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Abstract

A Modified Mean Curvature Flow of Entire Locally Lipschitz Star-Shaped

Hypersurfaces in Hyperbolic Space

by

Patrick Allen Allmann

In [GS00], B. Guan and J. Spruck showed the existence of smooth radial graphs of constant

mean curvature with prescribed C0, star-shaped boundary at infinity using elliptic PDE methods

and the maximum principle. Surfaces of constant mean curvature are critical points of an area

functional with a volume constraint. In [DSS09], D. De Silva and J. Spruck showed the same

result mentioned above in [GS00] using variational methods. It is a natural question then to

ask whether we can approach this problem using the negative gradient flow of that area-volume

functional. Such a flow, called modified mean curvature flow, was first introduced by L. Lin

and L. Xiao in [LX12]. There they showed, starting with a star-shaped hypersurface with a

global C1 bound, the longtime existence of the modified mean curvature flow. Moreover, they

recovered the previous results by showing the flow converges to a stationary solution.

This work is inspired by these three works. Here, we show the longtime existence

of a smooth modified mean curvature flow of hypersurfaces in hyperbolic space if the initial

hypersurface is locally Lipschitz and star-shaped. This result can be considered as a generaliza-

tion of the main theorem of [Unt03] by P. Unterberger, in which they show a longtime existence

result of mean curvature flow in the same ambient and initial setting. It’s also a hyperbolic

version of the nonparametric mean curvature flow in Euclidean space studied by K. Ecker and

v



G. Huisken in [EH91a]. There they found a locally Lipschitz vertical graph moving by its mean

curvature becomes a smooth vertical graph for all time.
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Chapter 1

Introduction

In [Dou31], it was shown, given a Jordan curve in a Euclidean space, there exists a

minimal surface with that Jordan curve as boundary. This is Plateau’s Problem. The existence

of surfaces of constant mean curvature with prescribed Jordan curve as boundary was studied

in [Hil70]. In [Str88], constant mean curvature surfaces with free boundary were studied using

variational techniques. More recently, in [ZZ19], a min-max theory was developed to show the

existence of smooth, closed, constant mean curvature hypersurfaces in any closed Riemannian

manifold of low dimension. The asymptotic plateau problem, in contrast, asks under which con-

ditions are there complete hypersurfaces of constant mean curvature with prescribed boundary

at infinity. We refer to [Cos13] for a survey of the asymptotic Plateau problem.

Throughout, n is a nonnegative integer and H denotes n+ 1 dimensional hyperbolic

space, while ∂∞H denotes its asymptotic boundary at infinity. Also, σ denotes a real number

strictly in between−n and n, and Γ denotes a closed, codimension 1 submanifold of ∂∞H. With

these notations, we have the following formulation of the asymptotic Plateau problem.
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Question 1.0.1. Does there exist Σ, a hypersurface of H, such that Σ has constant mean curva-

ture (CMC) σ and such that the asymptotic boundary of Σ is Γ?

The answer to this problem is affirmative if we allow ”hypersurface” to mean ”re-

duced boundary of a set of locally finite perimeter”, c.f. [Ton96, Theorem 1.4]. The case σ = 0

is answered in [And82, Theorem 3], where such Σ’s take the form of locally integral currents.

These two approaches, from the geometric measure theory point of view, are weak formulations

of the asymptotic plateau problem, c.f. [Fed69, 4.1.24, 4.5.1].

We may then ask about the regularity of these solutions. If Γ ∈C1,α, then the main result

in [HL87] implies M∪Γ is a finite union of C1,α manifolds near Γ, if M is the support of Σ. In

[Lin89], it’s shown that Σ is as smooth as Γ, as long Σ is a vertical graph above the region which

Γ bounds. [Ton96, Theorem 1.5] implies lower order regularity of solutions near the boundary.

In particular, if k ≤ n and Γ is Ck, then Σ is Ck near Γ. When σ 6= 0, we can’t expect Σ to have

higher order regularity, even if Γ is smooth and embedded, as seen by [Ton96, Theorem 1.8, c.f.

Theorem 6.1]. Higher order boundary regularity of nonparametric solutions of the asymptotic

plateau problem is studied in [HW16].

Stronger regularity results are obtained if more is known about the geometry of Γ. For

example, by [NS96, Theorem 1.1], if Γ is of class C2,α and mean convex, then Σ can be written

uniquely as the graph of a function in C∞(Ω)∩C2,α(Ω), where Γ = ∂Ω. We also recall [GS00,

Theorem 1.1].

Theorem 1.0.2. [GS00, Theorem 1.1] If Γ is star-shaped and C1,1, then Σ is unique, star-shaped,

smooth and continuous up to the boundary.

2



This theorem is proved using elliptic PDE theory and the maximum principle. A hyper-

surface is star-shaped if it bounds a star domain, which is a set containing a point such that any

point in the set can be connected to the point by a line. Similarly, we recall

Theorem 1.0.3. [DSS09, Theorem 1.4] If Γ is star-shaped and C0, then Σ is unique, star-shaped,

smooth and continuous up to the boundary.

This theorem is proved using techniques from the calculus of variations. C2 hypersurfaces

of constant mean curvature in hyperbolic space locally satisfy the Euler-Lagrange equation of a

certain energy functional, I , c.f. Lemma A.2.4 . I is an area functional with a volume constraint,

and can be written as I = A+ nσV , where A is the hyperbolic area of the hypersurface and V

is the hyperbolic volume enclosed by the hypersurface and a hyperbolic cylinder. [DSS09,

Theorem 1.3] roughly states a star-shaped local minimizer of I is necessarily smooth.

Just as mean curvature flow is considered the negative gradient flow of the area functional,

the negative gradient flow of I is modified mean curvature flow, introduced in [LX12], whose

work is a parabolic analogue of [GS00]. Stationary solutions of modified mean curvature flow

are constant mean curvature hypersurfaces. Therefore, showing longtime existence and con-

vergence of an initial-boundary value problem for modified mean curvature flow implies the

existence of a solution of the asymptotic plateau problem. The main theorem of [LX12] im-

plies just this if the initial hypersurface is star-shaped and satisfies a uniform equidistant sphere

condition, called the uniform local ball condition (ULBC) (1.1.7). That is,

Theorem 1.0.4. [LX12, Theorem 1.1] Let Γ be the boundary of a star-shaped C1+1 domain in

∂∞H and Γε be its vertical lift for ε > 0 sufficiently small. Let Σ0 = limε→0 Σε
0 be the limiting

3



hypersurface of radial graphs Σε
0 ∈ C1+1 with ∂Σε

0 = Γε. Suppose Σε
0 has a uniform Lipschitz

bound and satisfies the uniform local ball condition. Then

(i) There exists a unique solution F(z, t) ∈ C∞(S+×(0,∞))∩C1+1, 1
2+

1
2 (S+ × (0,∞))∩

C0(S+× [0,∞)) to the modified mean curvature flow.

(ii) There exist ti → ∞ such that Σti = F(S+, ti) converges to a unique stationary smooth

complete hypersurface Σ∞ ∈C∞(S+)∩C1+1(S+) (as a radial graph over S+) which has constant

hyperbolic mean curvature σ and ∂∞Σ∞ = Γ asymptotically. Also, each Σt is a complete radial

graph over S+ .

(iii) If additionally Σε
0 has mean curvature Hε ≥ σ for all ε > 0 sufficiently small, then Σt

converges uniformly to Σ∞ for all t.

Mean curvature flow (σ = 0) was first weakly formulated in [Bra78] using geometric

measure theory. Classically, if a closed convex codimension 1 submanifold is embedded in

Euclidean space and flows by its mean curvature, then it converges to a point in finite time.

This is the main result in [Hui84]. Further study on the singularities formed by mean curvature

flow in Euclidean space is found in the series [CM12], [CM13] and [CM14], where the entropy

functional is introduced. An application of mean curvature flow classifying the immersion of

spheres in Riemannian manifolds is given in [Hui86]. Standard notes on the classical mean

curvature flow in Euclidean space are given in [Man11], [CMP15], and [Whi02].

Mean curvature flow of spacelike hypersurfaces in pseudo-Euclidean space are studied in

[LL19]. Moreover, in [EH91b], the motion of surfaces moving by an evolution equation with a

prescribed mean curvature function is applied to show the existence of spacelike constant mean

curvature in cosmological spacetimes. Mean curvature flow of star-shaped, locally Lipschitz
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initial hypersurfaces in H are studied in [Unt03], whose methods we draw from, which draws

from the methods in [EH91a]. In [Unt03], longtime existence is established. Convergence is

obtained if, in addition, the initial hypersurface’s asymptotic boundary is a circle, an assumption

subsumed by the uniform local ball condition as established by [LX12], c.f. Remark 1.1.7. In

[EH89], the longtime existence of complete vertical graphs over n dimensional Euclidean space

with a uniform gradient bound is demonstrated. This result is improved in [EH91a]. Again,

longtime existence is established without any hypotheses of growth at infinity. We remark that

the modified mean curvature flow behaves differently than the mean curvature flow in hyper-

bolic space, c.f. Remark 2.2.10.

In this work, we prove Theorem 1.1.5. That is, we relax the uniform local ball condition

and prove longtime existence of the initial-boundary value problem of modified mean curvature

flow if the initial data are star-shaped and locally Lipschitz.

Theorem 1.1.5. If F0 : Sn
+→H is a map such that Σ0 = F0(Sn

+) is a locally Lipschitz con-

tinuous radial graph over Sn
+, then the Cauchy initial-boundary value problem for the modified

mean curvature flow (1.1.1) has a solution F ∈ C∞(Sn
+× (0,∞))∩C0,1×0,1/2

loc (Sn
+× [0,∞)) and

F(Sn
+, t) is a complete radial graph over Sn

+ for any t ≥ 0.

A sufficient condition for convergence, but weaker than the uniform local ball condition,

is not provided here. This question is interesting and we hope to address it in a later work.

By choosing to use star-shaped initial surfaces, we study a nonparametic version of mod-

ified mean curvature flow. The resulting quasilinear parabolic PDE is degenerate at the asymp-

totic boundary and wherever the gradient becomes unbounded. Refer to equation (1.1.3). Nev-

ertheless, we obtain a priori interior gradient bounds (Theorem 2.2.13) and subsequently all
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higher order bounds (Theorem 2.3.5, Theorem 2.3.7), which allows us to make an approxima-

tion argument.

There are a number of directions this line of questioning can point. There is more to con-

sider when star-shaped hypersurfaces move by modified mean curvature flow in H. Of course,

we would like to obtain a sharp regularity or geometric condition on the initial star-shaped hy-

persurface, weaker than the uniform local ball condition, which guarantees convergence of the

flow. In [LX12], L. Lin and L. Xiao showed an initial star-shaped hypersurface with a global C1

bound moving under MMCF converges to a smooth, stationary star-shaped solution of constant

mean curvature. What happens if we drop the uniform control on the gradient but still retain

some information of it near the boundary? For example, we may consider when the gradient

of the initial radial graph is O of some power of the reciprocal of the Euclidean height above

∂∞H . In any case, what examples are there of convergence or nonconvergence? Our result in-

cludes the longtime existence of MMCF starting with a horosphere (constant mean curvature

±n), whose asymptotic boundary is degenerate in the sense that it’s a single point. There we

don’t have convergence but a translating self-similar solution for all time.

Also, is it worthwhile to consider more general ambient spaces other than H, to possibly

consider nonpositively curved ambient manifolds or even just hyperbolic ones, as in [HLZ16]?

What can we say if H−σ is instead a symmetric function of the initial hypersurface’s principle

curvatures, as in [GSS09] and [JX19]? We may consider the case of higher codimension, as in

[Wan02]. In all of these cases, is there a corresponding energy functional which the flow is the

negative gradient flow of?
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1.1 The main theorem

Now, we let F : Sn
+× [0,∞)→ H be a one-parameter family of complete embedded star-

shaped hypersurfaces moving by the modified mean curvature flow in hyperbolic space with

fixed parabolic boundary data. That is, F(·, t) is a smooth one-parameter family of smooth

embeddings with images Σt = F(Sn
+, t), satisfying the evolution equation

∂

∂t
F(z, t) = (H−σ)νH , (z, t) ∈ Sn

+× (0,∞) ,

F(Sn
+,0) = Σ0

(1.1.1)

More precisely, we suppose the solution F(z, t) to the modified mean curvature flow (1.1.1) can

be represented as a complete radial graph over Sn
+. That is,

F(z, t) = ev(z,t)z , (z, t) ∈ Sn
+× [0,∞). (1.1.2)

We call such a function v(z, t) the radial height of Σt = F(Sn
+, t). Then one observes that the

Cauchy initial-boundary value problem for the modified mean curvature flow (1.1.1) is equiva-

lent (Lemma A.2.2) to the following degenerate parabolic PDE with initial and boundary con-

ditions: 
∂v(z, t)

∂t
= y2

α
i jvi j−ny〈e,∇Sv〉E −σyw , (z, t) ∈ Sn

+× (0,∞) ,

v(z,0) = v0(z) , z ∈ Sn
+ ,

(1.1.3)

where we represent Σ0 as the radial graph of the function ev0 over Sn
+. Here y = 〈e,z〉E . Also,

αi j = γi j− γikγ jlvkvl
w2 ,1 ≤ i, j ≤ n, w = (1+ |∇Sv|2)1/2 and we denote by γi j the standard metric

of Sn
+ and γi j its inverse. By Lemma A.2.1, Σt remains a radial graph as long as the support

function 〈νE ,x〉E satisfies

〈νE ,x〉E > 0 (1.1.4)
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for all x ∈ Σt , where νE is the Euclidean outward unit normal vector of Σt .

In this work, we would like to show the longtime existence of the modified mean curvature

flow (MMCF) without the uniform local ball condition at the infinity of the initial hypersurface.

To this end, we consider the modified mean curvature flow starting from a locally Lipschitz

continuous radial graph Σ0 ⊂ H and show the longtime existence of the flow. More precisely,

we prove

Theorem 1.1.5. If F0 : Sn
+→H is a map such that Σ0 =F0(Sn

+) is a locally Lipschitz continuous

radial graph over Sn
+, then the Cauchy initial-boundary value problem for the modified mean

curvature flow (1.1.1) has a solution F ∈C∞(Sn
+× (0,∞))∩C0,1×0,1/2

loc (Sn
+× [0,∞)) and F(Sn

+, t)

is a complete radial graph over Sn
+ for any t ≥ 0.

Here, F∈C∞(Sn
+×(0,∞)) means the components of F have continuous partial derivatives

of every order. F ∈C0,1×0,1/2
loc (Sn

+× [0,∞)) means F is locally Lipschitz continuous in Sn
+×{t}

for all t ≥ 0 and locally Hölder continuous with exponent 1
2 in {z}× [0,∞) for all z ∈ Sn

+.

Remark 1.1.6. By the work of Guan, Spruck [GS00], Xiao and Lin, [LX12], given a C1,1 star-

shaped n−1 dimensional closed submanifold at the infinity ∂∞H, we can find a suitable initial

hypersurface such that the modified mean curvature flow exists for all time and converges to

a hypersurface of constant mean curvature which has the given submanifold as the asymptotic

boundary. On the other hand, modified mean curvature flow, starting from a horosphere {x ∈

H | xn+1 = c},c > 0 (whose infinity is degenerate, a point in ∂∞H), exists for all time but never

converges. Such an example shows convergence of the flow depends on the behavior of the

initial asymptotic boundary. We expect some intermediate geometric condition (i.e., if some

8



degeneracy of the initial asymptotic boundary is allowed) that is weaker than the uniform local

ball condition in [LX12] will guarantee the convergence of the flow.

Remark 1.1.7. We shall digress in order to state the uniform local ball condition (ULBC). If

(x0)
n+1 = 0, r > 0, an equidistant sphere is a cap

S±σ
x0,r = ∂Br

(
x0±

σr
n

e
)
∩Rn+1

+

with hyperbolic CMC σ with respect to its outward pointing unit normal (as radial graphs), as

computed using Lemma 2.1.3, where Br
(
x0± σr

n e
)

is the ball of Euclidean radius r and center

x0± σr
n e. For any x ∈H, r(x) is the hyperbolic distance from x to the xn+1-axis. We define Cε =

{x ∈H | cosh(r(x))≤ 1
ε
}. If F0 : Sn

+→ H is an immersion, Σ0 = F0(Sn
+), Ωε = F−1

0 (Cε∩Σ0),

Σε
0 = F0(Ωε) and Γε = F0(∂Ωε), then we say Σ0 satisfies the ULBC if there exist four numbers

R± > 0 and δ > 0 such that, for all ε > 0, for all p ∈ Γε, there are a′± ∈ Rn+1 with (a′±)
n+1 = 0

such that

Σ
ε
0∩Bδ(p)∩S±σ

a′±,R±
= {p}.

The ULBC is a geometric condition on the initial hypersurface which guarantees a uniform

gradient bound on the parabolic boundary of the flow. A complete hypersurface with the ULBC

resembles a CMC hypersurface near its asymptotic boundary. An example is found in Figure

1.1. From Lemma A.1.3, each Σε
0 satisfies the ULBC if it’s smooth enough.

The remainder of this work is organized as follows. In Section 2.1, we establish some

known results from differential geometry adapted to our setting. In Section 2.2, we use the

evolution equation of the support function 〈νE ,x〉E (see Proposition 2.2.8) and an appropriate

space-time cut-off function together with a conventional maximum principle argument to show

9



Figure 1.1: ULBC

a uniform interior gradient estimate for the modified mean curvature flow (see Theorem 2.2.13).

In Section 2.3, we show the interior estimates on all other higher order derivatives for the modi-

fied mean curvature flow (see Theorem 2.3.5 and Theorem 2.3.7). We prove the main Theorem

1.1.5 in Section 2.4. Most of this work can be found in [ALZ20].
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Chapter 2

Evolution Equations and Interior Estimates

2.1 Some differential geometry

Rn+1 denotes an n + 1 dimensional real inner product space with a fixed orthonormal

basis e1, . . . ,en+1, unconventionally called Euclidean space. Sn denotes the n-sphere equipped

with the pullback metric from its embedding in Rn+1, sometimes called the round sphere. The

super or subscripts E,H,S are used on operators to distinguish between their definitions in

Euclidean, hyperbolic, or spherical space, respectively. For example, 〈,〉E is the inner product

on Rn+1, ∇H denotes the Levi-Civita connection on H, and so on. Operators without subscripts

or superscripts are operators on a hypersurface of H. Greek indices will range from 1 to n+1,

while Latin indices will range from 1 to n.

We use the upper-half plane model of H. We denote en+1 by e, and, for any x ∈ Rn+1,

xn+1 = 〈x,e〉E , |x|E =
√
〈x,x〉E . H is identified with (Rn+1

+ ,ds2
H), where Rn+1

+ = {x ∈ Rn+1 |

xn+1 > 0} is the upper-half plane of Euclidean space, and ds2
H is the standard hyperbolic metric

11



on the upper-half plane. That is, for any vector fields u, v defined locally on Rn+1
+ , for any x in

the intersection of their domains,

ds2
H(u,v)(x) =

〈u,v〉E(x)
(xn+1)2 .

ds2
H(u,v) is also denoted by 〈u,v〉H .

∂∞H is identified with ∂Rn+1
+ ∪{∞}, which is homeomorphic to Sn, where ∂Rn

+ denotes

the topological boundary of Rn+1
+ , {x∈Rn+1 | xn+1 = 0}. We denote the upper unit hemisphere,

Sn∩Rn+1
+ , by Sn

+ so that ∂Sn
+ ⊂ {x ∈ Rn+1 | xn+1 = 0}.

The ambient Riemann curvature tensor with respect to the hyperbolic metric used here is

(RH)(X ,Y )Z = ∇
H
Y ∇

H
X Z−∇

H
X ∇

H
Y Z +∇

H
[X ,Y ]Z.

We define (RH)αβγδ = 〈(RH)(eα,eβ)eγ,eδ〉H , the components of the hyperbolic Riemann

curvature tensor, and

(RicH)αγ = (ds2
H)

βδ(RH)αβγδ, (2.1.1)

the components of the hyperbolic Ricci tensor, where (ds2
H)

αγ is the inverse of ds2
H .

Since the upper-half space model of hyperbolic space H and Rn+1
+ are conformal, we have

Proposition 2.1.2. For any two vector fields X ,Y on H,

∇
H
X Y = ∇

E
XY +

1
xn+1 (〈X ,Y 〉Ee−〈X ,e〉EY −〈Y,e〉EX).

For a class 2 hypersurface Σ⊂H, for any p ∈ Σ, we let {vi}n
i=1 be a basis of TpΣ, denote

the induced metric on Σ by

gi j = 〈vi,v j〉H ,

12



and let νH be an unit normal vector of TpΣ with respect to ds2
H . We denote the second funda-

mental form on Σ by

ai j = 〈∇H
vi

v j,νH〉H ,

so that the mean curvature of Σ with respect to the hyperbolic metric is

H = gi jai j,

where gi j is the inverse of gi j. With this we have

Lemma 2.1.3.

κ
H
i = xn+1

κ
E
i +ν

n+1 ,

where κH
i and κE

i are hyperbolic and Euclidean principle curvatures of Σ, respectively, and

νn+1 = 〈νE ,e〉E . Therefore,

H = xn+1HE +nν
n+1 .

Proof. Note that the hyperbolic principle curvatures κH
i ’s are the roots of

det
(
ai j−κ

Hgi j
)
= det

(
aE

i j

xn+1 −
νn+1

(xn+1)2 gE
i j−κ

H gE
i j

(xn+1)2

)

= (xn+1)−n det
(

aE
i j−

κH −νn+1

xn+1 gE
i j

)
,

so that the proposition follows from

κ
E
i =

1
xn+1

(
κ

H
i −ν

n+1) .

13



We note that the Riemann curvature tensor is

(RH)αβγδ = 〈(RH)(eα,eβ)eγ,eδ〉H = δαδδβγ−δαγδβδ ,

since H has constant sectional curvature −1. In particular, ∇RH = 0. Also, the Gauss equation

in this setting reads as

Gauss: Ri jkl = aika jl−aila jk +(RH)i jkl,

where the index 0 denotes the νH direction. We note also that we have the interchange of two

covariant derivatives on a two tensor:

∇ j∇iakl = ∇i∇ jakl +akmR m
jil +almR m

jik ,

where R m
i jk = gmlRi jkl . Using these equations one can derive the following well-known Si-

mons’ identity.

Lemma 2.1.4. On a class 2 hypersurface Σ⊂H, we have

(i) (Simons’ identity)

∆ai j = ∇i∇ jH +Hamiam
j −|A|2ai j−nai j +Hδi j,

where ∆ is the Laplacian for tensors on Σ, ∇ the covariant derivative on Σ, and A = (ai j) the

second fundamental form on Σ, all with respect to the induced hyperbolic metric.

(ii) ∆|A|2 = 2ai j∇i∇ jH +2HTr(A3)−2|A|4−2n|A|2 +2H2 +2|∇A|2.

Proof. We include a proof for the sake of completeness; we refer to [Hui86] for general ambient
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manifolds. Fix a point on Σ. In normal coordinates, for (i), we have

∆ai j = ∇k∇kai j = ∇k∇ jaik

= ∇i∇ka jk +a jlR l
kik +aklR l

ki j

= ∇i∇ jH +al
j(akkail−aklaik +(RH) l

kik )+akl(ak jail−aklai j +(RH) l
ki j )

= ∇i∇ jH +Hailal
j +a jl(δklδik−δkkδil)−|A|2ai j +akl(δklδi j−δ jkδil)

= ∇i∇ jH +Hailal
j−|A|2ai j−nai j +Hδi j.

For (ii), we have

∆|A|2 = 2ai j
∆ai j +2|∇A|2

= 2ai j
∇i∇ jH +2HTr(A3)−2|A|4−2n|A|2 +2H2 +2|∇A|2 .

2.2 Interior gradient estimates

Proposition 2.2.1. For a function f : Σt → R, where Σt moves by (1.1.1), we have

(
∂

∂t
−∆

)
f =− (xn+1)2(∆E f −〈∇E

νE
∇

E f ,νE〉E)

+ xn+1((n−2)〈∇E f ,e〉E +2〈∇E f ,νE〉E〈νE ,e〉E −σ〈∇E f ,νE〉E),

where ∆ is the Laplace-Beltrami operator on Σt , ∂

∂t = F∗(∂/∂t) = (H−σ)νH , ∆E is the standard

Euclidean Laplacian, and ∇E f is the Euclidean gradient of f .

15



Proof. We first note

∇ f = ∇
H f −〈∇H f ,νH〉HνH ,

div = divH−〈∇H
νH
·,νH〉H ,

∇
H f = (xn+1)2

∇
E f ,

divH = divE−
n+1
xn+1 〈·,e〉E .

Along with Proposition 2.1.2, these give

∆ f =div∇ f

=divH(∇
H f −〈∇H f ,νH〉HνH)−〈∇H

νH
(∇H f −〈∇H f ,νH〉HνH),νH〉H

=divH ∇
H f −〈∇H f ,νH〉H divH νH −νH〈∇H f ,νH〉H

〈∇H
νE

∇
H f ,νE〉E +νH〈∇H f ,νH〉H

=divH ∇
H f −〈∇H

νE
∇

H f ,νE〉E +H〈∇H f ,νH〉H

=divE((xn+1)2
∇

E f )− (n+1)xn+1〈∇E f ,e〉E

−〈∇E
νE
((xn+1)2

∇
E f ),νE〉E − xn+1〈νE ,∇

E f 〉E〈νE ,e〉E

+ xn+1〈νE ,e〉E〈∇E f ,νE〉E + xn+1〈∇E f ,e〉E +H〈∇E f ,νH〉

=(xn+1)2 divE ∇
E f +2xn+1〈∇E f ,e〉E − (n+1)xn+1〈∇E f ,e〉E

− (xn+1)2〈∇E
νE

∇
E f ,νE〉E −2xn+1〈νE ,e〉E〈∇E f ,νE〉E

+ xn+1〈∇E f ,e〉E +H〈∇E f ,νH〉E

=(xn+1)2(∆E f −〈∇E
νE

∇
E f ,νE〉E)− xn+1((n−2)〈∇E f ,e〉E

−2〈νE ,e〉E〈∇E f ,νE〉E)+H〈∇E f ,νH〉E .
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Combining this with

∂

∂t
f = (H−σ)νH f = H〈∇E f ,νH〉E − xn+1

σ〈∇E f ,νE〉E

gives the desired result.

We note that there is a C0-estimate that comes for free.

Remark 2.2.2. Notice |x|E is bounded above on any compact region of Σt , by the same constant,

for all time. To see this, there exist, for any r > 0, caps {(x1, . . . ,xn+1) ∈H : (x1)
2 + · · ·(xn)

2 +

(xn+1 +σr/n)2 = r2}, with constant hyperbolic mean curvature σ. These caps have bounded

|x|E . The result follows from a comparison principle for MMCF, found in Lemma A.3.1. That

is, two initially disjoint hypersurfaces moving by MMCF in hyperbolic space remain disjoint as

long as the flow exists.

The MMCF (1.1.1) for complete radial graphs is a (degenerate) quasi-linear parabolic

PDE, see (1.1.3). We would like to use the conventional maximum principle techniques to

obtain interior estimates. Similar interior estimates were obtained in [LX12, Section 9] using

the same techniques. However, the estimate there is not uniform in ε and therefore it is not

sufficient in our current case. In order to overcome the degeneracy at infinity of the PDE and

achieve the uniform interior estimate, we first need to find an appropriate space-time cut-off

function. To do so, we let r(x) be the hyperbolic distance from a point x ∈ H to the xn+1-axis.

Then

coshr =
|x|E
xn+1 ,

where |x|E =
√
〈x,x〉E , see e.g. [BP92, Cor. A.5.8.]. In the following, we let z = x

|x|E .
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Proposition 2.2.3.

(
∂

∂t
−∆

)
coshr =

1
coshr

(1−〈νE ,z〉2E)− (n−σ〈νE ,e〉E)coshr−σ〈νE ,z〉E .

Proof. We notice

∇
E |x|E = z ,

∇
E
νE

∇
E |x|E = ∇

E
νE

z = νE |x|−1
E x+ |x|−1

E νE = −|x|−1
E 〈z,νE〉Ez+ |x|−1

E νE ,

∆E |x|E = divE z =−|x|−1
E + |x|−1

E (n+1) = n|x|−1
E .

Moreover, we have

∇
E(xn+1)−1 = −(xn+1)−2e ,

∇
E
νE

∇
E(xn+1)−1 = 2(xn+1)−3〈e,νE〉Ee ,

∆E(xn+1)−1 = 2(xn+1)−3 ,

∇
E coshr = (xn+1)−1z− (xn+1)−2|x|Ee = (xn+1)−1z− (xn+1)−1(coshr)e ,

xn+1
∇

E coshr = z− (coshr)e ,

and

∇
E
νE

∇
E coshr

=∇
E
νE
((xn+1)−1z− (xn+1)−1(coshr)e)

= − (xn+1)−2〈νE ,e〉Ez+(xn+1)−1(−|x|−1
E 〈z,νE〉Ez+ |x|−1

E νE)+(xn+1)−2〈νE ,e〉E(coshr)e

− (xn+1)−1〈(xn+1)−1z− (xn+1)−1(coshr)e,νE〉E

=(xn+1)−2
(
−〈e,νE〉Ez− 1

coshr
〈z,νE〉Ez+

1
coshr

νE −〈z,νE〉Ee+2coshr〈e,νE〉Ee
)
.
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Now, since 〈z,e〉E = 1
coshr , we have

∆E coshr =∆E(xn+1)−1|x|E

=2〈∇E(xn+1)−1,∇E |x|E〉E +(xn+1)−1
∆E |x|E + |x|E∆E(xn+1)−1

=(xn+1)−2
(
(n−2)

1
coshr

+2coshr
)
.

Therefore, we finally arrive at

(
∂

∂t
−∆

)
coshr = − (xn+1)2(∆E coshr−〈∇E

νE
∇

E coshr,νE〉E)

+ xn+1[(n−2)〈∇E coshr,e〉E +2〈∇E coshr,νE〉E〈e,νE〉E

−σ〈∇E coshr,νE〉E ]

=(2−n)〈z,e〉E −2coshr− 1
coshr

〈z,νE〉2E +
1

coshr

−2〈z,νE〉E〈e,νE〉E +2coshr〈e,νE〉2E

+(n−2)〈z,e〉E − (n−2)coshr+2〈z,νE〉E〈e,νE〉E

−2coshr〈e,νE〉2E −σ〈z,νE〉E +σcoshr〈e,νE〉E

=
1

coshr
(1−〈νE ,z〉2E)− (n−σ〈e,νE〉E)coshr−σ〈z,νE〉E .

Now, for any R > 0, we define a space-time cut-off function (c.f. [Unt03])

η = coshR− e(n+σ)t
(

coshr+
σ

n+σ

)
.
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Then, for σ≥ 0 we have

(
∂

∂t
−∆

)
η = − e(n+σ)t

(
(n+σ)coshr+σ+

(
∂

∂t
−∆

)
coshr

)
= − e(n+σ)t

[
(n+σ)coshr+σ+

1
coshr

(1−〈νE ,z〉2E)

− (n−σ〈e,νE〉E)coshr−σ〈z,νE〉E
]

= − e(n+σ)t
[

1
coshr

(1−〈νE ,z〉2E)+σ(1−〈z,νE〉E

+ coshr(1+ 〈e,νE〉E))
]
≤ 0 .

Remark 2.2.4. We will only deal with the case of σ ≥ 0. The case of σ < 0 can be handled

using the hyperbolic isometric reflection x∗ = x
|x|2E

with respect to Sn
+, c.f. Lemma A.2.3 .

Remark 2.2.5. We notice that

νE =
z−∇Sv√
1+ |∇Sv|2

and 〈νE ,z〉E =
1
|x|E
〈νE ,x〉E =

1√
1+ |∇Sv|2

.

Therefore, in order to obtain the interior gradient estimate on |∇Sv|, it’s enough to obtain a pos-

itive lower bound on 〈νE ,z〉E , which is (almost) equivalent to 〈νE ,x〉E = xn+1 〈νH ,x〉H , thanks

to the C0-estimate on |x|E using appropriate barriers (see Remark 2.2.2 ). Thus, in what fol-

lows, we will first look at the evolution equation of 〈νH ,x〉H and finally arrive at the evolution

equation of 〈νE ,x〉E (see Proposition 2.2.8 ). Then the cut-off function and maximum principle

techniques apply conventionally.

From here on we suppose the vi’s are in fact a normal coordinate basis of TpΣt with respect

to the hyperbolic metric. We may extend the vector fields vi and νH on Σt to a neighborhood

of H by requiring that vi is constant along the integral curves of x, so that [vi,x] = [νH ,x] = 0,
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where, e.g., [vi,x] is the Lie bracket of vi and x, c.f. [Bar84]. We note that the Codazzi equation

becomes, since H has constant sectional curvature,

ai j,k = aik, j. (2.2.6)

Proposition 2.2.7. For radial graphs moving by MMCF,

(
∂

∂t
−∆

)
〈νH ,x〉H = (|A|2−n)〈νH ,x〉H ,

where |A|2 = gi jgklaika jl is the norm squared of the second fundamental form on Σt .

Proof. We have, using [vi,x] = 0, (2.1.1), and Codazzi equation (2.2.6), and summing over

repeated indices,

∆〈νH ,x〉H =vivi〈νH ,x〉H = vi〈∇H
vi

νH ,x〉H +vi〈νH ,∇
H
vi

x〉H

= −〈∇H
vi

ai jv j,x〉H −|A|2〈νH ,x〉H −2〈ai jv j,∇
H
vi

x〉H

+ 〈νH ,(RH)(x,vi)vi〉H + 〈νH ,∇
H
x ∇

H
vi

vi〉H

= −v j(H)〈v j,x〉H + 〈(RH)(x,vi)vi,νH〉H −|A|2〈νH ,x〉H +ai jxgi j + xaii

= −〈∇H,x〉H −RicH(νH ,νH)〈νH ,x〉H −|A|2〈νH ,x〉H + x(H)

=(n−|A|2)〈νH ,x〉H −〈∇H,x〉H + x(H) .

Notice ∇H
∂

∂t
νH is tangential, and [ ∂

∂t ,vi] = 0 from the naturality of the Lie bracket. So,

〈∇H
∂

∂t
νH ,vi〉H =−〈νH ,∇

H
vi

∂

∂t
〉H =−vi(H−σ)− (H−σ)〈νH ,∇

H
vi

νH〉H =−viH,

which implies

∇
H
∂

∂t
νH =−∇H.
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Also,

〈νH ,∇
H
νH

x〉H = 〈νE ,∇
E
νE

x+
1

xn+1 (〈νE ,x〉E e−〈νE ,e〉Ex−〈x,e〉EνE〉E = 0

since ∇E
νE

x = νE and 〈x,e〉E = xn+1. Hence,

∂

∂t
〈νH ,x〉H = 〈∇H

∂

∂t
νH ,x〉H +(H−σ)〈νH ,∇

H
νH

x〉H

= −〈∇H,x〉H .

Finally, notice that x(H) = 0 since x is a Killing vector field in H, c.f. [HLZ16, Appendix].

Proposition 2.2.8. For radial graphs moving by MMCF,

(
∂

∂t
−∆

)
〈νE ,x〉E = (|A|2−σ〈νE ,e〉E)〈νE ,x〉E −2〈∇〈νE ,x〉E ,xn+1e〉H . (2.2.9)

Remark 2.2.10. In the case of MCF, i.e., σ = 0, equation (2.2.9) and the maximum principle

yield immediately a global gradient bound for the approximate MCF (starting from the compact

hypersurface Σε
0), which ensures the global existence of the approximate MCF, see [Unt03]. On

the other hand, in the case σ 6= 0, the maximum principle is not applicable directly, but thanks

to the existence result from [LX12] for the approximate MMCF we are able to get around with

this, see Section 2.4.

Proof. We have, using ∇xn+1 = ∇Hxn+1−〈∇Hxn+1,νH〉HνH = (xn+1)2(e−〈νE ,e〉EνE), that

|∇xn+1|2H = (xn+1)2(1−〈νE ,e〉2E).
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Hence, using Proposition 2.2.1, we have

(
∂

∂t
−∆

)
〈νE ,x〉E =

(
∂

∂t
−∆

)(
xn+1〈νH ,x〉H

)
=xn+1

(
∂

∂t
−∆

)
〈νH ,x〉H + 〈νH ,x〉H

(
∂

∂t
−∆

)
xn+1

−2〈∇xn+1,∇〈νH ,x〉H〉H

=(|A|2−n)〈νE ,x〉E + 〈νE ,x〉E(n−2+2〈νE ,e〉2E −σ〈νE ,e〉E)

−2
〈

∇xn+1,
1

xn+1 ∇〈νE ,x〉E
〉

H
−2
〈

∇xn+1,〈νE ,x〉E∇
1

xn+1

〉
H

=(|A|2−2+2〈νE ,e〉2E −σ〈νE ,e〉E)〈νE ,x〉E

−2
〈
xn+1e,∇〈νE ,x〉E

〉
H +2〈νE ,x〉E(1−〈νE ,e〉2E)

=(|A|2−σ〈νE ,e〉E)〈νE ,x〉E −2〈∇〈νE ,x〉E ,xn+1e〉H .

Now, in order to obtain the interior estimate using maximum principle techniques, we

multiply 〈νE ,x〉−1
E by the space-time cut-off function and let

ξ = η
3〈νE ,x〉−1

E =

(
coshR− e(n+σ)t

(
coshr+

σ

n+σ

))3

〈νE ,x〉−1
E . (2.2.11)

Proposition 2.2.12. For radial graphs moving by MMCF with σ ∈ [0,n),

(
∂

∂t
−∆

)
ξ≤ (n+2)ξ.
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Proof. This is a straight-forward calculation.

(
∂

∂t
−∆

)
ξ =〈νE ,x〉−1

E

(
∂

∂t
−∆

)
η

3 +η
3
(

∂

∂t
−∆

)
〈νE ,x〉−1

E −2
〈
∇η

3,∇〈νE ,x〉−1
E

〉
H

=3η
2〈νE ,x〉−1

E

(
∂

∂t
−∆

)
η−6η〈νE ,x〉−1

E |∇η|2H −η
3〈νE ,x〉−2

E

(
∂

∂t
−∆

)
〈νE ,x〉E

−2η
3〈νE ,x〉−3

E |∇〈νE ,x〉E |2H +6η
2〈νE ,x〉−2

E 〈∇η,∇〈νE ,x〉E〉H

≤ −η
3〈νE ,x〉−2

E

(
(|A|2−σ〈νE ,e〉E)〈νE ,x〉E −2〈∇〈νE ,x〉E ,xn+1e〉H

)
− 1

2
η

3〈νE ,x〉−3
E |∇〈νE ,x〉E |2H

≤η
3〈νE ,x〉−1

E

(
〈νE ,e〉Eσ−|A|2 +2

)
≤ (n+2)ξ ,

where we have used

2η
3〈νE ,x〉−2

E 〈∇〈νE ,x〉E ,xn+1e〉H ≤
1
2

η
3〈νE ,x〉−3

E |∇〈νE ,x〉E |2H +2η
3〈νE ,x〉−1

E ,

and

6η
2〈νE ,x〉−2

E 〈∇η,∇〈νE ,x〉E〉H ≤ 6η〈νE ,x〉−1
E |∇η|2H +

3
2

η
3〈νE ,x〉−3

E |∇〈νE ,x〉E |2H ,

from Young’s inequality.

The following theorem is the main technical interior gradient estimate.

Theorem 2.2.13. For any R ≥ cosh−1 ( σ

n+σ
e(n+σ)T

)
and θ ∈

(
σ

(n+σ)coshR e(n+σ)T ,1
)

such that

{x ∈ Σt | r ≤ R} is a compact radial graph for all t ∈ [0,T ], we have

sup
{x∈Σt |e(n+σ)t(coshr+ σ

n+σ
)≤θcoshR}

〈νE ,z〉−1
E ≤ e(n+2)T+vosc(1−θ)−3 sup

{x∈Σ0|r≤R}
〈νE ,z〉−1

E ,

where vosc = maxt∈[0,T ] max{x∈Σt |r≤R} v−mint∈[0,T ] min{x∈Σt |r≤R} v is the oscillation of the radial

height of x (see (1.1.2)) in
⋃

t∈[0,T ]{x ∈ Σt | r ≤ R}.
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Proof. The previous proposition and Hamilton’s trick imply, for almost all t ∈ (0,T ),

d
dt

sup
{x∈Σt |r≤R}

ξ≤ (n+2) sup
{x∈Σt |r≤R}

ξ,

so we may integrate from 0 to T to obtain

sup
{x∈ΣT |r≤R}

η
3〈νE ,x〉−1

E ≤ e(n+2)T sup
{x∈Σ0|r≤R}

η
3〈νE ,x〉−1

E .

Now notice evmin ≤ |x|E implies

e(n+2)T−vmin sup
{x∈Σ0|r≤R}

η
3〈νE ,z〉−1

E ≥ e(n+2)T sup
{x∈Σ0|r≤R}

η
3〈νE ,x〉−1

E .

Similarly, evmax ≥ |x|E implies

e−vmax sup
{x∈ΣT |r≤R}

η
3〈νE ,z〉−1

E ≤ sup
{x∈ΣT |r≤R}

η
3〈νE ,x〉−1

E .

These two inequalities imply then

sup
{x∈ΣT |r≤R}

η
3〈νE ,z〉−1

E ≤ e(n+2)T+vmax−vmin sup
{x∈Σ0|r≤R}

η
3〈νE ,z〉−1

E .

We also have

sup
{x∈ΣT |e(n+σ)t(coshr+ σ

n+σ
)≤θcoshR}

η
3〈νE ,z〉−1

E ≤ sup
{x∈ΣT |r≤R}

η
3〈νE ,z〉−1

E ,

and η3 ≥ (1− θ)3 cosh3 R in {x ∈ Σt | e(n+σ)t(coshr+ σ

n+σ
)≤ θcoshR} since θcoshR+ η ≥

coshR there. We also have η3 ≤ cosh3 R everywhere. These facts, along with replacing T with

any t ∈ [0,T ), imply the result.

The above theorem allows us to prove Theorem 1.1.5. We stress it provides an interior

bound, making no assumptions on the asymptotic boundary of the initial surface.
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2.3 Interior estimates on higher order derivatives

In order to obtain the estimates on higher order derivatives, we also need the evolution

equation for the second fundamental form.

Lemma 2.3.1. On Σt ⊂H, we have

(i)
∂

∂t
ai j = ∇i∇ jH− (H−σ)ak

i a jk +(H−σ)(RH)i0 j0 ,

(ii)
∂

∂t
|A|2 = 2ai j

∇i∇ jH +2(H−σ)Tr(A3)−2H(H−σ) ,

(iii)
(

∂

∂t
−∆

)
|A|2 = 2|A|4 +2n|A|2−2|∇A|2−4H2 +2σ(H−Tr(A3)) .

Proof. (i) Note that ∇H
vi

v j = ai jνH , we compute

∂

∂t
ai j = 〈∇H

∂

∂t
∇

H
vi

v j,νH〉H

= 〈∇H
vi

∇
H
v j

∂

∂t
,νH〉H + 〈(RH)(vi,∂/∂t)v j,νH〉H

= 〈∇H
vi

∇
H
v j
((H−σ)νH),νH〉H +(H−σ)(RH)i0 j0

= 〈∇H
vi
(∇H

v j
HνH)−∇

H
vi
((H−σ)ak

jvk),νH〉H +(H−σ)(RH)i0 j0

= ∇i∇ jH− (H−σ)ak
i a jk +(H−σ)(RH)i0 j0 .

(ii) Notice ∂

∂t gi j = 2(H−σ)gikg jlakl , so that

∂

∂t
|A|2 = ∂

∂t

(
gi jgklaika jl

)
=4(H−σ)ai jaikak

j +2ai j
(

∇i∇ jH− (H−σ)aikak
j +(H−σ)(RH)i0 j0

)
=2ai j

∇i∇ jH +2(H−σ)Tr(A3)−2H(H−σ).

(iii) Combining (ii) with Simons’ identity.
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2.3.1 Estimates on the second derivatives

Now let u = 〈νE ,x〉−1
E and define

ϕ = ϕ(u2) =
u2

1− ku2

where

k =

(
2 sup

t∈[0,T ]
sup

{x∈Σt |r≤R}
u2

)−1

.

Let ϕ′ denote differentiation of ϕ with respect to u2. From Remark 2.2.2, we know that

c0 ≤ |x|−2
E ≤ ϕ

for some constant c0 depending on Σ0.

Combining Proposition 2.2.8 with (iii) of Lemma 2.3.1, we obtain:

Lemma 2.3.2. On {x ∈ Σt |r ≤ R} and Σt moves by MMCF, we have

(
∂

∂t
−∆

)(
|A|2 ϕ

)
≤− k|A|4 ϕ

2+

(
c(n,c0)

k
− k ϕ

′ |∇v|2
)
|A|2 ϕ

−ϕ
−1〈∇ϕ,∇(|A|2 ϕ)〉H +σ

2
ϕ .

Proof. We have

(
∂

∂t
−∆

)(
|A|2 ϕ

)
= ϕ

(
∂

∂t
−∆

)
|A|2 + |A|2

(
∂

∂t
−∆

)
ϕ−2〈∇|A|2,∇ϕ〉H

:= I+ II+ III .
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By (iii) of Lemma 2.3.1, we have

I = ϕ
(
2|A|4 +2n|A|2−2|∇A|2−4H2 +2σ(H−Tr(A3))

)
≤ ϕ

(
2|A|4 +2n|A|2−2|∇A|2−4H2 +σ

(
H2c2 +

1
c2

+
|A|2

c1
+ c1|A|4

))
≤ ϕ(2+ c1σ)|A|4 +ϕ

(
2n+

σ

c1

)
|A|2−2ϕ |∇A|2 + σ

c2
ϕ

where we used Young’s inequality and the fact that |Tr(A3)| ≤ |A|3. We also chose constants

c1,c2 such that c1σ≤ c0k and c2σ≤ 4, where c0 ≤ ϕ.

For the second term II, by Proposition 2.2.8 we have

(
∂

∂t
−∆

)
ϕ =−2ϕ

′ u3
(

∂

∂t
−∆

)
〈νE ,x〉E −6ϕ

′ |∇u|2−4ϕ
′′ u2|∇u|2

=−2ϕ
′ u2(|A|2−σ〈νE ,e〉E)−4ϕ

′ u〈∇u,xn+1e〉H − (6+8k ϕ)ϕ
′ |∇u|2

since ϕ′′ u2 = 2k ϕϕ′.

Therefore, using Young’s inequality again we get

II≤−2u2
ϕ
′ |A|4− (6+8k ϕ)ϕ

′ |A|2|∇u|2 + k ϕϕ
′ |A|2|∇u|2 + 4

c0k
|A|2 ϕ+4n|A|2 ϕ ,

since σ < n,ϕ′ u2 ≤ 2ϕ and ϕ

c0
≥ 1.

For the third term III, we compute:

III = −ϕ
−1〈∇ϕ,∇(|A|2 ϕ)〉H +ϕ

−1 |A|2|∇ϕ |2−〈∇|A|2,∇ϕ〉H

= −ϕ
−1〈∇ϕ,∇(|A|2 ϕ)〉H +4ϕ

−1(ϕ′ u)2|A|2|∇u|2−4ϕ
′ u|A|〈∇|A|,∇u〉H

≤ −ϕ
−1〈∇ϕ,∇(|A|2 ϕ)〉H +6ϕ

−1(ϕ′ u)2|A|2|∇u|2 +2|∇|A||2 ϕ .
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From Kato’s inequality, |∇|A||2 ≤ |∇A|2, so that

I+ II+ III≤(ϕ(2+ c1σ)−2u2
ϕ
′)|A|4 +

(
6n+

σ

c1
+

4
c0k

)
|A|2 ϕ+

σ

c2
ϕ

+(6ϕ
−1(ϕ′ u)2− (6+7k ϕ)ϕ

′)|A|2|∇u|2−ϕ
−1〈∇ϕ,∇(|A|2 ϕ)〉H .

Note that since c1σ ≤ c0k and ϕ−u2 ϕ′ =−k ϕ2, we have ϕ(2+ c1σ)−2u2 ϕ′ ≤−k ϕ2. More-

over,

6ϕ
−1(ϕ′ u)2− (6+7k ϕ)ϕ

′ = −k ϕϕ
′ .

Now let c1 =
c0k
σ

and c2 =
1
σ

, then 6n+ σ

c1
+ 4

c0k ≤
c(n,c0)

k and on {x ∈ Σt |r ≤ R}∩{|A|2 ≥ 1},

we have

I+ II+ III≤−k|A|4 ϕ
2+

(
c(n,c0)

k
− k ϕ

′ |∇u|2
)
|A|2 ϕ−ϕ

−1〈∇ϕ,∇(|A|2 ϕ)〉H +σ
2

ϕ .

This proves the lemma.

Now we are ready to show the interior estimates on the second fundamental form |A| (i.e.,

|∇2v|). For simplicity, let

g = |A|2 ϕ .

Then the previous lemma says

(
∂

∂t
−∆

)
g≤ −kg2 +

(
c(n,c0)

k
− k ϕ

′ |∇u|2
)

g−ϕ
−1〈∇ϕ,∇g〉H +σ

2
ϕ .

Now let

η = (coshR− coshr)2
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be the spacial cut-off function, and let η′ denote the differentiation with respect to coshr. Then,

from Proposition 2.2.3, we have

(
∂

∂t
−∆

)
(−coshr) = −

[
1

coshr
(1−〈νE ,z〉2E)− (n−σ〈νE ,e〉E)coshr−σ〈νE ,z〉E

]
≤(σ+n)coshr+σ .

So that

(
∂

∂t
−∆

)
η =2(coshR− coshr)

(
∂

∂t
−∆

)
(−coshr)−2|∇coshr|2

≤2(σ+n)cosh2 R+2σcoshR−2|∇coshr|2

≤2(2σ+n)cosh2 R−2|∇coshr|2 ,

if σ≤ coshR, namely, R is sufficiently large, e.g., coshR≥ n.

Therefore, we compute:

(
∂

∂t
−∆

)
(gη)≤

[
−kg2 +

(
c(n,c0)

k
− k ϕ

′ |∇u|2
)

g−ϕ
−1〈∇ϕ,∇g〉H +σ

2
ϕ

]
η

+g
(

∂

∂t
−∆

)
η−2〈∇g,∇η〉

≤ − kg2
η+

(
c(n,c0)

k

)
gη−ϕ

−1〈∇ϕ,∇(gη)〉H +
|η′|2g
kηu2 |∇coshr|2

+σ
2

ϕη+g
(

∂

∂t
−∆

)
η−2η

−1〈∇(gη),∇η〉+2η
−1g|∇η|2

≤ − kg2
η+

(
c(n,c0)

k

)
gη−〈ϕ−1

∇ϕ+2η
−1

∇η,∇(gη)〉H

+σ
2

ϕη+g
(
2(2σ+n)cosh2 R−2|∇coshr|2

)
+g|∇coshr|2

(
4

ku2 +8
)

≤ − kg2
η+

(
c(n,c0)

k

)
gη−〈ϕ−1

∇ϕ+2η
−1

∇η,∇(gη)〉H (2.3.3)

+30ng
(

1+
|x|2E

k

)
cosh2 R+σ

2
ϕη ,

30



where we used Young’s inequality and the facts that ϕ−1 ∇ϕ = 2ϕu−3∇u and ϕ′ = ϕ2 u−4 and

η−1|∇η|2 = η−1|η′|2|∇coshr|2 = 4|∇coshr|2 ≤ 4(1+ coshr)2 . Therefore, we have

(
∂

∂t
−∆

)
(gηt)≤ − kg2

ηt +
(

c(n,c0)

k
t +1

)
gη−〈ϕ−1

∇ϕ+2η
−1

∇η,∇(gηt)〉H

+30ng
(

1+
1

c0k

)
(cosh2 R)t +σ

2
ϕηt . (2.3.4)

Now at a point (x0, t0) where sup[0,T ] sup{x∈Σt |r≤R}(gηt) 6= 0 is attained for t0 > 0, we have

kg2
ηt0 ≤

(
c(n,c0)

k
t0 +1

)
gη+30ng

(
1+

1
c0k

)
(cosh2 R)t0 +σ

2
ϕηt0,

which implies (dividing by kg = k|A|2 ϕ on both sides) at (x0, t0) we have

g(x0, t0)η(x0, t0)t0

≤ 1
k

(
c(n,c0)

k
t0 +1

)
cosh2 R+

30n
k

(
1+

1
c0k

)
(cosh2 R)t0 +

σ2

k|A|2
(cosh2 R)t0

≤ c(n,c0)

k2 (1+T )cosh2 R+
30n

k

(
1+T +

σ2T
|A|2(x0, t0)

)
cosh2 R .

Note that for any (x, t) ∈ {x ∈ Σt |coshr ≤ θcoshR}× [0,T ] we have

g(x, t)η(x, t)t ≤ g(x0, t0)η(x0, t0)t0 and η≥ (1−θ)2 cosh2 R .

If |A|2(x0, t0)≤ 1, then

c0|A|2(x,T )≤
1
T

η
−1(x,T )ϕ(x0, t0)η(x0, t0)t0

≤ 4(1−θ)−2 sup
t∈[0,T ]

sup
{x∈Σt |r≤R}

u2

≤ 8
c0
(1−θ)−2 sup

t∈[0,T ]
sup

{x∈Σt |r≤R}
u4 ,
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where we used c0 ≤ ϕ≤ 2u2 and η≤ 2cosh2 R . Otherwise, if |A|2(x0, t0)> 1 then we have

c0|A|2(x,T )≤ g(x,T )≤
[

c(n,c0)

k2

(
1+

1
T

)
+

30n
k

(
1+

1
T
+σ

2
)]

(1−θ)−2

≤ c(n,c0)

(
1+

1
T

)
(1−θ)−2 sup

t∈[0,T ]
sup

{x∈Σt |r≤R}
u4 .

Since T > 0 was arbitrary, we have just proved

Theorem 2.3.5. For all t ∈ [0,T ], any R≥ cosh−1(n) and any θ ∈ (0,1) we have

sup
{x∈Σt |coshr≤θcoshR}

|A|2 ≤ c(n,c0)

(
1+

1
t

)
(1−θ)−2 sup

s∈[0,t]
sup

{x∈Σs|r≤R}
u4 .

2.3.2 Estimates on all the higher order derivatives

The estimates on all the higher order derivatives can be obtained analogously by looking

at the evolution equations of the higher derivatives of the second fundamental form. We recall,

for example, [EH91a] and [Unt03]. For this, we have

Lemma 2.3.6. For hypersurfaces Σt moving by MMCF in H which can be written locally as

radial graphs, we have

(i)

(
∂

∂t
−∆

)
∇

mA = ∑
i+ j+k=m

∇
iA∗∇

jA∗∇
kA+σ ∑

i+ j=m
∇

iA∗∇
jA

+ ∑
i+ j=m

∇
iA∗∇

jRH +σ∗∇
mRH .

where S ∗T is a tensor formed by contraction of tensors S and T by the metric g on Σt or its

inverse ;
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(ii)

(
∂

∂t
−∆

)
|∇mA|2 ≤−2|∇m+1A|2 + c

(
∑

i+ j+k=m
|∇iA||∇ jA||∇kA||∇mA|

+σ ∑
i+ j=m

|∇iA||∇ jA||∇mA|+ |∇mA|2 +σ|∇mA|2
)
.

Theorem 2.3.7. For all t ∈ [0,T ], any R≥ cosh−1(n) and any θ ∈ (0,1) we have

sup
{x∈Σt |coshr≤θcoshR}

|∇mA|2 ≤ c

(
n,c0, sup

s∈[0,t]
sup

{x∈Σs|r≤R}
u

)(
1+

1
t

)
(1−θ)−2

(
1+

1
t

)m+1

.

Proof. Similar to the proof of Theorem 2.3.5, c.f. [EH91a, Theorem 3.4] .

2.4 Proof of Theorem 1.1.5

Our goal in this section is to prove the main Theorem 1.1.5. We restate it for convenience.

Theorem 1.1.5. If F0 : Sn
+→H is a map such that Σ0 = F0(Sn

+) is a locally Lipschitz con-

tinuous radial graph over Sn
+, then the Cauchy initial-boundary value problem for the modified

mean curvature flow (1.1.1) has a solution F ∈ C∞(Sn
+× (0,∞))∩C0,1×0,1/2

loc (Sn
+× [0,∞)) and

F(Sn
+, t) is a complete radial graph over Sn

+ for any t ≥ 0.

Proof. First we assume Σ0 (or equivalently v0) is smooth. For any ε > 0, we define the solid

cylinder

Cε =

{
x ∈H :

|x|E
xn+1 ≤

1
ε

}
,

and let Σε
0 = Σ0∩Cε and Ωε = F−1

0 (Σ0∩Cε). Then Ωε is compact and Γε = F0(∂Ωε) is a smooth

radial graph over ∂Ωε.
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From the existence result in [LX12] for the approximate MMCF, and from Lemma (A.1.3),

we know that the initial-boundary value problem

∂

∂t
F(z, t) = (H−σ)νH , (z, t) ∈Ωε× (0,∞) ,

F(z,0) = F0(z) , z ∈Ωε ,

F(∂Ωε, t) = Γε , t ∈ [0,∞)

(2.4.1)

has a unique radial graph solution Fε
t (z) = Fε(z, t) ∈C∞(Ωε× (0,∞))∩C0,1×0, 1

2 (Ωε× (0,∞))∩

C0(Ωε× [0,∞)), and we denote Σε
t = Fε(Ωε, t).

Now, for every ε ∈ (0,1), we let vε(z, t) be the solution to (2.4.1) (c.f. (1.1.3)), namely,

∂vε(z, t)
∂t

= y2 αi jvε
i j

n
− ye ·∇Svε−σywε , (z, t) ∈Ωε× (0,∞) ,

vε(z,0) = v0(z) , z ∈Ωε ,

vε(z, t) = φ
ε(z) , (z, t) ∈ ∂Ωε× [0,∞) .

(2.4.2)

For a fixed δ0 > 0 sufficiently small, we let

Et,ε,δ0 := Σ
ε
t ∩
{

x ∈H | r(x)≤ cosh−1
(

1
δ0

)}
= Σ

ε
t ∩Cδ0 ,

where r(x) is the hyperbolic distance from x ∈ H to the xn+1-axis and coshr(x) = |x|E
xn+1 . Then

Et,ε,δ0 is a compact radial graph and we have E0,ε,δ0 = E0,δ0,δ0 for all ε ≤ δ0. By compactness,

there exist caps S1,S2 with constant mean curvature σ such that the Euclidean norms satisfy

c−1(Σδ0
0 )≤ |x1|E ≤ |Fε

0(z)| ≤ |x2|E ≤ c(Σδ0
0 ) for all xi ∈ Si, i = 1,2, any z ∈ (Fε

0)
−1(E0,ε,δ0), and

any ε≤ δ0. This implies, by the comparison principle for MMCF, that for all ε≤ δ0 we have

sup
t∈(0,∞)

sup
z∈(Fε

t )
−1(Et,ε,δ0 )

|vε(z, t)| ≤ c0

n,δ0, sup
z∈F−1

0 (E0,δ0 ,δ0 )

|v0(z)|

 .
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For θ ∈ (0,1), let

Gt,ε,δ0,θ :=
{

x ∈ Et,ε,δ0 | e
(n+σ)t

(
coshr(x)+

σ

n+σ

)
≤ θ

δ0

}
.

We note that by Theorem 2.2.13, for all ε≤ δ0 and any T0 > 0 we have

sup
t∈[0,T0]

sup
z∈(Fε

t )
−1(Gt,ε,δ0 ,

1
2
)

|∇Svε(z, t)| ≤ e(n+2)T0c1

n,δ0,c0, sup
z∈F−1

0 (E0,δ0 ,δ0 )

|∇Sv0(z)|

 .

For ε0 > 0 and θ ∈ (0,1), we let

Kt,ε,ε0,θ :=
{

x ∈ Et,ε,δ0 | coshr(x)≤ θ

ε0

}
.

We choose δ0 > 0 sufficiently small such that 1
δ

1/2
0

− σ

n+σ
≥ 2, and let T0 = − 1

2(n+σ) logδ0 and

ε0 =

(
1

δ
1/2
0

− σ

n+σ

)−1

. Then, for our choices of δ0,T0, ε0 we know that for any ε≤ δ0,

GT0,ε,δ0,
1
2
= KT0,ε,ε0,

1
2
.

Hence, for all ε≤ δ0, we have

sup
t∈[0,T0]

sup
z∈(Fε

t )
−1(Kt,ε,ε0 ,

1
2
)

|∇Svε(z, t)| ≤ e(n+2)T0c1

n,δ0,c0, sup
z∈F−1

0 (E0,δ0 ,δ0 )

|∇Sv0(z)|

 .

Therefore, by Theorem 2.3.7 , for any integer m≥ 2 and any ε≤ δ0, we have

sup
t∈[0,T0]

sup
z∈(Fε

t )
−1(Kt,ε,ε0 ,

1
2
)

|(∇S)mvε(z, t)| ≤ cm(n,δ0,c1) .

Hence, for such fixed δ0 > 0, by the Arzelà-Ascoli Theorem, there exists some sequence

{εi,0}∞
i=1 such that εi,0→ 0 as i→ ∞ and such that vεi,0 converges in C∞(Ω2ε0 × [0,T0]) to some

vε0,T0 ∈C∞(Ω2ε0× [0,T0]) as i→ ∞ which solves (2.4.2). Now we fix a descending sequence of

positive real numbers {δk}∞
k=0 such that δk→ 0 as k→∞. Then define Tk =− 1

2(n+σ) logδk, and

1
εk
= 1

δ
1/2
k

− σ

n+σ
. Then Tk→ ∞ and εk→ 0 as k→ ∞.
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For non-negative integers k, there is a function vεk,Tk ∈ C∞(Ω2εk × [0,Tk]) satisfying the

conditions of (2.4.2) such that vεk,Tk is the uniform limit of some sequence {vεi,k}∞
i=1 and

vεk,Tk |Ω2εl×[0,Tl ] = vεl ,Tl

for all non-negative integers l≤ k. We can prove this by induction. The base case k= 0 was done

above. Our interior estimates imply we have uniform bounds of vε and its derivatives on Ω2εk+1×

[0,Tk+1] for ε ≤ δk+1. So, again by the Arzelà-Ascoli Theorem, there exists a subsequence

{vεi,k+1}∞
i=1 of {vεi,k}∞

i=1 such that vεi,k+1 converges in C∞(Ω2εk+1 × [0,Tk+1]) to some vεk+1,Tk+1 ∈

C∞(Ω2εk+1 × [0,Tk+1]) as i→ ∞. Since Ω2εk × [0,Tk] ⊂ Ω2εk+1 × [0,Tk+1] and {vεi,k+1}∞
i=1 is a

subsequence of {vεi,k}∞
i=1, we must have vεk+1,Tk+1 |Ω2εk×[0,Tk] = vεk,Tk .

If (z, t) ∈ Sn
+ × [0,∞), then there exists some non-negative integer k such that (z, t) ∈

Ω2εk× [0,Tk]. We define v(z, t) = vεk,Tk(z, t). Then our construction of the sequence vεk,Tk shows

v is well-defined. Moreover, if we define F(z, t) = ev(z,t)z on Sn
+× [0,∞), then F ∈ C∞(Sn

+×

[0,∞)) solves (1.1.1) up to a reparameterization of S+ which leaves Σ0 fixed by Lemma (A.2.2).

Now if Σ0 is merely locally Lipschitz continuous, then for any fixed compact subset

Ω ⊂ Sn
+, we can approximate v0 by smooth functions vs

0 with the same Lipschitz bound as the

Lipschitz bound of v0 on Ω. By the above arguments, for every s, there is a smooth one parame-

ter family of functions vs
t solving (2.4.2) with initial data vs

0. Now our interior estimates imply vs
t

and all its derivatives are uniformly bounded in any compact set K ⊂Ω, which again implies the

existence of a uniform limit v∈C∞(K×(0,T ])∩C0,1×0,1/2(K× [0,T ]). Since Ω and T are arbi-

trary, this establishes the existence of a function v ∈C∞(Sn
+× (0,∞))∩C0,1×0,1/2

loc (Sn
+× [0,∞))

which solves (1.1.3).
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Appendix A

Some Auxiliary Facts

A.1 Some hyperbolic geometry

Lemma A.1.1. a reasonable choice of σ. For any embedded Γ ⊂ ∂∞H, there does not exist

any immersed class 2 hypersurface Σ⊂H with ∂∞ Σ = Γ and with CMC σ, |σ| ≥ n.

Proof. This follows directly from the comparison principle in [GT01, Theorem 10.1]. We sup-

pose Σ has |CMC| ≥ n. We fix a horosphere, S, such that there is some open U ⊆ H with

S∩Σ∩U = {p} for some p∈H. We know |H(S)|= n. There exists a cap, S′, such that H(S′) is

close to H(S), |H(S′)|< n, and such that there is some open U ′ ⊆H with S′∩Σ∩U ′ = {p}. We

can locally write Σ and S′ as graphs of real-valued functions, fΣ, fS′ , respectively, over the same

hyperplane around p. Then |H( fΣ)|> |H( fS′)| implies | fΣ|< | fS′ | everywhere by comparison.

However, fΣ(p) = fS′(p). Hence, σ = |H( fΣ)| ≤ |H( fS′)|< n.

Lemma A.1.2. balls are open in nontangential spheres.
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Figure A.1: H(S) =−1, H(S′) =−0.6, Σ = Sn
+

If Br(a), Bs(b) ⊂ Rn are open balls, p ∈ ∂Br(a)∩ ∂Bs(b) and Tp∂Br(a)+Tp∂Bs(b) = Rn, then

Br(a)∩∂Bs(b) is open and nonempty in ∂Bs(b).

Proof. If u = a− p, we let v = projTp∂Bs(b)(u)−a and w = u+ v. Then |v|= kr for some k < 1,

w∈ Tp∂Bs(b) and w 6= 0. Hence, there exists a nonconstant γ : [0,1]→ ∂Bs(b) such that γ(0) = p

and γ′(0) = w. Locally (for small enough t), γ(t) = p+ tw+o(t2)y for some y ∈ Rn. Then, for

some fixed c > 0,

|γ(t)−a| ≤ r(1− (1− k)t + c/rt2)< r

for small enough t > 0.

Lemma A.1.3. local equidistant sphere condition. For any immersed C1,1 hypersurface Σ⊂

H, for every point p ∈ Σ, there exists a hypersurface Sσ ⊂ H and an open set U ⊆ H such that

Sσ has CMC σ and Σ∩Sσ∩U = {p}.
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Proof. For a C1,1 hypersurface Σ immersed in the upper-half space Rn+1
+ , for every point p ∈ Σ,

by the smoothness of Σ, there exists a ball Br(a) interior to Σ such that p ∈ ∂Br(a) by [Bar09,

Theorem 1.0.9]. Then there exist a′ ∈Rn and R > 0 such that p ∈ ∂BR((a′,−σR))∩∂Br(a) and

Tp∂BR((a′,−σR)) and Tp∂Br(a) are not tangential (we make sure p− a and p− (a′,−σR) are

not scalar multiples of each other). Then Sσ = ∂BR((a′,−σR))∩Br(a) is interior to Σ, Sσ is

nonempty and open in ∂BR((a′,−σR)) by Lemma A.1.2, and so has constant hyperbolic mean

curvature σ with respect to its outward unit normal. The same can be done with exterior spheres

by considering ∂BR((a′,σR)). We refer to Figure 1.1.

A.2 Radial graphs

Lemma A.2.1. a characterization of radial graphs. If S ⊆ Rn+1
+ is C1, open and bounded,

then S is star-shaped with respect to the origin if and only if 〈νE ,x〉E > 0 for every x ∈ ∂S = Σ,

where νE is orthogonal to TxΣ and is outward pointing.

Proof. One direction is obvious, namely, if S is C1 and star-shaped with respect to the origin,

then Σ is a C1 radial graph, i.e., there is some v ∈ C1(Sn
+) such that Σ = {ev(z)z | z ∈ Sn

+},

from which it follows that then 〈νE ,x〉E > 0 for every x ∈ Σ. This follows from the explicit

computation of the outward unit normal to Σ: νE = (z−∇Sv)/
√

1+ |∇Sv|2S.

Conversely, we suppose 〈νE(x),x〉E > 0 for every x ∈ Σ. For the sake of deriving a

contradiction, we suppose there is some x ∈ Σ such that tx 6∈ S for some t ∈ (0,1). The set

K = {t ∈ (0,1) | tx 6∈ S} is nonempty and closed in (0,1). Then t0 = supK ∈ K and we let

y = t0x. We claim y ∈ Σ. Otherwise, there is some r > 0 such that Br(y)⊂ Rn+1
+ \S. In particu-
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lar, (1+t)y 6∈ S for small positive t. But (1+t)t0 > t0 if t > 0, contradicting the maximality of t0.

This implies (1+t)y∈ S for small positive t. Since νE(y) is outward pointing, y+tνE(y) 6∈ S for

small positive t. Since νE(y) is normal to TyΣ, it follows 〈νE(y),y〉E ≤ 0, a contradiction.

Lemma A.2.2. invariance of MMCF under tangential perturbations. For any F : Sn
+×

[0,∞)→H, if there is some v : Sn
+× [0,∞)→ R such that F(z, t) = ev(z,t)z for all (z, t) ∈ Sn

+×

[0,∞), then F satisfies (1.1.1) if and only if v satisfies (1.1.3) up to a reparametrization of

Sn
+× [0,∞), keeping Sn

+×{0} fixed.

Proof. Suppose τ1, . . . ,τn is a local frame field on Sn
+. For a function f on Sn

+, denote ∇S
i f =

τi f =: fi and
((

∇S
)2
)

i j
f =: fi j, where ∇S is the Levi-Civitia connection on Sn with respect to

the standard round metric γi j.

If ri are the standard coordinate functions on Rn, and if we define

R(r1, . . . ,rn) =

(
r1, . . . ,rn,

√
1−

n

∑
i=1

(ri)2

)
∈ Sn

+

with (r1, . . . ,rn) ∈ Bn
1(0), the unit ball in Rn center the origin, then F(R, t) : Bn

1(0)×{t}→ Σt is

a local parametrization of Σt for each t ≥ 0. It follows, for each p ∈ Σt , if r = (F(R, t))−1(p) ∈

Bn
1(0) and z = R(r) = F−1(p, t) ∈ Sn

+, then

vi(p) := F(·, t)∗(τi)(p) =
∂F(R, t)

∂ri (r) = ev(τi + v jz)(z),

the pushforward, or differential, of τi under F(·, t). From this it follows

∇
E
vi

v j(p) =
∂2F(R, t)

∂ri∂r j (r) = ev
(

viτ j + v jτi +
S

Γ
k
i jτk +(viv j + τiv j− γi j)z

)
(z),

where SΓk
i j are the Christoffel symbols of the round metric with respect to γi j. We deduce the
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Euclidean outward unit normal to Σt is

νE =
z−∇Sv

w
,

where w2 = 1+ vqvq and vq = γqpvp. Therefore,

aE
i j = 〈∇E

vi
v j,νE〉E

=
ev

w
(viv j + τiv j− γi j− viv j− viv j−S

Γ
k
i jvk)

=
ev

w
(vi j− viv j− γi j),

which is the second fundamental form on Σt with respect to the Euclidean metric. Using Propo-

sition 2.1.2, the second fundamental form on Σt with respect to the hyperbolic metric is

ai j =
1

yw
(vi j− viv j− γi j)+

gi j

w

(
y−〈e,∇Sv〉E

)
,

where y = 〈e,z〉E .

Also, the components of the induced Euclidean metric on Σt with respect to the frame vi

are gE
i j(p) = e2v(γi j +viv j)(z), so that its inverse is given by gi j

E (p) = e−2v(γi j− viv j

w2 )(z), so that

gi j(p) = 1
y2 (γi j + viv j)(z) and gi j(p) = y2(γi j− viv j

w2 )(z).

So, the mean curvature of Σt with respect to the hyperbolic metric is

H = gi jai j =
1

yw
gi jvi j−

n
w
〈e,∇Sv〉E .

Finally, if F(z, t) = ev(z,t)z satisfies ∂

∂t F(z, t) = (H−σ)νH , then

∂v(z, t)
∂t

· 1
yw

=

〈
∂

∂t
F(z, t),νH

〉
H
=

1
yw

gi jvi j−
n
w
〈e,∇Sv〉E −σ.

Conversely, suppose v satisfies (1.1.3). Then〈
∂

∂t
F(z, t),νH

〉
H
= H−σ.
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We now follow the proof of [Man11, Proposition 1.3.4]. From the above equation, there is

some smooth vector field, X , on Sn
+×(0,∞) such that X(z, t) ∈ TF(z,t)Σt , the tangent plane of

Σt = F(Sn
+, t) at F(z, t), and

∂

∂t
F(z, t) = (H−σ)νH(z, t)+X(z, t)

for all (z, t) ∈ Sn
+×(0,∞). We define, for a compact subset Ω of Sn

+,

Y (z, t) =−(F∗)−1(X(z, t))

for all (z, t)∈Ω×(0,∞). Here, F∗ is the pushforward of F. Then Y is well-defined and smooth.

Hence, by the existence and uniqueness theory for ODE’s on a compact manifold, there is some

smooth family of diffeomorphisms, Ψ, of Ω such that Ψ(z,0) = z for every z ∈Ω and

d
dt

Ψ(z, t) = Y (Ψ(z, t), t)

for every (z, t) ∈Ω× [0,∞). If F̃(z, t) = F(Ψ(z, t), t) on Ω× [0,∞), then, certainly,

∂

∂t
F̃(z, t) = H̃(z, t)ν̃H(z, t)

on Ω×(0,∞) and F̃(z,0) = F(z,0) on Ω. Since Ω is arbitrary, we may cover Sn
+ with a compact

exhaustion, for example Ωε = {z ∈ S+ | 〈e,z〉E ≥ ε} for all ε ∈ (0,1). If Ψε is the correspond-

ing family of diffeomorphisms defined on Ωε× [0,∞) then Ψε|Ωρ×[0,∞) is the corresponding

diffeomorphism defined on Ωρ× [0,∞) for all ρ ≥ ε. Hence, by the uniqueness of the flow,

Ψε|Ωρ×[0,∞) = Ψρ for all ρ≥ ε.

So, since (z, t) ∈ S+×[0,∞) implies (z, t) ∈ Ωε × [0,∞) for some ε > 0, if we define

Ψ(z, t) = Ψε(z, t), then Ψ is well-defined, Ψ is the identity on Sn
+×{0}, and

d
dt

Ψ(z, t) = Y (Ψ(z, t), t)
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for every (z, t) ∈ S+×[0,∞). If we define F̃(z, t) = F(Ψ(z, t), t) on Sn
+× [0,∞), then F̃ solves

(1.1.1).

Most of the evolution equations found in chapter 3 only work when σ≥ 0.

Lemma A.2.3. when σ < 0 and Σ0 is a radial graph. The conclusion of Theorem 1.1.5 holds

when −n < σ < 0.

Proof. The notation used here is similar to the notation used in the proof of Lemma A.2.2. We

fix σ ∈ (−n,0) and let q(x) = x∗ = x
|x|2E

for any nonzero x ∈ Rn+1. We note q restricted to Rn+1
+

is an isometry of the upper-half plane model of H after computing its pushforward, q∗,x, at any

x ∈ Rn+1
+ .

q∗,x(~v) =
~v
|x|2E
− 2〈~v,x〉E
|x|4E

· x,

for any ~v ∈ TxH. If Σ0 is a complete, locally Lipschitz radial graph over Sn
+, then q−1(Σ0)

is as well. Then, by Theorem 1.1.5, there is some v : Sn
+×[0,∞)→ R such that, if F′(z, t) =

e−v(z,t)z ∈H for all (z, t) ∈ Sn
+×[0,∞), then

∂

∂t
F′(z, t) = (H(e−v(z,t)z)+σ)νH,e−v(z,t)z , (z, t) ∈ Sn

+× [0,∞) ,

F′(Sn
+,0) = q−1(Σ0).

Here, νH,e−v(z,t)z = e−v(z,t)y · z−∇S−v√
1+(−v)q(−v)q

is the outward pointing unit normal of Σ′t = F′(Sn
+, t)

at e−v(z,t)z and H(e−v(z,t)z) = −divH(νH,e−v(z,t)z) is the hyperbolic mean curvature of Σ′t at

e−v(z,t)z, computed with respect to νH,e−v(z,t)z. Then

q∗,e−v(z,t)z(νH,e−v(z,t)z) =
νH,e−v(z,t)z

e−2v(z,t) −
2〈νH,e−v(z,t)z,e

−v(z,t)z〉E
e−4v(z,t) · e−v(z,t)z

= ev(z,t)y · z+∇Sv
w

− 2ev(z,t)y
w

z =−νH,ev(z,t)z.
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Since q : H→H is an isometry,

H(e−v(z,t)z) =−divH(νH,e−v(z,t)z) =−divH(q∗,e−v(z,t)z(νH,e−v(z,t)z))

= divH(νH,ev(z,t)z)

=−H(ev(z,t)z).

So, if we define F = q◦F′, then

∂

∂t
F(z, t) =−(H(e−v(z,t)z)+σ)νH,ev(z,t)z = (H(ev(z,t)z)−σ)νH,ev(z,t)z

for all (z, t) ∈ Sn
+× [0,∞). Hence,

∂

∂t
F(z, t) = (H(ev(z,t)z)−σ)νH,ev(z,t)z , (z, t) ∈ Sn

+× (0,∞) ,

F(Sn
+,0) = Σ0.

Lemma A.2.4. first variation of the energy functional I . We again use the notation used

in the proof of Lemma A.2.2. If Ω ⊂ Sn
+ is open and relatively compact in Sn

+, we define, for

Σ = {ev(z)z | z ∈Ω},

I(Σ) =
∫

Ω

wy−ndz+nσ

∫
Ω

vy−(n+1)dz.

If F(z, t) = ev(z,t)z is defined on Ω× [0,∞) such that ∂F
∂t = 0 on ∂Ω× [0,∞) and if Σt =

F(Ω, t), then

∂I(Σt)

∂t
=−n

∫
Ω

〈
∂F
∂t

,(H−σ)νH

〉
H

wy−ndz.
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Proof.

∂I(Σt)

∂t
=

∫
Ω

〈
∇Sv,∇S ∂v

∂t

〉
S

y−n

w
dz+nσ

∫
Ω

∂v
∂t

y−(n+1)dz

=−
∫

Ω

divS

(
y−n∇Sv

w

)
∂v
∂t

dz+nσ

∫
Ω

∂v
∂t

y−(n+1)dz

=−n
∫

Ω

∂v
∂t

Hy−(n+1)dz+nσ

∫
Ω

∂v
∂t

y−(n+1)dz

=−n
∫

Ω

〈
∂F
∂t

,(H−σ)νH

〉
H

wy−ndz.

The second equality follows from integration by parts, while the third follows from a well-

known formula, found in [DSS09, Equation 1.2].

The above lemma shows MMCF is the negative gradient flow of the energy function I, a

kind of area functional with a volume constraint. Hence, if F moves by MMCF and converges

as t→ ∞, then the asymptotic limit has CMC σ.

A.3 A comparison principle for MMCF

Lemma A.3.1. A comparison principle holds for two smooth one-parameter families of hy-

persurfaces, Σ1,t and Σ2,t , one compact, moving by their modified mean curvature in H. That is,

if they are initially disjoint, then they stay disjoint as long as they are moving by modified mean

curvature flow.

Proof. We suppose, for the sake of deriving a contradiction, that Σ1,t , Σ2,t intersect at some

positive time. There is some minimal time, t0 > 0, such that Σ1,t0 ∩Σ2,t0 = {x} for some x ∈H,

and, by minimality, TxΣ1,t0 and TxΣ2,t0 are parallel. We write Σ1,t0 and Σ2,t0 locally around x as

radial graphs as follows. We let L be the normal line to TxΣ1,t0 and TxΣ2,t0 . L intersects ∂∞H at
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some x0, possibly after an isometry. Then there is some open U ⊆H∩∂B1(x0) with x−x0
|x−x0| ∈U ,

ε > 0, and v1,v2 : U×(t0−ε, t0+ε)→R such that {evi(z,t)(z−x0) | z∈U} ⊆ Σi,t for all i = 1,2,

for all t ∈ (t0− ε, t0 + ε). On U× (t0− ε, t0 + ε), MMCF becomes

∂vi(z, t)
∂t

= y2
α

klvi
kl−ny〈e,∇Svi〉E −σyw,

as in (1.1.3), for all i = 1,2. Now, by construction, ∇Svi
(

x
|x|

)
= 0 for all i = 1,2. So, the

equation becomes linear and uniformly parabolic near vi and
(

x
|x| , t0

)
for all i = 1,2. Hence, if,

say, v1(z, t)< v2(z, t) for all (z, t)∈U×(t0−ε, t0), then the assumption v1
(

x
|x| , t0

)
= v2

(
x
|x| , t0

)
contradicts the maximum principle given in [PW67, Theorem 3.3.7].
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