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ABSTRACT 21 

Human subjects of both sexes were asked to make a perceptual decision between multiple directions of 22 

visual motion. In addition to reporting a primary choice, they also had to report a second guess, 23 

indicating which of the remaining options they would rather bet on, assuming that they got their 24 

primary choice wrong. The second guess was clearly informed by the amounts of sensory evidence that 25 

were provided for the different options. A single computational integration-to-threshold model, based 26 

on the assumption that the second guess is determined by the rank ordering of accumulated evidence at 27 

or shortly after the time of the decision, was able to explain the distribution of primary choices, 28 

associated response times, and the distribution of second guesses. This suggests that the decisionmaker 29 

has access to how well supported unchosen options are by the sensory evidence. 30 

 31 

SIGNIFICANCE STATEMENT 32 

Perceptual decisions require conversion of sensory evidence into a discrete choice. Computational 33 

models based on the accumulation of evidence to a decision threshold can explain the distribution of 34 

choices and associated decision times. Subjects are also able to report the level of confidence in their 35 

decision. Here we show that, when making decisions between more than two alternatives, the 36 

decisionmaker can even report a second guess that is clearly informed by the sensory evidence. These 37 

second guesses show a distribution that is consistent with subjects having access to how much sensory 38 

evidence was accumulated for the unchosen options. The decisionmaker therefore has knowledge about 39 

the outcome of the decision process that goes beyond just the choice and an associated confidence. 40 

 41 

  42 
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INTRODUCTION 43 

Perceptual decisions require a decisionmaker to make a discrete choice on the basis of sensory 44 

information. Substantial work has gone into elucidating the mechanisms that allow the inflowing 45 

sensory evidence to be converted into a discrete choice. Integration-to-threshold mechanisms are the 46 

currently dominant class of models, the Drift Diffusion Model (DDM) being a popular exemplar (Luce, 47 

1986; Ditterich, 2006; Ratcliff and McKoon, 2008; Ditterich, 2010; Forstmann et al., 2016). These models 48 

are based on the idea that sensory evidence for each available option is accumulated until the 49 

accumulated evidence for one of the options exceeds a decision threshold. They can explain the 50 

distribution of choices and associated response times (RTs) for a wide range of decision tasks (Ratcliff 51 

and Smith, 2004) and are consistent with decision-related neural activity, both averaged across trials as 52 

well as on a single-trial level (Ditterich, 2006; Bollimunta et al., 2012). It is difficult, however, to pinpoint 53 

experimentally how much temporal integration is involved in the process (Ditterich, 2006), and the view 54 

that single-trial decision-related neural activity is consistent with a diffusion-like process has been 55 

challenged (Latimer et al., 2015). 56 

More recently, confidence in a perceptual decision has become the focus of scientific investigation. 57 

Some studies suggest that a common mechanism could explain both the outcome of the decision as well 58 

as the reported confidence (Kiani and Shadlen, 2009; Kiani et al., 2014), while other reports have 59 

focused on dissociations between subjective confidence and objective decision accuracy (see Rahnev 60 

and Denison (2018) for a review). When making binary decisions, the choice and the associated 61 

confidence fully describe the outcome of the decision process. When making decisions between more 62 

than two alternatives, the decisionmaker could also have knowledge about how well the sensory 63 

evidence supported the unchosen options. 64 
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Here we ask whether human subjects have access to information about the “relative desirability” of the 65 

unchosen options when making perceptual decisions between more than two alternatives and, if so, 66 

whether one can provide a quantitative explanation for the distribution of reported second guesses. We 67 

used a modified version of the 3-alternative forced choice (3AFC) version of the multi-component 68 

Random Dot Motion (RDM) direction discrimination task introduced in Niwa and Ditterich (2008). 69 

Briefly, the subject watches an RDM stimulus that simultaneously contains coherent motion in three 70 

different directions, all separated by 120 deg. The strength of each motion component is chosen 71 

randomly. The observer has to determine the strongest motion component and indicate its direction 72 

with an eye movement. The choice and the associated RT are recorded. For this study, subjects were 73 

instructed to also report a second guess with a second eye movement. We asked the observers to 74 

indicate which of the remaining two options they would rather bet on, assuming they got their primary 75 

choice wrong. Once both the primary choice and the second guess had been registered, auditory 76 

feedback about the accuracy of the primary choice was provided. Subjects did not receive feedback on 77 

their second guess. The task is illustrated in Figure 1. Further details regarding the experimental design 78 

can be found in Materials and Methods. 79 

Here we demonstrate that the second guess is clearly informed by the sensory evidence and that a 80 

single integration-to-threshold model can explain the distribution of primary choices, associated RTs, 81 

and the distribution of second guesses. This suggests that the decisionmaker has access to how much 82 

sensory evidence had been accumulated for options other than the chosen one at the time when the 83 

decision was made. We also consider alternative models and show that the second-best explanation for 84 

the data is provided by a model that starts a new decision process between the remaining alternatives 85 

when the primary decision is made and reads out the decision variable after a fixed amount of time. 86 

 87 

88 
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MATERIALS AND METHODS 89 

Experimental Design and Statistical Analyses 90 

Human Subjects 91 

The study was approved by the UC Davis Institutional Review Board. After giving their informed consent, 92 

seven UC Davis undergraduate students (4 females, 3 males) with normal or corrected-to-normal vision 93 

participated in the experiment. Each of the subjects completed at least five experimental sessions with a 94 

minimum of 300 valid decision trials each. 95 

 96 

Experimental Setup 97 

The subjects sat in front of a 22” flat-screen CRT video monitor (ViewSonic P225f; viewing distance: 98 

60 cm) with their head on a chin and forehead rest. The visual stimuli were generated by a Macintosh 99 

G4 computer running Mac OS 9, MATLAB (The Mathworks, Natick, MA), and the Psychophysics Toolbox 100 

(Brainard, 1997; Pelli, 1997) at a frame rate of 75 Hz. The experiment was controlled and the data were 101 

collected by an Intel Pentium IV computer running QNX (Ottawa, ON, Canada) and a modified version of 102 

REX (Laboratory of Sensorimotor Research, National Eye Institute). 103 

Eye movements were monitored using a monocular IR video eye tracker with chinrest-mounted optics 104 

(Series 5000, Applied Science Laboratories, Bedford, MA) operating at 240 Hz. Prior to each 105 

experimental session the eye tracker was calibrated using repeated fixation of nine calibration targets 106 

with horizontal eccentricities of -10, 0, and +10 deg and vertical eccentricities of -7.5, 0, and +7.5 deg. 107 

 108 

  109 
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Experimental Task and Visual Stimulus 110 

The experimental task is illustrated in Fig. 1. Each trial started with the presentation of a central fixation 111 

mark (diameter: 0.3 deg). The measured fixation location had to remain within 2.5 deg of the center of 112 

the screen throughout the trial (up to the saccadic response). After 250 to 500 ms of stable fixation, 113 

three targets (diameter: 0.5 deg) appeared on the screen, all located on a virtual circle around the 114 

fixation mark with a radius of 8.0 deg. The target locations were chosen randomly (with equal spacing) 115 

at the beginning of an experimental sessions and did not change throughout the session. After another 116 

random delay of 250 to 500 ms, a multi-component random-dot pattern was presented at the center of 117 

the screen (diameter: 5.0 deg). 118 

In the original version of the stimulus (as used, e.g., in Shadlen and Newsome, 2001; Roitman 119 

and Shadlen, 2002; Palmer et al., 2005) a certain fraction of the dots (defined as the coherence of the 120 

stimulus) was moving coherently in a particular direction, whereas the remaining dots were flickering 121 

randomly. Our multi-component random-dot pattern had up to three coherent motion components 122 

embedded. Thus, there were four subpopulations of dots: one was moving coherently in a particular 123 

direction   (aligned with one of the choice targets; fraction of dots defined by the coherence of the first 124 

component), another one was moving coherently in the direction 120 +  (fraction defined by the 125 

coherence of the second component), a third one was moving coherently in the direction 240 +  126 

(fraction defined by the coherence of the third component), and the remaining dots were flickering 127 

randomly. The stimulus is therefore described by a set of three coherences. Which of the four 128 

subpopulations a particular dot belonged to, changed randomly over time. As a consequence, the 129 

stimulus is not perceived as an overlay of several transparent layers of motion that could be easily 130 

separated, but as a mixture of different motion components. See, e.g., Treue et al. (2000) for a 131 

discussion of transparent random-dot motion stimuli. Corresponding pairs of dots, responsible for the 132 
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percept of apparent motion, were presented with a temporal separation of 40 ms (3 video frames). The 133 

coherently moving dots had a speed of 6 deg/s, the dot density was 
2

16.7
deg

dots

s
, and each dot was a 134 

little filled square with an edge length of 0.1 deg. On each trial, the set of coherences was randomly 135 

selected from a list of 51 possible coherence combinations ranging from 0 to 40% each. The full list can 136 

be found in Table 1.  137 

 138 

The subjects were instructed to identify the direction of the strongest motion component and to make a 139 

saccadic eye movement to the associated choice target (aligned with the identified direction of motion). 140 

They were allowed to watch the stimulus for as long as they wanted (up to 5 s) and to respond 141 

whenever they were ready. The motion stimulus disappeared from the screen as soon as the eye left the 142 

central fixation window. Subjects were further instructed to indicate with a second saccadic eye 143 

movement to one of the two remaining choice targets, which of the remaining options they would 144 

rather bet on as a second guess, assuming they got their first choice wrong. After each trial they 145 

received auditory feedback as to whether they had picked the correct target in their primary choice. In 146 

case the stimulus did not have one strongest motion component, the computer randomly identified one 147 

of the targets as being the correct one. No feedback was given on the second guess. 148 

In order to complete a trial successfully (“valid trial”), the subject had to maintain accurate fixation until 149 

the random-dot pattern appeared. Once central fixation was broken, the eye position had to be within 150 

3 deg of one of the three choice targets within 100 ms and had to stay on this target (primary choice) for 151 

at least 200 ms. At this point, a neutral sound was played, indicating that the primary choice had been 152 

registered, but not providing any information about its accuracy yet. At most 3 s later, the eye position 153 

had to be within 3 deg of one of the remaining choice targets and had to stay on this target (second 154 
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guess) for at least 200 ms. At this point, auditory feedback was given about the accuracy of the primary 155 

choice, which indicated to the subject that the trial had been registered as a valid trial. 156 

 157 

Data Analysis 158 

For analyzing the data, we collapsed across different target locations. Thus, we only worked with the 15 159 

unique sets of coherences (eliminating the permutations) and whether the subject picked the target 160 

associated with the strongest motion component, the one associated with the intermediate component, 161 

or the one associated with the weakest component. We analyzed the pooled data across subjects to 162 

have a robust number of trials for each experimental condition. Since we only work with mean RTs in 163 

this study, we were not concerned about variability in RT across subjects potentially affecting the shape 164 

of RT distributions.  165 

RT was defined as the time between the appearance of the random-dot stimulus and the breaking of 166 

central fixation. We did not analyze the timing of the second guess as subjects had to wait for their 167 

primary choice to be registered by the computer before they could report their second guess. Thus, the 168 

timing of the second guess was largely externally imposed. 169 

 170 

Computational Models 171 

Model of the neural representation of the sensory stimulus 172 

The mean response of a population of motion-sensitive neurons to a 3-component random-dot stimulus 173 

with coherences 1c  (in the preferred direction of the pool), 2c , and 3c  was modeled to be of the form 174 
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+  +


 175 

where g  is the overall gain of the sensory response (relationship between neural activity and motion 176 

strength). The two additive terms in the brackets reflect the two linear response components: the first 177 

describes the response to the coherent motion in the preferred direction, the second describes the 178 

response to the noise dots. The term in parenthesis reflects the proportion of noise dots in the stimulus. 179 

nk  is the relative gain of the response to the noise dots compared to the response to an identical 180 

fraction of dots moving coherently in the preferred direction. The term in the denominator reflects the 181 

divisive normalization. Since the term in the numerator accurately describes the response to a single-182 

component stimulus, only the coherences of motion components with directions other than the 183 

preferred one are present in the denominator. For simplicity, we have chosen a linear term, with sk  184 

describing the gain/strength of the divisive normalization (Niwa and Ditterich, 2008). 185 

In general, the mean responses of each of the three task-relevant sensory pools can be written as 186 
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 187 

The variances of the three sensory responses were modeled as 188 

 2

js v jk s =   189 

We described the outputs of the sensory pools as normal random processes to be able to treat the 190 

decision process as a standard diffusion process (based on Brownian motion), which is reasonable if the 191 

pools are not too small. 192 
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 193 

Model of the decision process 194 

In principle, we would have to treat the race between the three integrators mathematically as a 195 

3-dimensional diffusion process. However, for the 2AFC case, the decision process has often been 196 

described as a 1-dimensional diffusion process with two boundaries instead of a 2-dimensional diffusion 197 

process. This simplification can be done when one assumes that the two signals that are accumulated by 198 

the two integrators are only different in sign, but identical in absolute value. Such a situation would 199 

result from all of the contributions that a particular pool of sensory neurons makes to the net evidence 200 

signals having the same origin. If we make the same assumption in our model, we can also reduce the 201 

dimensionality of the problem. We can write the three evidence signals as 202 

 

1 1
1 1 2 32 2

1 1
2 2 1 32 2

1 1
3 3 1 22 2

e s s s

e s s s

e s s s

= − −

= − −

= − −

 203 

3e  can be rewritten as 204 

 ( ) ( )1 1 1 1
3 1 2 3 2 1 3 1 22 2 2 2

e s s s s s s e e= − − − − − − = − −  205 

Thus, if 1e  and 2e  are known, 3e  is known. In our model, each of the three evidence signals is integrated 206 

over time (see Fig. 2): 207 

 ( ) ( )
0

t

j ji t e d =   208 

Since integration is a linear operation, if 1i  and 2i  are known, 3i  is also known. We can therefore rewrite 209 

the decision criterion for choosing the 3rd alternative: 210 
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1 2
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− − 

 − −

 211 

Thus, the third integrator exceeding a value of 1 is equivalent to crossing another linear boundary in the 212 

1i - 2i  plane (for an illustration see Niwa and Ditterich (2008), Fig. 3C). The diffusion process always starts 213 

at (0;0) and stops when one of the three boundaries is crossed: 1 1i =  is the decision boundary for the 214 

1st alternative, 2 1i =  is the boundary for the 2nd alternative, and 2 1 1i i= − −  is the boundary for the 3rd 215 

alternative. 216 

The 2-dimensional diffusion process is described by a drift vector and a covariance matrix. The drift 217 

vector is given by 
1

2

e

e

 
 
  

, the means of the first two evidence signals. Since 
1

2

e

e

 
 
 

 can be calculated as 218 

 

11 1
1 2 2

21 1
2 2 2

3

1

1

s
e

s
e

s

 
− −    
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 219 

1

2

e

e

 
 
  

 is given by 220 

 

1
1 1

1 2 2

21 1
2 22

3

1

1

s
e

s
e

s

 
   − − 

=     
− −      
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 221 

The covariance matrix   can be calculated as 222 
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 223 

 224 

Model of the second choice based on accumulated evidence at or shortly after the time of the first 225 

threshold crossing 226 

The integrator crossing the decision threshold first determines the primary choice and the decision time. 227 

We propose that the state of the remaining integrators at the time when the winning integrator crosses 228 

threshold can be used to determine the second guess. The higher value of the two remaining integrators 229 

determines the second choice. For example, if the second integrator crossed the threshold first, the 230 

states of the first and the third integrator at this particular time would be compared, and the larger 231 

value would determine the second guess. As pointed out above, when working with a 2-dimensional 232 

stochastic process, the two dimensions correspond to the states of the first two integrators. The state of 233 

the third integrator can be calculated as 3 1 2i i i= − − . 234 

While the first passage time problem could be solved numerically (see Ditterich, 2006, section B.5 and 235 

Niwa and Ditterich, 2008), we also needed the predictions for the distribution of second choices. 236 

Therefore, we discretized the 2-dimensional diffusion process (time step: 5 ms) and simulated 50,000 237 

trials per experimental condition. The MATLAB function OU_2D_3B_SIM_SC.M, which has been used for 238 

performing the model calculations, is part of the Stochastic Integration Modeling Toolbox (SIMT; written 239 

by JD), which can be downloaded from https://www.github.com/peractionlab/StochInt. 240 

https://www.github.com/peractionlab/StochInt
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To determine whether the second guess might have been informed by sensory evidence that arrived at 241 

the decision process after the decision threshold had been crossed, we allowed the integration process 242 

to continue for a fixed amount of time after the threshold crossing and then read out and compared the 243 

states of the integrators that had not won the race to threshold. The MATLAB function used for this 244 

purpose, OU_2D_3B_SIM_SC_ADD_TIME.M, is also part of SIMT. To quantify the deviation between 245 

predicted and observed second guesses, we calculated the sum of the squared differences between 246 

predicted and observed relative frequencies. 247 

 248 

Model of the second choice based on two successive threshold crossings 249 

We also considered a model where the integration process continues after the first threshold crossing, 250 

until a second (different) bound is crossed. The first threshold crossing determines the first choice, the 251 

second threshold crossing the second choice and the decision time. In contrast to our original model, to 252 

give this model more flexibility, the integration of sensory evidence was allowed to be leaky (the time 253 

constant of integration was an additional free model parameter), and the bounds were allowed to 254 

collapse over time. We used the same logistic function as in Ditterich (2006): 255 

 
( )( )

( )

( )

exp1
( )

1 exp1 exp

s d
A t

s ds t d

− 
= +

+ − +  −
  256 

t  is the time into the decision process, and s  and d  are two additional free model parameters that 257 

define the shape (slope) and the position (delay) of the collapsing bound. The MATLAB function 258 

OU_2D_3B_TWO_CROSS_SIM.M, which was used for evaluating this model, is also part of SIMT. 259 

 260 

  261 
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Models of the second choice based on two successive decision processes 262 

Another class of models involved starting a new decision process when the first threshold crossing 263 

occurred, but only between the two alternatives that did not win the original race to threshold. For 264 

example, assuming that 2i  crossed the threshold first, the second process would be set up as 265 

 
1 1 3

2 3 1

e s s

e s s

 = −

 = −
  266 

If the integral of the first evidence signal crossed the threshold first, Direction 1 would be reported as 267 

the second choice. If the integral of the second evidence signal crossed the threshold first, Direction 3 268 

would be reported as the second choice. Since 2 1e e = − , this second decision process can be treated as 269 

a 1-dimensional drift-diffusion process with two boundaries. The decision time would be the total 270 

duration of both decision processes. To give this model more flexibility, we allowed the decision 271 

threshold of the second decision process to be lower than the decision threshold of the first decision 272 

process. The second decision threshold was an additional free model parameter. The MATLAB function 273 

OU_2D_3B_1D_2B_SIM_SC.M, which has been used for evaluating this model, is also part of SIMT. 274 

Finally, we considered a model that also starts a second decision process when the first threshold 275 

crossing occurs, but it does not wait for a second threshold crossing. The second decision process 276 

unfolds for a fixed amount of time and is then read out. The sign of the current state of the integrated 277 

evidence (of the 1D process) determines the second choice. The MATLAB function 278 

OU_2D_3B_1D_FIXED_TIME_SIM_SC.M, which was used for evaluating this model, is also part of SIMT. 279 

 280 

  281 
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Model Fit 282 

The model parameters were identified by an optimization procedure based on the mean RTs. A 283 

combination of a global pattern search (provided by MATLAB’s Global Optimization Toolbox) and a 284 

multi-dimensional simplex algorithm (provided by MATLAB’s Optimization Toolbox) was used to 285 

minimize the sum of the squared differences between the mean RTs in the data and the mean RTs 286 

predicted by the model, taking the standard errors of the estimated means into account. We used the 287 

mean RTs for each combination of coherences, regardless of choice (15 data points). For the model 288 

these were obtained by calculating a weighted sum of the predicted mean RTs for the different choices 289 

based on the predicted probabilities of these choices. 290 

 291 

RESULTS 292 

We used 11,060 valid decision trials from seven subjects for analysis and modeling. The overall accuracy 293 

of the primary choice was 72% (chance level would be 33% for a 3AFC task), which provided us with 294 

7,951 correct trials and 3,109 error trials for further analysis. How the primary choice and the associated 295 

RT depended on the presented stimulus was similar to what we had reported in Niwa and 296 

Ditterich (2008) and will be presented in the context of a computational model below. 297 

 298 

Second guesses in perceptual decision-making are informed by sensory evidence 299 

To test whether subjects are able to make an informed second guess, we analyzed the error trials and 300 

quantified how often subjects reported what would have been the correct choice as their second guess. 301 

If subjects just guessed randomly, this should not deviate significantly from chance (50%). The correct 302 

option, however, was reported as the second guess in 63% of the error trials, which is highly significantly 303 
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above chance (p < 10-6; binomial test). This indicates that the second guess was clearly informed by the 304 

sensory evidence provided by the motion stimulus. 305 

 306 

A computational model that can explain primary choices and associated RTs 307 

To gain more insight into what information the second guesses were based on, we resorted to 308 

computational modeling. In Niwa and Ditterich (2008) we presented an integration-to-threshold model 309 

that was able to explain the distribution of choices in the 3-choice multi-component RDM direction 310 

discrimination task as well as the associated RTs. Briefly, in a stochastic process, we modeled three pools 311 

of motion-sensitive neurons (for each of the possible directions). Each of these pools had a strong linear 312 

response to coherent motion in its preferred direction, a weak linear response to the randomly moving 313 

dots in the stimulus, and divisive normalization based on how much coherent motion the stimulus 314 

contained driving the other pools. The variance of each pool’s output scaled linearly with its mean. The 315 

net sensory evidence for each direction, calculated as the difference between one pool’s activity and the 316 

average activity of the other two, was then fed into an integrator, one for each possible choice. 317 

Whichever integrator reached a constant decision threshold first determined the choice, and the time of 318 

crossing the decision threshold the decision time. RT was modeled as the sum of the decision time and a 319 

fixed residual time, capturing the time needed for aspects of the task other than the decision itself, e.g., 320 

initiating an eye movement for reporting the choice. The structure of the model is shown in Figure 2. 321 

Further details can be found in Materials and Methods. 322 

If adding the secondary task of reporting a second guess did not alter the way subjects made their 323 

primary choice, the same model should still be able to capture the primary choice data and associated 324 

RTs from this experiment. To test this, we fitted the model (5 free parameters) to the mean RT data. The 325 

result of this fit is shown in Figure 3. Filled circles represent the data (with 95% confidence intervals, 326 
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calculated according to the method proposed by Goodman, 1965), lines the model. The motion strength 327 

of the strongest motion component in the stimulus is plotted on the horizontal axis, the color of 328 

symbols/lines reflects the strength of the other two motion components. The model clearly captures the 329 

structure of the mean RT data. If the model were perfect, at least 95% of the evaluated model mean RTs 330 

would be expected to be within the 95% confidence intervals associated with the data. Our model is 331 

close to that: 13 of the 15 mean RTs (87%) are inside, the two that are outside are still close to the 332 

confidence intervals. The estimated model parameters are summarized in Table 2. 333 

To further test whether the model can explain the primary choice data, we compared the model’s 334 

prediction for the distribution of primary choices with the actual distribution from the experiment 335 

(Figure 4). These data have not been used yet, because the model had only been fitted to mean RT data. 336 

The plotting conventions are similar to Figure 3. Circles indicate correct choices, squares choices of the 337 

direction that had intermediate support, and diamonds choices of the direction that had the weakest 338 

support. A perfect model would predict probabilities, at least 95% of which would be expected to be 339 

within the 95% confidence intervals associated with the data. While our model is not perfect, 18 of the 340 

23 probabilities (78%) are inside, the five that are outside are still close to the confidence intervals. The 341 

good agreement between data and model predictions indicates that the model introduced in Niwa and 342 

Ditterich (2008) is still able to explain the primary choice data and associated RTs from the current 343 

experiment. Thus, asking subjects to report a second guess apparently did not alter the structure of the 344 

decision process. 345 

 346 

The same computational model can also explain second guesses 347 

We have demonstrated earlier that subjects can produce informed second guesses when making 348 

perceptual decisions between multiple alternatives, but can we gain insight into what governs these 349 
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second guesses? The idea behind the highly successful integration-to-threshold models in perceptual 350 

decision-making is that decisionmakers accumulate sensory evidence for each of the possible choices 351 

until the accumulated evidence for one of them exceeds a decision threshold. How could a subject make 352 

an informed second guess in this framework? Assume the decisionmaker had access to the states of the 353 

integrators that did not win the race at the time of the threshold-crossing. What should the distribution 354 

of second guesses look like if subjects reported the integrator with the overall second-highest 355 

accumulated evidence as their second guess, or, equivalently, the option with the larger accumulated 356 

evidence out of the two remaining ones? We took the model, which had been fitted to the mean RTs 357 

associated with the primary choice and was able to explain the distribution of primary choices, and 358 

obtained the expected distributions of second guesses based on the overall second-highest accumulated 359 

evidence. 360 

A comparison between the predicted distributions of second guesses and the actual data on correct 361 

trials is shown in Figure 5. Symbols again represent the data (and 95% confidence intervals), lines reflect 362 

the model predictions. On correct trials, by definition, subjects have already reported the correct option 363 

as their primary choice. The correct option is therefore no longer available as a second guess. The 364 

relative frequency of reporting the correct option as the second guess (filled circles) has to be zero. The 365 

only interesting cases are those where the two weaker motion components had different motion 366 

strengths (purple and cyan).  Squares indicate how often subjects reported the direction with the 367 

intermediate motion strength as their second guess, diamonds how often the weakest motion 368 

component was reported. 369 

The same comparison, but now for error trials, is shown in Figure 6. In this case, the correct option can 370 

be reported as the second guess, and we had already seen earlier that, across experimental conditions, 371 

it was chosen more frequently than chance. The figure shows this relative frequency broken down by 372 

experimental condition (circles), adds the relative frequencies of reporting each incorrect option as the 373 
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second guess (squares and diamonds), and provides the model predictions for comparison. Why, in 374 

contrast to the plots we had seen so far, are the squares below the diamonds in this figure? When 375 

reporting their primary choice, subjects were more likely to make an error in favor of the motion 376 

component with intermediate support rather than picking the weakest component (see squares and 377 

diamonds in Figure 4). The weakest component (diamonds) was therefore available as an option for the 378 

second guess in substantially more error trials than the component with the intermediate support 379 

(squares), which explains why it was overall chosen more frequently. And why does the probability of 380 

reporting the direction of the strongest motion component (blue circles/line) not keep increasing 381 

monotonically as a function of motion strength? To make an error in a trial with only a single motion 382 

component with 40% coherence in the first place, the accumulated evidence for this direction has to be 383 

unusually low. As a consequence, since the second guess is based on the same accumulated evidence, 384 

there is also not a sufficient amount of evidence to support choosing this direction as the second guess. 385 

A perfect model would again predict probabilities, at least 95% of which would be expected to be within 386 

the 95% confidence intervals associated with the data. Across both correct and error trials and not 387 

counting the zero-probability events, 26 of the 31 predicted probabilities (84%) are inside, the five that 388 

are outside are still pretty close to the confidence intervals. Thus, there is good agreement between the 389 

data and model predictions, indicating that the reported second guesses are consistent with the idea 390 

that the decisionmaker has access to information about how much sensory evidence had been 391 

accumulated for competing unchosen options at the time when sufficient evidence had been collected 392 

to commit to a primary choice. 393 

In summary, a computational model with only five free parameters can account for 15 mean RTs, 16 394 

relative frequencies for the primary choice (not counting the 7 trivial cases of uniform choice 395 

distributions when all motion components are equally strong and the relative frequency of choosing the 396 

third option having to be one minus the sum of the relative frequencies of choosing the first or the 397 
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second option), and 18 relative frequencies for the second guess, again excluding the trivial cases. This 398 

strongly suggests that the primary choice and the second guess are produced by a common integration-399 

to-threshold decision process. 400 

 401 

Second guesses are best explained by the states of the integrators shortly after threshold crossing 402 

While the motion stimulus disappeared from the screen when the saccade for reporting the primary 403 

choice was detected, there is a delay between the decision threshold crossing and the saccade onset, 404 

and some stimulus information is also still in the visual cortical processing pipeline. In the decision 405 

confidence literature, it has been proposed that the decision confidence, which is usually reported after 406 

the choice, could be informed by sensory evidence that is processed after the choice has been made 407 

(Pleskac and Busemeyer, 2010; Moran et al., 2015). To determine whether additional sensory evidence 408 

might have contributed to the reported second guesses in our experiment, we created a variant of the 409 

model, where the evidence accumulation was allowed to continue for a fixed period of time after the 410 

decision threshold had been crossed, before the non-winning integrators were read out to determine 411 

the second choice. Figure 7A shows the deviation between predicted and observed second guesses as a 412 

function of the additional integration time. Since the calculated points (blue circles) are simulation-413 

based and therefore slightly noisy, we added a robust polynomial interpolation (solid black line). The 414 

best match between predicted and observed second guesses (discrepancy of 0.027) is obtained for an 415 

additional integration time of 40 ms (dashed vertical line), i.e., when the integrators are read out shortly 416 

after the threshold crossing. The discrepancy clearly increases for longer additional integration times. 417 

Thus, the second guesses seem to be affected by a small amount of sensory evidence that is processed 418 

after the primary choice has been determined, but still largely rely on the same information, as typical 419 

decision times in our experiment are an order of magnitude larger. The predicted relative frequencies of 420 
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second guesses for a model with 40 ms of additional integration time are shown in Figures 7B and C. 421 

There is no major qualitative difference between these plots and Figures 5 and 6, the match between 422 

model predictions (lines) and data (symbols) is just slightly better. 423 

 424 

A model waiting for the same decision process to cross a second threshold can be ruled out 425 

To determine whether the second guesses could also be explained by alternative mechanisms that do 426 

not require reading out and comparing the accumulated evidence for the options that did not win the 427 

race to threshold, we considered several alternative models. First, we evaluated the possibility that the 428 

decision process could continue after the first threshold crossing until a second (different) threshold is 429 

crossed. The first threshold crossing would determine the primary choice, the second threshold crossing 430 

the second choice and the decision time. One can imagine that in situations where there is much 431 

stronger evidence for one particular choice compared to the other alternatives, such a second threshold 432 

crossing is unlikely to occur within a reasonable amount of time, in particular when the integration is 433 

perfect, and the decision bounds are fixed. We therefore also considered mechanisms with leaky 434 

integration and collapsing decision bounds (Ditterich, 2006). It turns out, however, that this class of 435 

models, even in the presence of leaky integration and collapsing bounds, makes one key qualitative 436 

prediction: decision times should increase, rather than decrease, when the evidence gets stronger. As a 437 

consequence, the best mean RT fit that can be obtained is largely flat as a function of motion strength, 438 

and the remaining error is about 6 times as large as the one for the fit shown in Fig. 3. Figure 8A shows 439 

this fitting attempt. This class of models can therefore be ruled out as an alternative explanation. 440 

 441 

  442 
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A model based on a second integration-to-threshold process for determining the second choice makes 443 

less accurate predictions for the distribution of second guesses 444 

We also considered the possibility that, as soon as the first threshold crossing occurs, a new decision 445 

process, only as a 2AFC between the two remaining options, is started. A threshold crossing of the 446 

second decision process would then determine the second choice and the decision time. When 447 

enforcing the same decision threshold as in the primary decision process, the remaining error after the 448 

mean RT fit is more than an order of magnitude larger than the one for the fit shown in Fig. 3. We 449 

therefore considered the possibility that the decision threshold for the second decision process could be 450 

lower. The mean RT fit reveals that the threshold would have to be very close to zero to be able to 451 

account for the pattern of RTs. A fit with a decision threshold of 0.052 (compared to 1 in the case of the 452 

first decision process) resulted in a remaining error that was only slightly larger than the one for the fit 453 

shown in Fig. 3. We therefore determined the predicted second guesses for this model (shown in 454 

Figure 8B and C). The discrepancy between predicted and observed second guesses, following the same 455 

convention as the one used in Fig. 7A, was 0.129 (red dashed line in Fig. 8D), about five times as big as 456 

the one for the model shown in Fig. 7B and C. Thus, this model also cannot capture the data pattern as 457 

well as our original model. 458 

 459 

A model based on a second, fixed-duration decision process for determining the second choice provides 460 

the second-best explanation for the distribution of second guesses 461 

As a final possibility, we considered that the second decision process might not be terminated by a 462 

threshold crossing, but rather end after a fixed amount of time. The process would be read out at that 463 

point, and the sign of the accumulated evidence would determine the second choice. The discrepancy 464 

between predicted and observed second guesses for this model, as a function of the duration of the 465 
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second decision process, is shown in Figure 8D. Since the calculated points (blue circles) are simulation-466 

based and therefore slightly noisy, we again added a robust polynomial interpolation (solid blue line). 467 

The best match is observed for an integration time of 70 ms, but the discrepancy is still 0.081, about 468 

three times as big as the one for the model shown in Fig. 7B and C (solid black in Fig. 8D). This model’s 469 

predictions for the second guesses are shown in Figures 8E and F. In contrast to our original model, 470 

which predicted the nonmonotonic relationship between motion strength and the probability of 471 

choosing the strongest motion component as the second guess on error trials (blue circles in Fig. 8F), 472 

this model predicts a monotonic relationship (blue line). This difference results from the fresh start of 473 

evidence accumulation in the second decision process, rather than the second guess being substantially 474 

affected by the accumulated evidence that led to the primary choice. Since 70 ms are needed for the 475 

second integration process, the residual time would be reduced to 593 ms in this case. While this model 476 

provides the second-best explanation, our original model still provides the better explanation for the 477 

observed pattern of second guesses. 478 

 479 

DISCUSSION 480 

We asked human subjects to make a perceptual decision among three alternatives and to report not 481 

only their primary choice, but also a second guess. Our data indicate that this second guess is not 482 

random, but clearly informed by the sensory evidence. A single integration-to-threshold model can not 483 

only explain the distribution of primary choices and the associated RTs, but also the distribution of 484 

second guesses. This suggests that the second guess is generated based on largely the same 485 

accumulated evidence that is also used to produce the primary choice. The second guess appears to be 486 

governed by the ranking of the amounts of evidence that have been accumulated by the integrators that 487 

did not win the race to threshold, which are apparently accessible. 488 
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We also considered alternative models. The only other model that was able to largely capture the data 489 

pattern, although not as well as the model based on reading out the states of the integrators that had 490 

not crossed the decision threshold yet shortly after the winning integrator crossing its threshold, was a 491 

model based on starting a new decision process when the threshold crossing determining the primary 492 

choice occurred. The process had to be set up as a decision between the remaining alternatives and 493 

read out after a fixed amount of time (about 70 ms). 494 

 495 

Relationship with decision confidence 496 

Human subjects can not only report their choice when making a perceptual decision, but also express a 497 

level of confidence in their decision. A substantial body of literature has been devoted to how well 498 

calibrated this decision confidence is and how it might be computed. Ideally, the level of confidence 499 

should match the accuracy of the decision. However, this is typically not the case, and human subjects 500 

have been reported to be either under- or overconfident, depending on the difficulty of the decision 501 

(see Rahnev and Denison, 2018 for a review). Confidence clearly is informed by the available sensory 502 

evidence, but how? Vickers (1979) suggested that it depends on the balance of evidence. The more 503 

dissimilar the amounts of evidence in favor of the available options are at the time of making a decision, 504 

the more confident the observer can be about the choice. This information can be extracted from the 505 

decision process itself. While the idea is incompatible with the popular 1-dimensional drift-diffusion 506 

model for 2-alternative forced choices, which is equivalent to a race between two accumulators that 507 

receive perfectly anti-correlated instantaneous net evidence and, as a consequence, always has the 508 

losing integrator in an identical state when the winning integrator exceeds the decision threshold, it can 509 

be applied to alternative models. For example, Ditterich (2006) demonstrated that a model based on 510 

partially anti-correlated accumulators provides a better account of decision-related activity in the 511 
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parietal association cortex of monkeys performing a perceptual decision task. Neurons coding for the 512 

losing alternative do not show a stereotyped activity level when the neurons coding for the winning 513 

alternative reach threshold. This information could be used to inform confidence. Moreno-Bote (2010) 514 

formalized how confidence can be extracted from diffusion models with partially correlated integrators. 515 

An alternative mechanism was proposed by Smith and Vickers (1988). According to their model, only 516 

one of the integrators is updated at a particular time, the one receiving positive instantaneous net 517 

sensory evidence, which also results in the losing accumulator being in different states when the 518 

winning accumulator reaches threshold. 519 

Gaining neurophysiological insights into the neural mechanism underlying decision confidence from 520 

animal experiments is challenging, as animals cannot be asked directly to provide an explicit confidence 521 

rating. However, animal tasks have been developed, which require the animal to produce a behavior 522 

that should be informed by decision confidence (see Hanks and Summerfield, 2017 for a review). For 523 

example, Kiani and Shadlen (2009) trained monkeys to make a perceptual decision between two 524 

alternatives. In a random subset of trials, the researchers offered a third option, a sure bet resulting in a 525 

smaller, but certain reward, whereas the animals could gain a larger reward if they engaged in a choice 526 

and reported the correct option. The animals were more likely to choose the sure bet the weaker the 527 

sensory evidence (motion coherence) was and the shorter they were allowed to watch the motion 528 

stimulus. Importantly, decision-related neurons in parietal association cortex that have the signature of 529 

carrying accumulated evidence showed either strong or weak activation when the animal engaged in a 530 

choice, but intermediate activation when opting for the sure bet, suggesting that the information 531 

encoded in these neurons does not only govern choice, but also inform confidence. The study further 532 

suggested that decision confidence does not only depend on accumulated evidence, but also on elapsed 533 

time, which was confirmed explicitly in a later human psychophysics experiment (Kiani et al., 2014) and 534 

is also formalized in Moreno-Bote’s (2010) model. Animal experiments on decision confidence have 535 
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received some criticism, primarily claiming that the tasks could potentially be solved without requiring 536 

any meta-cognition, for example, by treating tasks with a sure bet as a multi-alternative decision task 537 

(Insabato et al., 2016, 2017). However, Kepecs and Mainen (2012) pointed out that the same scrutiny 538 

should then also be applied to human tasks. 539 

The view that confidence is governed by the same information that determines the choice and, in 540 

particular, by the balance of evidence has been challenged by experiments that found that confidence 541 

primarily relies on response-congruent evidence (Zylberberg et al., 2012; Maniscalco et al., 2016). The 542 

authors reported that, while choices in their experiments were governed by the balance of evidence, 543 

confidence was primarily determined by the amount of evidence for the chosen option and largely 544 

insensitive to the amount of evidence for the non-chosen alternative. Dual stage or second-order 545 

models are also at odds with the idea that choice and confidence rely on the same information (Pleskac 546 

and Busemeyer, 2010; Moran et al., 2015; Fleming and Daw, 2017). These models posit that confidence 547 

ratings rely on a post-decision process that is informed by the outcome of the decision process, but not 548 

exclusively. 549 

Different studies have therefore found the information upon which choice and decision confidence are 550 

based to overlap to varying degrees. We have addressed a similar question for the mechanism 551 

underlying second guesses. Our results indicate that the distribution of second guesses is most 552 

compatible with a decision mechanism that largely uses the same accumulated evidence for 553 

determining both the primary and the second choice. We found the best match between model 554 

predictions and data, when the decision process was allowed to continue for a very short period of time 555 

(compared to typical decision times in our experiment), about 40 ms, after the threshold crossing 556 

determining the primary choice, before the states of the remaining integrators are read out to 557 

determine the second choice. 558 
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 559 

Second guessing in other cognitive functions 560 

In 1961, Signal Detection Theory (SDT) was still in its infancy and competing with the prevailing “high 561 

threshold” model of sensory perception, Swets and colleagues published a paper proposing that a 562 

second-choice paradigm in multi-interval signal detection could help distinguishing between the 563 

competing ideas (Swets et al., 1961). However, second-choice paradigms have not been pursued further 564 

in the area of perceptual decision-making, in particular not since the field has turned to sequential 565 

sampling models to explain not only choices, but also decision times. Instead, Swets et al.’s proposal got 566 

picked up in the memory literature, there typically referred to as a 4AFC-2R (four-alternative forced 567 

choice with two responses) paradigm, as the field was also debating whether recognition memory was 568 

best described by a threshold process or by a continuous memory strength process. Parks and 569 

Yonelinas (2009) used a second-choice paradigm to gather experimental evidence beyond the Receiver 570 

Operating Characteristic analysis that the field had relied on previously. Kellen and Klauer (2011) 571 

followed up with a more detailed model-based analysis. Earlier, second guesses had already been used 572 

to study mechanisms underlying the effect of misinformation on memory recall (Wright et al., 1996). 573 

More recently, second guesses have also been used to study conflict detection mechanisms in reasoning 574 

(Bago et al., 2019). 575 

 576 

Second guesses as a tool for studying knowledge about the decision process 577 

We have shown that human subjects can produce informed second guesses when making perceptual 578 

decisions between multiple alternatives and that these second choices follow a distribution that would 579 

be expected if they were governed by the relative amounts of accumulated net sensory evidence for 580 

each option at the time of the largest accumulated evidence reaching a bound. Second-choice 581 
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paradigms therefore cannot only be used in the context of SDT, as they have in the past, but also with 582 

accumulation-of-evidence frameworks. In addition to decision confidence, the study of second guesses 583 

provides another useful tool for gaining insight into the decision process and what information a 584 

decisionmaker has access to about the outcome of a decision, beyond the discrete choice. Similar to the 585 

neurophysiological work on decision confidence, we expect future studies to be able to establish a link 586 

between second guesses and underlying neural activity. 587 

 588 
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Table 1. List of motion coherence combinations 660 

Motion coherence of first 

component [%] 

Motion coherence of second 

component [%] 

Motion coherence of third 

component [%] 

0 0 0 

5 0 0 

0 5 0 

0 0 5 

10 0 0 

0 10 0 

0 0 10 

20 0 0 

0 20 0 

0 0 20 

40 0 0 

0 40 0 

0 0 40 

10 10 10 

20 10 10 

10 20 10 

10 10 20 

30 10 10 

10 30 10 

10 10 30 
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20 15 5 

20 5 15 

15 20 5 

5 20 15 

15 5 20 

5 15 20 

30 15 5 

30 5 15 

15 30 5 

5 30 15 

15 5 30 

5 15 30 

20 20 20 

30 20 20 

20 30 20 

20 20 30 

40 20 20 

20 40 20 

20 20 40 

30 25 15 

30 15 25 

25 30 15 

15 30 25 
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25 15 30 

15 25 30 

40 25 15 

40 15 25 

25 40 15 

15 40 25 

25 15 40 

15 25 40 

 661 
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Table 2. Best-fitting model parameters 663 

Model parameters Parameter values 

g   0.0103 

nk   0.197 

sk   0.616 

vk   0.329 

Residual time (ms) 663 

 664 

  665 
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 666 

 667 

Figure 1. Experimental paradigm. Human subjects were asked to determine the strongest motion 668 

direction in a random-dot pattern with multiple motion components. They were free to watch the 669 

stimulus as long as they wanted and responded with a goal-directed eye movement to one of three 670 

choice targets to indicate their primary choice. Choices and RTs were measured. After indicating their 671 

primary choice, subjects were instructed to make a second goal-directed eye movement to one of the 672 

remaining two targets to indicate a second guess. 673 

  674 
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 675 

 676 

Figure 2. Computational model. Three integrators (each associated with one of the three alternatives) 677 

race against each other. The integrator output signal ( 1i , 2i , or 3i ) reaching a decision threshold first 678 

determines the primary choice and terminates the decision process. The integrator input signals ( 1e , 2e , 679 

and 3e ) are net evidence signals, which are linear combinations of the three relevant sensory signals  680 

( 1s , 2s , and 3s ). Solid arrows indicate positive weights (excitatory connections), and dashed arrows 681 

indicate negative weights (inhibitory connections). The second guess is determined by the rank ordering 682 

of the remaining two integrators when the winning one reaches threshold. 683 

  684 



38 
 

 685 

 686 

Figure 3. Mean response time data and fitted model. The symbols represent the measured mean RTs for 687 

all unique combinations of motion strengths. The motion strength of the strongest component is plotted 688 

on the horizontal axis. Colors indicate the motion strengths of the two weaker motion components. (For 689 

example, the cyan point at 40% motion strength indicates the mean RT for stimuli with the three motion 690 

components having strengths of 40%, 25%, and 15%, respectively.) Some points have been shifted 691 

slightly horizontally to reduce graphical overlap. For example, all points within the gray bar centered on 692 

20% have a strength of the strongest motion component of exactly 20%. Error bars indicate 95% 693 

confidence intervals. The lines connect the mean RTs from the computational model. 694 
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 695 

 696 

Figure 4. Comparison between the relative frequencies of primary choices and model predictions. 697 

Symbols again reflect the data, with error bars indicating 95% confidence intervals. The lines connect 698 

the relative frequencies predicted by the computational model. Circles indicate choices of the target 699 

associated with the strongest motion component (correct primary choices), squares choosing the target 700 

associated with the component with intermediate motion strength, and diamonds choosing the target 701 

associated with the weakest motion component. Other conventions as in Fig. 3. The dashed line 702 

indicates chance performance. 703 

  704 



40 
 

 705 

 706 

Figure 5. Comparison between relative frequencies of second guesses on correct trials (symbols, with 707 

error bars indicating 95% confidence intervals) and model predictions (lines). Conventions as in Fig. 4. 708 

Note that on correct trials the target associated with the strongest motion component has been 709 

reported as the primary choice and is not available for the second guess. Therefore, all circles are 710 

located at a relative frequency of zero. 711 

  712 
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 713 

 714 

Figure 6. Comparison between relative frequencies of second guesses on error trials (symbols, with 715 

error bars indicating 95% confidence intervals) and model predictions (lines). Conventions as in Fig. 5. 716 

How often the correct target (circles) was reported as the second choice varied across experimental 717 

conditions, but was overall significantly above chance (63%). 718 
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 720 

Figure 7. Predictions for second guesses when integration is allowed to continue after the threshold 721 

crossing. A. Discrepancy between predicted and observed second guesses as a function of additional 722 

integration time before the accumulated evidence is read out. A minimum (best match) is observed at 723 

40 ms. B. Predicted second guesses on correct trials with 40 ms additional integration time (same format 724 

as Fig. 5). C. Predicted second guesses on error trials with 40 ms additional integration time (same 725 

format as Fig. 6).  726 
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 727 

Figure 8. Alternative models. A. Mean RT fit for a model that waits for a second threshold crossing, but 728 

allowing leaky integration and collapsing bounds (same format as Fig. 3). B. Predicted second guesses on 729 

correct trials for a model that starts a new 2AFC decision process to determine the second choice and 730 
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waits for a threshold crossing, but allowing a lower threshold than in the primary decision process (same 731 

format as Fig. 5). C. Like B, but for error trials (same format as Fig. 6). D. Discrepancy between predicted 732 

and observed second guesses as a function of integration time for a model that starts a new 2AFC 733 

decision process to determine the second choice and reads the process out after a fixed amount of time 734 

(blue). A minimum (best match) is observed at 70 ms. For comparison, the curve for the original model 735 

(black) and the value for the model with a low threshold (red) are also shown. E. Predicted second 736 

guesses on correct trials for a model that starts a new 2AFC decision process to determine the second 737 

choice and integrates the sensory evidence for 70 ms before the process is read out (same format as 738 

Fig. 5). F. Like E, but for error trials (same format as Fig. 6). 739 
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