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COVID-19 vaccines have been authorized in multiple countries,
and more are under rapid development. Careful design of a vac-
cine prioritization strategy across sociodemographic groups is a
crucial public policy challenge given that 1) vaccine supply will be
constrained for the first several months of the vaccination cam-
paign, 2) there are stark differences in transmission and severity
of impacts from severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) across groups, and 3) SARS-CoV-2 differs markedly
from previous pandemic viruses. We assess the optimal allo-
cation of a limited vaccine supply in the United States across
groups differentiated by age and essential worker status, which
constrains opportunities for social distancing. We model trans-
mission dynamics using a compartmental model parameterized to
capture current understanding of the epidemiological character-
istics of COVID-19, including key sources of group heterogeneity
(susceptibility, severity, and contact rates). We investigate three
alternative policy objectives (minimizing infections, years of life
lost, or deaths) and model a dynamic strategy that evolves with
the population epidemiological status. We find that this temporal
flexibility contributes substantially to public health goals. Older
essential workers are typically targeted first. However, depend-
ing on the objective, younger essential workers are prioritized
to control spread or seniors to directly control mortality. When
the objective is minimizing deaths, relative to an untargeted
approach, prioritization averts deaths on a range between 20,000
(when nonpharmaceutical interventions are strong) and 300,000
(when these interventions are weak). We illustrate how optimal
prioritization is sensitive to several factors, most notably, vaccine
effectiveness and supply, rate of transmission, and the magnitude
of initial infections.

COVID-19 | vaccine prioritization | essential workers

As the novel coronavirus (severe acute respiratory syndrome
coronavirus 2 [SARS-CoV-2]) continues to inflict substan-

tial morbidity and mortality around the world despite interven-
tion efforts, public health experts see vaccines as essential to
dramatically reduce the mortality burden and possibly halt local
transmission (1). COVID-19 has resulted in over 2.3 million con-
firmed deaths globally (2) as of early February 2021. Fortunately,
multiple promising vaccines are under rapid development, with
the final weeks of 2020 seeing the first authorization and shipping
of doses (3). However, vaccine availability will be highly con-
strained for at least several months (4). This scarcity, combined
with stark differences in the spread and impact of SARS-CoV-
2 across demographic groups, means that vaccine prioritization
poses a key public health challenge. National and international
public health organizations have mobilized to assemble guid-
ance, including the World Health Organization (WHO), the
National Academy of Medicine, and the Advisory Committee on
Immunization Practices (ACIP) of the US Centers for Disease
Control and Prevention (CDC) (5).

An effective public health policy for pandemic vaccine allo-
cation requires an understanding of how risk of infection and
severe disease varies across sociodemographic groups and how
a given vaccine policy will impact the continued spread of

infections within the population. Accounting for these two pro-
cesses is critical when the population with the greatest risk of
infection differs from those with the greatest risk of severe dis-
ease, as is the case for COVID-19, because an effective policy
will need to balance direct protection of the most vulnera-
ble against limiting secondary infections and rapidly achieving
herd immunity (6). These key components can be integrated
into a mathematical and statistical modeling framework of the
transmission dynamics of the novel pathogen. Such an ana-
lytic framework can then be utilized to investigate the optimal
vaccine allocation strategies to achieve a defined public health
objective while taking into account the value of vaccines for
mitigating health outcomes at the individual and population
level.

Previous experience with vaccine development midpandemic
offers limited insights for SARS-CoV-2 prioritization. SARS and
Zika vaccine development was incomplete when those outbreaks
ended (7). In 2009, as the novel A/H1N1 influenza virus contin-
ued to spread across the United States, researchers investigated
optimal vaccination strategies using an age-structured dynamical
model. They found that school-aged children and their parents
should be prioritized, a strategy that would indirectly protect
individuals at higher risk of severe health outcomes (8). Sharp
differences in the epidemiology of human influenza and COVID-
19 indicate that vaccination strategies against the ongoing pan-
demic should not simply mirror vaccination policies against
influenza. For example, COVID-19 is associated with lower
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susceptibility to infection among children and adolescents (9, 10)
and has a substantially higher infection fatality rate overall that
also increases markedly with age (11). Toner et al. (ref. (5), p.
24) provide a detailed overview of the 2018 pandemic influenza
vaccination plan and conclude that “the priority scheme envi-
sioned . . . does not comport with the realities of the COVID-
19 pandemic and new guidance is needed.” Fitzpatrick and
Galvani (12) concur, detailing how the unique “epidemiological,
clinical, behavioral, and vaccine-related relationships” of SARS-
CoV-2 motivate the need for “pathogen-specific transmission
modeling.”

We develop and apply a mathematical model to assess the
optimal allocation of limited COVID-19 vaccine supply in the
United States across sociodemographic groups differentiated by
age and essential worker status (see Methods). The transmission
dynamics are modeled using a compartmental model tracking
eight demographic groups through the nine disease states as
shown in Fig. 1. The parameters are calibrated to capture our
current understanding of the epidemiology of COVID-19, and
our analysis is designed to capture two key features of COVID-
19 prioritization: essential workers and the gradual availability of
vaccines over time. A large number of workers are constrained
in their ability to work from home (essential workers), expos-
ing them to a higher level of risk of infection, and increasing the

chance they transmit the disease if infected. Policies that account
for the greater risk essential workers are exposed to may be more
just and highlight a group of individuals “who have been over-
looked in previous allocation schemes” (5). Furthermore, these
policies may be more effective at mitigating morbidity and mor-
tality, as they can account for a key factor driving transmission of
the disease.

To account for the gradual rollout of vaccines, we employ
stochastic nonlinear programming techniques to solve for vac-
cine prioritization policies that distribute vaccine to susceptible
individuals and change on a monthly time step responding to
changes in the epidemiological status of the population (shares
of the population in different disease states). These dynamic
policies account for a key feature of the policy-making process,
since the supply of vaccine is likely to be constrained, with avail-
able doses administered as they become available over a period
of several months.

The transmission of COVID-19 is a complex process con-
tingent on the characteristics of the disease and ever-changing
social behavior. Furthermore, many of the key dynamics can
change depending on the spatial scale considered, with differ-
ences in the transmission process within and between commu-
nities. We seek to summarize the features of the complex and
evolving processes that are most relevant to the spread of the

Fig. 1. Schematic of the modeled movement of individuals between epidemiological states defined in Methods (A), the portion of individuals from the US
population in each demographic group determined by essential worker status (∗) and age (B), and the contact rates between demographic groups, given
by average daily number of contacts a group on the horizontal axis makes with a group on the vertical axis (C).
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disease within and between sociodemographic groups. To do
so, we model COVID-19 transmission with the social contact
hypothesis (13) and describe the contact patterns between demo-
graphic groups using contact matrices estimated for the United
States from Prem et al. (14) scaled by the location where the
contacts were made (home, school, work, and other) to reflect
the impacts of social distancing. Although these assumptions
present a stylized version of contacts during the pandemic, they
allow us to capture many key features of social contacts, such
as the concentration of contacts within age groups, parent–child
relationships, and receiver–caregiver relationships (15).

Existing published studies of COVID-19 vaccination prioriti-
zation analyses include Matrajt et al. (16) and Bubar et al. (17).†

Both consider the optimal allocation of vaccines across five or
more age groups within a country. Their approaches feature rich
exploration of policy sensitivity to vaccine effectiveness and avail-
ability. Matrajt et al. are particularly detailed in this respect,
while Bubar et al. uniquely consider differences in demographics
and contact rates across multiple countries, and Hogan et al. (19)
also consider allocation between countries. Our analysis is differ-
entiated by a deeper approach to the behavioral, demographic,
and decision models by addressing social distancing, essential
worker groups, and allocation policies that can change over the
course of the vaccination campaign.

General ethical guiding frameworks for vaccine prioritization
decision-making have appeared earlier in the literature. Toner
et al. (5) emphasize promoting three ethical values: the common
good; fairness and equity; and legitimacy, trust, and communal
contributions to decision-making. Emanuel et al. (4) promote
four ethical values: maximizing benefits, treating equally, instru-
mental value, and priority to the worst off. Our analytic focus
on minimizing new infections, years of life lost (YLL), or deaths
emerges from promoting “the common good” or “maximizing
benefits.” Our focus on essential worker groups illustrates how
ethical values (e.g., prioritizing essential workers due to the fair-
ness of protecting those placing themselves at risk) may overlap
with the common good (e.g., prioritizing essential workers to best
reduce mortality and transmission). Issues of fairness and equity
and protecting the worst off are not directly analyzed here but
remain critical considerations.

For the sake of simplicity, we do not address, in detail, the
potential set of complex and differential feedback processes
between health status and opening of schools, workplaces, and
other institutions. While we limit policy objectives to a concise
metric of health outcomes (minimizing expected cases, YLL, or
deaths), we acknowledge that other values of returning to school,
work, and social life are important. Finally, we do not address
additional vaccine complications, such as temporary effective-
ness, potential side effects, or any failure to take a second dose
of the vaccine if necessary.

Although much is known about the epidemiology of COVID-
19, uncertainty remains a key limitation to modeling the disease.
Therefore, we consider a wide range of plausible scenarios and
focus on the general features of the solutions, the commonalities
between the alternative scenarios, and identification of model
parameters that drive systematic differences in optimal vaccine
allocations.

Given these assumptions, we find that optimal allocation
strategies are responsive to both the initial and evolving epidemi-
ological landscape of the disease. When focusing on mortality
(YLL or deaths), vaccination of older essential workers and ages
60+ y was almost always a top priority (i.e., targeted in the first
30% of the population vaccinated). Alternatively, when infec-
tions are minimized, essential workers are prioritized, followed

†We also note that ref. 18 uses simulation without optimization to explore implications
of vaccines with various levels of direct and indirect protection.

by school-age children, across a range of likely scenarios. We
find that prioritization can substantially improve public health
outcomes—31 to 40% in the base scenario, relative to untargeted
vaccination. Two components unique to our model are important
contributors to this improvement. First, policies that differenti-
ate and target essential workers in addition to age substantially
outperform those utilizing age alone. Furthermore, essential
worker differentiation reduces trade-offs between objectives
(e.g., deterioration of YLL and infection metrics when focused
on minimizing deaths). Second, extending from a static alloca-
tion (without phases) to allowing changes in prioritization over
time provides substantial gains. Finally, while optimal prioritiza-
tion is quite insensitive to model specification when minimizing
infections, we find some sensitivity when focused on minimiz-
ing deaths or YLL. This sensitivity indicates benefits to adjusting
the targeting strategy at the local level to match epidemiological
conditions.

Results
To illustrate the qualitative nature of optimal dynamic prioriti-
zation, we first present results from a single “base” scenario, rep-
resenting a plausible set of parameters (detailed in SI Appendix,
Table S1). These results are then compared to a set of alterna-
tive model scenarios as described in Table 1. While we begin
with base scenario results, we emphasize the sensitivity analy-
sis under alternative scenarios that follows, since information
about some input parameters—for example, expected vaccina-
tion supply—continues to change with time. In Fig. 2, the base
model allocation decisions are shown for each monthly deci-
sion period (in percent of vaccine supply) and then cumulatively
(in percent of group vaccinated) at 3 and 6 mo, respectively.
Broadly, we find that the optimal policy is very dynamic: Spe-
cific groups are targeted each period, and these targets shift over
time. Furthermore, targeting is very narrow initially, but then
becomes less so as a larger fraction of the population has been
covered.

The whiskers on bars in Fig. 2 show the range of alternative
allocations that still produce an outcome that is within 0.5%
of the optimum. These indicate that the optimized outcome is
relatively sensitive to substitutions between groups for the first
3 mo, as indicated by narrow whiskers around the cumulative
allocations. There is, however, some limited ability to substitute
vaccines between the two essential worker groups in the first
2 mo when minimizing YLL or deaths. As the size of the sus-
ceptible population declines due to vaccination and infections,
the optimized outcomes become less sensitive to substitutions
(longer whiskers), with shifts between nearly all groups possible
without substantial sacrifice. This suggests that targeting strate-
gies can become less strict over time as the most vulnerable
populations are protected. Comparing individual periods (Fig.
2A) and cumulative measures (Fig. 2B) shows that whiskers rep-
resent a combination of substitution between groups as well as
between periods for the same group.

Across objectives, there are substantial differences in which
groups are targeted early on. When minimizing deaths, target-
ing progresses from essential workers (20 y to 39 y∗, 40 y to
59 y∗), to the oldest (75+ y), and then younger seniors (60 y to
74 y) (Fig. 2). These groups are a mix of those at high risk
of mortality (older groups) and high risk of contraction and
spread (essential workers). When minimizing YLL, younger
seniors are targeted earlier (given their longer average years of
life remaining).‡ Finally, when minimizing infections, we find
that younger essential workers take top priority, followed by

‡We do not discount in our calculation of YLL; doing so would lead to more equal
weighting on mortality across age groups and thus results that are closer to those when
minimizing deaths.
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Table 1. Descriptions of alternative scenarios relative to the base model (see SI Appendix, section A for specific levels)

Scenario Change from base scenario parameters Source

Base scenario None (Base parameter values are provided
in SI Appendix, section A)

High initial infections Increased number of initial symptomatic Assumed: pandemic state will
infections (300% increase) vary between localities when

vaccine first available to the
general public

Strong NPI NSD NPI are strong, resulting in Consistent with R< 1
a declining infection rate

Weak NPI NSD NPI are weak, resulting in a sharply Consistent with R� 1
increasing burden of infection

Weak vaccine Lower vaccine effectiveness (success rate) for Minimum value required by
all age groups relative to the base scenario FDA guidelines

Weak vaccine 60+ Lower vaccine effectiveness for Informed by influenza vaccine
ages 60+ y effectiveness

Even susceptibility All ages are equally susceptible to infection; Assumed: tests sensitivity
increase in susceptibility for ages < 20y to age-dependent susceptibility
relative to Base described by refs. 9 and 20

Low supply Sufficient supply for 5% of the population Assumed: vaccine supply is
monthly (50% of supply relative to base uncertain and known to impact
scenario; prioritization changes every 10% of the optimal allocations (21)
population vaccinated, such that decision
period is 2 mo)

Ramp up Vaccine supply is 5% per month for Informed by comments from
the first 2 mo and 10% per month thereafter the scientific head of the US
(first decision period is 2 mo, so increments vaccine development
of 10% of the population are vaccinated each program (22)
decision period)

Open schools Rate of social contact in schools increased Assumed: tests sensitivity of
from 30% in base model to 70% optimal allocations to school

closure intensity
High contacts Increased number of contacts outside Assumed: tests sensitivity to

the home, school and workplace (50% increase relaxed distancing
relative to base)

older essential workers and school-age children (5 y to 19 y),
since these groups have higher contacts and thus higher risk of
contraction and spread.

In Fig. 3A, we show the dynamic path of infections, start-
ing from the period in which vaccines become available, under
various policies. As expected, infections are highest given no
vaccines. Results for allocating vaccines in a manner propor-
tional to each group’s size shows the substantial value of even
“untargeted” vaccines. As expected, the policy for minimizing
infections leads to the lowest level of infections.

In Fig. 3B, we show the performance of various policies for
resulting outcome metrics (infections, YLL, and deaths) in terms
of the percentage improvement relative to an untargeted vac-
cine allocation. We consider the optimal policies presented in
Fig. 2 where the objective is minimizing infections (green),
YLL (purple), or deaths (orange) with no constraints (“none”).
We also consider two constrained alternatives: an “age-only”
dynamic policy that does not differentiate by essential worker
status, and a “static” policy where the fractional allocation across
groups does not change over decision periods.§ We find that
the unconstrained policy—that is dynamic and differentiated
by essential workers—outperforms the untargeted approach by
approximately 31 to 40% depending on the objective. Rela-
tive to the unconstrained policy, the age-only and static policies
perform substantially worse for infections and YLL, although

§Excess vaccine is allocated without targeting if all of the susceptible individuals in a
given group have already been vaccinated.

not for deaths. However, even while the age-only and static
policies do not substantially impede performance in minimiz-
ing deaths, these constrained approaches still suffer substantial
performance loss (9 to 18 percentage points) in the other two
outcomes not optimized (YLL and infections) but clearly still of
interest.¶ In other words, accounting for both essential work-
ers and a dynamic prioritization strategy provides substantial
improvements in the metric being optimized and/or the other two
metrics of interest.

In general, we find that, no matter the policy objective
pursued in targeted vaccine allocation, some improvement
is made on all three metrics. However, there are trade-offs
in what can be achieved between the objectives. For exam-
ple, policies that minimize infections result in substantially
more deaths than a policy that minimizes deaths. We also
find that differentiating essential workers substantially reduces
these trade-offs between objectives relative to age-only or static
policies.

Sensitivity of Vaccine Prioritization. To assess how robust our base
scenario findings are to key uncertainties in the model, we con-
duct three different sensitivity analyses. First, we consider a set of
10 alternative plausible scenarios involving a broad set of model
inputs; then, we focus on a narrower set of four parameters,
each explored in richer gradient detail; finally, we examine a few
fundamental changes to model structures.

¶See resulting YLL and resulting infections for the deaths objective with age-only and
static constraints.
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Fig. 2. The optimal allocation of vaccines (vertical axes) between demographic groups for each decision period (horizontal axis) under the base scenario
(A). The rows represent each objective, to minimize deaths (Top), minimize YLL (Middle), and minimize infections (Bottom). The bars for the six decision
periods show the percentage of vaccines allocated to a specific group (indicated by a letter, color, and asterisks indicating essential worker groups) in that
period. B shows cumulative measures at the end of months 3 and 6, respectively, for the percent of each group that has been vaccinated. The whiskers on
each bar represent the sensitivity of the optimal solution to small deviations in the outcome, specifically, the range of allocations resulting in outcomes
within 0.5% of the optimal solution.

A broad set of alternative scenarios. We solved for the opti-
mal vaccine allocation across a range of 10 alternative scenarios
selected to assess sensitivity to key assumptions of the base

model. Differences between these scenarios and the base case
are detailed in SI Appendix, Table S1. Relative to the base
model, in these alternative scenarios, we consider higher initial

Fig. 3. The number of infections per 1,000 individuals over time under reference policies (no vaccines; untargeted vaccine allocation) and optimized policies
minimizing (min) a given metric (A) and the performance of each optimized policy relative to an untargeted allocation policy (B) for the base scenario. The
bars are boxed by each resulting metric, colored by the objective driving each policy, and textured to reflect any constraint considered (e.g., age-only or
static policies).
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infections, stronger or weaker nonsocial distancing (NSD) non-
pharmaceutical interventions (NPI) like mask wearing, weaker
vaccine effectiveness overall or for seniors (60+ y), lower vac-
cine supply or supply that starts low and ramps up, more open
schools, or higher contact rates overall.

To compare and contrast optimal early vaccination alloca-
tion for each scenario and objective, in Fig. 4A, we show the
percentage of each group vaccinated after 30% of the overall
population is covered (typically in 3 mo, except for alternative
supply scenarios). We find that high priority groups—by percent
of group vaccinated—are typically but not always robust to the
alternative scenarios. For example, when deaths are considered
(Fig. 4 A, Top), we see substitution between younger essential
workers (29 y to 39 y∗) and ages 60 y to 74 y, and, when YLL
are considered, there is substitution between younger essential
workers and ages 75+ y. To illustrate differences in the relative
order of these high-priority groups, in SI Appendix, Fig. S5, we
show optimal prioritization of vaccination in the very first deci-
sion period across objectives and scenarios. We find that, when
YLL are considered, essential workers ages 40 y to 59 y are the
highest-priority group in all scenarios. However, when deaths
are considered, ages 75+ y are the highest-priority group under
several alternative scenarios.

For insight into the cost of error in specifying the correct
scenario, we assessed the performance of the policy identified
for each of the 11 alternative scenarios, depending on which
of these 11 is the “true” scenario. In Fig. 4B, we show these
results for the YLL objective. For example, the first column
shows the performance loss (in percentage of additional YLL
above the optimum) when the true scenario is the base model
but the decision maker applies a policy matched to any of
the alternative scenarios (rows). By construction, when the pol-
icy applied matches the true scenario, the performance loss is
zero. When YLL is the focus and the base specification is the
“true” scenario, the greatest performance loss (9%) comes from
mistakenly applying the high initial infections policy.

We find that performance costs, in percentage terms, from
applying the wrong policy from this set are typically modest
(low single digits), albeit with notable exceptions. For exam-
ple, when the “truth” is that we have a weak vaccine for ages
60+ y, several policies applied perform very poorly relative
to the true optimal policy, since they substitute vaccine away
from younger essential workers to ages 75+ y. A few of the
policies were generally less robust across various true models,
specifically, those for high initial infections, strong NPI, and
weak vaccine 60+. The base scenario policy performed rea-
sonably well across true alternative models, with the largest
loss arising (7%) when children are not less susceptible (even
susceptibility).

Equivalent versions of Fig. 4B for minimizing deaths or infec-
tions are provided in SI Appendix, section C. When the focus is
minimizing deaths, the pattern of performance between scenar-
ios is very consistent with YLL in Fig. 4. However, the scope for
performance loss is larger overall—up from a maximum of 26%
for YLL to 46% for deaths. When the focus is infections, the
range of performance loss is much less intense, at 7%. For infec-
tions, this relatively robust performance arises because optimal
policies are much more similar across scenarios when minimiz-
ing infections (compared to the other objectives). Given greater
scenario-driven heterogeneity in policies for minimizing YLL or
deaths, there is greater opportunity for performance loss from
specification error.
A gradient over four key parameters. For further sensitivity
analysis, as shown in Fig. 5, we assessed how optimal vaccine allo-
cation policy changed along a gradient for four key model inputs:
NSD NPI effectiveness (e.g., mask wearing) which determines
the initial reproductive number (when the vaccine first becomes
available), initial infections, monthly rate of vaccine supply, and
vaccine effectiveness.

Echoing sensitivity results reported above, variation in these
parameters had little effect on the optimal policy for minimizing
infections. But we found systematic differences in the policies

Fig. 4. The cumulative percent of each demographic group (horizontal axis) vaccinated after the first 30% of the population is vaccinated under the
alternative scenarios (vertical axis) and each objective to be minimized including deaths (Top), YLL (Middle), and infections (Bottom) (A); init. infect., initial
infections. The percentage of additional YLL in excess of the optimum when applying a policy for a given alternative scenario (row) when a particular
scenario is the “truth” (column) (B). *, indicating essential worker groups.
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Fig. 5. The total percent of each demographic group vaccinated after 3 mo under the optimal dynamic policy. Each panel shows the effect of varying
a key parameter relative to the base model: (A) effectiveness of NPI, which determines the initial reproductive number (when the vaccine first becomes
available); (B) monthly rate of vaccine supply; (C) initial infections; and (D) vaccine effectiveness. Base scenario parameter values are indicated with an
apostrophe (‘). *, indicating essential worker groups.

for minimizing YLL and deaths. Essential workers, ages 60 y to
74 y and ages 75+ y, remained the highest-priority groups across
the full range of parameters tested, but there was substitution
between younger essential workers (29 y to 39 y∗) and the older
age groups.

In most instances, the percent of vaccines responded in rel-
atively monotonic fashion as parameters varied. For example,
consider the objective of minimizing deaths. As depicted in
Fig. 5, prioritization of essential workers fell and 60+ y or
75+ y increased as 1) initial infections grow, 2) vaccine sup-
ply decreases, or 3) vaccine effectiveness increases. In a few
instances, the percent of vaccine allocated to a given group
responded nonmonotonically to variation in the parameter. For
example, for effectiveness of NPI in Fig. 5A, the allocation
skewed toward 75+ y and away from essential workers when the
parameter was very high and very low.

These results indicate that, when focusing on deaths or YLL,
if transmission cannot be reduced quickly by the vaccine—due
to limited supply, high reproductive numbers, or large initial
number of infections—typically, this initial supply is most effi-
ciently used to directly protect individuals with the greatest risk
of death if infected. This pattern differs for vaccine effectiveness:
We find that, as the effectiveness of the vaccine decreased, sup-
ply is substituted away from the older (higher risk) age groups
to essential workers. This difference is consistent with the fact
that, as vaccines become less effective for a given individual,
protecting vulnerable individuals is better achieved by reducing
population-level transmission.
Changes to model structures. As a final sensitivity analysis, we
examined robustness of the results to three alternative model
structures: 1) clustered essential workers, where essential work-
ers only contact other essential workers in the workplace; 2)
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concentrated essential workers, where, relative to the baseline
scenario, the portion of the working age population deemed
“essential” is half (20%), and they have approximately double
the contact rate; and 3) leaky vaccine, where, rather than work-
ing perfectly for 90% of individuals, vaccinated individuals have
reduced susceptibility to infection, infectiousness, and risk of
death if infected. A more detailed discussion of these models is
included in SI Appendix, section D.

We found that the qualitative nature of the solutions remained
constant across each of these alternative models, with some
minor differences. Treating the essential worker group as a
cluster increased the proportion of vaccine allocated to ages
60+ y when deaths and YLL were considered. This shows
that, when essential worker contacts are clustered within group,
this reduces the indirect protection that vaccinating these
individuals provided to others. Conversely, concentrating the
essential worker group (to a more select group with higher
contact rates) increased the fraction of these individuals vac-
cinated. This shows that select essential workers with espe-
cially high contact rates (e.g., medical professionals and essen-
tial retail workers) are particularly strong candidates for early
vaccination.

Discussion
Key insights and results from our analysis are summarized in
Box 1. Together, these lessons show the strong implications of
considering dynamic solutions, social distancing, and essential
workers (given their limitations in social distancing) for vaccine
prioritization.

Our analysis of COVID-19 vaccine prioritization uniquely
accounts for two critical needs: 1) dynamic prioritization given
gradual rollout of vaccine during an active pandemic, and 2)
attending to substantial heterogeneities in work contacts among
the adult population due to the ability of many to work from
home. These two novel features demonstrably change opti-
mal vaccine prioritization. Given gradual vaccine deployment,
static policies are out-performed by dynamic policies, which nar-
rowly target a small number of demographic groups and (after
substantial coverage of them) switch to lower-priority groups.

Box 1. Key insights and results

1) Benefits: Prioritization can reduce a particular undesirable outcome (deaths, YLL, or infections), by 32 to 40% in the
base scenario (or 17 to 44%, depending on the alternative scenario).

2) Objectives: Moving from minimizing infections to YLL to deaths boosts each of the following: benefits from vaccina-
tion targeting, prioritization differences between scenarios, and (therefore) the sensitivity of optimal prioritization to
scenario.

3) Dynamic prioritization: Dynamic prioritization 1) is responsive to the initial and evolving disease status and 2) generates
substantial improvement in outcomes relative to a static prioritization, indicating that a phased approach to vaccine
distribution is well justified. However, diminishing marginal returns to additional vaccination within a group drives a
shift to other groups before 100% vaccination of the first group is achieved.

4) Widening prioritization: As vaccination rates rise, precise prioritization becomes less critical, and targeting widens to a
larger set of groups.

5) Trade-offs: Policies that target one objective forgo opportunities to reduce alternative metrics. For example, policies
that minimize deaths do not reduce infections nearly to the same degree as policies that minimize infections. These
trade-offs are typically stronger when policies do not allow for targeting based on essential worker status.

6) Essential workers: Relative to an age-only model, policies that allow targeting of essential workers provide the greatest
improvements when minimizing infections and YLL are the focus. In the base scenario, essential workers are a high
priority group under all three objectives (i.e., they are among the first 30% of the population to receive vaccines).
However, their priority relative to ages 60+ y is affected by key model parameters (see Sensitivity next).

7) Sensitivity: The high-priority groups remain consistent across the range of parameters considered. However, when min-
imizing deaths or YLL, the fraction of vaccine allocated to essential workers and ages 60+ y depends on the number of
infections and reproductive number when the vaccine became available, the supply of vaccines, and vaccine effective-
ness. In effect, when the vaccine has a limited ability to quickly reduce the transmission of the virus, optimal policies
more heavily prioritize older individuals.

Static policies identify a set of high-priority groups but not how
to order them when phased deployment is necessary. More strik-
ingly, targeting essential workers (or other adults with a large
number of work contacts) reduces not just the adverse out-
come of focus but also trade-offs for remaining outcomes. For
example, when minimizing deaths, allocation that differentiates
essential workers substantially lessens the degree to which infec-
tions and YLL climb from the minimum achieved when each is
optimized on its own.

Existing published analysis of optimal COVID-19 vaccination
targeting includes Matrajt et al. (16) and Bubar et al. (17). Before
comparing and contrasting results, some key modeling differ-
ences should be noted. These two analyses consider a wider
range of vaccine availability than considered here. Our analy-
sis uniquely incorporates NPI, including social distancing and
NSD (e.g., mask wearing). Doing so allows us to account for
differences between groups like essential workers constrained in
distancing versus others who are much less so. All three preprints
implement static optimization where vaccines are allocated and
administered in a one-shot process. Our allocation is dynamic,
responding to changing epidemiological conditions over a 6-mo
period. Finally, all three model vaccines as “leaky,” that is, reduc-
ing the probability that a susceptible individual will be infected
[and the probability of severe disease (19)]. Bubar et al. also
consider an “all-or-nothing” vaccine that is 100% effective for
a fraction of the population. In our base model, the vaccine is
“all-or-nothing,” although we also consider a leaky vaccine, as
discussed at the end of Results.

Matrajt et al. (16) found that optimal strategies to minimize
deaths and YLL will either exclusively target groups with high
infection fatality rates, maximizing the direct benefit of vaccines,
or will target groups with high rates of infection, maximizing
the indirect benefits of the vaccine. In contrast, our results indi-
cate that optimal policies initially target groups with high risk
of infection and then switch to targeting groups with high infec-
tion fatality. This difference most likely follows from our dynamic
versus static allocation. The switching behavior we identify is
consistent with past work on pandemic influenza vaccine pri-
oritization, which suggests that, early in an outbreak when the
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infection rate is growing, targeting spread (maximizing indirect
benefits) is more efficient, but, later, when the infection rate is
leveling off or declining, maximizing direct protection is most
efficient (21).

Bubar et al. (17) found that prioritizing adults older than
60 y of age is a robust strategy for minimizing deaths. In con-
trast, we find that working-age adults are a key priority group,
particularly older essential workers. These differences may arise
from either our allowance for social distancing and/or dynamic
allocation. Our accounting for social distancing on COVID-19
transmission increases the modeled benefits of targeting essen-
tial workers, who are less able to substantially reduce their social
contacts than individuals over 60 y old. Furthermore, as dis-
cussed above, the ability of dynamic policies to switch over time
allows the allocation schemes we discuss to capture the benefits
of using the initial vaccine supply to slow transmission with-
out sacrificing direct protection of more-vulnerable individuals
later on.

Two notable additional analyses of optimal COVID-19 vacci-
nation targeting in preprint form include Wang et al. (23), who
focus on the mortality costs of delay in vaccine rollout and the
trade-off between prioritizing first versus second doses, as well
as Hogan et al. (19), who examine ideal allocation both within
and between countries.

National and international institutions have also begun to
disseminate guidance. In particular, general guidelines for vac-
cine prioritization have been put forward by Strategic Advisory
Group of Experts of the WHO (24) and the US CDC’s ACIP
(25). For example, CDC recommendations prioritize: 1) health
care personnel; 2) residents of long-term care facilities; 3) per-
sons aged 75 y and over and frontline essential workers; 4)
persons aged 65 y to 74 y, persons aged 16 y to 64 y with high-
risk medical conditions, and essential workers; and 5) everyone
aged 16 y and over remaining. Categories A and B are sub-
groups at a finer scale than considered here, although with clear
logic supporting top priority. Notably, a clear priority is not set
between persons aged 75 y and over and frontline essential work-
ers. This is consistent with our findings, in that prioritization
within this pair was sensitive to specific conditions, which will
vary over location. Our recommendations differ in the distinc-
tion made here between younger and older essential workers,
with priority on the latter motivated by increasing mortality from
infection with age. The CDC guidelines also consider underly-
ing health conditions, a salient distinction not considered here.
WHO guidelines—written more broadly for a global audience—
agree on the prioritization of frontline health care workers at
high risk of infection, followed by older adults. However, sub-
sequent priority focuses on various sociodemographic groups
at high risk (e.g., those in poverty) and essential educational
workers before turning to essential workers more broadly.

Although our model provides useful insight for the policy-
making process, a number of caveats are in order. In reality,
the risk of infection varies continuously across individuals, even
between different “essential” occupations. While our model is
unique in capturing differences between essential and nonessen-
tial workers, the representation of these differences is simplified
by averaging the total number of contacts over a group with
high work contacts (essential workers) and a group with lower
rates of work contacts. This allows us to demonstrate the impor-
tance of this heterogeneity in the adult population relative to the
standard age-only models, indicating that policy makers should
strongly consider occupation-differentiated vaccine allocation
strategies.

While we explored a large set of alternative scenarios, further
extensions remain for future work. For example, if certain groups
(e.g., children or seniors) experience significant vaccination side
effects, prioritization might shift away from these groups (26).
From a logistical perspective, vaccination will occur through var-

ious points of contact with the community (pharmacies, clinics,
schools, etc.). Constraints imposed by the distribution network
used will affect the relative costs of reaching various subgroups.
While the longevity of immunity to COVID-19—either follow-
ing natural infection or vaccination—is not yet well understood,
emerging analysis suggests that, following infection, “durable
immunity against secondary COVID-19 disease is a possibility
for most individuals” in the sense that immune memory was
present in approximately 95% of individuals studied 5 mo to
8 mo after symptom onset (27). How long lasting immune mem-
ory will be in the longer run is a key unknown. We assume
immunity spans at least through the end of our 6-mo time hori-
zon. However, if, instead, this durability is more limited and/or
already waning for those infected early in 2020, we might expect
the symptomatic infections curve (Fig. 3A) to stretch farther
out and for ideal vaccination strategies to shift toward direct
protection of older, vulnerable populations.

From a behavioral perspective, vaccine hesitancy may influ-
ence the ability to achieve vaccination priorities, especially as
coverage of the population increases. In general, we find that
it is not necessary or even ideal to vaccinate all of the suscep-
tible individuals in a demographic group, at least given the level
of 60% of the population vaccinated considered here. Thus, at
least initially, some level of vaccine hesitancy may have limited
material impact. However, hesitancy may play a more signifi-
cant role in the longer run, especially if hesitancy rates are large
and herd immunity proves difficult to achieve (e.g., if vaccine
effectiveness is low, and/or NPI relaxation is aggressive). Vac-
cine hesitancy that is concentrated in a particular community
or demographic group could also change the optimal prior-
itization strategy. Similarly, adjustments would be needed if
groups differ in the duration of vaccine effectiveness or diligence
in obtaining a second dose of the vaccine where (and when)
necessary.

For simplicity, we limited policy objectives to a set of concise
metrics of health outcomes (minimizing expected cases, YLL, or
deaths). However, other health-related metrics such as protect-
ing the most vulnerable and social values such as returning to
school, work, and social life are important to consider. Our analy-
sis reveals that optimal strategies for minimizing deaths and YLL
are broadly aligned with the goal of protecting the most vulner-
able. These solutions target essential workers who are the least
able to participate in NPI such as social distancing and thus are
the most at risk for infection, and individuals over the age of 60
y who have the highest risk of death if infected by the disease.
Other social values such as returning to school will most likely
change the allocation schemes to offset the risk created by relax-
ing social distancing. For example, if allowing children to return
to school was a high priority, then allocation strategies might
be tilted toward targeting school-age children and teachers. A
detailed analysis of optimal vaccine allocation given the relax-
ation of social distancing to achieve particular social objectives is
a key direction for future research.

Methods
Model. To investigate the impact of vaccination strategies on the COVID-
19 pandemic in the United States, we employed a structured com-
partmental transmission model similar to ref. 28. We incorporated the
demographic structure of the population by tracking six age groups
in the set J = {0 to 4, 5 to 19, 20 to 39, 40 to 59, 60 to 74, 75+}. We then
extend this set to differentiate essential workers by splitting the
two prime working age groups into two groups—nonessential work-
ers (20 y to 39 y, 40 y to 59 y) and essential workers (20 y
to 39 y∗, 40 y to 59 y∗)—yielding four groups of prime work-
ing age individuals and a total of eight demographic groups in J =
{0 to 4, 5 to 19, 20 to 39, 20 to 39∗, 40 to 59, 40 to 59∗, 60 to 74, 75+}. For
each demographic group, we tracked nine epidemiological states: sus-
ceptible (S), protected by a vaccine (P), vaccinated but unprotected (F),
exposed (E), presymptomatic (Ipre), symptomatic (Isym), asymptomatic (Iasym),
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recovered (R), and deceased (D). In Fig. 1, we display the compartmental
diagram and directions of transitions between epidemiological states.

We modeled the COVID-19 transmission dynamics using a system of cou-
pled ordinary differential equations for each demographic group, indexed
by i and j. The transmission rate was given by the product of the trans-
mission probability (q), the age-specific susceptibility (si), strength of NPIs
(θ), the relative infectiousness of each symptom type (τm)—where m∈M≡
{asym, pre, sym}—and the rate of contact (rm,i,j) between infected individ-
uals with symptom type m from group j and susceptible individuals from
group i. The exogenously given population vaccination rate at time t is given
by v(t), where units of time are days.# In our base model, we assume that,
for each individual, the vaccine either works or it does not (although we also
consider vaccines that are partially effective for all vaccinated in our sensi-
tivity analysis). Individuals in group i are vaccinated at a rate of µiv(t), and a
fraction of the those (εi) are protected, while a fraction remain susceptible
and move to the failed vaccination category (F).‖ Once infected, individ-
uals move from exposed to presymptomatic at rate γ−1

exp . Presymptomatic
individuals become symptomatic or asymptomatic at rates σasym/γpre and
(1−σasym)/γpre, respectively. Asymptomatic individuals recover at an uni-
form rate γ−1

asym, and symptomatic individuals either recover or die at a
rate of (1− δa)/γsym or δa/γsym, respectively, where δa is the age-specific
infection fatality rate. These assumptions yield the system of differential
equations described in SI Appendix, section A, with parameter values also
given in SI Appendix, section A.

Contact Rates. Contact rates indicating the level of direct interaction of indi-
viduals within and between groups drive the transmission dynamics in the
model. We built the contact matrices used in this model from the contact
matrices estimated for the United States in ref. 14. These estimates are given
for age groups with 5-y age increments from 0 y to 80 y. These estimates
were aggregated to provide estimates for the six-level age structure used
in our model. We also extended these data to estimate the contact rates
of essential workers. A detailed derivation of these contact rates can be
found in SI Appendix, section A. In short, we assumed that essential work-
ers have, on average, the same pattern of contacts as an average worker
in the population in the absence of social distancing. We then scaled the
contact rates for essential and nonessential workers to represent the effects
of social distancing, and calculated the resulting mixing patterns assuming
homogeneity between these groups.

We constructed contact matrices for each of four locations, x∈
{home, work, school, other}, following ref. 14. The total contact rate for an
asymptomatic individual before the onset of the pandemic is given by the
sum of these location-specific matrices. However, it is clear that populations
are exhibiting social distancing in response to the pandemic (29). We further
expect symptomatic individuals to change their behavior in response to the
illness. We account for these behavioral changes as described next.

Social Distancing. Expression of symptoms and social distancing policies are
likely to change individuals’ behaviors over time. To model these changes,
we scaled the contribution of each contact matrix for location x,

rm =
∑

x

αm,xrx. [1]

The weights αm,x depend on disease and symptom status (m) and loca-
tion (x) as specified in Table 2. We scaled social contacts for symptomatic
individuals following changes in behavior observed among symptomatic
individuals during the 2009 A/H1N1 pandemic (30). For those without symp-
toms (susceptible and asymptomatic), the weights were specified to match
reduced levels of social contacts as the product of social distancing policies.
Home contact rates were held constant, and nonhousehold contact rates
were roughly based on survey data from ref. 15. However, levels of social
distancing have varied strongly over time and between locations. To account
for this variability, we tested a range of alternative levels in addition to the
base model. The results for these alternative parameter values are discussed
in SI Appendix, section A. Also, notably, we do not consider the seasonality
of contact rates for children in the scenarios where schools are modeled as
closed. This would likely have limited impact on the optimal solutions, but,

#In the event that vaccination requires two doses over time, we consider an individual
vaccinated upon receipt of the second dose at time t, and we assume that v indicates
the number of individuals that can be vaccinated with the required number of doses.
‖This vaccine effectiveness is inclusive of any efficiency loss from typical handling in the

distribution chain.

Table 2. Weights on contact rates for a given disease and
symptom type (m) and location/activity (x) under social
distancing

Contact rate weights, αm,x

Disease and symptom type Home Work School Other

Symptomatic 1.0 0.036 0.036 0.075
Susceptible or asymptomatic 1.0 0.4*, 0.1 0.3 0.4

When essential and nonessential worker weights are both needed, the
former is marked with an asterisk.

when this is not the case, we may overestimate or underestimate the impor-
tance of school contacts, depending on the time of year when vaccines are
distributed.

The proportion of essential workers in the population was set to be con-
sistent with estimates of the portion of jobs that can be done from home
(31) and estimates from the US Cyber-security and Infrastructure Security
Agency, which indicate that 70% of the workforce is involved in these essen-
tial activities (e.g., healthcare, telecommunications, information technology
systems, defense, food and agriculture, transportation and logistics, energy,
water, public works, and public safety) (32). However, essential workers are
not a cleanly defined group of individuals, and there is heterogeneity in the
level of contact rates within this group. As a robustness check on this base
scenario approach, we also tested a model with a smaller number of essen-
tial workers with higher contact rates. Results from this model are discussed
in SI Appendix, section D.

Transmission Rate and Vaccine Effectiveness. The model was calibrated to
match the predicted R0 for COVID-19 in the United States (see SI Appendix,
Table S1) by solving for probability of transmission q, assuming a naive
(prepandemic) population. Details of this procedure are provided in SI
Appendix, section A.

In our base model, we considered vaccine effectiveness of 90%. This
level is at the low end of the range of estimates reported (90 to 95%)
for reduction in symptomatic infections in the fall of 2020 from phase
three clinical trials (33). We selected the low end, since real-world per-
formance is typically somewhat lower than clinical trial effectiveness, for
example, due to imperfect implementation of dual-dose timetables and/or
cold storage requirements. We also assume this effectiveness is the same
across age groups, since initial evidence does not show substantial differ-
ences between subgroups (34). As an alternative, lower-bound scenario, we
considered vaccine effectiveness of 50%, since this is the minimum expec-
tation of the US Food and Drug Administration (FDA) for approval (35).
Finally, we considered a case where the vaccine is less effective for ages 60+
y. The phase three trials do not fully resolve the effectiveness of the vac-
cines by age, leading to uncertainty. This scenario represents a worst-case
scenario where the vaccine is much less efficacious for the most sensitive
groups.

Initial Conditions. Because the expected epidemiological conditions
{Ipre(0), Iasym(0), Isym(0), S(0)}, by the time the initial vaccine doses are ready
for deployment, are uncertain, we consider a range of possible values from
1 case per thousand to 20 cases per thousand. These cases were apportioned
between demographic groups to reflect the attack rates of COVID-19 for
each group under the given social distancing policy. Alternative levels
considered for initial conditions are described in SI Appendix, section A and
appear in Results (Table 1 and Figs. 4 and 5 C).

Vaccine Prioritization Optimization. The planner’s decision problem is to
allocate the daily supply of vaccine (v(t)) across the demographic groups
according to a given objective. We assume that this group allocation vector,
µ, can be chosen on a monthly basis at the beginning of each of the first six
decision periods. We also assume that only susceptible individuals are vacci-
nated. We numerically solved for vaccine allocation strategies that minimize
the total burden associated with three different health metrics: deaths, YLL,
or symptomatic infections,

deaths: min


∫ T

0

∑
i∈J

Isym,i(t)/γsymdt

 [2]

YLL: min


∫ T

0

∑
i∈J

eiδi Isym,i(t)/γsymdt

 [3]
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symptomatic infections: min


∫ T

0

∑
i∈J

δi Isym,i(t)/γsymdt

, [4]

where ei is the years remaining of life expectancy for group i and with
a 6-mo time horizon (T = 180 d). Preventing deaths and YLL are “con-
sensus value(s) across expert reports” (ref. 4, p. 2052), while some argue
that “protecting public health during the COVID-19 pandemic requires . . .
minimizing COVID-19 infection” (ref. 5, p. 10).

We solved for the optimal allocation of available vaccines across demo-
graphic groups for each month over 6 mo. We identified the optimal
solution using a two-step algorithm. In the first step, we used a genetic algo-
rithm similar to ref. 36 to identify an approximate solution. This approach
uses random sampling of the potential solution space to broadly explore, in
order to avoid narrowing to a local and not global minimum. In the second
step, we used simulated annealing to identify the solution with precision.
At a given optimal solution, it may or may not be the case that the out-
come of interest (e.g., minimizing deaths) is sensitive to small changes in
the allocation decision. Thus, around the optimal allocation, we also iden-
tified nearby allocations that produce outcomes that are less desirable but
still within 0.5% of the optimized outcome. A detailed description of the
algorithm is given in SI Appendix, section A. All code for the optimization
was written in the Julia programming language (37).

The whiskers on optimal vaccine allocation bars in Fig. 2 show the range
of alternative allocations that still produce an outcome that is within 0.5%
of the optimum. The upper (lower) bound of each whisker was produced
one at a time by systematically exploring higher (lower) levels of the given
decision variable (proportion of vaccines allocated to a given demographic
group in a given decision period). This entailed fixing a candidate level of
that decision variable as a constraint and optimizing the remaining param-
eters. If the optimized value of this constrained objective function was
within 0.5% of the unconstrained optimum, then the candidate value was
accepted and included within the bounds specified by the whisker. The
whisker bounds were found using bisection linear search algorithm tuned
to identify each bound to within one percentage point of the true value
(see SI Appendix, section A).

To assess the benefits of 1) using a dynamic allocation policy and 2) dif-
ferentiating by essential worker status in addition to age, we constructed
two constrained policies: a static policy and an age-only policy. The static
policy was found by allowing the proportion of vaccine allocated to each
age group to be chosen once when the vaccine first becomes available and
then applied constantly over time.∗∗ The age-only policy simply involves
constraining allocation choices age groups (not differentiated by essen-
tial worker status)—vaccines allocated to working age groups accrue to
essential workers simply in proportion to their relative share of these
groups.

Data Access. All data used for informing the numerical analysis are
freely available at the source noted for each measure. The data and
code used to initialize and run the models is available on Github,
https://github.com/JackBucknerNRM/Vaccine prioritization.

Data Availability. Code and parameter files for model analysis have
been deposited in Github (https://github.com/JackBucknerNRM/Vaccine
prioritization).
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∗∗If all of the susceptibles from a single group were exhausted (either by full coverage
from the vaccine or from infection), then vaccine that would have been allocated to indi-
viduals from that group are instead allocated to other age groups at a rate proportional
to the size of their susceptible population.

1. L. Corey, J. R. Mascola, A. S. Fauci, F. S. Collins, A strategic approach to COVID-19
vaccine R&D. Science, 368, 948–950 (2020).

2. E. Dong, H. Du, L. Gardner, An interactive web-based dashboard to track COVID-19
in real time. Lancet Infect. Dis. 20, 533–534 (2020).

3. N. Florko, First Covid-19 vaccines to arrive in states Monday, marking a pivotal
moment in the pandemic response. STAT , 12 December 2020. https://www.statnews.
com/2020/12/12/shipments-of-first-authorized-covid-19-vaccine-in-the-u-s-will-begin-
monday/. Accessed 3 February 2021.

4. E. J. Emanuel et al., Fair allocation of scarce medical resources in the time of Covid-19.
N. Engl. J. Med. 382, 2049–2055 (2020).

5. E. Toner et al. Interim Framework for COVID-19 Vaccine Allocation and Distribution
in the United States (Johns Hopkins Center for Health Security, 2020). https://www.
centerforhealthsecurity.org/our-work/pubs archive/pubs-pdfs/2020/200819-vaccine-
allocation.pdf. Accessed 29 March 2021.

6. M. Lipsitch, N. E. Dean, Understanding COVID-19 vaccine efficacy. Science 370, 763–
765 (2020).

7. N. Lurie, M. Saville, R. Hatchett, J. Halton, Developing Covid-19 vaccines at pandemic
speed. N. Engl. J. Med. 382, 1969–1973 (2020).

8. J. Medlock, A. P. Galvani, Optimizing influenza vaccine distribution. Science 325,
1705–1708 (2009).

9. N. G. Davies et al., Age-dependent effects in the transmission and control of COVID-
19 epidemics. Nat. Med. 26, 1205–1211 (2020).

10. R. M. Viner et al., Susceptibility to SARS-CoV-2 infection among children and adoles-
cents compared with adults: A systematic review and meta-analysis. JAMA Pediatrics
175, 143–156 (2021).

11. R. Verity et al., Estimates of the severity of coronavirus dis-
ease 2019: A model-based analysis. Lancet Infect. Dis. 20, 669–677
(2020).

12. M. C. Fitzpatrick, A. P. Galvani, Optimizing age-specific vaccination. Science 371, 890–
891 (2021).

13. J. Mossong et al., Social contacts and mixing patterns relevant to the spread of
infectious diseases. PLoS Med. 5, e74 (2008).

14. K. Prem, A. R. Cook, M. Jit, Projecting social contact matrices in 152 countries
using contact surveys and demographic data. PLoS Comput. Biol. 13, e1005697
(2017).

15. D. Feehan, A. Mahmud, Quantifying population contact patterns in the United
States during the COVID-19 pandemic. medRxiv [Preprint] 29 August 2020.
https://doi.org/10.1101/2020.04.13.20064014. Accessed 5 October 2020.

16. L. Matrajt, J. Eaton, T. Leung, E. R. Brown, Vaccine optimiza-
tion for COVID-19: Who to vaccinate first? Sci. Adv. 7, eabf1374
(2021).

17. K. M. Bubar et al., Model-informed COVID-19 vaccine prioritization strategies by age
and serostatus. Science 371, 916–921 (2021).

18. M. E. Gallagher et al., Considering indirect benefits is critical when evaluating
SARS-CoV-2 vaccine candidates. meRxiv [Preprint] 11 August 2020. https://doi.org/
10.1101/2020.08.07.20170456. Accessed 1 October 2020.

19. A. Hogan et al., “Modelling the allocation and impact of a COVID-19 vaccine” (Rep.
33, Imperial College London, 2020, https://doi.org/10.25561/82822).

20. J. Zhang et al., Changes in contact patterns shape the dynamics of the COVID-19
outbreak in China. Science 368, 1481–1486 (2020).

21. L. Matrajt, M. E. Halloran, I. M. Longini Jr., Optimal vaccine allocation for
the early mitigation of pandemic influenza. PLoS Comput. Biol. 9, e1002964
(2013).

22. M. Slaoui, Interview with Mary Louise Kelly: Operation Warp Speed top adviser
on the status of a coronavirus vaccine. National Public Radio, 3 September
2020. https://www.npr.org/2020/09/03/909312697/operation-warp-speed-top-adviser-
on-the-status-of-a-coronavirus-vaccine. Accessed 3 October 2020.

23. X. Wang et al., The impacts of COVID-19 vaccine timing, number of doses, and
risk prioritization on mortality in the US. medRxiv [Preprint] 18 January 2021.
https://doi.org/10.1101/2021.01.18.21250071. Accessed 2 February 2021.

24. S. Omer et al., WHO SAGE Roadmap for Prioritizing Uses Of COVID-19 Vac-
cines in the Context of Limited Supply (Version 1.1, World Health Organization,
2020). https://www.who.int/publications/m/item/who-sage-roadmap-for-prioritizing-
uses-of-covid-19-vaccines-in-the-context-of-limited-supply). Accessed 29 March
2021.

25. K. Dooling et al., The Advisory Committee on Immunization Practices’
updated interim recommendation for allocation of COVID-19 vaccine—
United States, December 2020. Morb. Mortal. Wkly. Rep. 69, 1657–1660
(2021).

26. National Academies of Sciences, Engineering, and Medicine, “Discussion draft
of the preliminary framework for equitable allocation of COVID-19 vaccine”
(Report No. 25914, Washington, DC: The National Academies Press, 2020).
https://doi.org/10.17226/25914. Accessed 29 March 2021.

27. J. M. Dan et al., Immunological memory to SARS-CoV-2 assessed for up to 8 months
after infection, Science 371, eabf4063 (2021).

28. S. Abrams et al., Modeling the early phase of the Belgian COVID-19 epi-
demic using a stochastic compartmental model and studying its implied future
trajectories. medRxiv [Preprint] 1 July 2020. https://doi.org/10.1101/2020.06.29.
20142851. Accessed 15 July 2020.

29. J. A. Weill, M. Stigler, O. Deschenes, M. R. Springborn, Social distanc-
ing responses to COVID-19 emergency declarations strongly differ-
entiated by income. Proc. Natl. Acad. Sci. U.S.A. 117, 19658–19660
(2020).

30. K. Van Kerckhove, N. Hens, W. J. Edmunds, K. T. D. Eames, The impact of illness
on social networks: Implications for transmission and control of influenza. Am. J.
Epidemiol. 178, 1655–1662 (2013).

Buckner et al.
Dynamic prioritization of COVID-19 vaccines when social distancing is limited for essential workers

PNAS | 11 of 12
https://doi.org/10.1073/pnas.2025786118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025786118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2025786118/-/DCSupplemental
https://github.com/JackBucknerNRM/Vaccine_prioritization
https://github.com/JackBucknerNRM/Vaccine_prioritization
https://github.com/JackBucknerNRM/Vaccine_prioritization
https://www.statnews.com/2020/12/12/shipments-of-first-authorized-covid-19-vaccine-in-the-u-s-will-begin-monday/
https://www.statnews.com/2020/12/12/shipments-of-first-authorized-covid-19-vaccine-in-the-u-s-will-begin-monday/
https://www.statnews.com/2020/12/12/shipments-of-first-authorized-covid-19-vaccine-in-the-u-s-will-begin-monday/
https://www.centerforhealthsecurity.org/our-work/pubs_archive/pubs-pdfs/2020/200819-vaccine-allocation.pdf
https://www.centerforhealthsecurity.org/our-work/pubs_archive/pubs-pdfs/2020/200819-vaccine-allocation.pdf
https://www.centerforhealthsecurity.org/our-work/pubs_archive/pubs-pdfs/2020/200819-vaccine-allocation.pdf
https://doi.org/10.1101/2020.04.13.20064014
https://doi.org/10.1101/2020.08.07.20170456
https://doi.org/10.1101/2020.08.07.20170456
https://doi.org/10.25561/82822
https://www.npr.org/2020/09/03/909312697/operation-warp-speed-top-adviser-on-the-status-of-a-coronavirus-vaccine
https://www.npr.org/2020/09/03/909312697/operation-warp-speed-top-adviser-on-the-status-of-a-coronavirus-vaccine
https://doi.org/10.1101/2021.01.18.21250071
https://www.who.int/publications/m/item/who-sage-roadmap-for-prioritizing-uses-of-covid-19-vaccines-in-the-context-of-limited-supply
https://www.who.int/publications/m/item/who-sage-roadmap-for-prioritizing-uses-of-covid-19-vaccines-in-the-context-of-limited-supply
https://doi.org/10.17226/25914
https://doi.org/10.1101/2020.06.29.20142851
https://doi.org/10.1101/2020.06.29.20142851
https://doi.org/10.1073/pnas.2025786118


31. A. W. Bartik, Z. B. Cullen, E. L. Glaeser, M. Luca, C. T. Stanton, What jobs are
being done at home during the COVID-19 crisis? Evidence from firm-level sur-
veys. National Bureau of Economic Research Working Paper No. 27422, 2020.
https://www.nber.org/papers/w27422. Accessed 15 August 2020.

32. W. Cook, Many U.S. Workers in Critical Occupations in the Fight Against
COVID-19 (Revised) (Labor and Market Information Institute, 2020).
https://www.lmiontheweb.org/more-than-half-of-u-s-workers-in-critical-occupations-
in-the-fight-against-covid-19/#:∼:text=According%20to%20the%20federal%
20standard,Workforce%E2%80%9D%20battling%20COVID%2D19. Accessed 29
March 2021.

33. M. Herper, D. Garde, Moderna to submit Covid-19 vaccine to FDA as full
results show 94% efficacy. STAT , 30 November 2020. https://www.statnews.com/
2020/11/30/moderna-covid-19-vaccine-full-results/. Accessed 22 January 2021.

34. C. Zimmer, Moderna’s Covid vaccine: What you need to know. New York Times,
30 November 2020. https://www.nytimes.com/live/2020/moderna-covid-19-vaccine.
Accessed 25 January 2021.

35. US Food andDrug Administration, “Development and licensure of vac-
cines to prevent COVID-19: Guidance for industry” (FDA-020-D-1137, Food
and Drug Administration, 2020, https://www.fda.gov/regulatory-information/
search-fda-guidance-documents/development-and-licensure-vaccines-prevent-
covid-19).

36. R. Patel, I. M. Longini, Jr., M. E. Halloran, Finding optimal vaccination strategies
for pandemic influenza using genetic algorithms. J. Theor. Biol. 234, 201–212
(2005).

37. J. Bezanson, A. Edelman, S. Karpinski, V. B. Shah, Julia: A fresh approach to numerical
computing. SIAM Rev. 59, 65–98 (2017).

12 of 12 | PNAS
https://doi.org/10.1073/pnas.2025786118

Buckner et al.
Dynamic prioritization of COVID-19 vaccines when social distancing is limited for essential workers

https://www.nber.org/papers/w27422
https://www.lmiontheweb.org/more-than-half-of-u-s-workers-in-critical-occupations-in-the-fight-against-covid-19/#:~:text=According%20to%20the%20federal%20standard,Workforce%E2%80%9D%20battling%20COVID%2D19
https://www.lmiontheweb.org/more-than-half-of-u-s-workers-in-critical-occupations-in-the-fight-against-covid-19/#:~:text=According%20to%20the%20federal%20standard,Workforce%E2%80%9D%20battling%20COVID%2D19
https://www.lmiontheweb.org/more-than-half-of-u-s-workers-in-critical-occupations-in-the-fight-against-covid-19/#:~:text=According%20to%20the%20federal%20standard,Workforce%E2%80%9D%20battling%20COVID%2D19
https://www.statnews.com/2020/11/30/moderna-covid-19-vaccine-full-results/
https://www.statnews.com/2020/11/30/moderna-covid-19-vaccine-full-results/
https://www.nytimes.com/live/2020/moderna-covid-19-vaccine
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/development-and-licensure-vaccines-prevent-covid-19
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/development-and-licensure-vaccines-prevent-covid-19
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/development-and-licensure-vaccines-prevent-covid-19
https://doi.org/10.1073/pnas.2025786118



