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A putative male advantage in wayfinding ability is the most
widely documented sex difference in human cognition and
has also been observed in other animals. The common
interpretation, the sex-specific adaptation hypothesis, posits
that this male advantage evolved as an adaptive response to
sex differences in home range size. A previous study a decade
ago tested this hypothesis by comparing sex differences in
home range size and spatial ability among 11 species and
found no relationship. However, the study was limited by the
small sample size, the lack of species with a larger female
home range and the lack of non-Western human data. The
present study represents an update that addresses all of these
limitations, including data from 10 more species and from
human subsistence cultures. Consistent with the previous
result, we found little evidence that sex differences in spatial
navigation and home range size are related. We conclude that
sex differences in spatial ability are more likely due to
experiential factors and/or unselected biological side effects,
rather than functional outcomes of natural selection.
1. Introduction
Sex differences in humans and other animals are ubiquitous,
morphological, physiological and behavioural. A common
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practice is to consider any sex difference a product of natural selection that serves a specific function for

one or the other sex. However, sex differences can arise for non-adaptive reasons, such as by-products of
sex physiology or through phenotypic plasticity [1]. The tendency to explain sex differences as products
of natural selection is especially common in evolutionary psychology, where there is a long-standing
preoccupation with cognitive sex differences [2–15].

Much of this research has focused on spatial cognition, measured in diverse ways. After hundreds of
studies and more than a few meta-analyses [8,16–20], we are left with this picture: males outscore females
in a statistically significant way in many spatial tasks, to varying degrees, with a small to moderate meta-
analytic effect size in tasks directly related to navigation (0.34–0.38; [19]) as defined by convention in
interpreting Cohen’s d [21]. Adaptive explanations generally relate the male advantage in spatial tasks
to sex differences in home range size, hereafter referred to as the sex-specific adaptation hypothesis
[22]. In animals in which males have larger home ranges than females, it is commonly hypothesized
that males experience more selection for wayfinding skill than females. Three adaptive explanations
for the difference in home range size have received much attention in the literature, each hypothesized
to drive sex differences in navigation, one related to sexual selection, two not.

On the sexual selection account, in polygynous—but not monogamous species—males must range
farther than females to maximize reproduction [2,11–13,15]. The second adaptive explanation
attributes the sex differences in home range size to differences in foraging behaviour [4–6]. The third
is that selection primarily acts on females. In this version, reduced spatial ability is hypothesized to
reduce female mobility, which conserves energy and avoids danger during critical reproductive
periods [13,14]. This proposal may conflate cognition and motivation. All three hypotheses have been
applied to humans. Note that all three hypotheses assume that substantial sex differences for ancestral
human home range size existed, though supporting evidence from contemporary subsistence
populations is equivocal [23–25].

By far, the most reliable sex differences in spatial cognition come from timed tests of three-
dimensional mental rotations in humans (in untimed tests, the sex differences are diminished; see
[26]). Though some find that mental rotation correlates with real-world differences in wayfinding
ability among individuals [5,7,27–29], the magnitude of the sex difference is much greater in the
former, contrived task (e.g. Cohen’s d = 0.56 [20] or 0.67 [17]). Given the smaller effect sizes for actual
wayfinding mentioned previously, it is arguable whether there is a phenomenon here worth
addressing in an evolutionary context, adaptationist or otherwise.

Moreover, from an evolutionary perspective, there are a priori grounds to doubt whether sufficient
conditions were met for natural selection to produce a sexual dimorphism in spatial cognition driven by
differences in ranging behaviour. In general, selection on a complex trait in one sex will cause a
correlated response in the other unless what is good for the gander is bad for the goose, i.e. there is
antagonistic selection [30–32]. This is because typically there are many genes that influence a complex
trait such as spatial ability, and these are not restricted to the sex chromosomes or activated only by sex-
specific physiology (although sex-specific physiology may affect their expression to some degree). Thus,
if selection in males favours certain alleles, then their female offspring will also inherit them. Although
it is possible they would not express the same way, that would be because they are in a different genetic
background, rather than because of selection per se. Thus, it is not sufficient to demonstrate a greater
potential fitness advantage for skilful wayfinding in males than in females. It must also be
demonstrated that there is a fitness disadvantage for females; otherwise, females would inherit the trait
through their (mostly) shared genomes [30–32]. Although some argue that there is a cost to females for
superior wayfinding with respect to energy conservation and survival [13,14], a test of this hypothesis
failed to support it, albeit with a small sample size [33]. Assuming wayfinding ability has no fitness
cost for females, selection for enhanced wayfinding ability in males should cause a correlated response
in females [34], although possibly not to the same degree as the direct response in males.

In the absence of sexually antagonistic selection, the most likely explanation for sex differences in
cognitive performance in humans in Western cultures has always been that, from an early age, males
and females are socialized in sex-specific ways that entail differential engagement in activities related
to spatial cognition. We will hereafter refer to this alternative hypothesis as phenotypic plasticity,
consistent with the general usage of this term (e.g. [35]). Thus, men may perform slightly better on
average than women on spatial navigation-related tasks because, on average, they are more
experienced in similar tasks. This is consistent with the undeniable fact that performance is trainable,
and experience leads to better performance.

Recent data exploring sex differences in home range size and spatial navigation in human subsistence
cultures provide strong support for the plasticity hypothesis [24,25]. Populations in which males engage
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in foraging to a greater extent, such as the Temne [36], settled Hadza [37], Twe and Himba [33,38], show a

male advantage in spatial orientation. By contrast, populations where both sexes travel long distances to
forage, such as the Eskimo [36], mobile Hadza [37], Tsimane [25,39] and Mbendjele BaYaka [24], show no
difference between the sexes. Although these patterns might result from natural selection over tens of
thousands of years, socio-cultural factors related to spatial experience probably make a substantial
contribution. The Hadza are a particularly instructive example [37]. Within the same population, a
male advantage in pointing tasks was found in the Mangola camps, in which males are more mobile
than females, but not in the bush camps, in which both males and females are highly mobile. Note,
however, that this was a small study and the location-by-sex interaction for the pointing task was not
statistically significant.

Cultural differences, irrespective of sex, also support the phenotypic plasticity hypothesis, even when
the cultures being compared are WEIRD (Western, educated, industrialized, rich, democratic). In a
comparison of wayfinding between residents of Salt Lake City, Utah and Padua, Italy, the Paduans
fared better in wayfinding skills than the Utahns [40]. One salient difference between the two
environments is that, like most American cities, Salt Lake City is a grid whereas, in common with
most old European cities, Padua is not.

Despite the likelihood that difference in navigation in humans is mainly a function of plasticity, the
allure of the sex-specific adaptation hypothesis has inspired many non-human animal studies. The
advantage of the animal studies of sex differences in navigation is that usually the animals are kept in
standard cages, thus restricting the environmental space to be the same size for both males and
females, and hence removing the confound of phenotypic plasticity. Moreover, multiple species
displaying different degrees of sex differences in home range size can be included. In this case, a
positive correlation between sex differences in home range size and spatial navigation would
constitute evidence for adaptation. Unfortunately, most of the animal studies that have been
conducted included only two species (e.g. [12,15,41–43]). In testing for adaptations, two-species
comparisons have long been shunned in mainstream evolutionary biology [44]. Any two species will
differ in countless traits, and by chance alone, the focal trait will differ in the predicted direction 50%
of the time. Moreover, more than two data points are needed to establish a correlation.

In 2012, we published a comparative study of 11 species (including humans) and found no significant
correlation between sex differences in home range size and spatial navigation, i.e. no support for the sex-
specific adaptation hypothesis [1]. However, in 8 of the 11 species, males tended to perform better than
females in spatial tasks in a pattern unrelated to home range size. We concluded the sex difference could
be a side effect of sex-specific aspects of physiology rather than an evolutionary adaptation (see
Discussion for elaboration on the relationship between physiology and spatial cognition). Hereafter,
we refer to this hypothesis as the spandrel hypothesis after Gould & Lewontin [45]. In this view,
selection on one trait will often result in by-products (i.e. spandrels) of no functional significance, or
at least none under direct selection. Sex steroids, for example, serve obviously adaptive roles in sexual
differentiation, not least the genitalia in mammals. But they can have unselected side effects, such as
acne and male patterned baldness [1,46,47]. Unlike the sex-specific adaptation hypothesis, the
spandrel hypothesis predicts no correlation between home range size and spatial navigation, but, very
often, significantly different performance between the sexes one way or the other.

The present paper serves to expand on the 2012 study in four key ways: (i) increasing statistical power
by including data from 10 new species, including a species in which females have a larger home range;
(ii) better addressing the unique ecological factors within each species; (iii) analysing and reviewing data
from human subsistence cultures, much of which has been published since the 2012 paper; and (iv)
addressing criticisms of the earlier work.
2. Methods
2.1. Selection of studies
We compiled home range size and spatial navigation data from 66 studies and 21 species (electronic
supplementary material, table S1), nearly double the numbers in Clint et al. [1]. Species included the
Asian small-clawed otter (Aonyx cinereus) [15], brilliant-thighed poison frog (Allobates femoralis) [48],
California mouse (Peromyscus californicus) [43,49], chimpanzee (Pan troglodytes) [50–53], cuttlefish (Sepia
officinalis) [54], deer mouse (Peromyscus maniculatus) [43,55–57], diablito poison frog (Oophaga sylvatica)
[48], dyeing poison frog (Dendrobates tinctorius) [48], European rabbit (Oryctolagus cuniculus) [58–60],
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giant panda (Ailuropoda melanoleuca) [15,61], horse (Equus caballus) [62–64], human (Homo sapiens) [5,23–

25,33,65–78], meadow vole (Microtus pennsylvanicus) [12,79–81], mouse (Mus musculus) [82–87], Natal
mole-rat (Cryptomys hottentotus) [88], pine vole (Microtus pinetorum) [12], prairie vole (Microtus
ochrogaster) [42,89–91], rat (Rattus norvegicus) [92–96], rhesus monkey (Macaca mulatta) [97–99], rusty
crayfish (Orconectes rusticus) [100,101] and Talas tuco-tuco (Ctenomys talarum) [102–104].

Selection criteria were mostly consistent with Clint et al. [1]: adult animals, original data, provided
data separately for males and females, used uncontroversial measures that were either common in the
literature or could reasonably be expected to relate to navigational ability based on the ecology of the
species, and had raw data or means available. If the authors did not specify that animals were adults
but included ages or weights, standards in the literature were used to determine their stage in
development. Data that could not be limited to adults were excluded. When raw data or means were
unavailable, but the sex difference was non-significant, the sex difference index (see next section) was
set to zero. Note that we also included analyses that excluded such studies where effect sizes were
unavailable (see below and electronic supplementary material, table S2).

One significant divergence from the methods used in the original analysis relates to the time of year
when home range data were collected. Clint et al. [1] confined their home range studies to those in which
year-round data were available to allow comparison among species with and without a pronounced
breeding season. In contrast, to better account for the unique ecological considerations and predictions
for each species, we limited home range data to studies confined to the period in which the greatest
sex difference was expected (i.e. breeding season) or included year-round data, assuming that the
period of greatest sex difference would be captured. Data obtained outside of the breeding season,
when the sex difference in home range or cognition was expected within the breeding season, were
excluded. For spatial ability studies, we excluded data obtained outside the period in which the sex
differences were expected. Note that these considerations applied to the three frog species, deer
mouse, giant panda and meadow vole. All the other species had no pronounced breeding season or
no known changes in spatial behaviour within their breeding season.

In the Talas tuco-tuco, home range data on two populations with different ecologies exist. Necochea and
Mar de Cobo populations differ in body size, the presence of dominance hierarchies and degree of polygyny
[105]. Sex differences in home range, mating season or not, differ between the populations. However, it is
unclear why, and no cognition data exist to determine the state of sex differences in spatial navigation
between these two populations. Therefore, we limited the home range data to the Mar de Cobo population,
as this was the only one for which we had cognitive data. Note that it was not always possible to include
home range and spatial navigation data from the same population within a species (e.g. the chimpanzee).

For non-humans, most home range measurements were collected through field observation, radio-
tracking or trapping. Additional measurements included powder-tracking for the mouse species,
harmonic direction-finding in three species of frogs, locomotor activity as a proxy for the Asian small-
clawed otter and cuttlefish, and various survey and mapping methods for humans. Clint et al. [1]
noted that data from the rhesus monkey and horse are unavailable as they are generally studied in
groups, which is still the case at present. However, they argued that ‘it is broadly agreed that both are
highly social animals and that males and females remain in close proximity to each other for the vast
majority of their lives’ [62,63,99], so a sex difference index of zero was used.

One species, the shiny cowbird, was excluded because home range size is arguably a poor proxy for
cognitive demand due to its unique ecology. During their breeding season, female cowbirds locate nests
to parasitize in the future so that host species take care of their eggs [106,107]. This requires remembering
many different locations. Males do not do this, and it has been argued this explains why female cowbirds
have better performance on spatial tasks than males. However, males have larger home ranges [107].
Thus, the shiny cowbird serves as a strong data point against the sex-specific adaptation hypothesis,
as framed here using home range size as the proxy for cognitive demand. Although it is debatable
whether remembering the locations of the nests they intend to parasitize is more cognitively
demanding than navigating a larger home range, we opted to be conservative in our test of the sex-
specific adaptation hypothesis and therefore excluded this species from our analyses.

Methods for measuring spatial ability are more diverse. Most non-human cognitive data came from
maze tasks, primarily the Morris water maze, radial arm maze, T-maze or variants. Additional
measurements included an ad hoc location memory task for the chimpanzee, homing ability after
translocation in three frog species, an ad hoc measure of visuospatial ability in horses, and the
delayed recognition span test for the rhesus monkey.

In humans, we limited data to measurements that included virtual or real-world wayfinding rather
than proxies such as the mental rotation task. As noted earlier, artificial proxies show larger sex
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differences than tasks requiring actual navigation, which would inflate the human cognitive sex

difference index.
Cognitive data from subsistence cultures consisted of pointing test measurements, in which

participants must point to an out-of-sight location and angular deviation is measured. Data from non-
subsistence cultures primarily came from the Nazareth et al. [19] meta-analysis. We used the following
exclusions to filter studies (each exclusion refers to one of the categories the studies were classified
by): task goal of ‘Reading maps (e.g. navigate by reading a map: Maps)’, task goal of ‘Navigating
with verbal instructions (e.g. navigate with verbal directions: Verbal instructions)’, ‘Survey
[perspective] (e.g. flying over a city, reading a map)’ and ‘Both [route and survey perspective] (e.g.
using a map to walk through a city)’. The relationship between map reading and real-world
navigation is uncertain [1], and a survey perspective is not representative of actual navigational tasks.
We also decided that navigating with verbal instructions was an inferior measure of spatial ability
when considering the many studies in which participants had to navigate without instructions. The
latter is more representative of the demands of evolutionarily relevant situations in which wayfinding
ability would be advantageous. After these exclusions, we selected both virtual and real-world tasks
that involved the deliberate traversal of space, which we considered most representative of navigation
demands in an ecological setting, and had the largest sample sizes. Studies in which the participants
experienced a first-person view of another person navigating (e.g. from a video) were excluded. For a
complete list of home range and spatial ability measurements included in the analysis, see electronic
supplementary material, table S1.

Several measurements came directly from the Clint et al. [1] study. Despite criticism from Cashdan &
Gaulin [10], we retained data from the rhesus monkey, horse, Talas tuco-tuco and cuttlefish. See electronic
supplementary material, file S1 for the rationale of each inclusion.

2.2. Sex difference index
As in Clint et al. [1], we calculated a unitless index to reflect the sex difference for each measurement to
facilitate averaging and comparisons among studies. The index was calculated in the same way as in the
2012 analysis. The quantity [(Xg/Xl)−1] was used, where Xg is the mean of the sex with the greater value,
and Xl is the mean of the sex with the lesser value, a standard formula established in the literature for
comparative analyses (e.g. [108–111]). If females display an advantage in spatial ability or a larger
home range, then the quantity is multiplied by −1 to assign a negative value. Subtracting one from
the ratio centres the measurements at zero and equalizes the range of possibilities for male and female
values, such that a ratio of 1 : 1 would result in a sex difference index of zero. Each species was given
one sex difference index for home range and one for spatial ability, equal to the average of the indices
of each measurement for that species in each respective category (see electronic supplementary
material, table S1).

2.3. Statistical analysis
All statistical analysis was performed in R (version 4.2.2). We first examined the correlation between sex
differences in home range size and spatial ability on the species data points using phylogenetic
generalized least-squares regression, a well-established statistical method that takes into account
potential phylogenetic non-independence of species data points (e.g. [112–115]). This was
accomplished using the base ‘gls’ function and specifying the variance–covariance structure as
‘corMartins’, ‘corGrafen,’ ‘corPagel’ or ‘corBrownian’ from the package ‘ape’. In addition, phylogenetic
signal (‘K statistic’ following Blomberg et al. [116]) was estimated using the ‘phylosig’ function in the
‘phylotools’ package. The likelihoods of the models correcting for phylogeny were lower than
ordinary least-squares (OLS) regressions, and phylogenetic signal was not significant (see Results).
Thus, we report only results from ordinary and weighted least squares linear regression analyses.

Because species varied in the amount of data available, in addition to ordinary OLS, we also
performed a weighted regression for each analysis using the total sample size as the weights. The
sample size for each species was the sum of the number of unique subjects in each home range and
spatial ability measure. If a subject gave data for multiple measurements, they were only counted
once. Data from commentaries or methods that did not measure individual subjects did not contribute
to the species sample size. This included some data for horses [62,63], humans [23,74], Natal mole-rats
[88] and rhesus monkeys [99]. The sample sizes for one non-subsistence human range study and one
spatial ability study are slightly inflated because it is unclear how many of the participants
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contributed to each specific measurement [65,67]. Home range data from one meadow vole study [81]

and one prairie vole study [89] did not contribute to the sample size because the authors did not
report the number of unique subjects. All of the values used in the analyses are available in electronic
supplementary material, table S1.

For the main analyses, we used data from subsistence cultures to represent the human data point,
reasoning that data from non-subsistence cultures poorly represent conditions of our evolutionary
ancestry and are heavily biased toward a ‘Westernized’ culture. We also performed analyses with
statistical outliers removed (see Results) and using the logarithm base 10 of the sex difference indices
to account for positive skewness associated with ratios. For these analyses, the logarithm of the
index + 1 was used to account for cases when the index was zero. For negative index values, the
logarithm was taken of the absolute value of the index + 1 and then multiplied by negative 1.

While the main analyses used subsistence data for humans for reasons described above, we also
analysed the data using non-subsistence measures for humans for reference, and included analyses
that combined both subsistence and non-subsistence data (electronic supplementary material, table
S2). We also included analyses with only non-human animals. Finally, for the main analyses described
above, when raw data or means were unavailable for a particular study, but the sex difference was
not significant, the sex difference index was set to zero. However, we also included analyses where
those studies that did not report effect sizes were excluded from the calculation of the indices
(electronic supplementary material, table S2, zeros removed). This resulted in the loss of two species
(otter and tuco-tuco). All the data are available in electronic supplementary material, table S1 for
further analyses.

To help interpret results of OLS models, we performed a statistical power analysis. We simulated data
varying the correlation from 0 to 1 and then evaluated the proportion of simulations where the
correlation was significant (i.e. p < 0.05, two-tailed test), using both weighted and unweighted OLS.
Specifically, we used the ‘rbvnorm’ function from the ‘extraDistr’ package to generate 1000 simulated
values from a bivariate normal distribution after specifying a correlation, and the mean and standard
deviation of the x and y variables from the mean and standard deviation of the observed values. This
was repeated for a sequence of correlations ranging from 0 to 1 in 0.01 increments (see electronic
supplementary material, file S2 for the R-code used).
3. Results
An initial test of phylogenetic signal in the home range and spatial navigation sex difference indices
using the K statistic of Blomberg et al. [116] indicated small values (0.08 and 0.03, respectively) that
were not significant ( p = 0.23 and p = 0.89, respectively) based on randomization tests when using the
phylogenetic tree with divergence times as branch lengths (figure 1). In addition, the diagnostic plots
in Mesquite PDAP (from [118,119]) indicated that the phylogeny and/or branch lengths did not fit the
tip data well. Finally, a ’phylomorphospace’ plot [120–122] did not indicate any obvious relation of
the phenotypes to phylogenetic position.

In the phylogenetically corrected regression analyses, the likelihood of models with phylogenetically
informed variance–covariance matrices were substantially lower than those of the OLS models that do
not correct for phylogenetic signal. Adding estimation of Grafen’s ρ transformation of branch lengths
[118] returned a very low estimate, indicating essentially a star phylogeny, and the same was true for
Pagel’s λ. Attempts to apply the accelerated/decelerated (ACDC) model of Blomberg et al. [116] or the
transformation of Martins & Hansen [123] did not converge. Therefore, we believe the OLS estimates
are appropriate for these analyses. Note, though, that we are limited by the taxa for which data are
available. If future research that includes additional species detects significant phylogenetic signal,
phylogenetic correction may be warranted.

In the OLS analyses, the correlation between sex differences in home range size and spatial navigation
was not statistically significant in any of our analyses that used subsistence measures for humans
(table 1). The weighted analysis showed a weak positive correlation (r = 0.21) between home range
and spatial ability dimorphism, while the unweighted analyses showed a weak negative correlation
(r =−0.11; table 1 and figure 2). This pattern was true whether or not outliers were removed, or using
logarithms of the indices. The same pattern was observed for analyses that excluded zeros estimated
from unreported, non-significant effect sizes (electronic supplementary material, table S2; zeros
removed analyses). Results of the statistical power analysis suggest that our comparative analyses with
21 species is sufficiently powered to detect correlations greater than approximately 0.5 assuming p <
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0.05 is significant and a two-tailed test (figure 3). Thus, if the ‘true’ correlation is within the estimated
range in table 1, it will be difficult to detect without many more species.

In contrast to the lack of significant slope, the intercept differed significantly from zero in most
analyses, and all estimates were positive (0.06–0.35), suggesting that, among species, males slightly
outperform females, though not in any pattern related to home range. Only one species showed a
significant female advantage, while the other 20 either showed no difference or a significant male
advantage. The average sex difference in spatial navigation across all 21 species (using the subsistence
value for humans) was 0.31 (± 0.117 s.e.; Cohen’s d = 0.57). Figure 2 shows all the species data points
and two linear relations, one weighted by the sample size for the species measurement, the other
unweighted.

Two statistical outliers were identified as showing standardized residuals beyond 2 s.d. from the mean:
the meadow vole and the chimpanzee. The chimpanzee was the only species with a significant female
advantage in spatial ability, and the data came from a small sample (including only seven females and
five males) from a single paper using a proxy for wayfinding. The meadow vole sex difference in
spatial ability was the largest of all the species and came from an average of two studies using standard
measurements and reasonable sample sizes (including 19 females and 15 males across two studies).

Electronic supplementary material analyses in which non-subsistence human data were included
showed more moderate positive correlations in most cases significant when weighted, particularly
when subsistence human data were excluded, and weak negative correlations when unweighted.
Logarithmic transformation of the data did not change the overall pattern. When humans were
removed altogether and data were weighted, a slightly significant positive correlation was detected
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( p = 0.047), but this went away when the outliers were removed. For unweighted non-human animal
data, the slope was weakly negative (electronic supplementary material, table S2).
4. Discussion
We find little evidence that sex differences in home range size are correlated with sex differences in
wayfinding across the available data for 21 species. When using the subsistence measures for humans,
none of the analyses showed a significant correlation. Only when analyses were weighted by sample
size and we included the huge sample size of non-subsistence measures (i.e. mostly industrial) was
the among-species correlation statistically significant. When human data were removed from the
analysis, we also observed a small, significant correlation, but this was driven by statistical outliers,
because when they were removed, the correlation went away. Thus, the sex-specific adaptation
hypothesis is not strongly supported, and non-adaptation alternatives should be seriously considered.
The lack of significant correlation in most of our analyses (table 1; electronic supplementary material,
table S2) builds on that of Clint et al. [1] and is what would be expected given basic evolutionary
considerations. To date, no evidence of sexually antagonistic selection has been presented, only some
gesturing toward the energy costs of maintaining navigation abilities for females [13,14].

Sex differences in behaviour or performance can arise from biological or cultural processes that have
little to do with evolution. The brain is renowned for its plasticity. Experience-induced restructuring is
the sine qua non of brain function at many scales, from the sub-synaptic to whole neural circuits
[124,125]. In the literature on sex differences, insufficient attention is accorded to this basic feature of the
brain, a central theme of modern neurobiology, as well as phenotypic plasticity in general, a central
theme of evolutionary biology. Phenotypic plasticity is the obvious null hypothesis to use in evaluating
claims that any putative male superiority in spatial navigation is a sex-specific cognitive adaptation.

For humans, sex-specific experience has an obvious socio-cultural dimension. Evolutionary psychologists
consider a behavioural trait innate if it is culturally universal. This is not the place to comment on that
practice generally, but it is not sufficient to compare American and Chinese undergraduate psychology
students, as in Geary & DeSoto [3], because they are too similar in the way they are socialized. Recent
evidence in subsistence populations strongly suggests that sex difference in spatial navigation in humans
is not a cultural universal. Rather, it disappears in cultures where males and females have similar ranging
behaviour [24,25,36,37,39]. We believe that future research on human sex differences in navigation should
focus on the role of socialization and culture, rather than evolutionary genetic factors.

In animals where males and females are constrained to have the same experience within their
lifespan, ruling out the possibility for differential phenotypic plasticity, sex differences in wayfinding
could result simply as a side effect of sex-specific aspects of reproductive physiology or development,
i.e. the spandrel hypothesis. Some evidence suggests that androgens enhance spatial navigation in
humans and other animals (e.g. [126–129]), but no consensus exists, especially with respect to
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activational effects (see [130,131]). Further, a handful of studies suggest that high levels of oestradiol

decrease spatial navigation performance in rodents and humans, particularly when comparing the
performance of females during the peaks and valleys of oestradiol concentrations, such as during the
oestrus or menstrual cycle [79,132–134]. The significant intercepts observed in the majority of analyses
(table 1; electronic supplementary material, table S2) suggest males generally outperformed females
across species independent of sex differences in home range size. This result is consistent with but
does not require androgenic or oestrogenic effects on spatial cognition. Whether sex-hormone related
or not, we find little evidence that the small male advantage in wayfinding results from natural (or
sexual) selection. Hence, our data do not favour the sex-specific adaptation hypothesis over the
spandrel hypothesis, according to which these sex differences are unselected by-products that are
unrelated to the putative ecological, evolutionary driver—the sex difference in home range. Although
the data perhaps could be explained by alternative adaptation hypotheses unrelated to home range,
non-adaptive explanations such as the spandrel hypothesis deserve at least equal consideration. In our
opinion, it is important not to assume a priori that adaptation hypotheses are more likely than other
explanations, such as side effects of sex physiology.

Over the past half-century, significant resources have gone into testing the sex-specific adaptation
hypothesis as an explanation for sex differences in navigation abilities. In a previous meta-analysis,
we found the evidence was weak, and in this paper with an expanded dataset, we again find little
evidence supporting the sex-specific adaptation hypothesis. The data that we had to work with are
limited in terms of the small number of species for which both home range sex differences and spatial
navigation were measured. Further, there is the potential for a large amount of noise in the species
data points for the sex difference index because of individual variability and measurement error in the
numerator and denominator of the ratios. It is possible with more, higher quality data, a significant
positive relationship will appear. To date, the observations, such as they are, do not favour the
sex-specific adaptation hypothesis over the alternatives we have described. We conclude that non-
adaptive explanations for sex differences in navigation in humans and other animals should be taken
more seriously. More broadly, we strongly believe the fields of evolutionary psychology and
behavioural ecology would benefit from increased consideration of non-adaptive explanations in their
endeavours to explain the origin of variation in phenotypic traits.
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