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Modulation of a Sustained Calcium 

Current by Intracellular pH in Horizontal 

Cells of Fish Retina 

KYOH-ICHI TAKAHASHI, DONALD B. DIXON, and 
DAVID R. COPENHAGEN 

From the Departments of Ophthalmology and Physiology, University of California, San 
Francisco, San Francisco, California 94143-0730 

A B S T R AC T A sustained high voltage-activated (HVA), nifedipine- and cadmium- 
sensitive calcium current and a sustained calcium action potential  (AP) were 
recorded from horizontal cells isolated from catfish retina, pH indicator dyes 
showed that superfusion with NH4CI alkalinized these cells and that washout of  
NH4C1 or superfusion with Na-acetate acidified them. HVA current was slightly 
enhanced during superfusion of NH4C1 but was suppressed upon NH4C1 washout or 
application of  Na-acetate. When 25 mM HEPES was added to the patch pipette  to 
increase intracellular pH buffering, the effects of NH4CI and Na-acetate on HVA 
current were reduced. These results indicated that intracellular acidification reduces 
HVA calcium current and alkalinization increases it. Sustained APs, recorded with 
high resistance, small diameter  microelectrodes, were blocked by cobalt and 
cadmium and their magnitude varied with extraceUular calcium concentration. 
These results provide confirmatory evidence that the HVA current is a major 
component  of the AP and indicate that the AP can be used as a measure of  how the 
HVA current can be modified in intact, undialyzed cells. The duration of APs was 
increased by superfusion with NH4C1 and reduced by washout of NH4C1 or 
superfusion with Na-acetate. The Na-acetate and NH4CI washout -dependent  short- 
ening of  the APs was observed in the presence of intracellular BAPTA, a calcium 
chelator, IBMX, a phosphodiesterase inhibitor, and in Na-free or TEA-enriched 
saline. These findings provide supportive evidence that intracellular acidification 
may directly suppress the HVA calcium current in intact cells. Intracellular pH 
changes would thereby be expected to modulate not only the resting membrane 
potential  of these cells in darkness, but calcium-dependent  release of neurotrans- 
mitter  from these cells as well. Furthermore,  this acidification-dependent suppres- 
sion of  calcium current could serve a protective role by reducing calcium entry 
during retinal ischemia, which is usually thought to be accompanied by intracellular 
acidosis. 
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I N T R O D U C T I O N  

Horizontal cells in the vertebrate retina are interneurons synaptically excited by 
photoreceptors through glutamatergic synapses. Horizontal cells have relatively large 
receptive fields and mediate surround antagonism observed in the light responses of 
bipolar cells and cones (Baylor, Fuortes, and O'Bryan, 1971; Fuortes and Simon, 
1974). The center-surround receptive field organization resulting from these antago- 
nistic interactions is an important contrast-enhancing feature of signal processing in 
the visual system. The excitability and receptive field sizes of horizontal cells are 
modified by neuromodulators, such as dopamine, that are intrinsic to the retina 
(Knapp and Dowling, 1987) and by light and dark adaptation (Baldridge and Ball, 
1991). 

A high voltage-activated (HVA) sustained calcium current has been demonstrated 
in isolated horizontal cells (Tachibana, 1983; Shingai and Christensen, 1986). This 
current is active at the normal dark resting potential ( - 2 0  to - 4 0  mV) for these cells 
in the intact retina (Yang, Tornqvist, and Dowling, 1988). Sustained APs, probably 
resulting from activation of an HVA calcium current, can be unmasked in horizontal 
cells recorded from retinas bathed with TEA (Murakami and Takahashi, 1987). 

Retinal function is critically dependent on the maintenance of constant pH 
(Winkler, Simson, and Benner, 1977; Liebman, Mueller, and Pugh, 1984; Oakley and 
Wen, 1989; Donner, Hemila, Kalamkarov, Koskelainen, and Shevchenko, 1990). The 
level of cellular metabolism is sufficient to produce a standing pH gradient across the 
retina which changes with light and dark adaptation (Yamamoto, Borgula, and 
Steinberg, 1992). Moreover, in nervous tissue and in the retina, periods of ischemia 
cause significant changes in intracellular and extracellular pH (Nedergaard, Gold- 
man, Desai, and Pulsinelli, 1991). Changes in pH can affect signal transmission in the 
retina. Extracellular acidification suppresses a calcium current in cones that probably 
regulates neurotransmitter release (Barnes and Bui, 1991), and suppresses an 
N-methyl-D-aspartate type glutamate current in horizontal cells that depolarizes these 
cells in darkness (Christensen and Hida, 1990). Intracellular pH regulates HVA 
calcium currents in Paramecium, myocytes, pancreatic cells, and chick dorsal root 
ganglion cells (Umbach, 1982; Plant, 1988; Katzka and Morad, 1989; Mironov and 
Lux, 1991). 

In this article, by performing whole-cell voltage-clamp recordings, we investigated 
how intracellular pH modified the HVA current of isolated horizontal cells and, by 
recording membrane potentials of intact cells, we provide evidence that the sustained 
APs were generated by HVA current and were similarly regulated by intracellular pH. 

Preliminary reports of some of these findings were presented earlier (Takahashi 
and Copenhagen, 1990). 

M A T E R I A L S  A N D  M E T H O D S  

Preparation of Cells 

All experimental procedures conformed to the recommendations of the NIH guide for the Use 
of Laboratory Animals and the ARVO Statement on the Use of Animals in Ophthalmic and 
Vision Research. Catfish (lctalurus punctatus) were dark-adapted for 12 h, cooled, swiftly 
decapitated, and pithed. Enucleated eyes were hemisected and the retinas were removed. 
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Hor izonta l  cells were  isolated us ing papa in  and  mechanica l  t r i tura t ion following the  p r o c e d u r e s  
o f  T a c h i b a n a  (1981). T h e  cells were  p l a t ed  on to  steri l ized clean glass coversl ips and  kep t  at 
10°C in L-15 m e d i a  for  pe r iods  r ang ing  f rom 2 to 20 d. Microe lec t rode  a n d  pa t ch  p ipe t t e  
r eco rd ings  were  d o n e  at r o o m  t e m p e r a t u r e  (20°C) in a super fus ion  c h a m b e r  fi t ted to the  stage 
o f  an inver ted  mic roscope  (mode l  IM35; Carl  Zeiss, Inc., T h o r n w o o d ,  NY). 

Electrophysiological Recordings 

Microe lec t rodes  were  f o r m e d  on  a Brown-F laming  P88 Puller  (Sutter  I n s t r u m e n t  Co., Novato,  
CA) and  typically h a d  res is tances  o f  200--300 MI'~ w h e n  filled with 3 M KCI. Patch  p ipe t t es  were  
f o r m e d  on  a vertical pul le r  (model  PP-83; Nar ishige  Scientific I n s t r u m e n t  Laborator ies ,  Tokyo,  
J a p a n )  f rom 1 .5 -mm-d iam borosi l icate glass (Garner  Glass Co.,  C la remont ,  CA). Tips  were  
pu l l ed  to d i ame te r s  y ie ld ing  bubb le  n u m b e r s  of  4 .5 -5 .5  (Mit tman,  Flaming,  C o p e n h a g e n ,  and  

T A B L E  ! 

Experimental Solutions 

Control NHaCI NaCH3OO- Standard High-buffer 
saline saline saline patch patch 

NaCI 125 mM 105 mM 100 mM 4 mM 4 mM 
KCI 2.6 mM 2.6 mM 2.6 mM - -  - -  
MgCI2 1.0 mM 1.0 mM 1.0 mM 1 mM 1 mM 
CaCI~ 2.5 raM* 2.5 raM* 2.5 raM* - -  - -  
BaCIe 15 raM: 15 raM: 15 raM: 2 mM 2 mM 
Glucose 15 mM* 15 mM* 15 mM* - -  - -  

5 mM ~" 5 mM: 5 mM: - -  - -  

HEPES 10 mM 10 mM I0 mM - -  25 mM 
NH4CI - -  20 mM - -  - -  - -  
N a C H 3 O O -  - -  - -  25 mM - -  - -  
Cs gluconate - -  - -  - -  130 mM 105 mM 
EGTA - -  - -  - -  10 mM 10 mM 
ATP - -  - -  - -  1 mM 1 mM 
GYP - -  - -  - -  O. 1 mM O. 1 mM 
pH 7.8 7.8 7.8 7.4 7.4 

The salines used for the microelectrode experiments (*) contained 2.5 mM calcium. The salines used for the 
patch-clamp experiments (:) contained 15 mM barium. The glucose concentration was reduced to 
compensate for the osmolarity difference. 

Belgum,  1987) a n d  hav ing  res is tances  o f  5 - 8  MfL T h e  access res is tance  du r ing  record ings  was 
typically 2 0 - 3 0  MI~ and  was no t  c o m p e n s a t e d  du r ing  the  e x p e r i m e n t s  s ince the  h igh  inpu t  
res is tance  o f  the  cells (500-800  MI~) m a d e  the  er rors  due  to access res is tance less t han  a few 
pe rcen t .  Record ings  were  m a d e  f rom the  cone-d r iven  cells, which are  axon  bea r ing  in this 
species (DeVries and  Schwartz,  1989). T h e  cells chosen  for r eco rd ing  had  one  to t h ree  shor t  
ex tens ions  e m a n a t i n g  f rom the  soma.  

IntraceUular pH Measurements of Isolated, Intact Cells 

Intracel lular  p H  was d e t e r m i n e d  in individual  hor izonta l  cells us ing the  f luorescent  indica tor  
dye 2 ' ,7 ' -b is - (2-carboxyethyl ) -5- (and 6) carboxyfluorescein ,  ace toxymethyl  es ter  (BCECF-AM; 
Molecular  Probes,  Inc., Eugene ,  OR) following the  pro toco ls  o f  Paradiso,  Tsien,  Demares t ,  and  
Machen  (1987). Cells were  washed  for 5 rain with saline con ta in ing  5 IxM BCECF-AM, and  then  
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rinsed in control saline for 1 h to allow the fluorescent signal to reach equilibrium. A 10-1~m 
spot at the center of individual horizontal cells was imaged by a Zonax Fluorescence/ 
Photometer system (Carl Zeiss, Inc.). The cells were alternately illuminated by 200-ms flashes of 
440- and 490-nm excitation lights. The ratio of 535-nm fluorescence induced by the two 
different excitation lights was used to calculate the intracellular pH. The excitation and harrier 
filters and the dichroic mirror were a BCECF filter set from Omega Optical Inc. (Brattleboro, 
VT). The measurement protocol was repeated every 5 s throughout the course of the 
experiment. The K*/H ÷ exchanger nigericin (10 I~M; Molecular Probes, Inc.) was superfused 
at the end of experimental runs to calibrate the pH changes measured during the experiments. 
The nigericin calibrations were done in 50 mM potassium saline to depolarize the cells and 
thereby minimize the electrical gradient for hydrogen ions across the membrane. 

Chemicals and Solutions 

All chemicals were purchased from Sigma Chemical Co. (St. Louis, MO) except where noted. 
All solutions are listed in Table I. The pH and osmolarity of all solutions were measured before 
every experiment. NH4C1 or Na-acetate was applied to the cells by switching to a superfusion 
saline in which either NH4CI or Na-acetate had been substituted for NaCI. For the high buffer 
patch solution, Cs-gluconate concentration was reduced when HEPES was added to maintain 
the appropriate osmolarity. 

R E S U L T S  

Characterization of the High Voltage-activated Current 

Tach ibana  (1983) and others  (Lasater,  1986; Shingai  and  Chris tensen,  1986) showed 
that  ret inal  hor izonta l  cells possess a high threshold ,  slowly inactivating calcium 
cur ren t  (HVA current)  that  is act ivated at potent ia ls  posit ive to - 4 0  to - 3 0  mV. Fig. 
1 shows this HVA current  in an isolated catfish hor izonta l  cell vo l t age-c lamped  with 
pa tch  p ipe t tes  r eco rded  in whole-cell  mode .  For  these expe r imen t s  ex te rna l  bar ium 
chlor ide  (15 mM) was subst i tuted for the normal  2.5 mM calcium chlor ide  as it 
increased the sustained inward current  several-fold. Bar ium also r educed  the rate  of  
HVA current  rundown (Dixon, D. B., unpub l i shed  observation;  Belles, Malecot,  
Hescheler ,  and  Trautwein,  1988), which was beneficial  since expe r imen t s  often 
exceeded  30 rain. Fig. 1 A shows the cur ren t  r eco rded  as the c lamp potent ia l  was 
s t epped  to progressively more  depo la r ized  levels from the ho ld ing  potent ia l  of  - 5 0  
mV. T h e  records  in Fig. 1 B show the current  evoked in 20 I~M cadmium.  Fig. 1 C 
shows the cadmium-sensi t ive  current  ob ta ined  by subtract ion (traces in Fig. 1 B 
minus  those in Fig. 1 A ). The  cu r ren t -vo l t age  (I-V) curve is shown in Fig. 1 D. These  
records  conf i rm the existence o f  a slowly inact ivat ing HVA current  that  is activated, in 
this cell, at potent ia ls  positive to - 4 0  inV. 

HVA currents  were examined  using a vol tage r amp  protocol .  For  these exper i -  
ments  the c o m m a n d  vol tage was r a m p e d  from - 9 0  to + 5 0  mV at a rate  of  70 mV/s. 
In several cells the r amp-evoked  cur ren t  was c o m p a r e d  with the p la teau  level of  
pulse-evoked currents.  At the r a m p  rate  of  70 mV/s the differences in c lamp current  
were negligible.  Fig. 2 shows the r a m p  current  genera ted  by a typical hor izonta l  cell 
in control  saline and in control  saline plus 0.1 mM nifedipine.  T h e  difference curve 
shows the nifedipine-sensi t ive c o m p o n e n t  of  the cur ren t  which peaks close to + 10 
mV and  is act ivated near  - 3 0  inV. Superfusion with cadmium (20 t~M) el ici ted 
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similar  difference curves. T h e  activation potent ia ls  measured  with the r a m p s  r anged  
between - 3 0  and  - 4 0  mV, but  the peaks  were always close to + 10 inV. T h e  results 
from the n i fedip ine  and  cadmium exper imen t s  p rovide  pharmacolog ica l  confirma-  
t ion that  we were measur ing  a HVA calcium current .  Because the  onset  and  peak  
potent ia ls  of  the  n i fedip ine- iso la ted  HVA cur ren t  closely a p p r o x i m a t e d  the inward 
cur ren t  measu red  in control  saline, we took the inward cur ren t  measu red  between 
- 4 0  and  + 10 mV as a r ep resen ta t ion  o f  the HVA cur ren t  in subsequent  exper iments .  

500 - 
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-500 - 

-1000 
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FIGURE 1. Sustained HVA currents in horizontal cells. (A) Horizontal cells were whole-cell 
voltage clamped and held at - 5 0  mV. Pulses of l-s duration were applied in increments of 10 
mV between - 4 0  and +50 mV. Resultant currents are shown. (B) The same protocol as in A 
was applied to the cell, but in the presence of 20 ~M cadmium. These responses were then 
subtracted from those in A to eliminate leak currents, and displayed in C. The I-V relation for 
this cell, measured 500 ms into the pulse, is shown in D. Tracings are averages of six pulses 
each. Not all steps have been shown in A-C for clarity. The currents were recorded in 15 mM 
barium. 

Effects of NH4Cl and Na-Acetate Substitutions on Intracellular pH of 
Horizontal Cells 

NH4CI and Na-aceta te  are commonly  used to man ipu la t e  pHi (Roos and  Boron,  
1981). An advantage  o f  these c o m p o u n d s  is that  pHi can be changed  while ho ld ing  
ext racel lu lar  p H  (pi le)  constant .  Hor izonta l  cells were loaded  with the p H  indica tor  
dye BCECF-AM and  de te rmina t ions  were made  of  res t ing pHi and  the pHi changes  
induced  by NH4C1 and  Na-acetate .  These  measurements  revealed that  the mean  pHi 
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Nifedipine (100 p - M ) ~  

' "  

(Control- N i f e d i p ? t e ) - - ~ J  / 

A 

FIGURE 2. Isolation of HVA current 
with nifedipine. In whole-cell voltage- 
clamp recording mode, the voltage 
was ramped from - 9 0  to +50 mV at 
70 mV/s. The resultant current is 
shown during the voltage ramp. The 
nifedipine curve was performed in 0.1 
mM nifedipine. The difference cur- 
rent is the nifedipine-sensitive current 
defined as an HVA calcium current. 
The patch pipette contained Cs-glu- 
conate. Each trace is the average of 
six separate voltage ramps. 

of  the hor izonta l  cells was 7.40 + 0.06 (n = 18; p i l e  7.8) and  conf i rmed that  both  
NH4CI and  Na-aceta te  changed  the pHi  of  the isolated hor izonta l  cells. 

Exposure  to weak acids is known to acidify cells (Roos and Boron,  1981). 
Undissocia ted  free acids pene t r a t e  cell membranes ,  after which they dissociate to 
l iberate  protons .  Fig. 3 shows the acidification induced  in a hor izonta l  cell by a b r ie f  
(2 min) exposure  to Na-aceta te  (25 mM). At the peak,  Na-aceta te  d r o p p e d  the p H  by 
slightly less than  0.6 U. T h e  recovery to res t ing p H  after  washout  took 2 min in this 
cell. T h e  recovery var ied  from 2 to 10 min a m o n g  different  hor izonta l  cells. Similar  
acidifications o f  catfish hor izonta l  cells by Na-aceta te  were r e p o r t e d  by DeVries and 
Schwartz (1989). 

A 2-min exposu re  to 20 mM NH4CI typically alkal inized the hor izonta l  cells, but  
immedia te ly  upon  washout  pHi  d r o p p e d  below control  levels and  slowly recovered 
over a pe r iod  of  8 -15  min. The  increase and  subsequent  decrease  in pHi result  f rom 
the dissociat ion o f  NH~- to NH3 and  H + and a h igher  m e m b r a n e  permeabi l i ty  to 
NH3. NH3 more  easily pe rmea tes  the cells and  the increased cytosolic NH~ serves as 
a H + acceptor  which alkalinizes the  cell's interior.  Upon  washout,  NH3 leaves the 
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. . . . . . . . . . .  ' 0 ' 4 ' 0 ' g 0 '  ' 200 400 600 800 1000 12 0 1 0 1 0 1800 

Time (seconds) 

FIGURE 3. Changes in pHi in- 
duced by NH4C1 and Na-ace- 
tate. Horizontal cells plated on 
coverslips were washed briefly 
in BCECF-AM (5 ~M) and then 
rinsed for ~ 1 h in control 
HEPES-buffered saline (pHc 
7.8). The ratio of fluorescence 
(>535 nm) induced by 440- 
and 490-nm excitation was cal- 
culated every 5 s. pH calibra- 
tions were done at the end of 

experimental runs by superfusing with nigericin (10 ~M), an H + ionophore, and high 
potassium (50 mM). Changes in pile produced similar changes in pHi under these conditions. 
In this figure, alkalinization is shown as an upward deflection. Na-acetate (25 mM) was applied 
and then rinsed out. After recovery to near control level, NH4CI (20 raM) was bath applied and 
then washed out. 
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cells rapidly, which leads to further dissociation of NH~ v to NH3 and  a l iberation of 

hydrogen ions (Roos and Boron, 1981). Fig. 3 shows an example  of an alkalinization 
and acidification produced by a 2-min exposure to NH4C1 in an isolated horizontal  
cell. The  alkalinization, shown here as an upward deflection, was 0.2 U above the 
rest ing pH and  the r ebound  acidification was 0.7 U below it. 

Effects of NH4Cl and Na-Acetate on HVA Currents 

Fig. 4 shows how the I-V curves and HVA current  were affected by Na-acetate and  
NH4CI. Fig. 4 A illustrates the effects of NH4CI (20 mM) on one horizontal  cell. The  

4+o 0//.40 +100 _ 2 0 0 f ~ ~  - :~  
pA 100 ms Control 

-80 -60 -40 -20 0 +2 
0 "  I I I I I 

. . . . .  / / /  mY 
. ~ "  ~washout/~ 

- 100 f "  ~ , .  ~ /Recovery  

-200 1 C°ntr°l--~q 
B A NH4 + application 

+300- o oH?coo-,  cid0sisl / 
+2oo- -2oo   / j  

-400 
+100- pA lOOms Control / / /  

-80 -60 -40 -20 0 ./" +20 ff +40 0 i I I .... I ~, I J/ I 

-loo- / ~ y / -  ~ cH~coo- / /  

_ oo. 7 
#,,--Control -300 - R e c o v e r y ~  - - 

FIGURE 4. Effects of NH4CI 
and Na-acetate on the sus- 
tained HVA current. Both Na- 
acetate and NH4CI caused re- 
versible reductions in the HVA 
current. (A) NHaC! application 
resulted in a small augmenta- 
tion of the HVA current. How- 
ever, upon washout the HVA 
current was quickly reduced to 
~55% of the control magni- 
tude. After 16 min, the HVA 
current returned to control lev- 
els. (Inset) 1-s pulses from - 50  
to + 10 mV are shown for con- 
trol and NH4CI washout condi- 
tions. (B) Sodium acetate (25 
mM) strongly suppressed the 
HVA current. Recovery to con- 
trol levels occurred in 8.5 rain 
in this cell. (Inset) 1-s pulses 
from - 50  to +10 mV before 
and during Na-acetate applica- 
tion. Command voltage was 
ramped from - 90  to +50 mV 
over a 2-s period. Traces are 
averages of six ramps. Holding 
potential was - 50  mV. Inset 
traces are averages of six pulses 
each. 

peak current  near  + 10 mV was slightly enhanced  dur ing  NH4C1. U p o n  acidification 
induced by NH4CI washout, the current  near  +10  mV was reduced to ~55% of 

control. After 14.5 min  of washout the HVA current  recovered to control levels. 

During NH4CI, the peak HVA current ,  on average, increased by 8.8 -+ 6.7% (n = 7) 
and  u p o n  washout it was reduced by 42.7 - 6.7% (n = 7) below control level. The  

shape of the I-V curve was not  discernibly altered in NH4CI, consistent with there 
be ing no change in the activation voltage of the inward HVA current.  The  inset in 
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Fig. 4A shows the current elicited by a 1-s voltage-clamp pulse to +10 mV from a 
holding potential of - 5 0  mV. The  larger amplitude trace with the fastest time to 
peak shows the HVA current in control. The lower amplitude trace shows the HVA 
current during NH4CI washout. In Fig. 4 B, Na-acetate (25 mM) essentially elimi- 
nated the inward HVA current in this cell. The tracing marked recovery was obtained 
11.5 min after washout of Na-acetate and shows that the suppression of the HVA 
current was reversible, as it was for NH4CI treatment. We found that the peak HVA 
current, measured near + 10 mV, was reduced, on average, 86 + 8.9% by Na-acetate 
(n = 5). The inset shows the inward currents generated by a l-s voltage-clamp pulse 
to + 10 mV from a holding potential of  - 5 0  mV in control and in Na-acetate. These 
results illustrated in Fig. 4, A and B, suggest that the HVA current is modulated by 
intracellular pH; however, there is a chance that both Na-acetate and NH4CI might 
be exerting nonspecific effects on the HVA current. This possibility was addressed in 
the experiments described below. 

Effects of pH Buffers on the NH4Cl and Na-Acetate Modulation of HVA Current 

If  hydrogen ions were regulating the HVA current, then increased intracellular pH 
buffering should reduce or eliminate the actions of NH4C1 and Na-acetate. This 
result would make less tenable the possibility of a nonspecific action of these 
compounds. In whole-cell patch pipette experiments shown in Fig. 4, no pH buffer 
was added to the pipette solution. In Fig. 5, the patch pipette solution included 25 
mM HEPES. The I-V curves (Fig. 5 A) show the currents recorded in control, during 
NH4CI application, and during washout of NH4C1. The peak HVA current, near + 10 
mV, was increased slightly by NH4C1. The peak HVA current, near + 10 mV, was 
reduced slightly by the washout of NH4C1. Finally, the peak HVA current returned to 
control levels in 7 min. In all cells combined, the average decrease of HVA current 
during the acidification evoked by NH4CI washout was 10 - 4.9% (n = 4), much less 
than was observed with unbuffered pipette solutions shown in Fig. 4. With 25 mM 
HEPES in the pipette Na-acetate produced a 25.4 -+ 8.3% (n = 5) reduction in the 
peak of the HVA current (Fig. 5 B). Again, this reduction was much less than in the 
unbuffered patch pipette experiments (86 + 8.9%, n - - 5 ) .  These results provide 
strong support  for the hypothesis that intracellular pH changes modulate HVA 
current in these horizontal cells and make it unlikely that NH4CI and Na-acetate 
could be affecting HVA current directly. 

To assess how the pH-dependent  effects on HVA current might affect the ionic 
membrane properties of more intact, less dialyzed horizontal cells, we recorded 
membrane potentials with small diameter microelectrodes. The advantage of these 
electrodes was that internal dilution of the endogenous cytoplasmic buffers would be 
minimized, compared with patch pipettes, so we could more accurately determine if 
the pH changes manifested themselves under  conditions that more closely approxi- 
mated the in vivo state of these cells. Below, we first characterize the HVA-dependent 
sustained AP, then we examine the pH dependency of the AP, and finally we test 
whether the pH effects could result from the actions of hydrogen ions on conduc- 
tances other than the HVA calcium conductance or on cyclic nucleotide-mediated 
intracellular processes. 
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Effects of Cobalt and External Calcium on the Sustained Action Potential 

Brief, depolarizing currents applied to isolated fish horizontal cells produce sustained 
APs that can last f rom several seconds to several minutes depend ing  on the particular 
cell (Tachibana, 1981; Shingai and Christensen, 1986; Takahashi  and Copenhagen,  
1992). Fig. 6 A, showing the membrane  potential recorded from an isolated horizon- 
tal cell, illustrates the APs. Here, a series o f  depolarizing currents (upward arrows) 
were applied in control and cobalt (5 mM) saline. The  initial current pulse, in control 
saline, evoked an AP that was maintained at a membrane  potential o f  - 7  mV for 5 
min before a brief hyperpolarizing current  (downward arrow) re turned the potential 
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FIGURE 5. Effects of pH 
buffer on NH4C1 and Na-ace- 
tate regulation of HVA cur- 
rents. The effects of NH4C1 and 
Na-acetate were reduced when 
the patch pipette solution con- 
tained 25 mM HEPES. (A) Dur- 
ing NH4CI application, the 
HVA current was slightly aug- 
mented. Washout of NH4CI 
caused a small decrease in the 
HVA current, which recovered 
after 12 min. These changes 
represent only a small fraction 
of what is seen when the pipette 
does not contain HEPES (see 
Fig. 4). (B) Na-acetate pro- 
duced only a small decrease in 
the HVA current in the pres- 
ence of internal HEPES. The 
HVA current returned to con- 
trol after 7 min of washout. The 
command voltage was ramped 
from - 9 0  to +50 mV over a 2-s 
period. Traces are averages of 
six ramps. The holding poten- 
tial was -50  mV. 

to rest ( - 8 0  mV). A 3.5-min superfusion of  cobalt was applied simultaneously with 
the next depolarizing current  pulse. The  evoked AP lasted only 1 min, reflecting the 
wash-in time of  cobalt. Further  depolarizing current  pulses failed to evoke APs until 8 
min after cobalt washout. Similar suppression of  APs was seen in all 20 cells treated 
with cobalt and in all 3 cells superfused with cadmium (30 I~M). 

The  sustained potential of  APs varied with extracellular calcium concentrat ion 
([Ca2+]o), as shown in Fig. 6 B. The  initial AP, evoked in 2.5 mM [Ca2+]o, plateaued 
at + I0  mV. A switch to 0.5 mM [Ca2+]o hyperpolarized the membrane  potential by 
30 mV and terminated the AP. The  plateau membrane  potential o f  a subsequent AP 
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evoked in 0.5 mM [Ca2+]o was - 1 5  mV. Raising [Ca2+]o sequentially to 2.5, 5, and  10 
mM progressively depo la r i zed  the p la teau  potent ia l .  Similar  calcium substi tutions 
were made  on a total  of  e ight  cells. Increas ing [Cae+]o 5- 10-, and  20-fold from 0.5 
mM depo la r i zed  the p la teau  potent ia l  by 19.25 + 3.50, 26.75 -+ 4.32, and  34.75 +- 
3.36 mV (mean -- SD), respectively. 

T h e  block o f  the APs by cobal t  and  cadmium and the d e p e n d e n c e  o f  the p la teau  on 
[Ca2+]o confi rm ear l ier  conclusions that  the APs in hor izonta l  cells are  gene ra t ed  by a 
sustained HVA calcium conductance  (Tachibana,  1981; Lasater ,  1986; Shingai  and  
Chris tensen,  1986). It has been  p r o p o s e d  by Lasater  (1986) and  Shingai  and  
Chris tensen (1986) that  at the depo la r i zed  p la teau  o f  the AP, a sustained inward 
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the membrane potential record indicates where 6 rain of the record was deleted. (B) External 
calcium [Ca2+]o was changed from 2.5 to 0.5 mM. The AP was terminated by this change. A 
subsequent AP was evoked in 0.5 mM and [Ca2+]o was raised successively to 2.5, 5.0, and 10 
mM. 

FIGURE 6. Effects of cobalt and cal- 
cium on the AP. (,4) The first AP, 
recorded in control saline, lasted 5 
min before a hyperpolarizing current 
(downward arrow) returned the mem- 
brane potential to rest ( - 80  mV). 
Bath application of cobalt (5 mM 
CoCl2) terminated a second evoked 
AP spontaneously after < 1 min. Sub- 
sequent attempts to evoke APs failed 
until ~8  min after the washout of 
cobalt. The small upward arrows show 
200-ms, 0.15-hA current pulses. The 
large arrow shows a 1,100-ms, 
+0.3-nA pulse of current. During co- 
balt superfusion even the larger cur- 
rent pulse failed to elicit an AP. An AP 
similar to that in control was evoked 
~ 10 min after cobalt washout. Similar 
results were obtained using 30 I~M 
cadmium (n = 3). The vertical bars in 

calcium current ,  the HVA current ,  is ba lanced  by an outward sustained potass ium 
current .  On  this idea, it can be p red ic ted  when the HVA current  is reduced,  the 
outward current  will hyperpola r ize  the membrane ,  b r ing ing  the potent ia l  below the 
activation range  for the  HVA current .  Below this level the potent ia l  will re turn  quickly 
to nea r  the potass ium equi l ibr ium potent ia l .  

Influences of NH4CI and Na-Acetate on Action Potentials 

Horizonta l  ceils were briefly superfused with NH4C1 (20 mM) o r  Na-aceta te  (25 mM). 
Fig. 7 A shows the effects of  NH4CI on the evoked APs. In control  saline, the evoked 
AP te rmina ted  spontaneous ly  after  ~ 1 rain. Dur ing  superfusion with NH4CI, the AP 
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r e m a i n e d  at its p la teau  poten t ia l  unti l  af ter  the NH4CI was washed out  ( ~  2 min). 
Subsequent  a t t empts  to evoke APs with depo la r i z ing  currents  failed unti l  12 rain after 
the washout  of  NHaCI. (The record  is i n t e r rup t ed  for 6 min  for clarity.) Typically APs 
were p r o l o n g e d  dur ing  NH4CI appl ica t ion  and  were shor tened  or  e l imina ted  for a 
pe r iod  of  several  minutes  after  washout.  Fig. 7 B shows the effects of  25 mM 
Na-aceta te  on the APs. In  this cell, the initial AP, evoked in control  saline, lasted ~ 35 
s. After  the  app l ica t ion  of  Na-ace ta te  (2.5 min), the  dura t ion  of  the  APs was 
shor tened.  The  dura t ion  r e tu rned  to p re -Na-ace ta te  levels ~ 6 rain after  washout.  In 
general ,  the APs were shor tened  beg inn ing  0 .5 -2  rain after Na-ace ta te  was intro-  
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FIGURE 7. Effects of NH4CI and Na- 
acetate on the AP. (A) The initial 
evoked AP lasted ~ 1 min. Bath appli- 
cation of NH4CI (20 mM) prolonged 
the AP and washout of NH4CI elimi- 
nated further APs. 9 rain after wash- 
out of NH4CI the AP returned to 
control. The vertical lines indicate 
where 6 min of the recording are not 
shown. (B) The first AP, recorded in 
control saline, remained in its depo- 
larized state for 35 s before spon- 
taneously reverting to the resting 
membrane potential ( - 80  mV). Na- 
acetate (25 mM) was bath applied for 
2.5 rain. Subsequent evoked APs were 
shortened to <15 s after the Na- 
acetate. Note that the initial peak of 
the AP is artifactually elevated by the 
current pulse. The sloping portion of 
the record shows the cell's membrane 
potential. The initial height of the AP 
was also reduced by Na-acetate. 6 rain 
after Na-acetate, the AP durations 
and amplitude returned to control. 
The saline contained 2.5 mM Ca z+ 
and was adjusted to pile 7.8. 

duced  and  they stayed fo reshor tened  for a pe r iod  of  2 -10  min after  washout.  These  
results show that  Na-aceta te  superfusion and NH4CI washout  shor ten  the AP, 
consis tent  with an ac id- induced  suppress ion  of  the HVA current ,  and  that  NH4CI 
lengthens  the AP, consis tent  with an a lka l ine- induced e n h a n c e m e n t  o f  the HVA 
current .  

Compar i sons  of  the  pa tch  p ipe t t e  and  microe lec t rode  expe r imen t s  suggest  there  
were differences in the degree  to which the AP and  HVA cur ren t  were a l te red  by 
NH4CI and  Na-acetate .  For  example ,  alkal inizat ion by NH4C1 seemed  to l eng then  
the AP to a g rea te r  deg ree  than the HVA current  was enhanced .  To  investigate 
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whether  these differences might  be caused by the effects of  in t racel lular  p H  on ionic 
conductances  or  cel lular  processes in add i t ion  to, or  ins tead of, those on  the HVA 
current ,  we pe r fo rmed  the following exper iments .  

Effects of BAPTA and IBMX on pH Regulation of Action Potentials 

Calcium currents  in neurons  can be blocked by intracel lular  Ca 2+ (Brehm and  Eckert, 
1978; Til lotson,  1979). Tach ibana  (1983) has de mons t r a t e d  that  sustained calcium 
currents  in goldfish hor izonta l  cells were inactivated by intracel lular  calcium. To  test 
the not ion that  NH4C1 and Na-aceta te  might  be regula t ing  the AP by affecting 
int racel lular  calcium levels th rough  some p H - d e p e n d e n t  process,  we de t e rmine d  the 
NH4CI sensitivity of  APs in cells loaded  with the  calcium chelator ,  BAPTA. Fig. 8 A 
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FIGURE 8. Effects of intracellular 
BAPTA and IBMX on pH modulation 
of APs. (A) 1 h before this recording, 
the cell was bathed in 70 ~M BAPTA- 
AM for 14 min. The cell was recorded 
with a microelectrode containing 1 M 
BAPTA-tetrapotassium and 1 M KCl. 
The initial evoked AP lasted ~ 1 rain 
and then spontaneously reverted to 
the resting potential. NH4CI (20 mM) 
prolonged the AP duration and wash- 
out produced a shortening and even- 
tual elimination of the AP. 9 min after 
washout, the evoked AP returned con- 
trol. All eight cells that were tested 
showed the same prolongation and 
shortening of the AP with NH4CI. The 
interruption in the displayed record 
lasted 5 min. This cell was recorded 
with a microelectrode containing 1 M 
BAPTA-tetrapotassium and 1 M KCI. 

(B) The cell was bathed with 500 ~M IBMX for 15 min before the recording. The initial AP 
lasted ~ 50 s. NH4CI prolonged the AP; washout shortened the AP. The AP returned to control 
~ 10 min after NH4C1 washout. All seven cells tested in IBMX showed the prolongation and 
shortening of APs upon application and washout of NH4CI. 

shows a hor izonta l  cell that  had  been  loaded  with BAPTA by p re incuba t ing  it in 
BAPTA-AM (70 ~M) for a short  t ime ( ~ 5 min) 1 h before  the recording.  In  addi t ion,  
the record ing  microe lec t rode  was filled with 1 M BAPTA-te t rapotass ium and 1 M 
KCI. U n d e r  these condi t ions an initial AP lasting 1 min was evoked in control  saline. 
NH4CI (20 mM) p r o l o n g e d  the next  evoked AP and then, after washout,  r educed  the 
dura t ion  of  APs and  finally e l imina ted  subsequent  ones. 9 min after washout  (the 
record  was in t e r rup ted  for 5 min) the AP re tu rned  to control .  APs in all e ight  o f  the 
cells that  were tested with intracel lular  BAPTA showed the same p ro longa t ion  and 
then shor ten ing  or  e l iminat ion  with NH4CI. Two of  these cells were tested with 
BAPTA-AM only, four were tested with BAPTA-AM and BAFFA-fi lIed microelec-  
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trodes, and two were tested with BAPTA-filIed microelectrodes only. The above 
results are consistent with the idea that NH4CI regulation of APs is not dependent  on 
intracellular Ca 2+, but by themselves they must be interpreted cautiously since there 
was no independent verification that calcium levels were actually buffered to low 
levels by BAPTA. However, the conclusion regarding an absence of a pH-dependent,  
calcium-induced suppression of HVA currents is strengthened by the patch-clamp 
experiments discussed above. In those experiments barium was substituted for 
external calcium. Although barium substitutes for calcium as a charge carrier, it does 
not usually suppress calcium currents (Ohya, Kitamura, and Kuriyama, 1988; Plant, 
1988). 

Increases of intracellular cAMP enhance the efficacy of kainate-type glutamate 
channels in fish horizontal cells (Knapp and Dowling, 1987) and cause uncoupling of 
gap junctions between horizontal cells (Lasater, 1987; DeVries and Schwartz, 1989). 
The cAMP levels are thought to be regulated in part by dopamine binding to D 1 
receptors, which stimulates adenylyl cyclase (Lasater, 1987). One possibility to 
account for the NH4CI dependence of the AP is that a pH-sensitive, cAMP-dependent 
process in these cells could be influencing the phosphorylation of the calcium 
channels and changing their state of activation (Belles et al., 1988). To test for a 
cAMP-mediated mechanism we bathed cells in IBMX, a cyclic nucleotide phosphodi- 
esterase inhibitor that should block the hydrolysis of  cAMP and cGMP. Fig. 8 B shows 
the effects of NH4C1 on a cell preincubated in 500 p.M IBMX for 15 min before and 
during the experiment. The prolongation of the AP during NH4CI treatment and the 
shortening and elimination of APs during washout was not eliminated by IBMX. 
These same findings held for two other horizontal cells bathed in 500 p.M IBMX and 
five other cells bathed in 100 ~M IBMX. In other retinal studies, comparable 
amounts of IBMX blocked phosphodiesterase activity in bipolar cells and photore- 
ceptors (Ames and Barad, 1989; Nawy and Jahr, 1990). In turtle eyecups a 
concentration of IBMX as low as 20 o.M blocked cAMP-mediated uncoupling of 
horizontal cells (Piccolino, Neyton, and Gerschenfeld, 1984). Therefore, the above 
results make it unlikely that NH4C1 modulation of AP duration is mediated by a 
process that depends on phosphodiesterase activity and hence changes in cAMP or 
cGMP levels. 

NH4Cl Regulation of APs in TEA and Na-free Saline 

Fish horizontal cells have a TEA-sensitive potassium conductance; application of TEA 
increases the duration of the APs in these cells (Tachibana, 1981). Outward rectifying 
potassium currents, which are TEA sensitive, have been shown in some preparations 
to be blocked by acidification (Moody, 1980). Blockage of the TEA-sensitive potas- 
sium current by acidification would be expected to prolong APs, so it would seem 
unlikely that acidification would suppress the APs via this mechanism. Nonetheless, 
we tested this possibility. Fig. 9 A shows that in the presence of 30 mM TEA, NH4C1 
superfusion prolonged the APs and then eliminated them during washout. I-V 
relations obtained in TEA-treated cells showed that an outward rectifier current was 
suppressed (data not shown) by TEA at this concentration. The pH dependence of 
the outward rectifying potassium was not studied further in these experiments, but it 
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was evident  that this current  did not  contr ibute  to the shor tening of the AP u p o n  
intracellular acidification. 

Voltage-sensitive sodium currents are known to be regulated by pHi (for review see 
Bass and  Moore, 1973). In addition, a sodium-hydrogen exchanger  is known to 
regulate pHi in many nerve cells (Hoffmann and  Simonsen, 1989). Fig. 9 B  
demonstrates  that NH4CI modula t ion  of the APs is not  likely to be due to modula t ion  
of sodium conductances or activity of sodium-hydrogen exchangers.  This cell, 
recorded in Na-free saline, generated APs that were first p ro longed and then 
el iminated by the applicat ion and subsequent  washout of NH4CI. The  ability to 
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FIGURE 9. Effects of TEA and sodi- 
um-free saline on the AP. (A) The 
initial AP, recorded in TEA (30 mM) 
saline, remained in its depolarized 
state for ~40 s before reverting to 
rest potential. During both applica- 
tions of NH4CI (20 mM) the second 
and third APs were prolonged. They 
were terminated by hyperpolarizing 
current pulses (downward arrows). 
Four attempts to evoke APs after 2 
min of washout failed. Two attempts 
to evoke APs after a brief (20 s) reap- 
plication of NH4C1 resulted in sus- 
tained APs. Again after ~ 3 min of 
washout, APs could no longer be 
evoked. (B) In Na-free saline the AP 
remained in its depolarized state (~ 0 
mV) during bath application of 
NH4CI (20 mM) and for a period of 
~ 2.5 min after NH4CI washout. Dur- 

ing the next 4 min after washout, subsequent evoked APs became shorter and were eventually 
eliminated. A brief (~ 30 s) reapplication of NH4C1 prolonged the AP to 3 min. A gradual 
shortening and eventual elimination of the APs were observed again as NH4CI was washed out. 
Similar results were seen in all three cells tested in Na-free saline. This record was started 20 
min after control saline was switched to Na-free saline. These results rule out the possibility that 
a pH-dependent effect on a sodium current can account for the changes in AP duration. 

generate  an AP in Na-free saline confirms the findings of Tachibana  (1981) that 
sodium currents  do not  contr ibute  to the AP. Since NH4CI modula ted  the AP in the 
absence of a sodium gradient,  we conclude that the activity of the sodium-hydrogen 
exchanger  is not  regulat ing the dura t ion of the APs. 

D I S C U S S I O N  

Sustained APs and  high voltage, slowly inactivating calcium currents  were shown to be 
altered by salines formulated to change the p h i  of the horizontal cells. Na-acetate 
and  NH4C1 superfusion are s tandard techniques that have been  used to modulate  
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pHi in a variety of preparations including Paramecium, pancreatic acinar cells, and 
retinal pigment epithelial cells (Umbach, 1982; Paradiso et al., 1987; Lin and Miller, 
1991) and are shown to similarly alter pHi in the isolated horizontal cells studied here 
(Fig. 3). Therefore, we interpret these results to indicate that alkalinization from pHi 
7.4 prolonged the AP by increasing the HVA current. Acidification from pHi 7.4 
reduced or eliminated the AP by suppressing the HVA current. 

The mean resting pHi in isolated horizontal cells was found to be 7.4. Of 
physiological interest is the question of whether pHi is normally close to 7.4 where 
the pH regulation of APs and HVA currents are seen. There  is no data on in vivo pHi 
of retinal neurons in fish. Several studies at least suggest that pHi could be ~ 7.4. 
Heisler (1979) reported that skeletal and heart muscle cells from carp had a pH of 
7.4. He has also shown that the pH of carp blood at 20°C is 7.85, close to the 
extracellular pH in the present experiments. On this basis it is likely that intracellular 
the pH of retinal neurons could be close to 7.4. 

Effects of IntraceUular Acidification on Membrane Potential of Horizontal Cells 
Recorded in the Intact Retina 

Previously published studies provide evidence that the pH-dependent  modulation of 
HVA current might occur in the intact retina (Negishi, Teranishi, and Kato, 1985; 
Takahashi and Copenhagen, 1992). Takahashi and Copenhagen (1992) showed that 
intracellular acidification induced by increases of CO2 hyperpolarized horizontal cells 
(see Fig. 2 of Takahashi and Copenhagen, 1992). Negishi et al. (1985) showed that in 
eyecup preparations of fish retina, ammonia initially depolarized and then hyperpo- 
larized horizontal cells (see Fig. 3). Furthermore, when they gassed the preparation 
with increased CO2, the horizontal cells were hyperpolarized. These previous results 
are consistent with the notion that the resting membrane potential of horizontal cells 
can be influenced by changes in pHi. In light of our data demonstrating the effects of 
pHi on the HVA current, these membrane polarizations reported above in intact 
retina could be plausibly explained by pH-dependent  modulation of the HVA 
current. 

Regulation of lntracellular pH 

Intracellular pH of fish retinal neurons could be modulated by changes in ionic 
concentrations, metabolism, and temperature. Many neurons maintain their intracel- 
lular pH by using sodium-hydrogen or bicarbonate-chloride exchangers (Thomas, 
1977). We have preliminary data indicating that these two exchangers regulate pH of 
horizontal cells (Copenhagen and Takahashi, 1991). Changes in extracellular con- 
centrations of any of the ions carried by the exchangers could lead to an intracellular 
acidification or alkalinization. For example, salt balance in the blood could vary with 
salinity of the fishes' environment, which could alter intracellular pH. Hydrogen ions 
produced by the hydrolysis of ATP during anaerobic metabolism could acidify 
horizontal cells, and other retinal neurons as well. This acidification would be 
exaggerated during brief ischemia (Nedergaard et al., 1991). Moreover, Heisler 
(1979) has shown that the pH of carp and other poikilotherms varies with tempera- 
ture. As the temperature decreases, there is compensatory acidification of blood. This 
change could he reflected in the intracellular pH. Although there is scant evidence to 
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document how pH is regulated in vivo in any vertebrate retina, it is certainly 
conceivable that the pH of retinal cells could be altered by environmental and 
metabolic changes. Such changes could alter horizontal cell excitability, coupling, or 
the release of neurotransmitter. 

pH Dependency of HVA Current and APs 

The resting pHi of the horizontal cells in culture was measured to be 7.4. NH4CI 
superfusion raised and lowered the pHi about this level. It was not possible in these 
experiments to directly quantify the relation between intracellular pH and the 
enhancement or reduction of the HVA current. However, assuming that a single 
titratable site on the calcium channel was being protonated, the dissociation constant 
is probably not more than +0.5 pH units from pH 7.4 (assuming pH 7.4 fell 
somewhere within the range of 20-80% of current reduction). 

Given that the pH was reduced on the order of  0.5 pH units by Na-acetate and 
NH4CI washout (Fig. 3) and that the same treatments led to significant reductions in 
the HVA currents, it would not be unlikely for 50% suppression to fall between pH 
7.1 and 7.4. In Paramecium the apparent  dissociation constant for calcium current 
suppression by protons was at pH 6.2 (Umbach, 1982). Intracellular pH in Parame- 
cium averaged 6.8. In ventricular cells from guinea pig, the calcium current was 50% 
blocked at pH 6.5 (pHi 7.2; Irisawa and Sato, 1986). It would appear  that this current 
in horizontal cells is inhibited at a lower proton concentration (higher pH) than the 
calcium currents in Paramecium or ventricular cells. However, in all cases the currents 
are capable of being enhanced or suppressed with changes of pH about the intrinsic 
pHi of the cells. 

Effects of pHi on Retinal Function 

Intracellular pH regulation of HVA current might be expected to affect center- 
surround organization in the retina by altering neurotransmitter release from 
horizontal cells and by altering their membrane potential. Lasater (1986) and Shingai 
and Christensen (1986) have postulated that the membrane potential of horizontal 
cells in the in vitro retina depends on a sustained HVA current. Inward currents 
generated by voltage-gated calcium channels and glutamate-gated channels are offset 
by a sustained outward potassium current. Any change in the sustained HVA current 
would alter the membrane potential of the horizontal cell. 

Moreover, the flux of calcium through the sustained calcium channels and 
concomitant changes in intracellular calcium activity could alter neurotransmitter 
release from the horizontal cells. It has been reported that the release of  GABA from 
toad horizontal cells was independent of extracellular concentrations of calcium 
(Schwartz, 1982). Other evidence suggests that there is a calcium-dependent compo- 
nent of GABA release (Ayoub and Lam, 1987) from fish horizontal cells. In fish retina 
only one of four subclasses of horizontal cell appears to use GABA as a neurotrans- 
mitter (Marc, Stell, Bok, and Lam, 1978; Lain, Su, Swain, Marc, Brandon, and Wu, 
1979). Thus, it is possible that the other subclasses of horizontal cell might release 
other neurotransmitter molecules by calcium-dependent exocytosis. 

Potential Protective Effects of an Acidification-induced Suppression of Calcium Influx 

Calcium entry into cells has been proposed as one of the events leading to cell death 
during ischemia or metabolic insults to nervous tissue. Ischemic episodes are known 
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to be accompanied by an intracellular acidosis (Kraig, Ferreira-Filho, and Nicholson, 
1983). It is ostensible, given the pH dependence of the HVA currents, that an 
intracellular acidification caused by ischemic acidosis could protect cells from death 
by reducing calcium influx. 

pH Buffering in Cells: An Explanation of the Differences in Acetate Efficacy 

Because acidification-induced changes in APs did not appear to result from pH 
effects on TEA-sensitive potassium currents, sodium currents, calcium-inactivated 
calcium currents, or cAMP hydrolysis, we propose that the differences in Na-acetate 
efficacy is due to differences in intracellular buffering between microelectrode and 
patch pipette recordings. During microelectrode experiments acetate tended to have 
weak effects on AP duration compared with NH4CI washout (see Fig. 7). Moreover, 
acetate sometimes did not acidify cells monitored with BCECF. In contrast, during 
patch-clamp experiments acetate was much more effective than NH4CI, often 
reducing the HVA current to near zero (see Fig. 4). 

Cells commonly regulate their intracellular hydrogen ion concentration using a 
series of weak acid buffers that act in concert to maintain a stable pHi. One 
prominent pH buffer in most cells is phosphate (Portner, 1987); however, several 
buffers combine to set and maintain a resting pHi. Individual buffers provide a 
buffering capacity based on concentration and the difference between pHi and the 
pK~ for that particular buffer. A cell's total buffering capacity is the sum of the 
individual buffers and can be calculated from the equation: 

[H +] x K' 
13 = 2.3 × [total buffer] 

([H +] + K') 2 

where 13 is the buffering capacity and K' is a constant representing the relative 
strength of the acid buffer (see Roos and Boron, 1981). 

During microelectrode experiments we contend that the natural cellular buffering 
capacity of recorded cells remains virtually intact because the small tip diameters 
restrict fluid exchange. Under these conditions pHi is 7.4, and the pKa of the putative 
major intracellular buffer phosphate is 7.2. Presumably acid loading caused by 
acetate entry can be buffered readily with only a small change in pHi. In the 
patch-clamp experiments, however, the innate cellular buffers are dialyzed and 
replaced by the major component of the patch solution, cesium gluconate. The pK~ 
for gluconate is 3.76; hence, at pH 7.4 (the patch solution pH) all the gluconate is 
unprotonated. As acetate enters the cell and releases its proton, gluconate's buffering 
capacity is very low; hence, the pH drops more than when the natural cellular buffers 
and buffering capacity are intact. 

We made very rough estimates of the buffering capacity of isolated horizontal cells 
under the two different recording conditions. Data regarding the intracellular 
buffering capacity in fish cells are rare; however, Heisler and Neumann (1980) 
reported that the buffering capacity in dogfish muscle cells ranged between 36 and 
52 meq/liter. Under the patch-clamp conditions, if we make the simplifying assump- 
tions that the horizontal cell represents a closed system and that acetate has 
equilibrated across the membrane, then at pHi 7.4 the intracellular buffering capacity 
due to gluconate (130 raM) and acetate (20 mM) is ~ 0.2 meq/liter. Making similar 
assumptions during NH4CI treatment, the cells buffering capacity is ~45 meq/liter. 
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This value is similar to the buffering capacity of fish muscle cells and presumably that 
for intact, undialyzed horizontal cells. Therefore, on this basis acetate would be 
expected to change pHi much more with patch pipettes than with microelectrodes. 
The assumptions we make are clearly oversimplified; however, these values indicate a 
basis for the discrepancy noted in the efficacy of acetate during microelectrode and 
patch-clamp experiments. 

At present we are unable to simultaneously image intracellular pH while recording 
electrophysiologically. We do not know whether the ~ 45% reduction in HVA current 
during NH4CI washout is more than enough or just sufficient to account for the 
effects seen on the AP duration. The fact that the AP plateau membrane potential in 
isolated cells can spontaneously return to negative potentials suggests that the 
interacting currents are delicately balanced, requiring only small changes in either 
calcium or potassium current to cause a return to baseline. We believe the reductions 
in HVA current noted during patch-clamp experiments with acetate or NH4CI 
washout are probably much more than necessary to cause the AP plateau to return to 
baseline. 
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