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ARTICLE OPEN

Correlation-driven electron-hole asymmetry in graphene field
effect devices
Nicholas Dale1,2, Ryo Mori 1,3, M. Iqbal Bakti Utama 2,3,4, Jonathan D. Denlinger 5, Conrad Stansbury 1,2, Claudia G. Fatuzzo1,2,9,
Sihan Zhao 1, Kyunghoon Lee 1,2, Takashi Taniguchi 6, Kenji Watanabe 7, Chris Jozwiak5, Aaron Bostwick 5, Eli Rotenberg 5,
Roland J. Koch5, Feng Wang1,2,8 and Alessandra Lanzara 1,2,8✉

Electron-hole asymmetry is a fundamental property in solids that can determine the nature of quantum phase transitions and the
regime of operation for devices. The observation of electron-hole asymmetry in graphene and recently in twisted graphene and
moiré heterostructures has spurred interest into whether it stems from single-particle effects or from correlations, which are core to
the emergence of intriguing phases in moiré systems. Here, we report an effective way to access electron-hole asymmetry in 2D
materials by directly measuring the quasiparticle self-energy in graphene/Boron Nitride field-effect devices. As the chemical
potential moves from the hole to the electron-doped side, we see an increased strength of electronic correlations manifested by an
increase in the band velocity and inverse quasiparticle lifetime. These results suggest that electronic correlations intrinsically drive
the electron-hole asymmetry in graphene and by leveraging this asymmetry can provide alternative avenues to generate exotic
phases in twisted moiré heterostructures.

npj Quantum Materials             (2022) 7:9 ; https://doi.org/10.1038/s41535-021-00404-8

INTRODUCTION
Electron-hole asymmetry, or the difference in a material’s
electronic properties upon doping with electrons versus holes,
profoundly impacts the character of phase transitions1–5, and the
choice of doping for devices6,7. While it typically arises from
differing structures of bands containing electrons and holes8,9, in
some cases this asymmetry manifests from external sources such
as impurities10,11, strain9,12,13, or simply from intrinsic many-body
interactions14–16. Graphene is an interesting case in this light
because its K point band structure is expected to be perfectly
electron-hole symmetric17, but the combination of its dimension-
ality and dispersion relation renders it highly susceptible to
symmetry-breaking perturbations18. Most experimental realiza-
tions of the monolayer16,19 and bilayer20,21 exhibit electron-hole
asymmetry, even after vast improvements in sample preparation,
which reduce the effective strain and impurity concentra-
tion16,21,22. Whether external sources or intrinsic interactions, such
as correlations5,14–16,23,24 drive asymmetry remains to be verified.
Understanding how electron-hole symmetry breaks and its
relationship to exotic ground states5,14,15,25 has become even
more important with the recent discovery of Mott-like physics and
superconductivity in twisted bilayer graphene26,27 and other
moiré heterostructures28–30. These systems exhibit phase dia-
grams reminiscent of the cuprates31, in which the role of the
strong electron-hole asymmetry in driving the remarkable phases
remains elusive.
The difficulty in addressing the origin of electron-hole

asymmetry in graphene today is the requirement of a probe that
has complete access to the material self-energy in both energy
and momentum spanning over a large range of electron and hole

dopings. Some probes, including transport19 and quantum
capacitance16, can easily cover the broad doping range via
electrostatic gating, but are only sensitive to the electronic states
at the Fermi energy (EF) and do not provide any momentum
information. In contrast, Angle-Resolved Photoemission Spectro-
scopy (ARPES) can provide access to the full quasiparticle spectral
function A(k, ω), but so far has resorted to methods of doping that
modify the fundamental properties of the system, including
screening32,33 and impurity concentration34,35. The very recent
introduction of electrostatic gating into ARPES experiments36,37

enables studies of the doping-dependent self-energy with full
energy and momentum resolution while leaving the sample in
pristine condition. Here, we directly reveal a significant electron-
hole asymmetry in the quasiparticle self-energy of graphene. The
doping and momentum resolution of our measurement enables
us to provide strong evidence for correlations as the intrinsic
driving force.

RESULTS
ARPES in-operando
Figure 1 a presents an illustration of the sample geometry used for
the ARPES experiment and gating configuration, while panel b
shows the optical micrograph of the overall sample S1 (two
samples were measured in this report, see Methods section for
details). The dashed contours identify regions of monolayer
graphene (black), hBN (blue), and graphite (purple) while the
yellow thick lines indicate the electrical contacts. The size of the
sample is smaller than 1200 μm2. The adopted beam size was
1 μm to allow measurements of each individual part of the sample
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and disentangle different contributions. The equilibrium spectra
for the sample in Fig. 1d clearly depicts the characteristic linear
bands of graphene’s Dirac fermions along the K-K’ direction
populated up to near the charge neutrality point. A positive
(negative) voltage established between the graphite back gate
and the graphene sample results in the addition, panel e
(subtraction, panel c) of electrons to (from) the sample. Since
the Fermi energy EF is held at the ground, the additional negative
(positive) charges shift the Dirac spectrum downward (upward).
The doping change can be estimated by the peak separation at EF
from momentum distribution curves (MDCs), spectra at constant
energy as a function of momentum, shown in panel f for different
gating values. At Vg= 0V the Fermi surface is a point and the
momentum separation between MDC peaks is negligibly small. As
electrons (holes) are added to the system, two peaks emerge and
the momentum separation increases, with a maximum at Vg=−
5V(8V) corresponding to a p (n) doping of 2.2 ± 0.3 ⋅ 1012cm−2

(0.5 ± 0.3 ⋅ 1012cm−2) (details on calculation of the carrier density
can be found in Supplementary Note 1). The position of the Fermi
energy EF− ED, displayed in Fig. 1g, is estimated by the
intersection point of linear fits to the Dirac spectra (blue dashed
lines in Fig. 1c–e). Assuming a linear dispersion relation, i.e., EF−
ED= vFkF, the Fermi velocity vF can be estimated here from a linear
fit to the data in panel g. Interestingly, we find distinct behaviors
on opposite sides of the charge neutrality point: at hole dopings,
the estimated vF (orange/red line) is less steep than vF at neutrality
and electron dopings (navy/blue lines). Although the results in Fig.
1g might appear in contrast to a previous report38 where no
asymmetry in the density of states was observed, we note that a
true estimate of the density of states can only be reached by
comparing EF with quantities such as kF that are unaffected by
quantum capacitance contributions near charge neutrality (see
Supplementary Note 5).

Electron-hole asymmetry in graphene dispersions
Figure 2 reports the detailed evolution of the K point electronic
structure near EF for different doping (gating) values. Figure 2a–c
display raw image plots near the K point for dopings of− 0.9 ⋅
1012cm−2, 0.0 ⋅ 1012cm−2, and 1.1 ⋅ 1012cm−2. Already from the
raw data one can see that the spectrum in Fig. 2a is linear, and at
the neutrality point (Fig. 2b) the dispersion looks noticeably
steeper near EF (= ED) than at higher binding energies, in
agreement with previous reports32,33. The electron-doped spec-
trum (Fig. 2c) presents different structure for the valence band
than does the spectrum at similar hole doping: the valence band
near the Dirac point (black dashed line) is steeper than the valence
band in Fig. 2a (red dashed line).
These differences are better visualized by plotting the

energy dispersion vs momentum (Fig. 2d), extracted by fitting
the momentum distribution curves with standard Lorentzian-
like functions in the proximity of the Dirac point. A clear
departure from linearity is observed in the data starting at the
neutrality point, where the dispersion is steepest, and still
observed in the electron-doped side. Band velocities can be
directly extracted from these data, being proportional to the
slope of the ARPES dispersions. Because the dispersions for
hole dopings remain linear, the band velocity at the Dirac point
vD (which is above EF at these dopings) can be approximated
by the Fermi velocity vF. In contrast, the dispersions at
neutrality (purple) and electron dopings (blue) show a large
deviation from linearity, with vD nearly twice as large as
velocities at ED − 0.5 eV. These results clearly indicate the
presence of a distinct electron-hole asymmetry in the electro-
nic response and are summarized in panel e, where the band
velocities at the Dirac point (vD), extracted from the slope of
ARPES dispersions, are plotted as a function of doping.
Although a divergence of vD is observed in the proximity of
the charge neutrality point, as previously reported35 for the

Fig. 1 ARPES in-operando. a, b. Schematic of experimental setup (a-) and optical micrograph of the graphene/hBN sample (b-). Dashed lines
outline regions of graphene (black), hBN (blue), and graphite (purple). Scale bar: 20 μm (c.-e.) ARPES spectra for S1 along the K � K 0 direction
(perpendicular Γ− K) at (c-) p doping (-5V), (d-) equilibrium (0V), and (e-) n doping (8V). Blue dashed lines indicate quasiparticle peak positions
extracted from Lorentzian fits. (f.) doping-dependent MDCs spectra and quasiparticle peak positions (black arrows) at EF, indicated by the
white dashed line in (b-d). (g.) EF− ED as a function of kF, extracted from linear fits to the graphene spectra. Data for two different samples are
shown (S1 and S2). Error bars indicate 1σ deviation of best fit to the linear intersection of the dispersions. Orange (Red) line is a linear fit to the
hole-doped EF data for S1 (S2), Navy (Light blue) line is a fit to the electron-doped EF data for S1 (S2).
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electron-doped side, a clear asymmetry is revealed over the
entire doping range, with vD ~ 30% higher for electron dopings
than for hole dopings. The large renormalization of the Dirac
spectra was previously reported at the neutrality point and
assigned to electron-electron interactions35,39 leading to a
logarithmic correction of the band velocity via the coefficient α,
which represents the long-range Coulomb coupling strength.
Using a similar model35

v
v0

¼ 1þ α

8
log

n0
ne

� �
(1)

we determine the coefficient α= e2/ϵℏv0 (panel f), which is the
primary contributor to the velocity enhancement. The dielectric
strength ϵ= ϵ0(1+ a∣ne∣1/2) is allowed to effectively increase as a
function of doping40,41 to account for charge-carrier screening in
graphene35, and v0= 1.0 ⋅ 106 m/s is the local density approxima-
tion of the bare band velocity. The long-range coupling strength α
shows a strong asymmetry between the electron and hole side,
which is the driver for the asymmetry in the band dispersion
discussed in panel d. We note that the correlation strength α is a
direct measurement of charge-carrier screening and is indepen-
dent from the substrate-induced screening, which could also
modify vD42 but is doping independent35. Though this result is in
apparent contrast with some reports using EF sensitive probes40,41,
we note that the real Coulomb interaction strength α can be
isolated more reliably from energy states at the Dirac point35 rather
than from states at EF. Indeed, at EF, the band velocity in graphene
is modified by several interactions: notably it is enhanced by the
long-range electron-electron interactions33,35, and reduced by
electron-phonon coupling33,35,43,44. In contrast, at the Dirac point
the electron-phonon interaction becomes negligible due to the
diminished density of states45–47, and the band velocity is solely
enhanced by the electron-electron interaction39,48.

Electron-hole asymmetry in graphene imaginary self-energy
Figure 3 reports the imaginary part of the self-energy for holes and
electrons at several doping values. The momentum distribution
curve (MDC)’s FWHM Δk, the energy distribution curve (EDC)’s
FWHM ΔE and the imaginary part of the self-energy Im Σ(ω) are
related by 2 Im Σ(ω)= ℏvFΔk= ΔE49. A clear asymmetry between
electrons and holes is already apparent in the raw spectra, EDC
(panel a) and MDC (panel b). The full doping dependence of Im Σ is
plotted in Fig. 3c for both the MDCs at EF (grey) and the EDCs at E−
ED=− 1.5 eV (black), each showing a strong electron-hole
asymmetry. Im Σ at EF scales as a0

ffiffiffiffiffiffiffiffijnej
p

away from neutrality, with
the amplitude a0= 0.30 ± 0.05 for electron dopings and a0= 0.11 ±
0.04 for hole dopings. This doping dependence is in contrast to
alkali-doped graphene samples, which develop a 1=

ffiffiffi
n

p
dependence

from the added long-range impurities35, and the
ffiffiffi
n

p
scaling of the

self-energy at EF observed in gate-tunable graphene samples50 can
be attributed to the Matthiessen combination of acoustic and
optical phonons47,51,52 and short-range impurities53,54. The electron-
electron interaction has been observed to modify the EF self-energy
contribution from phonons43,44,47,55 and impurities53,54,56 through a
positive scaling with the renormalization parameter α= e2/ϵℏvF
which denotes the strength of correlations. The asymmetry in α, as
reported in Fig. 2, therefore drives the electron-hole asymmetry in
the self-energy at EF. We note that the choice of substrate is
important to be able to discern the effect here described. Indeed, a
competing electron-hole asymmetry such as the ones generated by
moiré potential or breaking of inversion symmetry13 as for example
in the case of an aligned hBN substrate, might induce an overall
reduction of the observed asymmetry.
Whereas techniques that are only sensitive to the low energy

physics are often marred by impurities19,34, the ability of ARPES to
access the entire energy range allows us to extract the intrinsic

Fig. 2 Electron-hole asymmetry in graphene dispersions. (a.-c.) graphene spectra at three representative dopings: (a.)− 0.9 ⋅ 1012cm−2, (b.)
0.0 ⋅ 1012cm−2, (c.) 1.1 ⋅ 1012cm−2. Black (red) dashed lines indicate linear fits to dispersions near ED (EF in (a)). Inset cartoons illustrate the
deviations from Dirac cone dispersions at respective dopings. (d.) ED dispersions near the charge neutrality point indicate asymmetry in band
velocity for electron and hole dopings. (e.) Extracted band velocities as a function of doping. Error bars indicate 1σ deviation of best fit to
graphene dispersions. (f.) Graphene fine structure constant (α) as a function of doping, is extracted from band velocity fits. Teal shaded regions
indicate 1σ deviation of best fit to the vD data using the logarithm-based lineshape described in the text.

N. Dale et al.

3

Published in partnership with Nanjing University npj Quantum Materials (2022)     9 

1
2
3
4
5
6
7
8
9
0
()
:,;



behavior of materials. Figure 3d presents the energy dependence
of the imaginary self-energy scaled by the position of the Fermi
energy EF for different doping values. That ImΣ=EF collapses to
two distinct curves for electron and hole dopings provides further
evidence for electron-hole asymmetry in the material. The
reported energy dependence is qualitatively similar to numerical
calculations of the inverse quasiparticle lifetime from dynamically
screened electron-electron correlations57,58. From these calcula-
tions we can approximate the scattering rate to an empirical form:

ImΣee
EF

¼ c1 tanh c2 � ðE � EFÞ
EF

� �
(2)

where c1 and c2 are fit parameters. The fit shows an overall good
agreement with the data and gives c1h= 2.5 ± 0.2 for hole
dopings, c1e= 4.6 ± 0.3 for electron dopings, and c2= 0.11 ± 0.03
for both dopings. Such differences are another manifestation of
the electron correlation strength, as discussed in Ref. 58.

DISCUSSION
The data reported here provide evidence of a strong electron-hole
asymmetry in graphene that is driven, as we will argue below, by
strong electronic correlations. We now discuss the possible
sources of such asymmetry and show that it is an intrinsic
property rather than driven by disorder or other extrinsic effects.
As mentioned above, there are several mechanisms that break

electron-hole symmetry in graphene, and include intrinsic
asymmetries in the band structure, charged impurities, and
electronic correlations. The asymmetries in the band structure

are induced by the next-nearest-neighbor-hopping17,59, which can
be effectively enhanced by strain12, induced for example from
alignment to a substrate with a different lattice constant, and
easily modeled by tight binding calculations13. When applying the
latter to our experimental data, it becomes clear that to account
for the 30% asymmetry between conduction and valence band
velocity an unrealistic value of jt0j � 3 eV is needed. This is an
order of magnitude larger than values reported in the literature
(t0 � 0:3 eV)16,19,60 even when graphene is aligned to an hBN
substrate13, and opposite in sign to the asymmetry produced in
graphene strained via wrinkles12. Moreover, we note that our
samples are aligned at large twist angles to the hBN substrate,
where lattice reconstruction is negligibly small61 (see Supplemen-
tary Note 3 for more details), and therefore the effect on t0 is
negligible.
Another possible source of electron-hole asymmetry is the

presence of charged impurities leading, in the case of very close
(< 5 nm) proximity, to changes in the LDOS as large as 30%12,22.
However, impurities produce an inverse quasiparticle lifetime that
scales inversely with E− ED53, in contrast to the empirical function
in equation 2 used to fit our data. Additionally, the impurity
density required to produce this effect throughout a mesoscopic
sample ( ~ 1013 cm−2) is large enough to produce signatures in the
spectral function in the form of resonance states22,62,63 or impurity
bands64,65, which are not observed in our data.
These observations make electronic correlations the primary

driver of electron-hole asymmetry observed in our study. Indeed,
this interaction can consistently explain the asymmetric logarith-
mic renormalization of the dispersions across charge

Fig. 3 Electron-hole asymmetry in graphene imaginary self-energy. (a., b.) Normalized EDCs at E− ED = −1.5 eV (a-), and MDCs at EF (b-) for
hole (red) and electron (blue) doped graphene. (c.) The imaginary part of the self-energy as a function of doping for EDCs at E− ED = −1.5 eV
(black) and MDCs at EF (grey). Error bars indicate 1σ deviation obtained from peak fit to graphene spectral function. The shaded grey region
indicates 1σ deviation of best fit to the square-root-based function described in the text. (d.) The imaginary part of the self-energy normalized
by the Fermi energy. Blue (red) solid lines indicate fits to the data, as described in the text.
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neutrality39,48, the nonlinear behavior of self-energy at high
binding energies57, and likely the asymmetry in the self-energy
at EF. Finally, we note that though numerical calculations for
Σel-el

58 are much smaller than values found in our experiment,
reaching quantitative agreement between experimental and
theoretical results often requires additional scaling factors45,66.
In conclusion, we have demonstrated the power of electrostatic

gated ARPES to study the interplay of interactions and electron-
hole symmetry in 2D materials. Our results point to electronic
correlations as the driving force for an intrinsic electron-hole
asymmetry in graphene, manifested in the dispersion and inverse
quasiparticle lifetime. These findings open the intriguing possibi-
lity that electron-electron interactions might also be responsible
for the asymmetries found in the phase diagrams of more strongly
correlated materials, including twisted bilayer graphene26,27,
similar correlated 2D moiré systems28,30,67, and in high-
temperature cuprate superconductors15,24,31,68. Given that the
moiré potential can be leveraged to enhance the strength of
correlations in 2D heterostructures30,69–71, we speculate that
breaking electron-hole asymmetry via moiré-enhanced correla-
tions can be an exciting alternative pathway to realize exotic
quantum phases in twisted 2D heterostructures5,14,15,25.

METHODS
Two devices were made for this experiment—for S1 refer to Fig. 1 and for
S2 refer to Figs. 2 and 3

Sample preparation
Flakes of single-layer Graphene and hexagonal Boron Nitride were
exfoliated onto Silicon Wafers with 90nm-thick oxide. S1 was constructed
using a method similar to that used in72. A stamp comprised of
Polypropylene carbonate (PPC), and Polydimethylsiloxane (PDMS), and
the transparent tape was used to pick up Graphite, hBN, and Graphene in
sequential order. The PPC stamp holding the stack was flipped onto a
90 nm oxidized Si wafer with the Graphene facing up, and the polymer was
subsequently removed by annealing in a vacuum furnace at 350 C for 10 h.
S2 was constructed using a technique similar to that outlined in Zomer et.
al.73. A stamp comprised of Polycarbonate (PC) and Polydimethylsiloxane
(PDMS) was used to pick up the Graphene, hBN, and Graphite to form a
graphene/hBN/graphite heterostructure, which was then placed onto a
fresh 90 nm-oxidized Si wafer. PC polymer residue was removed by placing
the stack-on-chip in Chloroform for > 60 min at room temperature.
Contacts were patterned onto each sample surface using electron-beam
lithography followed by evaporation of 5 nm Cr and 50 nm Au.

ARPES measurements and analysis
Sample 1 was measured using a Scienta R4000 Hemispherical Analyzer at
the nanoARPES branch of beamline 7.0.2 (MAESTRO) at the Advanced Light
Source using a photon energy of 74 eV, a temperature of 300 K, and a
pressure better than 1e-10 Torr. The beam was capillary refocused74 to a
spot size of ~1 μm× 1 μm. The overall energy and momentum resolution
was 30meV and 0.014 Å−1, respectively. The sample was doped
electrostatically using a Keithley 2450 Source Meter.
Sample 2 was measured using a Scienta R8000 Hemispherical Analyzer

at Beamline 4.0.3 (MERLIN)75 at the Advanced Light Source using a photon
energy of 94 eV, a temperature of 20 K, and a pressure better than 5e-11
Torr. The beamspot was ~100 μm× 50 μm. The overall energy and
momentum resolution was 25meV and 0.017 Å−1, respectively. The
sample was doped electrostatically using a Keithley 2200 programmable
power supply electrically connected to the cryostat.
All ARPES data in this paper were analyzed using pyARPES, an open-

source python-based analysis framework76. Spectra presented in the
figures have had a background (estimated by the mean value of detector
counts ≃ 0. 5Å−1 away from the K point) removed, and are smoothed by a
gaussian filter with windows in momentum and energy smaller than the
experimental resolution.

DATA AVAILABILITY
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

CODE AVAILABILITY
The analysis code used to support the findings of this study are available from the
corresponding author upon reasonable request.
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