subjects 79 male Sprague-Dawley rats (Hilltop) weighing
275-300g on arrival, individually housed on a 12h light/dark
cycle, and given food and water ad libitum.

Materials and Stimuli Animals were fear conditioned in a
sound-isolating conditioning chamber (Context A). The two
predictive stimuli were a 30s, 5kHz auditory conditioned
stimulus (the Tone),consisting of thirty consecutive auditory
pips with pips at 1HZ, and the conditioning chamber (Con-
text). The predicted outcome (or US) was a 1s, 1mA foot-
shock. Tests for contextual fear memory strength were con-
ducted in the original conditioning chamber, Context A. Tests
for the Tone fear memory were conducted in a different cham-
ber (Context B, different shape, size, lighting and odor from
Context A). Memory strength was evaluated by scoring rats’
freezing behavior during the tests, with freezing defined as
the cessation of all bodily movement with the exception of
respiration-related movement.

Procedure Each animal was taken to the conditioning
room, and placed into the conditioning chamber, where it was
given a series of signaled and unsignaled footshocks with ran-
dom intertrial intervals (ITIs) of around 2min. Tone-shock
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Figure 1: Reduced Tone-shock contingency results in reduced
Tone memory, irrespective of trial order and with or without
contextual learning or changes in Context memory strength.

pairings consisted of a presentation of the Tone stimulus,
with the last pip coterminating with the footshock. Unis-
gnaled foothsocks meant the arrival of a footshock without
prior warning.

During conditioning (Fig. 1), animals were given either
three massed tone-shock pairings before, or three spaced pair-
ings intermixed with 12 unsignaled shocks (Pairings first and
Intermixed groups respectively, all with 20% contingency).
Control I and II animals were given three CS-US pairings
only (100% contingency). The Control I training protocol
was identical to the Intermixed group, with the three CS-US
pairings spaced, but with all UUS omitted. The control II
group received massed CS-US pairings identical to the Pair-
ings First group, with the subsequent UUSs omitted, and con-
ditioning terminated after the third CS-US pairing (see Figure
1, middle). Contextual and tone-evoked freezing was mea-
sured 24h later. Context memory tests consisted of 5min
spent in Context A, and the test for Tone memory consisted
of 5 presentations of the 30s Tone stimulus in Context B, with
presentations separated by random ITIs of around 2min. The
two tests were separated by 2 hours, and the order varied. To-
tal time spent freezing during the 5 tone presentations, and
during the context test were calculated and are represented
as percentage of total time spent freezing (divided by 2.5min
and 5min respectively). Error bars represent standard errors.
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Results and Discussion
We found that animals showed similar low levels of tone-
evoked freezing in both reduced contingency conditions (Fig.
1, bottom left), with a two-way ANOVA showing significant
main effect for contingency (p < 0.0001). Animals were
therefore sensitive to the ambiguity of the CS-US relation-
ship, and demonstrated the ability to integrate contingency in-
formation irrespective of the temporal order of training trials,
contradicting a traditional cue competition based contextual
blocking account of contingency degradation. Further, we
observed a reduction in Tone memory strength between the
Pairings First and Control II groups without a corresponding
change in Context memory strength (Fig. 1, bottom right),
suggesting that a simple give-and-take between the different
associations at the time of memory expression also fails to
account for contingency learning.

Experiment 2
To better understand the influence of contextual associations
on learning the tone-shock contingency, and to directly test
for cue competition during learning and/or retrieval, we tested
if animals were sensitive to the reduced tone-shock contin-
gency even in the absence of learning any contextual associ-
ations. We therefore infused the NMDA-receptor antagonist
APV into the dorsal hippocampus (DH) prior to conditioning,
a manipulation known to block the formation of contextual
memories (Kim, DeCola, Landeira-Fernandez & Fanselow,
2011).

Methods
Subjets 36 adult male rats similar to those in Exp. 1.

Materials and Stimuli We dissolved the NMDA-receptor
antagonist APV in saline. and infused this mixture into the
dorsal hippocampus. Stimuli and materials during condition-
ing and testing were identical to Exp. 1.

Procedure Prior to the conditioning session, animals re-
ceived either APV and saline, or saline only injections.
Around half of the animals in both drug conditions were then
trained using the Pairings First training protocol, and the rest
of the animals with the CTL II protocol. Conditioning and
testing proceeded as in Exp.1.

Results and Discussion
Figure 2 shows that APV infusions significantly impaired
contextual learning as expected, but had no effect on learn-
ing the Tone-shock contingency, providing further evidence
against cue competition as a sufficient or necessary mecha-
nism for contingency learning.

Models
In this section we give details of the models formalizing the
different (structure vs. parameter) learning strategies, us-
ing the representational formalism of Bayesian networks. To
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***

Control   Pairings  Control  Pairings  
    II            First      II         First

 Vehicle  APV 

Figure 2: Hippocampal APV injections impair the acquisition
of contextual aversive memories, but have no effect on learn-
ing the reduced tone-shock contingency. A two-way ANOVA
on the Context memory data showed main effect for drug
(p < 0.01). A two-way ANOVA on the Tone memory data
showed a main effect for contingency, (p < 0.01). No inter-
actions were significant.

generate predictions for animal behavior, the models have to
specify the functional form by which concurrently present
cues are combined to predict an outcome. Here we use the
so-called noisy-OR generating function, corresponding to the
assumption that different cues predict an outcome indepen-
dently of each other. We also explored simulations with a rec-
tified linear function (typical of traditional associative mod-
els), but this choice did not affect the conclusions in the paper,
though it slightly worsened the fit of each type of model.

Using these generating functions, a parameter learning
model needs to introduce extra variables to be able to ex-
plain the findings in Experiment 2. Similarly to the original
causal learning models, we therefore introduced an additional
’Background’ variable. This Background variable represents
the sum of all unobservable or unspecified influences in the
environment (and in particular on the US occurrence), and
might in principle allow parameter learning to account for the
results of Exp. 2. We can formulate our Structure Learning
Model (SLM) both with, or without a Background variable,
achieving similar model fits in both cases. Having the Back-
ground variable that is always assumed to have a predictive
connection to the US obviates the need to specify a prior dis-
tribution for the probability of US occurrence when all the
predictive stimuli are absent, leading to a simpler and perhaps
more principled model.

Structure Learning Model (SLM)
SLM learns a posterior probability distribution over the dif-
ferent possible constellations of predictive relationships in the
environment (represented by the different graph structures in
Fig. 3), given observations during conditioning. During re-
trieval, the strength of an association is evaluated by calcu-
lating the posterior probability of a connection (a direct edge,
or path in the graph) between the corresponding cue and out-
come, using a model-averaging procedure.

We calculated the posterior distribution over different
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Bayesian network structures, without assuming or learning
specific parameter values ωi for the edges. We considered the
six possible graph structures Gi ∈G that can lead to different
predictions about the US. In Graphs 1 and 2, leaving out, or
adding the edge Context → Tone is irrelevant when making
predictions about the US, we therefore considered only one
of each of these pairs of functionally equivalent graphs (the
one with no C→ T edge)

By Bayes’ rule, the posterior probability of each graph is
given by

P(Gi|D) ∝

∫
ω|Gi

P(Gi) ·P(ωGi |Gi) ·P(D|Gi,ω|Gi)dω|Gi

where priors over the edge parameters ω1,...ω4 were uniform
and independent. P(G1), the prior probability of graph 1,was
a free parameter, with the other graphs having equal priors
P(Gi,i>1) =

1−ρ(G1)
5 . Since the conditioned stimuli are largely

neutral at the beginning of experiments, this corresponds to
P(G1) being close to 1. The posterior probability of an edge
from the Tone to the US,

∑
Gi

P(Gi|D) · I(T→US∈Gi)

determined the strength of the Tone-shock association (where
I is the indicator function). Context-US association was de-
termined by the posterior probability of an edge from Con-
text to the US or, when no direct edge exists, , the probability
of an indirect path, weighed by an estimated strength of the
Context-Tone connection.

∑
Gi

P(Gi|D) · I(C→US∈Gi)+ γ ·P(G4|D)

where γ = α · number of trials with Tone
total number of trials for a constant α that we fit.

Parameter learning Model (PLM)
PLM predicts behavioral responses based on learning the pos-
terior mean of the edge parameters ω in the maximally con-
nected graph (Graph 6), starting from some prior distributions
over the edge parameters. For maximum flexibility of this
model, these priors were allowed to be independent and to be
different for each edge, but were assumed to be fixed before
conditioning begins, so that they are shared by animals across
all conditioning protocols. For parameter ω j,k (for the edge
Xi→ X j) using the joint prior over we have

ω̂ j,k = E(ω j,k|D,G6) =
∫

ω|G6

ω j,k ·P(ω) ·P(D|G6,ω)dω

The model predicts that freezing responses are explained
by the probability of a shock calculated given the stimulus
present during testing, using standard probabilistic inference
in Graph 6 with parameters ω̂. We restrict the priors for the
edge parameters to come from a Beta distribution, fitting the
model thus means finding a pair of parameters for each of
the four prior beta distributions (8 parameters in total), such
that they best explain the behavioral data across all training
protocols.

Learning both structure and parameters (PSLM)
Learning a full posterior over the Bayesian network repre-
sentations included first learning a distribution over the graph
structures as in SLM, and then learning a posterior distribu-
tion for the parameters present for each structure, similarly
to PLM. For each graph, predictions are calculated using the
posterior mean edge parameters, and these predictions are
then averaged, weighed by the posterior probability of each
graph.

Associative models
We also included in the model comparison two advanced
associative cue competition models that extend the classi-
cal Rescorla-Wagner model to include more complex in-
teractions between stimuli. Van Hamme and Wasserman’s
(1994) extension (HW-RW) implements cue competition dur-
ing learning, while in the sometimes competing retrieval
model (SOCR) cues compete during performance (Stout &
Miller, 2007), with the two models using different strategies
to capture covariance information in the cue-outcome rela-
tionships. These models can’t account for the results from
Experiment 2, but it was important to see if they could ac-
count for the purely behavioral results that didn’t involve neu-
ral manipulations.

Experiment 3
To enable model fitting and comparison we collected further
behavioral data in a manner similar to Exp. 1, but using var-
ied numbers of tone-shock pairings and unsignaled shocks,
allowing us to test which models can simultaneously explain
behavioral phenomena under different conditions of ambigu-
ity. In particular, when USs arrive only in the presence of the
Tone (i.e. only tone-shock pairings are given), the association
between Context and US is itself highly ambiguous: it is not
clear whether predictive power should be attributed to just the
Context, or just the Tone, or both. We fitted our models using
the combined behavioral results from Experiments 1 and 3,
and used the best-fit parameters for each model to predict the
results of the brain manipulation in Exp. 2.

Methods
Subjets 117 adult male rats similar to those in Exp. 1.

Materials and Stimuli Materials and Stimuli were identi-
cal to those in Exp. 1.

Procedure Animals were conditioned using different se-
quences of tone-shock pairings and unsignaled shocks, as de-
tailed in Fig. 4.

Results and Discussion SLM provided a better quantita-
tive fit than PLM or the associative cue competition mod-
els, while also using fewer free parameters (Table 1 and suc-
cessfully accounted for standard learning curves as well as
contingency evaluations under ambiguity, including the ef-
fects of contingency degradation and the u-shaped learning
curve for the context memory strength during overshadowing
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Figure 4: Behavioral data and model fit for SLM.

(Fig.4 I,II,III). In addition, SLM but not PLM or the associa-
tive models, successfully predicted the effects of hippocam-
pal manipulations. The fixed structure models all failed to ex-
plain the behavioral data, both because the memory strengths
didn’t covary according to a cue competition principle, and
because these interactions were different under the different
ambiguity conditions. While it might be possible to extend
the associative models to better fit our dataset by adding fur-
ther model parameters and variables, it is unlikely that this
would lead to a principled and general framework for how
animals evaluate ambiguity. In contrast SLM was robust
to changes in specific components of the model, and pro-
vided low error both using an alternative formulation with no
’Background’ variable (MSE = 15.39), or using a rectified
additive generating function (MSE = 16.64), suggesting that
it is the principle of evaluating different models of the envi-
ronment that enables it to match observed behavior. SPLM

provided a similar fit to SLM , but performed worse accord-
ing to measures controlling for extra model parameters, such
as adjusted R-squared. SLM thus provided the best fit for the
behavioral data and predicted the effects of neural manipula-
tions on learning, suggesting a close correspondence between
structure learning and the strategies animals use to resolve
ambiguity.

Experiment 4
In the final experiment we examined how animals adopt their
learning strategy if conditioning sessions are distributed over
time, in particular if trials carrying information about the re-
duced tone-shock contingency are separated in time from the
full contingency trials.

Methods
Subjets 51 adult male rats similar to those in Exp. 1.
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Table 1: Comparison of Model fits

Model MSE
s.d. of MSE Model

the MSE Experiment 2 Para-
(% freezing squared) meters

SLM 13.44 0.02 34.03 2
SPLM 12.61 0.24 18.29 9
PLM 20.80 0.29 245.64 8
SOCR 28.26 - 245.58 5
HW-RW 67.06 - 848.88 8

Materials and Stimuli Identical to Exp.1.

Procedure Conditioning and Testing was distributed over 3
days. On Day1 CTL II+Exposure and Delayed Degradation
groups received the CTL II conditioning protocol, Pairings
First group was conditioned as before. On Day 2, the Delayed
Degradation group received 12 unsignaledd shocks, and the
CTL II+Exposure group was exposed to Context A for and
identical length of time. Animals in the Pairings First group
weren‘t conditioned on Day 2. On Day 3, all animals were
tested as in Exp. 1.

Results and Discussion
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Figure 5: Data and Simulation for delayed contingency
degradation

Whereas unsignaled shocks delivered within the same ses-
sion decreased Tone memory strength as before (one-way
ANOVA with Bonferroni correction, p < 0.5), the same num-
ber of unsignaled shocks delivered 24h after tone-shock pair-
ings were given had now such effect. SLM and SPLM cannot
account for this difference as their representation of these two
conditioning protocols is essentially identical. However, the
difference in the resulting memory strengths is well-predicted
by a model in which animals switch from a structure learning
strategy on initial encounter with the stimuli, to a parame-
ter updating strategy on later exposures. The Switching form
Structure to Parameter Learning model (SSPL) assumes that
in the first session animals learn a distribution over possible
graphical models as in SLM (therefore producing identical
predictions to SLM for our previous data), and in the sec-
ond session they only update the edge parameters for each

structure, using a uniform prior over the edge parameters in
both cases. SSPL is thus similar to SPLM, but uses sepa-
rate datasets (conditioning trials) for evaluating the different
structures, and for learning parameters.

Conclusion
We showed using a combination of behavioral, neural and
modeling techniques that animals use a structure learning
strategy and evaluate different statistical models of their en-
vironment when encountering novel stimuli. Further, we
demonstrated that once a distribution over these models is
learned, they refine this representation by updating param-
eters in these statistical models. Further important questions
include exploring the exact circumstances under which one or
the other approach (or a mixture of the two) is preferentially
recruited, and in particular understanding what changes in the
environment can lead to reevaluating the statistical structure
once it’s already learnt. This could lead to a better under-
standing of the complex mechanisms involved in memory up-
dating, and in particular inform new ways in which aversive
associations might be permanently extinguished.
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