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ABSTRACT OF THE THESIS

Income Prediction Using Machine Learning Techniques

by

Kahyun Jo

Master of Applied Statistics & Data Science

University of California, Los Angeles, 2024

Professor Frederic R. Paik Schoenberg, Chair

This thesis presents a comprehensive study on predicting income levels, specifically predict-

ing whether individuals earn more than $50,000 per year, with advanced machine learning

techniques, using various demographic predictor variables such as capital gain, education

level, relationship, occupation, and capital loss. The prediction of income levels is crucial

for elucidating economic disparities and informing policy decisions. Utilizing the Adult In-

come dataset from the UCI Machine Learning Repository, which comprises demographic and

socio-economic variables, the research entails a thorough evaluation of each model’s perfor-

mance. The methodology involves a preprocessing stage to ensure data quality, followed by

the application of various machine learning algorithms including, but not limited to, Logistic

Regression, k-Nearest Neighbors, Decision Trees, Random Forests, Support Vector Machines,

and Neural Networks. A significant focus is placed on systematic hyper-parameter tuning to

fine-tune models, particularly with the complex structures of Neural Networks and Random

Forests. The findings indicate that Random Forest models exhibit superior performance in

income prediction tasks across most metrics, including accuracy, sensitivity, precision, speci-

ficity, F1 score, AUC, and RMSE. The Baseline Random Forest achieves the best accuracy

(86.410%), specificity (88.600%), and RMSE (0.315), suggesting strong overall performance

and well-calibrated probabilities. The Tuned Random Forest achieves the highest AUC

(94.964%) and F1 score (82.057%), indicating strong overall performance and an effective

balance between precision and recall.
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CHAPTER 1

Introduction

Income inequality is a pressing issue that adversely affects economies and societies worldwide,

often linked to social and political concerns, as societies with greater income disparities tend

to experience more social problems, such as lower life expectancy, obesity, and mental illness

[WP09]. Therefore, accurate income prediction is pivotal in economic and political systems,

guiding optimal resource allocation and political decisions to lead to positive social outcomes.

Income prediction can help identify populations at risk, prioritize interventions, and ensure

that resources are allocated efficiently.

The objectives of this thesis are to evaluate the performance of machine learning models

in predicting income levels of individuals from diverse socio-economic backgrounds, utiliz-

ing key predictors such as capital gain, education level, relationship, occupation, and capital

loss. This paper will focus on commonly used metrics such as accuracy, sensitivity, specificity,

precision, F1 score, AUC, and RMSE to assess the performance of each model. The method-

ology involves preprocessing the data to ensure quality, followed by applying and conducting

a thorough analysis of various machine learning algorithms, including Logistic Regression,

k-Nearest Neighbors, Decision Trees, Random Forests, Support Vector Machines, and Neu-

ral Networks. Special attention is given to hyperparameter tuning, particularly for complex

models such as Neural Networks and Random Forests, to optimize their performance. In

addition to quantitative metrics, this paper incorporates a comparative analysis of binned

residual plots for the two best-performing models— the baseline and tuned Random For-

est models. This comparison, presented in the conclusion, helps to validate the superior

model performance and assess how well the predictions are align with the actual outcomes,

particularly across different segments of the data. Enhanced modeling accuracy and predic-
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tive insights from this research could improve socio-economic policies and decision-making,

further reducing the impact of income inequality.

The remainder of this thesis is structured as follows: Chapter 2 provides data preparation

and EDA. Chapter 3 describes model training and evaluation of various machine learning

models. Chapter 4 summarizes the key findings and their implications, highlighting the

effective use of machine learning in predicting income levels.
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CHAPTER 2

Data Preparation and EDA

The Adult Income dataset, derived from the 1994 US Census database, comprises 32,561

entries across 15 features. These features, which include demographic and socio-economic

data, are summarized in Table 2.1.

Feature Type Description

age Numerical Age of the individual.

workclass Categorical Employment classification of the individual.

fnlwgt Numerical Statistical weight assigned to the individual.

education Categorical Highest education level attained by the individual.

education num Numerical Number of educational years completed by the individual.

marital status Categorical Legal marital status of the individual.

occupation Categorical Type of occupation of the individual.

relationship Categorical Individual’s relationship status within a family.

race Categorical Race of the individual.

sex Binary Gender of the individual.

capital gain Numerical Total amount of capital gains for the individual,

reflecting income from sources other than salary/wages.

capital loss Numerical Total amount of capital losses for the individual,

reflecting losses from investments or other financial sources.

hours per week Numerical Number of hours the individual worked per week.

native country Categorical Country of origin of the individual.

income Binary Income level of the individual, whether it is ≤ 50K or > 50K.

Table 2.1: Description of Variables in the Adult Income Dataset

3



2.1 Data Preparation

It is observed that the dataset does not contain any NA values. However, the features

workclass, occupation, and native country contain entries with question marks, which are in-

dicative of missing data. These are imputed as an ’Unknown’ category within their respective

features.

# Imputing missing values with ’Unknown’

df$workclass[df$workclass == ’?’] <- ’Unknown’

df$occupation[df$occupation == ’?’] <- ’Unknown’

df$native_country[df$native_country == ’?’] <- ’Unknown’

Furthermore, sparse categories within these features are combined to reduce the granularity

and potentially enhance the model’s ability to generalize from the data.

# Combining similar sparse categories for ’workclass’

df <- df %>% mutate(workclass = case_when(

workclass %in% c(’Federal-gov’, ’Local-gov’, ’State-gov’) ~ ’Gov’,

workclass %in% c(’Self-emp-inc’, ’Self-emp-not-inc’) ~ ’Self’,

workclass %in% c(’Never-worked’, ’Without-pay’, ’Unknown’) ~ ’Other/Unknown’,

TRUE ~ workclass))

Similar principles are applied to other categorical variables to improve model performance

by combining sparse or similar categories. For the occupation feature, categories related to

clerical roles, manual work, service, and professional occupations are combined into broader

groups. This aggregation is intended to simplify the model’s understanding of the data by

reducing the complexity of the occupational classifications. The education feature is consol-

idated by grouping various levels of schooling into categories such as ’Elem’ for elementary

levels, ’HS-grad’ for high school and equivalent levels, and ’Assoc’ for different forms of as-

sociate degrees. The marital status categories are combined into ’Married’ for all types of

marriages, and ’Previously-Married’ for categories that indicate a past marriage. Similarly,
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the relationship variable is simplified by combining categories that represent individuals not

part of a traditional family unit into ’Not-in-family’. The native country variable, with

29,170 entries from the United States and 3,391 from 40 other countries, is simplified to ’US’

and ’Non-US.’ to prevent potential overfitting, assuming significant economic disparities be-

tween domestic and international data that could influence income predictions.

2.2 Exploratory Data Analysis (EDA)

The income target variable exhibits a class imbalance, with a distribution of 76% for ≤ 50K

and 24% for > 50K. Such imbalances often present a challenge, as the minority class is

underrepresented during the model fitting process, potentially leading to biased models that

do not accurately capture the underrepresented class signal. Data-level methods aim to al-

leviate the impact of class imbalance by methods such as resampling, while algorithm-level

strategies modify classifiers to improve minority class prediction [ASR13]. This paper em-

ploys both data-level resampling techniques, such as Logistic Regression with Oversampling,

and algorithm-level methods, including Random Forest and Support Vector Machine, to

enhance the robustness of the study.

Table 2.2 presents the distribution of demographic features in the dataset. The proximity

of the median and mean ages suggests a symmetrical age distribution. The education num

variable, denoting years of education, averages to approximately 10 years across the sample.

The fnlwgt variable, reflecting sample weights, shows a right-skewed distribution with its

mean exceeding the median, indicating the presence of outliers. The capital gain and capi-

tal loss variables are usually zero for most individuals, indicating that the majority do not

engage significantly in investment activities beyond earning their regular wages or salaries.

Although the skewed distribution of these features could impact certain types of analysis,

they are retained in our study without transformation as the primary focus of this thesis is on

predictive modeling, where these features may still provide valuable signals for the algorithms

employed. The hours per week feature centers around the standard 40-hour workweek, as

evidenced by both the mean and median. These distributions are visually confirmed by
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Figure 2.1, which shows symmetry in the features age and education num, and significant

skewness in the capital gain and capital loss distributions.

Feature Min Median Mean Max

age 17.00 37.00 38.58 90.00

fnlwgt 12,285 178,356 189,778 1,484,705

education num 1.00 10.00 10.08 16.00

hours per work 1.00 40.00 40.44 99.00

capital gain 0.00 0.00 1,078.00 99,999.00

capital loss 0.00 0.00 87.30 4,356.00

Table 2.2: Summary statistics of numerical features in the dataset

Figure 2.1: Box and Whisker Plots for numerical features

After data preprocessing, here is a summarized overview of the categorical variables’

information:

• workclass: The majority of individuals are employed in the private sector (70%), fol-

lowed by significant proportions in government (13%) and self-employment (11%). A

smaller number fall into the category of ’Other/Unknown (6%)’.
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• education: The most common education level is ’HS-grad’ (47%), followed by ’Some-

college’ (24%), ’Bachelors’ (13%), ’Assoc’ (7%), ’Elem’ (5%), ’Masters’ (3%), ’Prof-

school’ (0.6%), and ’Doctorate’ (0.4%).

• marital status: The most common marital status is ’Married’ (47%), followed by

’Never-married’ (33%). Other categories such as ’Divorced’ (14%), ’Separated’ (3%),

and ’Widowed’ (3%) are also present but less frequent.

• occupation: The most frequent occupations are classified as ’White-Collar’ (27%) and

’Blue-Collar’ (24%), followed by ’Manual-Labor’ (18%), ’Professional’ (15%), ’Sales’

(11%), and Other/Unknown (6%).

• relaitonship: The most common relationship status is ’Husband’ (41%), followed by

’Not-in-family’ (26%) which may reflect the demographic composition of the dataset.

A smaller number fall into the categories of ’Own-child’ (16%), ’Unmarried’ (11%),

’Wife’ (5%), and ’Other-relative’ (3%).

• race: The most common races are ’White’ (85%) and ’Black’ (10%), followed by ’Asian-

Pac-Islander’ (3%), ’Amer-Indian-Eskimo’ (1%), and ’Other’ (1%).

• sex: The majority of the dataset consists of males (67%), while females make up 33%.

• native country: Most individuals are from the US (90%), while 10% are from non-US

countries.

• income: The income distribution shows that 76% of individuals earn ≤ 50K, while

24% earn > 50K.

Our bivariate analysis, depicted in Figure 2.2, explores patterns between the income and

other features. The histogram at the top illustrates the distribution of income across different

ages, while the bar chart at the bottom breaks down income levels by education. Income

increases with age up to a certain point before declining, which is common as individuals

enter retirement. Also, there is a clear positive relationship between the level of education
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and income, with those with higher educational attainment, like Bachelor’s degrees or higher,

possibly earning more.

Figure 2.2: income by age (top) and income by education (bottom)

Figure 2.3 presents the correlation plot for all the variables. Notably, the education num

variable shows a high correlation with the education variable. It suggests that they are

conveying similar information, possibly in a numeric and a categorical format. To pre-

vent multicollinearity, which can adversely affect the performance of predictive models, the

education num variable is removed from our subsequent analyses. The features sex and rela-

tionship are also highly correlated, however, both of them are retained in our analysis. The

relationship feature includes categories such as ’Husband’ which inherently correspond to
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the ’Male’ category in the sex variable. Given that ’Husband’ is the most frequent category

within relationship, constituting 41% of the sample where males represent 67%, a correla-

tion arises naturally. Despite this correlation, the decision to retain both variables is justified

as each offers unique predictive capabilities. The sex feature provides a broad demographic

classification, while the relationship feature captures more specific household dynamics, both

of which are relevant for the predictive objectives of this study.

Figure 2.3: Correlation plot

This chapter has demonstrated the steps taken to preprocess and explore the Adult

Income dataset. The EDA has provided valuable insights, particularly highlighting the

distributions and imbalances inherent within our features, as exemplified by the detailed

visualizations in Figures 2.1 and 2.2. The decision to remove the education num feature is

based on its high correlation with the education feature, simplifying our model without losing

valuable information. Despite the correlation between the features sex and relationship, we

preserve both for their distinct contributions to the model’s predictive power. With these

steps, we ensure clean data and robust analysis, laying the foundation for machine learning

techniques in the subsequent stages of this study.

9



CHAPTER 3

Methodology

During the model fitting process, the dataset is partitioned into a training set and a testing

set using a 80-20 split, ensuring that 80% of the data is used for model training and the

remaining 20% for validation.

set.seed(123)

split <- createDataPartition(df$income, p = 0.8, list = FALSE)

After the model is trained, it is then applied to the testing set to generate predictions.

The predicted probabilities are converted into binary class predictions, where a probability

greater than 0.5 indicates an income above 50K (denoted as ’1’), and below or equal to 0.5

indicates an income of 50K or less (denoted as ’0’). To evaluate the performance of each

model, several performance metrics are used, as outlined in Table 3.1. Accuracy, sensitivity,

specificity, precision, and F1 score are obtained from a confusion matrix. RMSE evaluates

the difference between values predicted by a model and the values actually observed, where

Pj is the predicted value of instance j, Aj is actual value of instance j, and n is the total

number of instances. Unlike other metrics, AUC assesses a classifier’s ability to differentiate

classes. Sp is the sum of the ranks for the positive instances, np is the number of positive

instances, and np is the number of negative instances. The AUC is known to be a superior

metric for evaluating the classifier performance and selecting an optimal solution during the

classification training process [Pre81].

10



Metric Formula Description

Accuracy tp+tn
tp+fp+tn+fn

Correct predictions ratio

Sensitivity tp
tp+fn

True positive rate

Specificity tn
tn+fp

True negative rate

Precision tp
tp+fp

Accuracy of positive predictions

F1 Score 2·p·r
p+r

Balance of precision and recall

RMSE
√

1
n

∑
(Pj − Aj)2 Prediction error magnitude

AUC Sp−np(nn+1)/2

npnn
Class separation ability

Table 3.1: Performance Metrics for Classification

3.1 Logistic Regression

In logistic regression, we model the probability that a given input belongs to a certain

class—specifically, whether an individual’s income exceeds 50K. This probability is obtained

using the sigmoid function, which maps any real number to a value between 0 and 1. The

logistic regression model generates raw predictions, known as logits. These logits are the

inputs to the sigmoid function. The logit (θ) is a linear combination of the input features

X1, X2, . . . , Xn, which represent the features used to predict income level in our case. Each

feature is multiplied by its respective learned coefficient β1, β2, . . . , βn, with the addition of

a bias term β0. This logit represents the log-odds of the predicted probability ( p̂), and is

calculated as follows:

θ = log

(
p̂

1− p̂

)
= β0 + β1X1 + β2X2 + . . .+ βnXn (3.1)

To convert the logits to a probability, we apply the sigmoid function:

p̂ =
1

1 + e−θ
(3.2)

Upon fitting the logistic regression model to the training data, it is then employed to

make predictions on the testing set. The model’s performance is evaluated using various

metrics, revealing an accuracy of 84.623%, a sensitivity of 74.120%, and a specificity of

11



87.197%. In Figure 3.1, the area under the ROC curve is 90.496%, which indicates that the

model has a high probability of correctly distinguishing between individuals who earn more

and less than 50K. An RMSE of 0.323 suggests that the model’s probability predictions for

an individual’s income category deviate from the actual observed outcomes by about 32.3%.

This provides an indication of the average magnitude of prediction errors. However, the

precision and F1 score are comparatively lower, at 58.591% and 65.447% respectively. These

figures suggest that while the model is generally robust in identifying true positives and true

negatives, there is room for improvement in its precision and the balance between precision

and recall, as indicated by the F1 score.

Figure 3.1: ROC Curve for Logistic Regression

12



3.2 Logistic Regression with Oversampling

In this section, we explore the application of oversampling techniques to address the class

imbalance evident in the target variable of our dataset, where 76% of individuals have an

income of ≤ 50K and 24% have an income > 50K. Initially, we utilize the upSample

function from the caret package to address the class imbalance in our dataset. However,

over-sampling with replacement tends to duplicate the existing minority samples without

introducing new information. As more instances of the minority class are replicated, the

model tries to identify more and more specific regions, which in turn increases the risk of

overfitting [CBH02]. To mitigate this, we transition to using ovun.sample from the ROSE

package, which generates synthetic samples by introducing random noise into the process

of creating new data points. Unlike oversampling with replacement, the synthetic examples

encourage the classifier to define broader and less specific decision regions. As a result,

the model generalizes better, learning regions that adapt to variations in the minority class

[CBH02].

Following the challenges associated with class imbalance and the overview of the over-

sampling techniques, we proceed to apply these methods in our analysis. We employee the

upSample function from the caret package to balance the dataset by duplicating the sam-

ples of the minority class. This adjustment aims to improve the logistic regression model’s

performance by providing a more balanced dataset. The results from the logistic regression

model trained on the upsampled data shows a notable impact across various metrics. There

is a slight improvement in accuracy, up from 84.623% to 85.227%, suggesting that the model

is correctly predicting a higher proportion of the outcomes when trained on the balanced

dataset (Table 3.2). The model’s sensitivity decreases from 74.120% to 73.264%, suggesting

that the model becomes slightly less adept at identifying individuals earning more than 50K.

There is an improvement in specificity from 87.197% to 88.078%, indicating that the model

trained on the upsampled data is slightly better at identifying those who earn 50K or less.

These comparisons reveal that while upsampling has improved certain aspects of the model’s

performance, particularly specificity, it has also introduced slight decreases in other areas,

13



such as sensitivity and the F1 score. The AUC has stayed consistent, affirming the model’s

strong discriminative power even after addressing class imbalance.

Metric Baseline Upsampled ROSE-Augmented

Accuracy 84.623% 85.227% 80.988%

Sensitivity 74.120% 73.264% 58.010%

Precision 58.591% 59.417% 85.043%

Specificity 87.197% 88.078% 94.155%

F1 Score 65.447% 65.618% 68.972%

AUC 90.496% 90.294% 90.490%

RMSE 0.323 0.320 0.359

Table 3.2: Comparison of Performance Metrics Across Logistic Regression Models

We then utilize the ovun.sample function from the ROSE package to our dataset, which

originally comprises 24,720 instances with income ≤ 50K and 7,841 instances with income

> 50K. This function rebalances the dataset to consist of 19,826 instances for the ≤ 50K

class and 19,863 for the > 50K class, equalizing the presence of both income groups in the

training set. The code snippet below illustrates the use of ovun.sample to achieve this

balance, followed by fitting a logistic regression model on the newly balanced data:

over <- ovun.sample(income~., data = training_set, method = "over")$data

overlogit <- glm(income ~., data = over, family = binomial(’logit’))

As shown in Table 3.2, the ROSE-augmented logistic regression model demonstrates an

interesting trade-off between the metrics. The ROSE-augmented model’s accuracy (80.988%)

is lower than both the regular (84.623%) and upsampled models (85.227%). This could

suggest that while the synthetic data generation adds diversity, it may introduce complexities

that slightly reduce overall prediction correctness. The sensitivity sees a significant drop

in the ROSE-augmented model (58.010%) compared to both the regular (74.120%) and

upsampled models (73.264%). There is a substantial increase in precision for the ROSE-

augmented model (85.043%) over the regular (58.591%) and upsampled models (59.417%).
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This suggests that when the model does predict the positive class, it is more likely to be

correct after applying the ROSE method. There is a marked improvement in precision and

specificity, which could be valuable in certain applications where the cost of false positives

is high. However, this comes at the expense of lower overall accuracy and sensitivity. The

stability of the AUC across models suggests that the discriminative ability of the model

remains strong, despite variations in other metrics.

3.3 L1 and L2 Regularization

In this section, we explore L1 and L2 regularization techniques to enhance the predictive

performance and robustness of our models. The primary motivation behind fitting these

models to our data arises from the need to address issues of overfitting and to improve

model interpretability in the presence of multicollinearity among predictors.

Let xi = (xi1, xi2, . . . , xip) represent the vector of features for the i-th observation. Let

β̂ = (β̂1, β̂2, . . . , β̂p) represent the vector of estimated coefficients for all p features. The lasso

loss function is given by:

LLasso(β) =
n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2

︸ ︷︷ ︸
Loss

+λ

p∑
j=1

|βj|︸ ︷︷ ︸
Penalty

(3.3)

The first part of the lasso objective function is the RSS, which measures the fit of the model

to the data by calculating the sum of the squares of the residuals. The second part of the

objective function is the penalty term, which adds the absolute values of the coefficients

multiplied by the tuning parameter λ. This penalty term balances the trade-off between

fitting the data well and keeping the model simple with fewer predictors, driving some of

them to be exactly zero. The lasso methodology involves estimating the prediction error and

identifying the optimal shrinkage degree, with the tuning parameter playing a crucial role in

modulating the regularization intensity [Tib96].

In our analysis, we apply the lasso regression model to our dataset. To determine the

optimal regularization parameter, which balances the trade-off between complexity and fit
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of the model, we utilize a 10-fold cross-validation approach. The R code snippet for this

procedure is as follows:

x <- model.matrix(income ~ . - 1, data = training_set)

y <- training_set$income

cv_lasso <- cv.glmnet(x, y, family = "binomial", alpha = 1,

standardize = TRUE, nfolds = 10)

best_lambda <- cv_lasso$lambda.min

The best lambda parameter is chosen as the value that minimizes the cross-validation error,

which in this case is 0.00017. The corresponding plot, Figure 3.2, illustrates the relationship

between different values of lambda and their associated cross-validation errors. The red dots

indicate the mean error for each lambda, with bars representing one standard error. The

value of best lambda coincides with the minimum point on the curve, suggesting it as the

appropriate level of model complexity for our dataset.

Using the best lambda, the lasso regression is executed. This process results in the ex-

clusion of the Gov category from the workcalss variable in the model. The removal of Gov

category suggests that this level does not significantly contribute to the predictive perfor-

mance when other variables are considered. The performance of the lasso regression model

is very similar to that of the baseline logistic regression model across all metrics (accuracy:

84.674%). There are marginal differences, with slight improvements in accuracy, sensitivity,

and specificity, and a marginal decrease in precision for the lasso model. Considering that

the lasso regression model achieves a performance comparable to that of the regular logistic

regression while simultaneously reducing the feature set by excluding the Gov category, one

might conclude that the lasso model is more efficient.

Similarly, the ridge regression analysis is conducted to examine its predictive performance.

The objective function for ridge regression, which includes a penalty proportional to the
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Figure 3.2: Cross-Validation Plots for Lasso (left) and Ridge (right)

square of the magnitude of the coefficients, is expressed as:

LRidge(β) =
n∑

i=1

(yi − β0 −
p∑

j=1

βjxij)
2

︸ ︷︷ ︸
Loss

+λ

p∑
j=1

β2
j︸ ︷︷ ︸

Penalty

(3.4)

The penalty term is controlled by the parameter λ, where larger values of λ result in greater

shrinkage of the coefficients towards zero. The optimal value of λ, which we refer to as

best lambda, is determined using 10-fold cross-validation via the cv.glmnet function. The

best lambda for our ridge model is 0.01347416. Upon fitting the model with this optimal

lambda, it demonstrates an accuracy of 84.122%. The performance metrics, detailed in Table

3.3, reveal that the ridge regression model, while performing slightly below the lasso model

in terms of accuracy and precision, still maintains a strong level of predictive performance.
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Metric Lasso Ridge

Accuracy 84.674% 84.122%

Sensitivity 74.330% 74.788%

Precision 58.530% 54.449%

Specificity 87.750% 86.183%

F1 Score 65.491% 63.019%

AUC 90.504% 90.122%

RMSE 0.323 0.329

Table 3.3: Comparison of Performance Metrics Between Lasso and Ridge Regression Models

The slight decrease in performance relative to lasso regression can be attributed to the

fundamental differences in how ridge regression manages regularization. Unlike lasso, ridge

regression does not reduce coefficients to absolute zero but rather shrinks them, allowing for

the retention of all variables in the model. This characteristic implies that ridge regression

is less effective at feature selection, which can be both a strength and a limitation [Tib96].

3.4 Naive Bayes

A classifier is a function f that maps input feature vectors x ∈ X to output class labels

y ∈ {0, 1}, where X is the feature space. In our case, the class labels represent binary

income levels: 0 for income ≤ 50k and 1 for income > 50k. Naive Bayes operates under

the generative modeling approach, where the class-conditional probabilities p(x | y) for each

class y, along with the class priors p(y), are learned. The Naive Bayes classifier then applies

Bayes’ rule to compute the posterior probability [Mur06]:

p(y | x) = p(x | y)p(y)
p(x)

=
p(x | y)p(y)∑
y′ p(x | y′)p(y′)

(3.5)

This classifier assumes that all features xi in the feature vector x are conditionally indepen-

dent given the class label y. Therefore, the class-conditional probability simplifies to:
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p(x | y) =
n∏

i=1

p(xi | y) (3.6)

Based on this assumption, the classification decision is made by selecting the class y that

maximizes the posterior probability:

ŷ = argmax
y

(
p(y)

n∏
i=1

p(xi | y)

)
(3.7)

Naive Bayes simplifies the computational process by eliminating the need to estimate co-

variances among features. However, this classifiers can show decreased performance when

there is significant correlation among predictor variables [BCR21]. As observed in our EDA

and Figure 2.3, there are high correlations amongst certain variables, such as sex and re-

lationship, which have been retained for their distinct contextual contributions despite this

interdependence.

When we apply the Naive Bayes model to our data, the impact of these correlations man-

ifests in the model’s performance metrics. The model yields an accuracy of approximately

80.759%, sensitivity of 70.092%, and an F1 score of 50.668%. Although these figures indicate

a reasonably good predictive ability, the precision of the model stands at around 39.673%,

suggesting a considerable number of false positives within the predictions. This is because

Naive Bayes assumes conditional independence between features, and the presence of corre-

lation violates this assumption [BCR21]. Despite these challenges, the RMSE of 0.399 and

AUC of 86.378% indicate the model’s decent discrimination capacity.

In contrast, the logistic regression we fitted presents with an accuracy of 84.623%, and

notably higher precision at 58.591%, alongside an F1 score of 65.447%. These metrics show

that logistic regression may have an advantage over Naive Bayes in scenarios with notable

feature interrelations. The observed discrepancy between the performance of the Naive Bayes

and logistic regression models underscores the importance of considering feature correlation

in model selection. While Naive Bayes offers a straightforward, computationally efficient

approach, the correlation of predictor variables in the UCI Adult dataset suggests that

models capable of handling feature covariance might provide more robust predictions.
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3.5 KNN

The K-Nearest Neighbors (KNN) classification method is based on the idea that the closest

data points to a given target x provide useful label information. In KNN, the class label is

determined by the majority label among the K-nearest data points in the feature space. A

key aspect of this methodology involves the selection of K, the number of neighbors consid-

ered, which directly impacts classification performance [Kra13]. Additionally, when applying

KNN to datasets where features are scaled differently, the disparity in value ranges can dis-

proportionately influence those attributes with smaller scales. To mitigate this issue, data

normalization is essential. Techniques such as Min-Max normalization and Z-score normal-

ization standardize attribute scales, ensuring no single feature disproportionately influences

the classification outcomes [HWR21]. For this study, Min-Max normalization is applied to

the features of our dataset as follows:

Xnew =
X −min(X)

max(X)−min(X)
(3.8)

Categorical variables, such as sex and race, are encoded numerically. The dataset is sub-

sequently divided into subsets for numerical and categorical variables, which are processed

accordingly. The preProcess function from the caret package is utilized to normalize the

numerical data. Training and test datasets are created, ensuring balanced class representa-

tion. Both sets are normalized to align feature scales. The KNN model’s hyperparameter

K is optimized using grid search, with cross-validation to evaluate accuracy. The optimal

number of neighbors is determined to be 33, as indicated in Figure 3.3, where the model’s

accuracy peaks, confirming the effectiveness of the chosen K.
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Figure 3.3: Accuracy of the KNN model for varying k

In comparing the performance of the optimized KNN model with the baseline logistic

regression model, there are notable differences in their metrics. The logistic regression ex-

hibits superior performance in almost all aspects. It achieves a higher accuracy at 84.623%

compared to 83.108% for KNN, indicating a slightly better overall rate of correctly classified

instances. Similarly, the sensitivity is improved in the logistic regression model, which is

at 74.120% over the KNN’s 70.988%, suggesting that logistic regression is more effective at

identifying true positives. Precision stands at 58.591% for logistic regression, outperforming

the KNN’s 54.141%. The specificity of logistic regression, indicating its ability to identify

true negatives, also exceeds that of the KNN model, with a value of 87.197% against 85.941%.

The F1 score, which balances the trade-off between precision and sensitivity, is higher for

the logistic regression at 65.447%, compared to the KNN’s 61.430%. Furthermore, logistic

regression yields a lower RMSE value of 0.323, suggesting that the predicted probabilities
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of the positive class are, on average, closer to the true outcomes than those of the KNN

model, which has an RMSE of 0.337. Lastly, the area under the ROC curve (AUC) for

logistic regression is 90.496%, indicating a better model performance than the KNN’s AUC

of 88.580%. Overall, while the KNN model demonstrates solid performance, especially con-

sidering its non-parametric nature, the regular logistic regression model appears to be more

predictive for this particular dataset.

3.6 Decision Trees

3.6.1 Constructing a Baseline Decision Tree

A decision tree utilizes predictor variables to determine the class labels of a target variable.

The classification begins at the root node and recursively continues down to the leaf nodes,

where the final class labels are assigned. At each node, a split condition determines whether

the input value should proceed to the left or right subtree. The objective of these conditions

is to create as homogenous subsets as possible. However, achieving completely homogenous

subsets is challenging with real-world data, which typically contains some degree of class

mixing. Thus, the aim at each node is to choose a split condition that most effectively

segregates the dataset into homogeneous subsets. This selection is guided by a ”goodness of

split” criterion, based on the concept of impurity, which quantitatively evaluates how well a

condition splits the data. The criterion for measuring impurity includes several indices such

as the Gini index, Information Gain, Gain Ratio, and Misclassification Rate [Tan20]. In this

paper, we use the Gini Index as a measure of impurity for determining the splits within the

decision tree. The Gini Index is calculated using the formula:

Gini Index = 1−
n∑

i=1

p2i (3.9)

where pi represents the proportion of the class i in a given node. This index measures the

frequency at which any element of the dataset will be incorrectly labeled if it was randomly

labeled according to the distribution of labels in the subset, providing a scale of impurity at

each node of the decision tree. After fitting the decision tree to our dataset, we observe the
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following structure and detailed insights in the resulting decision tree (Figure 3.4) :

• The initial split in the decision tree is based on capital gain, dividing the dataset into

groups with the values less than or equal to 5,119 and those with values greater. This

split indicates that capital gain is a significant predictor in our model.

• Various other attributes influence the path taken through the tree, including mari-

tal status, education, and occupation.

• Additional conditions that appear in lower nodes of the tree include capital loss and

age, suggesting these factors also play critical roles in the classification process.

Each leaf node in the tree represents a terminal classification outcome, displaying the class

proportions, which reveal the likelihood of an individual belonging to a specific class based on

the pathways leading to that node. For instance, if an individual’s capital gain is less than or

equal to 5,119, and they have never been married, they would follow the left branches down

the tree to a particular leaf node. In the context of the target variable—where 0 represents

an income of 50K or less, and 1 represents an income above 50K—the 0 at the final node

indicates the predicted class for the income level. The figure 32% suggests that this node

accounts for 32% of the samples, while the value 0.04 indicates that 4% of the samples in

this node are classified as having an income above 50K. Given that the final class prediction

at this node is 0, it implies that individuals in this node are predominantly predicted to

have an income of 50K or less. The decision tree’s major performance metrics are as follows:

accuracy of 84.177%, sensitivity of 71.104%, precision of 61.438%, and specificity of 87.762%.

These results will later be compared with those from pruned and tuned versions of the tree

in Table 3.4.

23



Figure 3.4: Decision tree demonstrating the classification process

3.6.2 Optimizing with Tree Pruning

Tree pruning involves removing parts of the tree that do not contribute significantly to its

predictive accuracy. Typically, decision trees are constructed by initially growing a com-

prehensive tree and subsequently pruning it. Pruning is essential because a fully developed

tree can overfit the data, resulting in complex, unnecessary structures that do not aid in

classifying instances. Pruning aims to mitigate overfitting by reducing the tree to a version

that yields the lowest error rate on new, unseen data, with a preference for simpler, smaller

trees [Bre17]. In this study, we apply cost-complexity pruning as described by Breiman et

al. [Bre17], which is designed to balance the trade-off between the tree’s size and its predic-

tion accuracy to prevent overfitting while enhancing interpretability. The cost-complexity
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pruning method entails a two-stage process where a sequence of increasingly simplified trees,

from T0 to Tk is created. T0 is the initial, unpruned tree, and each subsequent tree is formed

by replacing one or more of subtrees with leaves, continuing until Tk becomes a single leaf.

Each iteration assesses the pruned tree’s performance based on a cost-complexity metric

defined as:

R(T ) = E + αL(T ) (3.10)

where R(T) represents the cost-complexity, E is the error count from the training set, L(T)

is the count of leaves in the tree, and α is a regularization parameter that influences the

severity of penalties imposed for tree complexity. The objective is to minimize this pe-

nalized function, effectively balancing the accuracy of the tree against its simplicity. We

follow the same algorithm to optimize the tree with cost-complexity pruning method. First,

we grow a large, unpruned tree to determine the complexity parameter that minimizes the

cross-validated error. Once the optimal cost complexity parameter is identified, the tree is

pruned to reduce overfitting while maintaining predictive accuracy. For our dataset, the min-

imum cost-complexity parameter (min CP) is determined to be 0.000723. This parameter’s

effectiveness in optimizing tree complexity is demonstrated in Figure 3.5, which highlights

the relationship between tree complexity and cross-validated error, underlining the optimal

complexity trade-offs. The following R code illustrates the process of identifying the mini-

mum cost-complexity parameter, pruning the decision tree, and predicting using the pruned

model:

min_CP <- large_tree$cptable[which.min(large_tree$cptable[,"xerror"]), "CP"]

pruned_model <- prune(large_tree, min_CP)

pruned_predictions <- predict(pruned_model, testing_set, type = "class")

Following the optimization of the decision tree using the cost-complexity pruning method,

it is important to compare the performance of the original unpruned tree and the pruned

tree. The unpruned tree, while more complex and potentially better fitting the training

data, tends to overfit, leading to poorer performance on unseen data. In contrast, the

pruned tree, optimized with a min CP of 0.000723, demonstrates better generalization across
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various metrics. In Table 3,4, the pruned tree not only shows improved accuracy but also

exhibits higher sensitivity and specificity, indicating a more balanced detection capability

for both classes. The reduction in RMSE and the increase in AUC further corroborate the

enhanced predictive power and error reduction in the pruned model.

Figure 3.5: Decision Tree Error vs. Complexity Parameter

3.6.3 Enhancing Predictive Power through Tree Tuning

Hyper-parameter optimization is crucial in building effective machine learning models, as

it significantly influences model performance. Traditional methods like grid search are of-

ten computationally expensive, particularly with models having multiple hyper-parameters.

Recent advancements in hyper-parameter optimization emphasize the efficiency of random

search methods, especially when paired with parallel computing strategies [BBB11]. This

section discusses the implementation of a parallelized random search approach to optimize
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the hyper-parameters of a decision tree classifier. The R code snippet below demonstrates

the application of a parallelized random search method using the mlr package for a clas-

sification task. The target is to optimize the decision tree model’s performance by tuning

various hyper-parameters such as minsplit, minbucket, cp, and maxdepth.

treeTask <- makeClassifTask(data = df, target = "income")

tree <- makeLearner("classif.rpart")

treeParamSpace <- makeParamSet(

makeIntegerParam("minsplit", lower = 10, upper = 50),

makeIntegerParam("minbucket", lower = 5, upper = 20),

makeNumericParam("cp", lower = 0.0002, upper = 0.001),

makeIntegerParam("maxdepth", lower = 5, upper = 20))

randSearch <- makeTuneControlRandom(maxit = 200)

cvForTuning <- makeResampleDesc("CV", iters = 5)

parallelStartSocket(cpus = detectCores())

tunedTreePars <- tuneParams(tree, task = treeTask,

resampling = cvForTuning,

par.set = treeParamSpace,

control = randSearch)

parallelStop()

> tunedTreePars

Tune result:

Op. pars: minsplit=31; minbucket=5; cp=0.000254; maxdepth=9

mmce.test.mean=0.1372807

Random search is employed for optimization, configured to perform 200 iterations. Cross-

validation with five iterations is used to evaluate model performance. To enhance compu-

tational efficiency, the parallelStartSocket function activates parallel processing using

all available CPU cores, allowing simultaneous evaluations across different sets of hyper-

parameters. This parallel execution not only shortens the optimization timeline but also
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broadens the exploration of the parameter space, increasing the probability of identifying

optimal configurations. Upon completion of the hyper-parameter tuning process, the best

parameter combination identified is a minimum split of 31, minimum bucket size of 5, com-

plexity parameter of 0.000254, and a maximum depth of 9. This configuration results in a

mean misclassification error (mmce) on the test dataset of 0.1372807, showcasing the effec-

tiveness of the tuned parameters in enhancing the decision tree model’s performance.

Metric Baseline Tree Pruned Tree Tuned Tree

Accuracy 83.323% 86.271% 86.210%

Sensitivity 70.060% 79.335% 77.950%

Precision 57.417% 60.507% 62.052%

Specificity 86.714% 87.893% 88.247%

F1 Score 63.111% 68.654% 69.098%

AUC 86.380% 89.065% 89.324%

RMSE 0.342 0.319 0.317

Table 3.4: Comparison of Performance Metrics For Regular, Pruned, and Tuned Trees

Table 3.4 demonstrates that the hyper-parameter tuning process successfully optimized

the decision tree model, yielding significant improvements in several key performance metrics

when compared with the baseline (untuned) and pruned tree models. The comparison of

some key performance metrics is summarized as follows:

• The tuned tree achieves an accuracy of 86.210%, which is a marginal improvement over

the regular tree’s accuracy of 83.323% and slightly below the pruned tree’s accuracy

of 86.271%.

• Sensitivity shows a notable improvement in the tuned tree at 77.950%, compared to

70.060% in the regular tree and 79.335% in the pruned tree, indicating better perfor-

mance in identifying true positive rates.

• The AUC, which measures the ability of the model to avoid false classification, increases

from 86.380% in the baseline tree to 89.324% in the tuned tree, surpassing the pruned
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tree’s 89.065%.

These improvements demonstrate that the tuned tree, configured via parallelized random

search, outperforms the regular tree in nearly all metrics and exhibits comparable or slightly

better performance than the pruned tree. The slight variances in performance between

the tuned and pruned trees suggest that while pruning effectively reduces overfitting and

complexity, tuning specific hyper-parameters can provide a more balanced approach across

various measures of performance.

3.7 Random Forest

3.7.1 Baseline Random Forest

The Random Forest algorithm is an ensemble learning method for classification (and regres-

sion) that constructs a multitude of decision trees at training time and outputs the mode of

the classes (for classification) or the mean prediction (for regression) of the individual trees

[Bre01]. Random Forest constructs an ensemble of decision trees, each generated from boot-

strap samples of the training dataset. These samples are created through random selection

with replacement, ensuring diversity among the trees in the forest. After constructing the

forest, predictions for classification tasks, such as ours, are determined by majority voting

among the outputs of all the trees. The Random Forest model is as follows:

RF =
1

N

N∑
i=1

h(x, θi) (3.11)

where N is the number of trees. h(x, θi) represents the prediction of the i-th tree and x is the

feature vector. The θi are independently sampled vectors defining the structure and splits

of each tree based on the training data [Bre01]. This highlights the ensemble nature of the

model, where multiple decision trees vote to determine the final class output. In our study,

we utilize the randomForest package to build a baseline Random Forest model. The model is

configured to build 1000 trees, a choice intended to leverage the strengths of multiple trees in

making robust predictions. The performance metrics of this baseline model are summarized
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in Table 3.5, which provides a comparison with the tuned Random Forest model discussed

later in this section. The Random Forest model outperforms the baseline logistic regression

model in several key metrics, including accuracy, sensitivity, precision, specificity, F1 score,

and RMSE. However, the AUC metric, which measures the overall ability of the model to

discriminate between positive and negative classes, is similar for both models. This suggests

that while the Random Forest model provides a slight edge in classification performance.

3.7.2 Random Forest with Tuned Parameters

Hyperparameter tuning in Random Forest algorithms is crucial as it seeks an optimal balance

between model accuracy and computational efficiency. According to Probst et al., the fol-

lowing hyperparameters are key to enhancing Random Forest model performance [PWB19]:

• mtry: Controls the number of features considered for each split, balancing between

tree diversity and accuracy.

• nodesize: Determines the minimum samples a node must contain before it can split,

influencing tree depth and complexity.

• ntree: Represents the number of trees in the forest. More trees generally improve

model performance by reducing variance, but benefits diminish with very high numbers.

• maxnodes: Limits the maximum number of terminal nodes, controlling tree growth

and complexity to prevent overfitting in complex datasets.

To identify the optimal combination of hyperparameters, a parallelized random search is

employed, similar to the tree tuning approach previously described. Upon concluding the

hyperparameter tuning process, the most effective parameter combination identified is mtry

of 6, nodesize of 33, ntree of 286, maxnodes of 20. This configuration results in a mean

misclassification error (mmce) of 0.1879804. As summarized in Table 3.5, the comparison

highlights the effects of tuning on various key performance indicators. The table reflects

the trade-offs and enhancements resulted from the tuning. Notably, while accuracy and
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Metric Baseline RF Tuned RF

Accuracy 86.410% 80.876%

Sensitivity 77.786% 77.283%

Precision 63.412% 87.460%

Specificity 88.600% 85.558%

F1 Score 69.867% 82.057%

AUC 90.920% 94.864%

RMSE 0.315 0.360

Table 3.5: Comparison of Performance Metrics For Baseline and Tuned Random Forest

Models

specificity show slight declines, precision and F1 score improve significantly, indicating en-

hanced positive predictive value and a better balance between precision and recall. Figure 3.6

demonstrates that the AUC also shows a notable improvement, underscoring an enhanced

ability of the model to distinguish between the classes effectively. The tuned model not

only outperforms the baseline model in terms of AUC but also demonstrates a consistently

higher true positive rate across almost all thresholds of false positive rate. These results sub-

stantiate the impact of systematic hyperparameter tuning in optimizing model performance,

particularly in complex datasets where default parameters do not suffice.
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Figure 3.6: ROC comparison between Baseline RF and Tuned RF

3.8 Support Vector Machine

Support Vector Machines (SVMs) represent a sophisticated computational approach designed

for the classification and regression of complex datasets. SVMs operate by transforming

input data vectors non-linearly into a high-dimensional feature space. Within this space,

the algorithm constructs a linear decision surface or hyperplane optimized to segregate two

or more classes of data with the maximum possible margin. The theoretical framework

discussed here is founded on the principles of Reproducing Kernel Hilbert Spaces (RKHS)

as outlined in seminal works by Aronszajn (1950) [Aro50], Girosi (1997) [OFG97], Heckman

(1997) [HIT97], and Wahba (1990) [Wah90]. These studies propose that an inner product
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in feature space corresponds to an equivalent kernel in the input space, given by [Gun98]:

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ (3.12)

This efficiency in separation is attributed to ”support vectors,” which are the nearest data

points to the hyperplane, defining its position and orientation. These vectors are not only

help in maximizing the margin and ensure the model captures essential patterns for robust

generalization [VGS96]. Figure 3.7 visually supports these concepts. The left plot shows

Figure 3.7: Linearly Separable (left) vs. Not Linearly Separable (right)

two distinct groups where a line could feasibly separate the lower cluster of red points from

the upper cluster of green points. Conversely, the right plot shows some overlap between the

green and red points, especially around the central region where the green and red points

are close together. If there is indeed overlap, as it seems, this plot would not be linearly

separable. This overlap indicates a lack of linear separability, highlighting the necessity for

more sophisticated approaches such as kernel functions. The core innovation of the SVM lies

in its use of kernel functions, which facilitate the high-dimensional transformation of data.

Table 3.6 lists common kernel functions. The linear kernel is the simplest type of kernel

function, which is appropriate when the data is linearly separable. The polynomial kernel

allows for learning non-linear models by raising the linear kernel to the power of d degree

of the polynomial. This can capture more complex interactions between features. The RBF
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kernel measures the exponential decay of the Euclidean distance between two data points.

The parameter γ controls the width of the kernel and hence the decision boundary. The

RBF kernel is highly versatile and can model complex non-linear relationships.

Kernel Functions

Linear K(xi, xj) = xi · xj

Polynomial K(xi, xj) = (1 + xi · xj)
d

Radial Basis Function K(xi, xj) = exp(−γ∥xi − xj∥2)

Table 3.6: Comparison of Kernel Functions

In this paper, we explore the application of Support Vector Machines (SVMs) to our

dataset, implementing two distinct SVM models to predict income levels. The goal is to

compare a baseline SVM model with a tuned SVM model, using different R packages and

tuning strategies to optimize performance.The initial SVM model is constructed using the

kernlab package. This model utilizes the Radial Basis Function (RBF) kernel, configured

with automatically tuned kernel parameters. Specific details of the model setup include:

• Kernel: RBF (”rbfdot”), with parameters set to ”automatic” for optimal adaptation

to data.

• Regularization: The cost parameter C is set to 1, balancing the trade-off between

achieving a low error on the training data and minimizing the model complexity.

• Scaling: Input features are scaled to enhance model performance, crucial for kernel-

based SVM.

• Cross-Validation: Employee 5-fold cross-validation within the training process to en-

sure robustness and reduce overfitting.

For the second SVM model, we utilize the e1071 package in R, focusing on optimizing the

cost and gamma parameters through a systematic tuning process with the caret package.

The process involves key steps. First, a tuning grid for the gamma and cost parameters

is defined to cover a range of possible values. This grid is used to systematically explore
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different combinations of these parameters to find the optimal settings for the RBF kernel.

Next, the tune.svm function from the e1071 package is employed to perform the model

tuning. This function explores the defined grid of gamma and cost parameters to identify

the combination that resulted in the best model performance. The optimal combination is

a cost of 11.31371 and a gamma of 0.0078125. Figure 3.8 illustrates that the results of this

tuning process, where the red dot represents the best combination found.

Figure 3.8: Performance of SVM Model with Different Hyperparameters

The hyperparameter tuning process for the SVM model generates mixed results com-

pared to the baseline model, as shown in Table 3.7. The tuned model demonstrates a slight

improvement in accuracy (84.843% vs. 84.747%) and sensitivity (76.314% vs. 75.330%),

while the AUC increased marginally to (89.804% vs. 89.256%). Conversely, other metrics

such as precision, specificity, and F1 score show slight decreases. These results indicate that

the baseline SVM model is already close to optimal, and further tuning provides minimal im-

provements. The slight decreases in precision and specificity highlight the trade-offs inherent
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in model tuning.

Metric Baseline SVM Tuned SVM

Accuracy 84.747% 84.843%

Sensitivity 75.330% 76.314%

Precision 58.865% 56.551%

Specificity 87.061% 86.768%

F1 Score 66.088% 64.963%

AUC 89.256% 89.804%

RMSE 0.334 0.332

Table 3.7: Comparison of Performance Metrics For Baseline and Tuned SVM Models

3.9 Neural Network

Neural Networks are computational models inspired by the architecture of biological neurons,

particularly those in the human brain [ZHS09]. They consist of interconnected nodes or

neurons, each representing a specific function, referred to as the activation function. The

connections between neurons are weighted, representing the strength of the signal passed

through the connection [WF18]. In a neural network, information is processed in layers. The

process begins with the input layer, which receives the initial data. This data is then passed

through one or more hidden layers, where the network performs intermediate computations

and feature extraction. Each hidden layer typically applies a nonlinear activation function,

which allows the network to learn complex patterns. One common activation function is the

sigmoid function, defined as:

sigmoid(x) =
1

1 + e−x
(3.13)

As demonstrated in Figure 3.9, the sigmoid function maps all the range of x into [0, 1].

Finally, the data reaches the output layer, where the network produces its final prediction.
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Figure 3.9: Sigmoid Function

3.9.1 Baseline Neural Network

In our analysis, we construct a one-hidden-layer neural network model, featuring a single

hidden layer between the input and output layers. 32 input nodes are obtained through the

conversion of categorical variables into numeric ones using dummyVars. Within the hidden

layer, we utilize 20 neurons to facilitate the extraction of meaningful features from the input

data. The general structure of a neural network is illustrated in Figure 3.10, showing how

inputs are processed in layers. During the training process, we use a maximum of 10,000

iterations to refine the model parameters and minimize the error. To prevent overfitting,

a weight decay of 0.001 is incorporated, following the recommendation by Dreiseitl et al.

[DO02], who highlights that neural network models offer greater flexibility compared to lo-

gistic regression but are more prone to overfitting. The size of the network can be controlled

by reducing the number of variables and hidden neurons, or by pruning the network after

training. Alternatively, smoothness in the model output can be enforced through regulariza-

tion, known as weight decay in the context of neural networks. This regularization technique

penalizes larger weights in the network, encouraging the maintenance of smaller weights and
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Figure 3.10: Neural Network Diagram

a simpler model structure. Given an input vector (x1, . . . , x32) the output of the neural

network with a single hidden layer of 20 neurons can be represented as follows:

zi =
32∑
j=1

w
(1)
ij xj + b

(1)
i (3.14)

hi = σ(zi) (3.15)

yk =
20∑
i=1

w
(2)
ki hi + b

(2)
k (3.16)

where:

• xj denotes the input nodes obtained through the conversion of categorical variables

into numeric ones using dummyVars.

• hi represents the activation of the i-th neuron in the hidden layer.

• ŷ represents the predicted output of the network.
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• σ(·) is the sigmoid function, defined as σ(z) = 1
1+exp(−z)

.

Before fitting the neural network model to the training data, categorical variables are con-

verted into numeric ones, as illustrated in Table 3.8. For example, the marital status feature

is encoded with ”Married” serving as the base category and ”Never-married” represented

as [1, 0, 0, 0]. This type of encoding prevents multicollinearity issues while including n − 1

dummy variables for n different levels.

Marital Status Never-married Divorced Separated Widowed

Married 0 0 0 0

Never-married 1 0 0 0

Divorced 0 1 0 0

Separated 0 0 1 0

Widowed 0 0 0 1

Table 3.8: Example of Dummy Variables for marital status

The performance of the baseline neural network model is similar to the baseline logistic

regression across most metrics, with the logistic regression achieving slightly higher accuracy

(84.623% vs. 84.459%) and AUC (90.296% vs. 90.198%), along with better sensitivity

(74.120% vs. 73.095%). The neural network model has slightly higher precision (59.271%

vs. 58.591%) and specificity (87.327% vs. 87.197%). Overall, both models exhibit balanced

and comparable performance.

3.9.2 Tuned Neural Network

To further optimize the neural network model, we conduct a grid search over different pa-

rameter combinations, including different sizes of the hidden layer and different weight decay

values. The hyperparameter grid includes sizes 10,20,30, and 50 for the hidden layer, and

decay values 0.0001, 0.001, 0.01, and 0.1. The grid search identifies the optimal model con-

figuration with a hidden layer size of 30 and a decay value of 0.1, achieving a performance of

85.197%. Figure 3.11 illustrates the performance of the neural network across different sizes

39



and decay values, confirming that the most effective combination is a hidden layer size of 30

and a decay value of 0.1.

Figure 3.11: Performance of Models by Size and Decay

When comparing the baseline neural network model to the tuned neural network model,

the latter performs better across all metrics, as shown in Table 3.9. The tuned neural

network achieves higher accuracy (85.197% vs. 84.459%), sensitivity (74.258% vs. 73.095%),

precision (61.867% vs. 59.271%), specificity (88.052% vs. 87.327%), F1 score (67.498% vs.

65.461%), and AUC (90.863% vs. 90.198%), while also having a lower RMSE (0.318 vs.

0.324). These consistent improvements across all key metrics demonstrate that the grid

search successfully identifies a more optimal neural network configuration, leading to a model

that not only performs better in terms of accuracy and balanced performance but also offers

better discriminatory power and predictive accuracy.
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Metric Baseline NN Tuned NN

Accuracy 84.459% 85.197%

Sensitivity 73.095% 74.258%

Precision 59.271% 61.867%

Specificity 87.327% 88.052%

F1 Score 65.461% 67.498%

AUC 90.198% 90.863%

RMSE 0.318 0.324

Table 3.9: Comparison of Performance Metrics For Baseline and Tuned Neural Network

Models
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CHAPTER 4

Conclusion

Many classifiers use accuracy as a metric to identify the optimal solution during classification

training [HS15]. Accuracy measures the classifier based on overall correctness, which refers

to the total number of instances correctly predicted when tested with unseen data. Table

4.1 shows that the baseline random forest model results in the highest accuracy of 94.410%.

Table 4.1 demonstrates that the best model by each metric is:

• Accuracy: Baseline Random Forest - 86.410%

• Sensitivity: Pruned Tree - 79.335%

• Precision: Tuned Random Forest - 87.460%

• Specificity: Baseline Random Forest - 88.600%

• F1 Score: Tuned Random Forest - 82.057%

• AUC: Tuned Random Forest - 94.964%

• RMSE: Baseline Random Forest - 0.315

However, in several studies [RP06] [Wil00], it has been shown that the simplicity of accuracy

can lead to suboptimal solutions, especially when dealing with imbalanced class distributions.

The UCI Adult dataset is imbalanced, with 76% of instances having an income ≤ 50K and

24% having an income > 50K. To determine the best model for our dataset, which exhibits

an imbalance in income levels, it’s essential to consider multiple metrics due to the various

aspects of performance each metric highlights. For example, precision is important when

the cost of false positives is high. which might be relevant if focusing on those with incomes
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> 50K. In contrast, specialty might serve the best when it is important to correctly identify

individuals whose income does not exceed 50K. The AUC measures the classifier’s ability

to distinguish between positive and negative classes. A higher AUC value indicates better

performance. The RMSE measures the average deviation between the predicted probabili-

ties and the actual outcomes. For binary classification problems, this metric provides insight

into how well-calibrated the probability estimates are. While accuracy measures overall cor-

rectness, the RMSE provides additional information about the model’s prediction reliability.

Model Acc. Sens. Prec. Spec. F1 AUC RMSE

Logistic - B 84.623% 74.120% 58.591% 87.197% 65.447% 90.496% 0.323

Logistic - U 85.227% 73.264% 59.417% 88.078% 65.618% 90.294% 0.320

Logistic - R 80.988% 58.010% 85.043% 94.155% 68.972% 90.490% 0.359

Lasso 84.674% 74.330% 58.5330% 87.750% 65.491% 90.504% 0.323

Ridge 84.122% 74.788% 54.449% 86.183% 63.019% 90.122% 0.329

NB 80.759% 70.092% 39.673% 82.509% 50.668% 86.378% 0.399

KNN 83.108% 70.988% 54.141% 85.941% 61.430% 88.580% 0.337

Tree - B 83.323% 70.060% 57.417% 86.714% 63.111% 86.380% 0.342

Tree - P 86.271% 79.335% 60.507% 87.893% 68.654% 89.065% 0.319

Tree - T 86.210% 77.950% 62.052% 88.247% 69.098% 89.324% 0.317

RF - B 86.410% 77.786% 63.412% 88.600% 69.867% 90.920% 0.315

RF - T 80.876% 77.283% 87.460% 85.558% 82.057% 94.964% 0.360

SVM - B 84.747% 75.330% 58.865% 87.061% 66.088% 89.256% 0.334

SVM - T 84.843% 76.314% 56.551% 86.768% 64.963% 89.804% 0.332

NN - B 84.459% 73.095% 59.271% 87.327% 65.461% 90.198% 0.318

NN - T 85.197% 74.258% 61.867% 88.052% 67.498% 90.863% 0.324

Table 4.1: Model Performance Metrics. The model name abbreviations are as follows: B =

Baseline, P = Pruned, T = Tuned, U = Upsampled, R = ROSE- Augmented.

43



The Random Forest models, particularly the baseline and tuned models, perform well

across most metrics. The tuned Random Forest has the highest AUC and F1 Score, indicating

strong overall performance and effective balance between precision and recall. The baseline

Random Forest has the best accuracy, specificity, and RMSE, suggesting strong general

performance and well-calibrated probabilities. Considering the overall performance, the

tuned Random Forest can be considered the best model as it excels in critical metrics such

as AUC and F1 Score, which are especially valuable when dealing with imbalanced datasets.

Plots of residual-versus-fitted values are less effective for models with binary outcomes due

Figure 4.1: Comparison of Binned Residual Plots for Baseline (left) and Tuned (right)

Random Forest Models

to the discrete nature of the residuals [Kas15]. Instead, binned residual plots, as suggested

by Gelman and Hill (2007) [GH06], are advantageous for evaluating the overall fit of models

for binary outcomes and considering the effect of continuous variables. These plots involve
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grouping observations into bins of equal size. For each bin, the 95% confidence interval is set

at (
−2
√

p(1−p)

n
,
2
√

p(1−p)

n
), calculated using the standard deviation of the residuals in each bin.

The comparative binned residual plots for the baseline and tuned Random Forest models

are illustrated in Figure 4.1. The left plot shows slightly dispersed residuals around zero,

with notable deviations, particularly in the middle and higher ranges of expected values.

In contrast, the right plot shows a more centered clustering of residuals around zero, with

deviations from zero are smaller compared to the left plot, further confirming the superior

performance of the tuned Random Forest model. Moreover, the variable importance plot in

Figure 4.2: Variable Importance Plot for Indicating the Mean Decrease in Accuracy for Each

Predictor

Figure 4.2 provides insights into which variables significantly impact the model’s accuracy.

Key variables such as capital gain, education, relationship, occupation, and capital loss are

identified as the most influential in predicting income levels. For example, the capital gain
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variable demonstrates the highest importance, suggesting that it is the most significant

predictor of income levels in the model. Changes or variations in this variable are likely to

have a substantial impact on the model’s prediction accuracy. Understanding the influence

of these predictors helps in refining model features and guiding further data collection and

feature engineering.

This study underscores the effectiveness of advanced machine learning techniques, specif-

ically Random Forest, in income prediction based on socio-economic data. The ability of the

Random Forest model to handle high-dimensional data and exhibit the importance of various

predictors is crucial for developing targeted policies and interventions. Future research could

build upon these findings by exploring more complex interactions among these variables or

by applying similar models to different demographic or geographic datasets to validate the

findings.
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