
UCSF
UC San Francisco Previously Published Works

Title
Microbial biogeography and ecology of the mouth and implications for periodontal diseases.

Permalink
https://escholarship.org/uc/item/6d2743jv

Journal
Periodontology 2000, 82(1)

ISSN
0906-6713

Authors
Proctor, Diana M
Shelef, Katie M
Gonzalez, Antonio
et al.

Publication Date
2020-02-01

DOI
10.1111/prd.12268
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6d2743jv
https://escholarship.org/uc/item/6d2743jv#author
https://escholarship.org
http://www.cdlib.org/


Microbial biogeography and ecology of the mouth and 
implications for periodontal diseases

Diana M. Proctor1,2,10, Katie M. Shelef3,10, Antonio Gonzalez4, Clara L. Davis Long5, Les 
Dethlefsen1, Adam Burns1, Peter M. Loomer6, Gary C. Armitage7, Mark I. Ryder7, Meredith 
E. Millman7, Rob Knight4, Susan P. Holmes8, David A. Relman1,5,9

1Division of Infectious Disease & Geographic Medicine, Department of Medicine, Stanford 
University School of Medicine, Stanford, CA 94305 USA

2National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892 
USA

3Department of Biology, Stanford University School of Medicine, Stanford, CA 94305 USA

4Departments of Pediatrics and Computer Science and Engineering, University of California at 
San Diego, La Jolla, CA 92093 USA

5Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 
94305 USA

6Ashman Department of Periodontology & Implant Dentistry, New York University College of 
Dentistry, New York, NY 10010 USA

7Division of Periodontology, University of California, San Francisco School of Dentistry, San 
Francisco, CA 94143 USA

8Department of Statistics, Stanford University, Stanford, CA 94305 USA

9Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304 USA

10These authors contributed equally

Abstract

Corresponding author: David A. Relman: relman@stanford.edu; Address: Encina E209, 616 Serra Street, Stanford, California 
94305-6165; Phone: 650-736-6822; Fax: 650-852-3291.
Authorship
KMS, PML, GCA, and DAR contributed to the design of Institutional Review Boards protocols. RK and AG analyzed samples and 
generated data. DMP, KMS, SPH, RK, and AG contributed to data analysis. DMP wrote the first draft of the manuscript which was 
revised and approved by all co-authors.

Data availability
A description of all methods in addition to the R code and data that were used to generate these findings can also be found at: (https://
purl.stanford.edu/fx440fg9601). Raw sequencing data for this work were deposited into SRA with Qiita 123.

Ethical approvals
Human subjects were consented into the study in compliance with human subjects protocols approved by the University of California, 
San Francisco (UCSF) Human Research Protection Program and the Stanford University Administrative Panels on Human Subjects in 
Medical Research.

Conflicts of interest
The authors declare no conflicts of interest.

HHS Public Access
Author manuscript
Periodontol 2000. Author manuscript; available in PMC 2021 February 01.

Published in final edited form as:
Periodontol 2000. 2020 February ; 82(1): 26–41. doi:10.1111/prd.12268.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://purl.stanford.edu/fx440fg9601
https://purl.stanford.edu/fx440fg9601


Human-associated microbial communities differ in composition among body sites and between 

habitats within a site. Patterns of variation in the distribution of organisms across time and space is 

referred to as ‘biogeography’. The human oral cavity is a critical observatory for exploring 

microbial biogeography because it is spatially structured, easily accessible, and its microbiota has 

been linked to the promotion of both health and disease. The biogeographic features of microbial 

communities residing in spatially distinct but ecologically similar environments on the human 

body, including the subgingival crevice, have not yet been adequately explored. The purpose of 

this paper is twofold. First, we seek to provide the dental community with a primer on 

biogeographic theory, highlighting its relevance to the study of the human oral cavity. For this 

reason, we summarize what is known about the biogeographic variation of dental caries and 

periodontitis and postulate as to how this may be driven by spatial patterning in oral microbial 

community composition and structure. Second, we present a number of methods that investigators 

can use to test specific hypotheses using biogeographic theory. To anchor our discussion, we apply 

each method to a case study and examine the spatial variation of the human subgingival microbiota 

of 2 individuals. Our case study suggests that subgingival communities in the aggregate may 

conform to an anterior-to-posterior gradient in community composition. The gradient appears to 

be structured both by deterministic and non-deterministic processes, though additional work is 

needed to test and confirm specific hypotheses. A better understanding of biogeographic patterns 

and processes will advance our understanding of ways to optimize the efficacy of dental 

interventions targeting the oral microbiota.

Keywords

spatial pattern; oral microbiome; subgingival; supragingival; oral microbiota; biogeography

Introduction

Different teeth and tooth aspects display differential susceptibility to caries, gingivitis and 

periodontitis 1–4. Given that dental pathology arises in large part due to disturbances in 

microbial community membership, structure and/or function, these observations emphasize 

the utility of disentangling the relative effects of geographic (tooth location within the oral 

cavity and tooth surface location), environmental (such as tooth shape, size, morphology, 

etc.) and host-specific (genetic, socioeconomic, demographic, behavioral) factors on the 

structure and function of microbial communities in the oral cavity. Biogeographers have two 

aims: to describe the distribution of organisms across time and space and to identify 

underlying causal mechanisms that drive or maintain the observed patterns of 

heterogeneity5. Antony Philips van Leeuwenhoek conducted the first biogeographic survey 

of the organisms that inhabit the human oral cavity and published it in the year 1683, over 3 

centuries ago 6. Using microscopy, Leeuwenhoek observed key differences in the variety of 

bacteria found in saliva compared to tooth surfaces when comparing cells using 

discriminating characters such as cell shape, cell size, abundance, and motility. Since those 

pioneering studies, most biogeographic surveys of the bacteria that live in the human oral 

cavity have drawn the same conclusion: major morphological and molecular features 

distinguish organisms that have differing proclivities for different intra-oral habitats.
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Though one of the earliest 16S rRNA gene-based surveys of microbial biogeography across 

human body sites showed that the features of microbial community assembly, like the 

morphological features of cells, also differ by body site 7, the number of studies applying 

ecological theory 8 to study the microbiome, and in particular the oral microbiome, has been 

limited. For this reason, insights into the types of spatial structures formed by microbial 

communities, the spatial scales (e.g., the spatial extent) over which microbial populations 

vary, and the causal mechanisms that maintain the spatial heterogeneity of the human oral 

microbiota have been limited 9. We propose that understanding ecological processes 

underlying the biogeography of dental disease will inform our understanding of what is 

necessary to maintain or restore oral health. Before reviewing spatial patterns from the 

vantage point of the dental chair, we begin with a primer on biogeographic theory, which can 

be used by researchers to anchor their studies of temporal and spatial variation of the oral 

microbiome. Next, we review our current understanding of spatial patterning in oral 

diseases, and in particular, in dental caries and chronic periodontitis and the associated 

microbiota. We discuss the limitations of current approaches for understanding the 

similarities and differences of microbial community composition, structure and function 

between and across different intra-oral habitats. Finally, we present several statistical and 

ecological techniques that can be applied to study biogeography in the human oral cavity. To 

illustrate the utility of these approaches for exploration of oral biogeography, we use a case 

study approach and present an analysis of previously unpublished data. To facilitate the use 

of these methods by others, we provide the R code and data used to generate figures as 

described in the section on data availability.

A primer on biogeography: ecological pattern and process

Biogeography is the study of the distribution of organisms over space and time 10. The major 

questions biogeographers ask include: What enables a species to live where it does, and 

what prevents it from colonizing other areas? What role do environmental variation, 

biological interactions, and historical events (e.g., colonization history, past environmental 

conditions, etc.) play in shaping distributions? To answer these questions, biogeographers 

look for patterns in the distribution of diversity and propose mechanism-based hypotheses 

that can be tested to determine the contribution of ecological processes to community 

assembly. These mechanisms can be grouped into the four basic processes of community 

ecology: selection, ecological drift, diversification, and dispersal 11,12. In this section, we 

define these processes and highlight how they may generate spatial patterning in the oral 

cavity.

Selection

Selection encompasses a set of ecological features that operate on several features of fitness 

– survival, growth rates, and reproduction, which differ among organisms and the outcomes 

of which govern community assembly 13,14. In the context of the human oral cavity, these 

ecological features can be grouped into four broad categories. First, the oral cavity is 

constantly exposed to microbes from the environment through open mouth breathing, dietary 

intake, and person-to-person contact. Not all microbes that enter the oral cavity are capable 

of residing in it. Thus, certain host-associated mechanisms – including active and innate 
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immunity – selectively filter microbes, preventing their colonization. This colonization 

resistance is a selective process. Second, the organisms that are capable of colonizing either 

shedding or non-shedding intra-oral surfaces are subject to broad scale features that create 

physical gradients in the intra-oral environment. Physical gradients of temperature, fluid 

velocity or pH give rise to gradual but continuous differences in community composition 

and diversity across the gradient, impacting observed community structure 15,16,17. Third, 

other features give rise to patchy structures in microbial community diversity and 

composition in which each patch is separated by a discontinuity. For example, independent 

of the clinical features of a carious lesion it is possible to use the microbiota to distinguish 

between a carious and sound site 18–20. Our ability to use the microbiota to distinguish 

between a carious lesion and a sound surface in this manner suggests dental caries is a 

patchy process. Finally, fine-scale biotic processes such as local species extinctions, 

reproduction, predator-prey dynamics, symbiotic interactions, etc. induce spatial patchiness 

in community structure – even in relatively homogenous communities, indicating that 

community structure is an emergent function of ecosystem processes 21. Microbiome 

focused studies should endeavor to include measurements of factors thought to exert a 

selective effect on microbial communities, including intra-plaque pH and redox potential, 

immunological features, and salivary or gingival crevicular fluid flow rates, for example. 

These measurements are necessary for understanding the high dimensional data generated 

by modern ‘omics’ technologies, including RNASeq, metagenomics, 16S rRNA gene 

profiling, and metabolomics.

Dispersal

Dispersal describes the movement of organisms across time and space. Microbial dispersal is 

accomplished by both passive motility (e.g. transport in fluid flow) and active motility, 

including chemotaxis. Whether the mechanism is passive or active, dispersal incurs costs to 

the organism. Active dispersal costs energy through the consumption of cellular resources 22 

while all dispersing organisms encounter some level of risk, particularly those that are not 

using chemotaxis: dispersal means that an organism leaves a patch where reproduction 

empirically occurred in search of another location where conditions may be less favorable 
23. At least two distinct features characterize dispersal in the human oral cavity. First, the 

human oral cavity is seeded from the mother and other caregivers at birth and during infancy 
24. The oral cavity is open and continuously exposed to environmental microbes from other 

individuals, the air and from the rest of the environment. Second, dispersal may occur 

among sites within the oral cavity. Organisms may additionally disperse across teeth or 

between sites (e.g., from the teeth into saliva).

Dispersal may explain results of studies focused on scaling and root planing, an intervention 

that treats sites impacted by periodontitis. For example, multi-locus sequence analysis 

revealed clearance of Porphyromonas gingivalis for most patients after treatment. However, 

3 of 12 patients who were colonized prior to treatment were again colonized by the same 

strain at some point after treatment 25. This suggests that reservoir sites external to the site of 

intervention may have served as the source of reinfection. Indeed, many studies evaluating 

the efficacy of a single scaling and root planing treatment to eliminate periodontal pathogens 

from an affected pocket have demonstrated that communities revert to the pre-cleaning state 
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after a temporary reduction in pathogen load 26,27. Since the size and density of the source 

population is a determinant of dispersal, controlling the oral load of each pathogen (i.e., 

controlling the population size of potential colonists) may prove important in managing 

periodontitis. Indeed, repeated bouts of scaling and root planing with maintenance therapy 

more effectively reduces the load of bacterial pathogens than single bouts of scaling and root 

planing 28. Studies that focus on modeling the source population size and the geographic 

distance between sites may be able to identify areas of weakness where a treatment approach 

is failing. Modeling approaches, in general, are likely to provide new insight into the role 

that dispersal plays in structuring communities.

Drift and Diversification

Drift occurs as a consequence of non-deterministic differences in demographic features (e.g., 

birth, death and reproduction) between populations. This random demographic variability 

will differ among sites irrespective of the surrounding environment, leading to spatial 

heterogeneity in community diversity and composition 10. Importantly, the interaction of 

drift and any of the other ecological processes may have important impacts on community 

dynamics. As discussed above, a large source microbial population is associated with high 

rates of dispersal. In the context of disturbance, drift and dispersal can interact and elevate 

the role of drift on community assembly. For example, a taxon that is present at low 

abundance in a community prior to a disturbance can come to dominate that community if it 

survives – due to chance events alone – the disturbance at an abundance that permits it to 

outcompete other colonists during community re-assembly 11. The interaction between drift 

and dispersal thus has important implications for clinical interventions such as scaling and 

root planing that non-selectively reduce community biomass.

Ecological diversification represents a balance between speciation (i.e., when a population 

splits into a pair of lineages) and extinction (i.e., the loss of a lineage due to its elimination 

in the niche) 29. In the absence of either selection or dispersal, a single species occupying 

two spatially segregated sites may experience the same environment and yet diverge into 

more than one lineage due to the accumulation of different random mutations in different 

individuals at each site 14. In addition to random mutations, recombination and horizontal 

gene transfer can give rise to diversification in species 30,31, including the inhabitants of the 

oral cavity. Since the same random event rarely occurs twice, such a process can give rise to 

heterogeneity in community structure that is independent of environmental selection 10,12.

Spatial patterns of dental disease

Complex systems are likely structured by more than one of these four ecological processes 

of selection, dispersal, drift and diversification. Studies that seek to assess patterns of spatial 

variation in the oral cavity should, during the experimental design phase of the study, 

consider strategies that enable the testing of specific processes. Our ability to understand the 

relative contribution of these four ecological processes to intra-oral microbial community 

structure will help explain why current clinical interventions work, when and why they fail, 

and lead the way to new and improved therapies. Here, we set the stage for further 
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discussion of these processes by reviewing what is known about the spatial patterning of 

dental disease and the tooth-associated microbiota.

Spatial patterns of dental caries and the supragingival microbiota

Epidemiological studies consistently reveal a spatial pattern for dental diseases including 

dental caries. For example, the occlusal 3,32 and proximal 33 surfaces of the first molars in 

both jaws are more frequently affected by dental caries than any other surface in the mouth. 

Most explain these patterns by observing that the pits and fissures of those teeth are 

relatively hidden from the protective activity of the tongue, toothbrushes and salivary flow. 

But why would the buccal surface of the lower first molar be the most susceptible of all 

buccal surfaces to cervical caries 3,34,35? What processes explain the generally low incidence 

of dental caries on the canines and incisors of healthy individuals 3,32–34,36–38? And then 

why would the incisors and canines be the second most frequent site of caries in an 

experimental model in man 1? Striking shifts in the spatial patterning of dental disease imply 

the occurrence of a corresponding and antecedent shift in the spatial pattern of the tooth-

associated microbiota since it is aberrant composition, structure and function of the 

microbiota at the tooth surface that gives rise to the pathology associated with dental caries 
39.

Environmental selection of spatially segregated microbiota offers an explanation for the 

spatial patterning of dental caries. The velocity of the salivary film flowing over individual 

tooth surfaces varies based on tooth position. Elegant work from the Colin Dawes group 

demonstrated that the velocity of the film flowing over the buccal surface of the lower first 

molar is 1 mm/min, and the rate of salivary clearance is 44.8 minutes 40–42. On the other 

hand, the velocity of the salivary film flowing over the buccal surface of the upper 1st molar 

is 4.6 mm/min, and the rate of salivary clearance is 3.5 times faster (12.6 min). These 

differences in salivary film velocity and salivary clearance have direct implications for the 

physiology and the ecology of the dental plaque communities. The buccal surface of the 

lower first molars experience a more profound drop in plaque pH than those of the upper 

first molars following a glucose challenge 43, suggesting that the indigenous inhabitants of 

the buccal surfaces of the lower molar have greater metabolic potential than the 

corresponding communities in the upper jaw. Thus, environmental selection may provide an 

explanation for the observation that the buccal surface of the lower first molar is the most 

frequent site of root caries in experimentally “de-salivated” rats fed a cariogenic diet 44, and 

could partially explain why the mandibular molars have the highest root caries increment 

across all ages 45.

When the salivary glands are not stimulated, the lower lingual region of the mouth has the 

highest salivary film velocity (7.8 mm/min), as well as the shortest clearance half time (8.7 

min), as might be expected from this region’s proximity to the submandibular and sublingual 

glands. In contrast, the upper anterior buccal region of the maxilla, which may be bathed 

primarily by labial gland secretions, has the lowest film velocity (0.8 mm/min), and the 

longest clearance half time (70.2 min) of all oral compartments. When sucrose containing 

gum (but not a lemon drop) is used to stimulate salivary flow, the estimated flow rate 

approaches that of a well-mixed solution, and the clearance half time drops considerably for 
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the lower lingual incisors, lower lingual molars, and the buccal upper molar regions 46, but 

not for other sites. Restricting salivary flow experimentally causes intra-plaque pH not only 

to drop to levels that tip the balance towards dental enamel demineralization, but it also 

reduces salivary clearance of sugars and acids 15. Geographic variability in the volume of 

saliva distributed across soft tissue sites has also been demonstrated 47,48. Taken together, 

these studies suggest that under normal circumstances there may be differences in plaque pH 

at different oral locations in the mouth, even in healthy individuals. Such site-to-site 

heterogeneities presumably not only imply that certain dental surfaces are more or less 

susceptible to demineralization, but they also provide a primary basis (e.g., pH) for 

structuring the biogeography of the oral microbiota. This raises the question as to whether 

reduced salivary flow alters the spatial structure of oral microbial communities.

Most prior studies that have evaluated the microbiota of individuals experiencing significant, 

chronic reductions in salivary flow (known as hyposalivation) have done so largely without 

regard for habitat structure in the mouth; most have used rinsing samples 49–55. Other work 

only sampled a single supragingival surface 56. Of the studies that did sample multiple sites, 

such as the maxillary and mandibular molars, samples were pooled before analysis 57–59, or 

summary data were reported for whole mouths rather than site-specific data 60,61. To our 

knowledge the first study to examine spatial variability (two interproximal sites, anterior vs. 

posterior) in cultivable Lactobacillus populations, did so by studying Sjögren syndrome 

patients, and provided the first evidence in support of the hypothesis that reduced salivary 

flow remodels the spatial organization of oral microbial communities 62. The paucity of 

studies examining site-to-site variability of the oral microbiome is not restricted to research 

on the impact of hyposalivation on oral microbial communities. Investigation of the spatial 

organization of intra-oral communities with normal salivary flow is also lacking.

Recent imaging studies have identified several complex structures in microbial biofilms in 

the human oral cavity, highlighting spatial variation at the micron-scale 63. Only a handful of 

studies have examined the broad scale spatial pattern of communities between and across 

teeth 16,64–66. The first seminal work exploring spatial variation of supragingival 

communities found “tooth number” to be significantly associated with variation in the 

proportions of 20 out of 40 taxa, even after accounting for differences in the biomass of the 

communities found at different sites 64. Other work reported that microbial communities 

clustered by tooth class as well as by tooth surface type, suggesting consistent patterns of 

spatial heterogeneity 65,66.

We recently incorporated geographic coordinates into an explicit spatial model analysis of 

supragingival communities 16. In that work, we reported that supragingival and soft tissue 

microbial communities vary along an anterior-to-posterior gradient in the mouths of healthy 

individuals. Importantly, the ecological gradient appeared to be attenuated in individuals 

with low salivary flow due to Sjögren’s syndrome. Future work is required to disentangle the 

relative effect of salivary film velocity from that of dispersal limitation due to geographic 

separation, tooth morphology, and other factors. Nonetheless, extant studies definitively 

provide evidence for spatial patterning in the distribution of dental caries and provide early 

support for the hypothesis that supragingival communities are geographically structured, 

which may explain spatial patterning in dental caries.
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Spatial patterns of periodontal disease and the subgingival microbiota

Spatial patterning has also been observed in gingivitis and periodontitis. One of the earliest 

studies of experimental gingivitis in man revealed the uniform development of subgingival 

plaque throughout the dentition in the oral cavities of 12 dental students who deliberately 

discontinued oral hygiene 2. Intriguingly, no differences were found in plaque accumulation 

between different tooth classes or when comparing all tooth aspects (buccal, interproximal, 

lingual). Lingual tooth surfaces, on the other hand, could be distinguished by a paucity of 

debris accumulation compared to buccal and proximal sites. This observation was thought to 

be explained by the effect of the movements of the tongue, which are primarily 

geographically restricted to the lingual tooth surfaces. Where plaque did occur, Löe et al. 

hypothesized that the age of the plaque contributed to its development such that the 

developing community altered the local environment in a manner that was permissive for the 

growth of organisms not typically found in health. Thus, there may be an interaction 

between environmental and biotic processes in the transition between states of oral health 

and disease. This hypothesis is now known as the ecological plaque hypothesis and is the 

prevailing explanation for the occurrence of dental disease 39,67.

Here, we suggest a critical need to incorporate explicit spatial analysis of the microbiota into 

future tests of spatial patterning in dental disease. To understand disease, these patterns and 

processes in the oral microbiota must be linked on a site-specific basis. Prior work has 

suggested that periodontal disease displays left-right contralateral symmetry within 

individual mouths 4,68. More recently, the Arteriolosclerosis Risk in Communities study 

revealed that a single tooth with periodontal pockets of at least 4 mm is highly predictive of 

that tooth’s contralateral pair experiencing a pocket of at least that depth 69. Furthermore, 

various features of periodontitis (e.g., attachment loss, bleeding on probing, calculus 

deposition) appear to differ by jaw and tooth class. In China, the 4th National Oral Health 

Survey of over 100,000 adolescents and another study of 398 adults revealed significant 

patterns of symmetry in gingival bleeding in addition to a difference between jaws in the 

distribution of pocket depths and attachment loss 70,71. An investigation of periodontal 

health in over 11,000 adolescents in the United States determined that gingival bleeding, 

attachment loss and calculus deposition occur to similar degrees at symmetric sites in the 

mouth, and most often at molar sites in the maxilla and incisors in the mandible and less 

frequently impacting the bicuspids of either jaw 72. Other reports similarly confirm 

significant effects of tooth class and jaw in the spatial patterning of periodontitis 71,73,74.

What might explain these patterns of periodontal disease? In addition to elements of 

interpersonal variability, including host genetics, comorbid medical conditions, social 

determinants, and lifestyle and behavioral habits, the local tooth environment likely 

contributes to the spatial patterning of dental disease 75,76, which is mediated in part by the 

microbiota. Changes to the subgingival habitat in gingivitis, the mildest and most common 

form of periodontal disease, include increased inflammation and gingival crevicular fluid 

flow without clinical loss of the of the supporting surrounding tissue 77–79. As the 

connective tissue is destroyed by microbe-induced inflammation, epithelium from the 

dentogingival interface migrates in an apical direction along the root surface. The formation 

of periodontal pockets provides an increased surface area for microbial colonization along 
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the tooth surface, resulting in a marked increase in microbial load between periodontal 

health and periodontitis 80–82. Estimates of bacterial biomass in health are around 103 – 106 

bacterial cells per mL with an average probing depth of 1.8-mm 67 while sites with probing 

depths of 4–12 mm may harbor anywhere from 107 to 109 bacterial cells per mL 78,83. 

Differences in biomass may prove important in the ecology of the subgingival crevice since 

the likelihood that dispersal will occur depends in part on the size of a population.

Importantly, symmetric patterns of periodontal disease appear to correspond to symmetric 

variation in the composition of the microbiota. Sites that are culture-positive for Prevotella 
intermedia, Prevotella nigrescens or Aggregatibacter (Actinobacillus) 
actinomycetemcomitans at a site on one side of the mouth are highly predictive of an 

increased burden for those same organisms at a symmetrical site 4. Other work reported 

sporadic colonization of A. actinomycetemcomitans at spatially segregated sites in 2 healthy 

individuals with generalized periodontitis 84. In that work, P. gingivalis colonized a greater 

number of sites compared to A. actinomycetemcomitans, indicating possible differences in 

species ranges or sample size limitations. A second spatial pattern was observed in the 

distribution of P. gingivalis and P. intermedia, both of which were more abundant at posterior 

compared to anterior sites 85. Further support for spatial segregation of subgingival 

communities across the anterior-to-posterior dimension comes from studies reporting an 

anterior-to-posterior gradient in subgingival temperature, which was associated with 

differences in microbial colonists in the subgingival crevice 17. Finally, a variety of taxa 

were found to preferentially colonize different tooth classes 86 while other work suggests 

communities in the subgingival crevice differ on opposing aspects of teeth, even when 

comparing different facets of a single tooth 66. Thus, spatial patterns of microbial 

community composition may explain spatial patterns in the occurrence of gingivitis and 

periodontitis. Future work should integrate the investigation of epidemiological, 

environmental and microbiological correlates to solidify our understanding of the 

relationship between patterns in the microbiota and patterns in dental disease.

Methods for investigating biogeographic patterns

A challenge for oral microbial ecologists is the identification of the types of spatial patterns 

present in the oral microbiota, the processes underlying the patterns, and how they pertain to 

disease. Many extant studies of the oral ecosystem use saliva, rinsing samples, or pooled 

plaque samples to examine the composition and diversity of intra-oral microbes 87–92. These 

broad scale sample collection methods do not permit analysis of spatial pattern and process 

and therefore limit our understanding of dental disease. Investigation of the processes 

underlying the spatial patterning of dental caries or periodontitis requires high resolution 

sample collection schemes that include multiple teeth and tooth aspects per human subject. 

Such sample collection schemes can easily generate terabytes of sequencing data for 

thousands to tens of thousands of samples 16, making data analysis a challenge. In this 

section, we provide an overview of statistical and ecological methods that can be used to 

explore spatial patterns and processes. To illustrate the utility of these approaches we 

employ a case study approach, analyzing subgingival samples collected from the 

mesiobuccal aspect of all teeth (excluding 3rd molars) of 2 medically and dentally healthy 

individuals. A complete description of the patients sampled, the data collected and the 
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methods used to analyze the data have been previously described 93. The purpose of this 

case study is to describe techniques in a manner that highlights their utility in the applied 

analysis of the oral microbiome.

Exploratory analysis of spatial patterns

Exploratory data analysis is often the first step in a data analysis pipeline. Here, we illustrate 

two approaches to visualizing spatial patterns in geographically structured systems. First, 

many researchers seek to define the role that a specific pathogen plays in initiating or 

sustaining oral disease. Researchers interested in understanding the spatial distribution of 

one or more pathogens might start by visualizing the distribution of each pathogen across the 

sample sites that were surveyed, such as at the lingual or buccal tooth aspect. We have 

previously published R code that may be used by others to visualize such spatial patterns in 

various contexts 16.

To demonstrate the power of visualizing taxonomic distributions across sites in the context 

of the oral cavity, we used SitePainter to examine the distribution of 2 randomly selected 

genera –Prevotella and Fusobacterium – at the subgingival surfaces across the mesial-buccal 

aspect of all teeth (excluding 3rd molars) and the mesial-lingual aspect of 2 teeth (14, 15) 

within each of 2 individuals (Figure 1).

In this example, Fusobacterium appears to be present at roughly comparable abundance 

levels in both subject 1 and 2 (Figure 1A). Therefore, approaches that pull out interesting 

taxa based on total differential abundance 95 between individuals would fail to flag 

Fusobacterium as an interesting feature. One might ask, however, whether Fusobacterium 
colonizes all teeth in roughly equal proportions in one or both subjects or whether it exhibits 

some degree of site-specificity that is concordant between subjects. Examining the spatial 

distribution of Fusobacterium across mouths reveals subject-specific patterns of colonization 

and an absence of site-specificity (Figure 1B). Specifically, Subject 1 has the highest 

Fusobacterium colonization at teeth 18, 22, 23, and 24 while Subject 2 has the highest 

Fusobacterium colonization at teeth 8, 11, 29, and 30. Prevotella similarly exhibited subject-

specific differences in patterns of colonization and a lack of concordance between impacted 

sites. If generalized across a larger number of subjects, these observations would suggest 

that colonization of individual tooth surfaces by these two genera occurs randomly and that 

these taxa tend to lack a predilection for the anterior vs. the posterior compartment or even 

for any specific tooth class. For researchers who are not comfortable using R to visualize 

data, a utility that obviates the need for familiarity with R and which was developed for 

visualizing spatial patterns is the tool SitePainter 94.

A more rigorous and less exploratory approach would be to query the data to identify 

interesting taxa that vary in their abundance across teeth. Researchers who hope to identify 

spatially variant taxa may calculate coefficients of autocorrelation such as Moran’s I for 

each taxon in the dataset 96. This statistic when calculated for each taxon identifies those 

that vary as a function of the geometric distance, which can be defined for example as the 

Euclidean or Manhattan distance, separating sample sites. The coefficient can be either 

positive or negative, small or large, and is associated with a p-value. Researchers can select 

the subset of taxa that appear to be spatially variant by picking taxa that meet certain 
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threshold p-values and coefficient sizes. The spatial distribution of these selected taxa can 

then be visualized using SitePainter or various software packages in R to examine the 

specific pattern underlying the summary statistics. The application of Moran’s I in this 

context is univariate in nature (i.e., one coefficient per taxon) and p-values should be 

corrected for multiple testing.

Statistical approaches to identifying spatial patterns

A variety of well recognized statistical methods and models have been developed to identify 

spatial patterns in complex communities 21,97. In this section, we describe 3 statistical 

approaches – trend surface analysis, principal components analysis of neighbor matrices 

(PCNM) and Moran’s Eigenvector Maps – that can be used to uncover multivariate spatial 

patterns in complex communities 96,98. By conducting a study that encompasses all 3 

methods it becomes possible to evaluate the robustness of any given pattern as well as its 

spatial extent.

Trend surface analysis is a multivariate method that explicitly considers the geographic 

coordinates of sample sites. The geographic coordinates are used to construct an orthogonal 

2nd or 3rd degree polynomial function of the geographic coordinates of sample sites. This 

polynomial function is then used as a predictor in a principal components analysis with 

respect to instrumental variables (PCA-IV). In effect, the ordination is constrained by the 

geographic coordinates of sample sites. This method generally identifies broad scale spatial 

patterns such as large-scale ecological gradients.

Principal Components Analysis of Neighbor Matrices (PCNM) is a method similar to trend 

surface analysis in that it indirectly uses geographic coordinates as a constraint in an 

ordination. Unlike trend surface analysis, several features permit PCNM to detect both broad 

and fine scale spatial patterns 21. Rather than using a polynomial function as a constraint in a 

PCA-IV, PCNM uses a neighborhood distance matrix which is constructed in three steps. 

First, the geographic coordinates of sample sites are used to construct a geographic distance 

matrix (e.g., Euclidean distance, Manhattan distance, etc.) that describes all pairwise 

distances between sample sites. Second, a neighborhood matrix is constructed by defining as 

neighbors any site within an arbitrarily defined geographic distance threshold. The distance 

threshold that is used to define the network thus determines the spatial scale that is examined 

(i.e., whether it is a broad or fine scale). Finally, the neighborhood matrix is subject to a 

principal coordinates analysis; the resulting eigenvectors are used as “PCNM variables” (i.e., 

as spatial predictors) in a redundancy analysis (RDA). The RDA will thus maximize the 

variance in community composition across a linear combination of the PCNM variables. The 

investigator may analyze the results as with any other ordination. In addition to identifying 

the ordination axes that are significant it is possible to use permutation testing to identify the 

PCNM variables that seem to correlate with the significant axes.

One feature of PCNM that can be problematic is its reliance on an arbitrary cutoff to define 

the neighborhood. At the current time, calibration experiments are needed to define an 

appropriate threshold to model microbial dynamics in the human oral cavity. Moran’s 

Eigenvector Maps (MEM) provides another avenue to explore spatial patterning in a manner 

similar to PCNM but without the need for an arbitrary threshold. Rather than defining a 
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single neighborhood matrix, MEM defines multiple different spatial models each differing 

from the other by its neighborhood truncation threshold. PCA-IV or RDA is performed on 

each model and the optimal model is selected using a model selection criterion such as 

Akaike information criterion (AIC). Using this method, it becomes possible to define the 

distance threshold that best describes a microbial neighborhood in the oral cavity. In 

summary, trend surface analysis identifies broad-scale spatial patterns while PCNM and 

MEM can identify both broad and fine-scale patterns.

Case Study – applying statistical models to the subgingival microbiota

We previously used trend surface analysis, PCNM, and MEM to demonstrate that microbial 

communities inhabiting a diverse set of tissues in the oral cavity conform to an anterior-to-

posterior gradient 16. Here, we illustrate the application of trend surface analysis and MEM 

to the analysis of communities in the subgingival crevice.

First, we performed a trend surface analysis on the dataset for the 2 subjects for whom 

subgingival samples were collected. To visualize the spatial pattern, we plotted the first 

principal component as a function of tooth number, plotting each subject individually in 

distinct panels (Figure 2A). Generally speaking, molars (blue) tended to share negative 

scores along axis 1 while the incisors (green) shared positive axis 1 scores. The trend line 

indicates a gradual and continuous change in community composition across the anterior-

posterior dimension. Comparing the two subjects to each other revealed marked inter-

individual variation in the degree to which samples separate across the anterior-to-posterior 

dimension. For both individuals surveyed, the relative difference between the molars and the 

incisors appeared to be greater in the mandible (tooth 16–32) compared to the maxilla (tooth 

1–15) while the absolute difference between the molars and incisors appeared to be greater 

in subject 1 compared to subject 2. Thus, the trend surface analysis identifies an ecological 

gradient in community composition between the molars and the incisors which appears to be 

variable when comparing individuals.

Next, we sought to evaluate the broad and fine-scale spatial patterns in community 

composition using Moran’s Eigenvector Maps (MEM). We generated 20 different 

geographic distance matrices each truncated randomly at a different distance threshold. The 

optimal MEM model was identified as the one that minimized Akaike information criterion 

(AIC). The optimal model corresponded to a Euclidean distance threshold of 0.89 and 

explained approximately 4% of the total variation in the data. A permutation test revealed 

that the first and only the first ordination axis explained a significant fraction of the variation 

in the data (F=2.4, p=0.002). Further, only one spatial predictor explained a significant 

fraction of the variation in the data (F=2.4, p=0.004). To examine the significant spatial 

structure, the first ordination axis was projected onto the x and y coordinates of the 

subgingival sample sites (Figure 2B). Teeth in the anterior mouth tended towards positive 

scores along the significant ordination axis while the posterior teeth tended towards neutral 

to negative scores along that axis.

Trend surface analysis uses a smoothened polynomial function as a predictor while MEM 

uses eigenvectors derived from decomposing a constellation of truncated geographic 

distance matrices as a predictor. Despite the slight differences in each approach, they both 
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identified similar features in community variation across sites in the subgingival crevice, 

suggesting that this broad scale ecological gradient in the subgingival crevice may be robust 

to further inquiry.

Ecological approaches to identify spatial patterns

Statistical approaches can be used with ecological models in order to evaluate the robustness 

of a given spatial pattern. The statistical approaches described so far explicitly employ the 

geographic coordinates of sample sites to model spatial patterns. One advantage of some 

ecological models, on the other hand, is that they can identify spatial patterns without 

explicit geographic modeling. A second advantage is that specific spatial patterns can be 

identified through the elements of metacommunity structure (EMS) approach. EMS models 

distinguish between 6 patterns in geographically structured communities, including 1) nested 

subsets, 2) checkerboards, 3) Clementsian gradients, 4) Gleasonian gradients, 5) evenly 

spaced gradients and 6) random distributions 99–101. Before defining these types of spatial 

patterns, we must first define several features of communities – coherence, turnover, and 

clumping, which distinguish between each of the spatial patterns.

Coherence assesses the extent to which species ranges across a gradient overlap across sites. 

Coherence is usually evaluated by examining an incidence matrix in which site occupancy 

by a given species is denoted by a ‘1’ and absence by ‘0’. Completely coherent species 

ranges occur when a species occupies all sites without any absences across the range. For 

example, in a model community where one species occupies 5 sites, a completely coherent 

species range would be defined in the incidence matrix as [1, 1, 1, 1, 1] since the species 

occupies all sites. Based on this definition, patterns such as [0, 1, 1, 1, 1] or [0, 1, 1, 1, 0] or 

[0, 1, 1, 0, 0, 0] would also be coherent. ‘Embedded absences’ are defined as interruptions in 

site occupancy and would be indicated by the pattern [ 0, 1, 1, 0, 1] in an incidence matrix.

In assessing a community, the EMS model organizes the incidence matrix in such a way that 

maximizes the coherence of all species in the community across sites. Coherence decreases 

as the number of embedded absences increases. Coherence is usually assessed by comparing 

the observed number of embedded absences to that observed in a null model, generated by 

simulating a set of random matrices. ‘Negative Coherence” occurs when the number of 

observed embedded absences is significantly greater than the number of embedded absences 

predicted by a random model. Negative coherence suggests that a community fits a 

checkerboard pattern in which pairs of species competitively exclude each other at sites 

across their ranges. ‘Positive coherence’ on the other hand suggests communities are 

structured along at least one common gradient. When the number of embedded absences is 

significantly less than the predicted number under a random model, communities are said to 

exhibit ‘positive coherence’.

In cases where positive coherence is observed it is possible to examine the specific type of 

gradient in community composition by examining two other metrics, turnover and boundary 

clumping. Turnover is the number of times that a species is observed to replace another 

when moving from one site to another. Observed turnover can be compared to the expected 

turnover calculated as the mean of a set of random community matrices. A nested subset 

describes a community that exhibits coherence but experiences less turnover than is 

Proctor et al. Page 13

Periodontol 2000. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expected, by chance, across sites 102. The type of gradient can be further specified by 

examining the ‘boundary clumping’ metric, which measures the degree to which the 

boundaries of different species ranges cluster. Species loss can occur in a clumped, random, 

or a hyper-dispersed manner. The Boundary Clumping metric is assessed with the Morisita 

index. When the Morisita index exceeds 1, the boundaries of species ranges tend to be more 

clumped than expected by chance. On the other hand, a Morisita index that is significantly 

less than 1 indicates that less boundary clumping is observed across sites than expected.

As formally reviewed elsewhere 99, spatial patterns in community ecology can be defined in 

terms of coherence, turnover, and boundary clumping. A ‘checkerboard pattern’ describes 

communities that exhibit negative coherence. Checkerboard patterns occur due to the 

competitive exclusion of taxa from sites across space. A ‘nested subset’ refers to a pattern of 

positive coherence and negative turnover – different sites appear to be colonized by subsets 

of a set list of species. A ‘Clementsian gradient’ exhibits positive coherence, positive 

turnover, and positive boundary clumping in which discrete communities replace each other 

across sites. A ‘Gleasonian gradient’ describes communities that exhibit positive coherence 

and positive turnover but random boundary clumping, i.e. species ranges along the gradient 

are random. ‘Evenly spaced gradients’ occur when there is positive coherence, positive 

turnover, and negative boundary clumping – discrete communities cannot be defined, but 

species appear to be ordered in a pattern that deviates from a random distribution. Finally, 

‘Random distributions’ are defined by the absence of coherence, turnover, and boundary 

clumping.

Case Study – using EMS to identify spatial patterns

We used the EMS framework to identify the type of spatial pattern present in the subgingival 

crevice. Specifically, we computed coherence, turnover and boundary clumping for each of 

the two individuals in our case study (Figure 3). The observed number of embedded 

absences (embAbs) was higher for Subject 1 than for Subject 2 (Figure 3A). Regardless of 

subject, however, the predicted number of embedded absences under a random model 

(simMean) was significantly higher than the observed number of embedded absences across 

subgingival communities (p < 0.001). This observation is consistent with a spatial pattern of 

positive coherence and implies that subgingival communities are structured along at least 

one common ecological gradient. Further, this pattern supports the pattern detected using 

trend surface analysis and MEM (Figure 2).

Since the subgingival communities exhibited coherence we next examined turnover across 

sites (Figure 3B). Species turnover across sites was higher for subject 1 than for subject 2 

but in both cases the observed turnover was higher than that predicted under a random model 

(simMean, p < 0.001), indicating that the specific spatial pattern may be described as a 

“nested subset”. This pattern implies that communities experience less turnover than would 

be expected along an environmental gradient. Next, we examined the degree of boundary 

clumping in the subgingival crevice (Figure 3C). Boundary clumping was higher for Subject 

2 than for Subject 1. In both subjects, however, the Morisita Index exceeded 1, indicating 

that the communities are distinct and discrete (i.e., Clementsian) and that groups of species 

are lost at only one end of the gradient. Taken together, the EMS model implies that 
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subgingival communities conform to a spatial gradient known as a nested subset with 

clumped species loss across the gradient. Intriguingly, we have previously reported this 

pattern for supragingival communities 16.

By using both statistical and ecological models to examine the communities of the 

subgingival crevice it becomes possible to identify spatial patterns. Spatial patterns are 

emergent functional features of the ecosystem 11. If coherence, turnover, and boundary 

clumping are shown to be important and common signs of health then the loss of these 

features might be subtle but important signs of early disease (the onset of which might not 

be otherwise known). As such, clinicians may be able to use spatial patterns to understand 

the extent to which the subgingival system is healthy or perturbed and the extent to which a 

treatment restores a perturbed ecosystem to its natural state.

Understanding ecological processes underlying spatial patterns

The statistical and ecological methods described so far are able to identify spatial patterns, 

but they cannot elucidate the processes – selection, diversification, drift, dispersal – that 

drive those patterns. In the remaining sections we describe some of the approaches that can 

be used to test hypotheses about 3 ecological processes, drift, dispersal and selection.

Drift and the neutral model

The influence of stochastic, non-deterministic factors on community structure can be 

estimated by the application of a neutral model. Neutral theory holds that within-trophic 

level taxa are ecologically equivalent and that differences in distributions arise from the 

stochastic, demographic processes of birth, death, and migration (Sloan et al. 2006). The 

neutral model essentially acts as a null model that allows researchers to determine how much 

of the observed biogeographic pattern is due to stochastic differences among separate sites. 

The degree to which observed data fit neutral predictions varies among microbial 

assemblages. Relatively good fits have been observed for communities from freshwater 

lakes, healthy human lungs, tree-holes, wastewater treatment facilities, and deserts 103–107. 

On the other hand, poor to conflicting fits have been observed for human gastrointestinal 

tract communities and coastal Vibrio populations 105,108–110.

One benefit of the Neutral Community Model (NCM) is that it predicts how each individual 

taxon should be distributed across communities within the metacommunity. Deviations from 

this prediction identify taxa with interesting ecological characteristics. Taxa found more 

frequently than expected given their mean relative abundance in the metacommunity are 

likely to be under favorable selection by the environment and/or to have higher migration 

rates than their similarly abundant peers. Likewise, taxa found less frequently than expected 

given their abundance in the metacommunity are likely under negative selection at some 

sites and/or have lower migration rates than their similarly abundant peers.

Case Study – applying the neutral model to the subgingival microbiota—In 

order to identify ecological processes that may underlie spatial patterns in the subgingival 

microbiota we applied the NCM to the subgingival samples from our 2 subjects. The 

frequency-abundance distribution of taxa conformed relatively well to the distribution 
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predicted by the NCM. The coefficient of determination measuring goodness-of-fit (r2) was 

moderately strong and ranged between 0.619–0.642 for Subject 1 and 2, respectively. Taxa 

that lie consistently to the left or right of the NCM-predicted relative abundance-frequency 

curve are those which may display some selective advantage or disadvantage, respectively. 

Importantly, several microbial taxa consistently deviated from the predictions of the neutral 

model across metacommunities, occurring less frequently than expected under neutral 

predictions. For instance, multiple Operational Taxonomic Units (OTUs) associated with the 

genera Prevotella and Corynebacterium were found to the right of the NCM distribution in 

the 2 subjects we surveyed, suggesting these taxa are at a selective disadvantage in replacing 

lost taxa relative to the assumption of neutrality among taxa (Figure 4).

As part of the NCM we computed the migration parameter (m), which is defined as the 

probability that an immigrant species from a source community replaces a deceased species 

in the subgingival crevice. The observed overall migration parameter for each subject was 

small and ranged between 0.152 and 0.320 for Subject 1 and 2, respectively. These estimates 

are roughly on par with the migration parameters for isolated microbial communities, such 

as those in sewage treatment plants (m=0.1) and in the respiratory tract (m=0.2) 105. 

However, they are significantly less than that previously reported for 10 control subjects and 

21 patients with periodontitis for whom up to 2 samples per subject had been sequenced 110. 

These disparate results may be due to differences in sequencing platform (454-Titanium in 

Chen et al. vs. Illumina here) or in the number of samples collected per subject. Our sample 

set included multiple samples of some teeth and independent samples of all teeth but the 

third molars, i.e. 30–31 samples per subject.

The relatively small migration parameter in this case study suggests that the majority of 

‘deaths’ at each subgingival site are likely replaced through biotic reproduction of members 

in the local community rather than from immigration from a “mainland” source. However, a 

good fit to the NCM may be explained by dispersal of organisms among sites, which acts to 

counterbalance competitive interactions. This case study is not sufficiently powered to 

disentangle these possible explanations, which may serve as the focal point of further 

investigation.

Dispersal

Two models of dispersal may apply to the oral ecosystem. The first is the mainland-island 

model, and it assumes a near constant and relatively rapid rate of dispersal from a large 

source mainland to one or more islands 11. The human oral cavity is primarily seeded from 

the mother and other caregivers during infancy and continues to be seeded by them soon 

after the eruption of the primary dentition 24. Thus, the mainland-island model may have 

some bearing on the colonization of the pristine oral cavity. The parent, other caretaker, 

and/or older sibling may be considered as the “mainland” while the “island” or “sink” would 

be the infant. The infant oral cavity tends to be colonized by streptococci over the first 3 

months of life 111 with continued development of intra-oral complexity over the first year of 

life 112. Factors commonly considered in mainland-island models seem to play a role in the 

colonization dynamics of the infant oral cavity. These factors include the bacterial load of 

childcare attendants (i.e., the population size of the source), the presence or absence of the 
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primary dentition (i.e., the quality of the habitat) and the frequency of bacterial exposure 24. 

For example, after primary teeth have erupted, Streptococcus mutans 113 and A. 
actinomycetemcomitans 114 where present in caregivers can undergo intrafamilial 

transmission to the infant. Understanding these dynamics may have important implications 

for understanding the lifetime risk of any individual to future dental disease.

The “metacommunity” island model assumes dispersal among a set of islands lacking a 

mainland 115. The metacommunity model may provide insight into the transmission of 

disease from an affected to a non-affected tooth within an individual mouth or from saliva to 

a non-affected tooth. Prior work suggests that a sound tooth surface that is adjacent to 

another sound tooth surface is less at risk of developing dental caries than is a tooth 

neighboring a carious site 116,117. Moreover, having a filled surface is one of the strongest 

predictors of caries risk in individuals lacking enamel or dentinal caries while having a filled 

surface plus an incipient lesion is one of the strongest predictors of future caries in high 

individuals 118. These observations may suggest an increase in the transmission of caries-

associated bacteria from impacted to non-impacted sites. The metacommunity theory is an 

intriguing hypothesis worth testing while considering the alternative but complementary 

hypothesis that these patterns can be explained by the surface properties of different dental 

restorations 119 and/or tooth morphology 120.

A Mantel’s test can be used to test the hypothesis that geographic distance predicts 

similarity in the composition of bacterial communities across sites 121. This model assumes 

that the relationship between the geographic distance and community dissimilarity is linear 

and that small or large values in one matrix correspond to similarly sized values in the other 
122. For this reason, the Mantel test can assess the extent to which dispersal, birth, death, and 

other contagious biotic processes induce spatial autocorrelation in the data (e.g., 

communities are more similar when they are geographic neighbors with incremental gains in 

community dissimilarity occurring with increasing geographic separation).

Case Study – applying the metacommunity model to the subgingival crevice—
Although the NCM model suggested a low probability that an immigrant taxon from a 

source community replaces a deceased individual (taxon) (Figure 4), migration may still be 

high enough that inferior competitors are continuously being exchanged within the 

metacommunity allowing community composition to appear neutral over all. Here, we 

sought to test the metacommunity model using a Mantel’s test. Specifically, we compare two 

different models of geographic distance (island hopping vs. Euclidean distance) and Bray-

Curtis dissimilarity to ask whether dispersal shapes community composition across sites in 

the subgingival crevice.

We refer to the first metacommunity approach that we employ as an “island-hopping” 

model. The geographic distance between teeth is defined as the number of teeth separating 

two sample sites. Thus, the island-hopping model assumes that bacteria can only migrate 

step-wise from one subgingival site to an adjacent site in the same jaw. We computed the 

Mantel’s test for each subject independently (Table 1). An extremely modest, negative 

correlation coefficient was observed for both subjects (R2=−0.0376 to −0.0424) and p-values 

for both subjects (p>0.6) indicated that the island-hopping model is a poor fit for the 
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subgingival crevice. In other words, a microbe that disperses from tooth 9 to tooth 15 is 

unlikely to traverse over tooth 10, 11, 12, 13, and 14 to reach tooth 15.

The second geographic distance model assumed that the likelihood of migration from one 

site to another is simply a function of the direct Euclidean distance (i.e., the straight line 

distance) between two sites. The geographic coordinates of each sample site were obtained 

with 3 independent observations using a Boley gauge on a typodont model 93. This model 

assumes that there are no anatomical barriers to dispersal. The correlations between 

Euclidean distance and Bray-Curtis dissimilarity were modest (R2 =0.0936–0.1029) and 

marginally significant (p=0.07–0.09).

Given that these data were from only 2 individuals we cannot exclude the possibility that 

migration and dispersal play a strong role in shaping community structure across sites in the 

subgingival crevice. Future work should validate these findings in a larger cohort. In 

addition, it is possible to use these methods to examine spatial variation at a finer scale, such 

as comparing communities sampled at different aspects of one tooth to those on neighboring 

or distal teeth. Dispersal may be hypothesized to play a role in structuring communities on a 

per-tooth basis, such that variation across tooth aspects on an individual tooth would appear 

to be less than inter-tooth variation.

Conclusions

Consistent patterns of dental decay, gingivitis and periodontitis can be seen across human 

populations. That is, certain teeth and tooth aspects tend to experience higher rates of caries 

attack than others.2–4,71. Despite the spatial patterning observed in dental disease, which has 

been associated with local microbial communities, relatively few studies have sought to 

examine the spatial patterning of the human oral microbiota at mouth-wide spatial scales. 

Study designs that permit the collection of samples for all tooth sites and tooth aspects will 

enable explicit modeling of differences in community composition which may underlie 

population-level patterns of dental disease. We summarize what is currently known about the 

spatial patterning of dental disease and the associated microbiota. In addition, several 

statistical and ecological models were presented that can help researchers identify specific 

spatial patterns in the oral microbiota and the processes that underlying those patterns.

Using a case study approach, we examined the broad scale spatial patterning of the 

subgingival microbiota in 2 dentally healthy individuals. Through our case study, we 

identified an anterior-to-posterior gradient in subgingival community composition. Of 

particular interest, this gradient appeared to be more pronounced at mandibular compared to 

maxillary sites. Though the magnitude of this gradient differed by subject it was present in 

both individuals studied. The detection of this gradient supports our prior conclusions that 

some large-scale variable structures communities in the healthy human oral cavity 16. While 

findings from this case study are by definition preliminary, our focus emphasizes the ways in 

which applying the lens of biogeography to the study of the oral microbiome will increase 

our understanding of it.
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The development of more ecologically-informed clinical interventions for the maintenance 

of oral health, including the treatment of periodontitis, will not only require an 

understanding of biogeographic patterns, but also of the underlying ecological mechanisms 

that shape these patterns. From a practical perspective, while frequent sampling of all teeth 

and seemingly complex statistics may be important for establishing general biogeographic 

patterns in health and disease, it may not be necessary for detecting or managing disease in 

any given subject. A baseline full mouth survey and then repeated longitudinal sampling at 

key, risky sites may suffice for most clinical applications. The increasingly powerful, 

inexpensive, and pre-packaged technologies and computational algorithms required for 

office-based microbial community surveys in patients mean that this vision may become a 

reality sooner than researchers and clinicians might have imagined not so long ago.
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Figure 1: Exploratory analysis of 4 genera.
a) The absolute abundance (x-axis) of Prevotella and Fusobacterium is plotted (y-axis) for 

each of 2 individuals. Each bar is shaded by the Phylum to which the taxon belongs. b) the 

site-specific abundance of each Genus was visualized for each site for Subject 1 (Left) and 

Subject 2 (Right). Similar colors represent similar abundance values: red indicates low; pink 

intermediate; and blue high abundance values for each taxon at that site. Numbers within 

each circle correspond to universal tooth number.
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Figure 2: Subgingival communities, like supragingival communities, may conform to an 
ecological gradient.
a) Trend surface analysis was used to examine spatial patterning at subgingival sites. Scores 

from the first principal component (y-axis) is plotted against universal tooth number (x-

axis). Each point represents a sample that is colored according to tooth class (canine, incisor, 

molar, premolar). The blue line is a loess smoothened curve surrounded by 95% confidence 

intervals in grey. b) MEM was used to evaluate spatial patterning in subgingival samples 

from the same subjects. Each point represents a tooth plotted against the x- and y- 

geographic coordinates of sample sites. Points are shaded with a heatmap scale according 

the first RDA axis. The trend surface and MEM models both suggest communities vary 

along an ecological gradient that distinguishes between sites across the anterior-to-posterior 

dimension.
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Figure 3: Elements of community structure suggests subgingival communities conform to a 
nested subset gradient with clumped species loss.
a) coherence was less than the simulated mean for both subjects (p < 0.001). b) turnover was 

less than the simulated mean for both subjects (p < 0.001), and c) boundary clumping 

exceeded 1 for both subjects. Taken together, these data suggest that the gradient fits a 

nested subset with clumped species loss.
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Figure 4: Frequency-abundance distributions of subgingival taxa conform to a neutral 
community model (NCM).
Subject-specific comparisons of the NCM to observed frequency and mean relative 

abundance of subgingival OTUs. Each circle represents an individual OTU. Dashed lines 

represent the least-squares best fit. OTUs that lie to the right of the curve indicate taxa that 

may be at a selective disadvantage.

Proctor et al. Page 29

Periodontol 2000. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Proctor et al. Page 30

Table 1:
Correlation between subgingival community dissimilarity and geographic distance 
between sites.

Mantel’s test was used to examine the correlation between each geographic distance model (island-hopping, 

Euclidean distance) and community dissimilarity. R2 = Pearson product-moment correlation coefficient. p-

values were computed after 9999 permutations and were corrected for multiple testing using the false 

discovery rate method.

SUBJECT DISPERSAL MODEL R2 p-value

Subject 1 Island-hopping −0.0424 0.651

Straight-line distance 0.1029 0.077

Subject 2 Island-hopping −0.0376 0.6501

Straight-line distance 0.0936 0.0869
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