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ABSTRACT OF THE THESIS 

 

Multi-modal Medical Imaging Registration 

 

by 

 

Deeban Ramalingam 

Master of Science in Computer Science 

University of California, Los Angeles, 2021 

Advisor: Professor Fabien Scalzo 

 

Medical image registration automatically brings two images into maximal spatial and 

anatomical correspondence. The registration of brain images taken at different modalities and 

time points helps in designing a treatment plan in neurology besides assisting in surgery. The 

registration of stained and unstained skin samples in dermatology used in virtual histological 

staining helps the dermatologists by removing the labor and cost that is involved in invasive 

techniques such as skin biopsies. The registration of histological skin images can be more 

challenging than the registration of brain images due to repetitious image textures, and the 

various expansions and morphological changes of tissue samples caused by the contrast agent 

used to stain the skin. For these reasons, the standard registration approaches may not adequately 

address this area of medical image registration. Advanced registration techniques have been 

developed to overcome such challenges. Recently, machine learning methods have gained 

popularity in multi-modal medical image registration. The goal of the thesis is to apply the 
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standard, advanced, and machine learning-based multi-modal registration methods to the 3D 

microscopic histological dermatological data and to compare their performance.  
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1. INTRODUCTION 
 

Medical image registration is a useful technique that automatically brings two images 

into anatomical correspondence. In neurology, for example, registering images of a patient’s 

brain taken at different modalities and time points helps physicians and neurosurgeons to identify 

a disease, plan a treatment, and perform surgery [1]. In virtual histological staining, registering 

unstained and stained skin samples acquired from a non-invasive microscopy technique assists 

dermatologists by removing the labor and cost involved in taking a skin biopsy from a patient for 

the diagnosis of diseases [2].  

While deformations in the brain caused by injuries like strokes pose a challenge for 

neurological image registration, the registration of histological images can be more challenging 

due to the following reasons: (i) large image sizes; (ii) repetitive textures in the images that make 

it difficult to find distinguishing landmarks; (iii) various expansions and morphological changes 

to tissue samples caused by the contrast agent that is used to stain tissues; (iv) differences in the 

images caused by various acquisition methods; and (v) local structural differences within a 3D 

image stack [3]. For these reasons, the registration of skin samples is often beyond standard 

registration approaches. In fact, such approaches are outperformed by complex transformations 

that involve an initial rigid alignment followed by a non-rigid registration method [3]. Recently, 

machine learning methods have also shown promise in multi-modal medical image registration. 
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2. RELATED WORK 
 

2.1.  STANDARD AND ADVANCED REGISTRATION APPROACHES 

The software MATLAB [5] provides the Image Processing Toolbox, which contains the 

interactive Registration Estimator App, intensity-based automatic image registration, and control 

point registration. The Registration Estimator App enables the user to interactively register a 

source image to a target image. Different registration techniques and settings can be selected. 

The app offers a quantitative registration quality measure and also provides the transformation 

matrix associated with the registration. The intensity-based automatic image registration aligns 

the corresponding pixels in each image based on their relative intensity patterns. The registration 

technique can be applied to both 2D and 3D monomodal and multimodal image pairs, and it is 

also useful for the registration of a large number of images. The user can specify the types of 

geometric transformation applied to the source image. The registration technique iteratively 

adjusts the parameters of the geometric transformation to optimize the spatial correspondence 

between a pair of images.  

A localized displacement field can also be estimated using this optimization method and 

is applied as a nonrigid transformation to the source image. The control point registration enables 

the user to select features that are common to the image pairs. The registration technique is 

useful when specific anatomical features that need to be aligned are preferred to the less 

informative, repetitive features that are detected using an automated feature detection strategy. 

The control point registration supports a variety of global and nonrigid transformations. 

MATLAB also provides the Computer Vision Toolbox that offers automated feature detection 



3 
 

and matching. Automated feature detection and extraction can be used to detect corresponding 

features like corners and blobs that are from the source and target images and to estimate a 

geometric transformation that aligns the matched features. 

An intensity-based medical image registration software is presented in [4]. The software 

formulates the image registration problem as an optimization problem. A cost function is 

minimized using an iterative optimization method with respect to the parameters of a registration 

transformation embedded in a multiresolution scheme. Some examples of cost functions include 

mean squared difference (MSD), normalized correlation (NC), and variants of mutual 

information (MI). The transformation models that are supported by the software include 

translation, rigid, similarity, affine, and nonrigid, such as B-spline, thin-plate spline, and elastic 

body spline. When a nonrigid transformation is used, a regularization term that penalizes 

undesired deformations can be added to the cost function. The regularization term is often 

expressed in terms of first- and second-order spatial derivatives of the transformation. The cost 

functions that are available to this software include gradient descent, quasi-Newton, nonlinear 

conjugate gradient, evolution strategy, and various stochastic gradient descent methods. Some 

examples of multi-resolution strategies include image pyramid schemes, varying B-spline grid 

resolutions, and adjusting the number of histogram bins used in computing the MI. 

Three experiments were used to validate the effectiveness of the software. In the first 

experiment, the software was tested on 50 MR prostate scans from different patients. The Dice 

Score Coefficient (DSC) was used to compare various registration transformations. This 

experiment demonstrated that using nonrigid registration was essential for the application. The 

software was also used in the second experiment to register T1-weighted MR and PET images 

taken from the “retrospective image registration evaluation” (RIRE) project with ground truth 
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correspondences for the eight corner points of each image. The application of the software to the 

data demonstrates that the random sampling of voxels off a uniform grid in a target image has 

been shown to improve the smoothness of the cost function. In the third experiment, the software 

was applied to CT chest scans of 26 patients taken from a baseline and follow-up scans for a lung 

cancer screening trial. The mean distance between corresponding points of the warped and target 

images was used to evaluate the registration accuracy of several multiresolution strategies. This 

experiment demonstrates that refining the grid associated with the B-spline transformation 

continued to improve with increasing resolution levels.  

The Automatic Non-Rigid Histological Image Registration Challenge (ANHIR) was held 

to compare the performance of various registration methods on microscopic histological images 

[3]. The dataset to be registered consists of 481 image pairs of lung lesions, lung lobes, 

mammary glands, mouse kidney, colon adenocarcinoma, gastric mucosa, human breast, and 

human kidney. The registration accuracy was evaluated by measuring the relative Target 

Registration Error (rTRE) between the corresponding landmark positions in the ground-truth and 

registered images. The methods that performed well in the challenge utilized coarse but robust 

initial alignment, followed by nonrigid registration. In the first method conducted by Fraunhofer, 

an affine transformation was found by applying the Gauss-Newton method that optimized the 

normalized gradient field (NGF) similarity of grayscale versions of the images. A dense, non-

rigid transformation was then found using the curvature regularization and Limited-memory 

Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization along with the same optimization 

criterion. In the second method conducted by Chengdu, a rigid, scaling transformation was first 

estimated on down-sampled images by optimizing the normalized cross-correlation (NCC) using 

gradient descent. A non-rigid registration represented by B-splines was then found locally using 
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L-BFGS optimization of the NCC. In a third method conducted by AGH UST, RANSAC was 

first used to determine an initial similarity or rigid transformation by selecting key-points in each 

image pair using SIFT, ORB, or SURF. A non-rigid transformation was then found using local 

affine registration, various versions of the demons algorithms, or a feature-point-based thin-plate 

spline interpolation.  

2.2.  MACHINE LEARNING-BASED REGISTRATION APPROACHES 

Tang and Scalzo (2016) developed an image registration algorithm to find a 

transformation that produced a coordinate system of maximal spatial correspondence between 

3D MRA and 2D DSA images [6]. The 3D MRA and 2D DSA images were collected from 

admitted patients diagnosed with symptoms of ischemic stroke at a stroke center. The parameters 

of the transformation are obtained via Nedler-Mead Simplex algorithm. At each iteration of the 

optimization, the algorithm first applies an affine transformation using a candidate set of 

parameters. The algorithm evaluates the quality of the parameter set by comparing the resulting 

transformed image to a target image using a similarity metric. The similarity metric was learned 

using Spectral Regression for Discriminant Analysis from corresponding 2D point descriptors 

between the transformed and target images. The 2D point descriptors were obtained by applying 

the filtering and thresholding techniques as well as semi-automatic software-assisted 

segmentation to the original angiographic image data. The root mean square error computed 

between the same points in the transformed source image, which used the estimated and ground-

truth parameters, was utilized to evaluate the method. 

De Vos et al. (2017) present a convolutional neural network model consisting of a 

ConvNet regressor, spatial transformer, and resampler [7]. The ConvNet regressor applies a 

series of convolutional layers to a concatenated pair of source and target images to output local 
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deformation parameters. These parameters are used by the spatial transformer to generate a 

displacement field that allows the resampler to warp the source image to match the target image. 

The network is trained on randomly sampled batches of source and corresponding target images 

in an end-to-end fashion to optimize an image similarity metric between the predicted warped 

and target images. The network was tested not only on handwritten digits but also on slices of 

cardiac cine MRI scans. The pair of source and target images were corresponding anatomical 

slices from the same scan of a single patient, but obtained at different points in time of the 

cardiac cycle. The mean and standard deviation for the Dice score, 95th percentiles of the surface 

distance (95thSD), and mean absolute surface distance (MAD) were measured to evaluate the 

approach. 

Balakrishnan et al. (2019) used a neural network model, namely VoxelMorph, to 

parametrize a function that maps a pair of source and target images to a displacement field [8]. 

The model first computes a displacement field from the source and target images using a 

Convolutional U-net architecture. The model then warps the source image according to the 

displacement field using a spatial transformation function. The model is trained to minimize the 

dissimilarity between the warped image and the target image. The mean-square-error and 

negative cross correlation were used to determine dissimilarity. Since minimizing the 

dissimilarity may generate non-smooth, unrealistic displacement fields, a smoothness loss that 

penalizes local spatial variations was also included in the overall objective function. The model 

was tested on a large-scale, multi-site, multi-study dataset of T1–weighted brain MRI scans. The 

Dice score was used to measure the registration accuracy of this approach.  

Bhalodia et al. (2019) proposed a cooperative neural network architecture consisting of 

two interacting convolutional subnetworks [9]. The primary network is tasked with finding a 
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displacement field between a source and target image, which when applied to the source image, 

produces a warped image that is aligned to the target image. The purpose of the secondary 

autoencoder network is to regularize the displacement fields found by the primary network. This 

is done by reconstructing the displacement field with a bottleneck layer of relatively fewer 

hidden units. The reconstruction loss from the secondary network as well as registration loss of 

the primary network constitutes the final objective function which is minimized to encourage the 

model to restrict displacement fields to a low dimensional manifold. A synthetic dataset of 

binary shapes was used to demonstrate that the secondary network uses information about the 

population statistics of the data. Training the model on 2D slices of the Corpus Callosum 

demonstrates that the displacement fields that were produced lie close to a low-dimensional 

manifold. The model was also trained on a 3D dataset of appendages. The AE error, Dice 

coefficient, and Landmark error were used to evaluate the method on these datasets. 

Arar et al. (2020) developed an unsupervised multi-modal image registration algorithm 

consisting of a spatial transformer network and translation network [10]. During the training 

procedure, the spatial transformer network first produced a deformation field from the source and 

target images of different modalities. Two separate training flows are used to produce two 

warped images using this deformation field. In the first flow, a resampling layer applies the 

deformation field to the source image to obtain a warped image and is translated to the target 

modality. In the second flow, the source image is also translated to the target modality and is 

then resampled according to the deformation field to produce another warped image. The warped 

images are then compared against the target image to produce a reconstruction loss. An 

adversarial loss that encouraged the generation of paired-samples to match the real distribution 

was considered in the overall objective function. The model was trained on a collection of RGB, 
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IR, and Depth images of banana plants with different growing conditions and phenotypes. The 

average Euclidean distance between the target points and their matching deformed source points 

on salient objects and full scene annotations was used to evaluate the accuracy of the approach. 
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3. METHODS 
 

The standard, advanced, and machine learning-based registration methods are used to 

automatically align a set of source and target image pairs. The standard approaches used to 

register the images are the 3D affine transformations from MATLAB and Elastix. The advanced 

approaches are 3D Demons and 3D B-Spline registration techniques from MATLAB and Elastix, 

respectively. The VoxelMorph registration algorithm is used as the machine learning-based 

approach. Since these methods are applied to 3D microscopic dermatological data, the average 

SSIM is used to evaluate the registration accuracy of the methods. 

3.1.  MATLAB 

The “imreg” command in MATLAB is used to apply a 3D affine transformation to align 

the source image to the target image. The affine transformation accounts for translation, rotation, 

scaling, and shearing. The OnePlueOneEvolutionary optimizer is used to maximize the Mattes 

Mutual Information between the source and target images. At each iteration of the optimizer, the 

present parameters are perturbed to obtain a set of candidate parameters. If the candidate 

parameters produce a better result with respect to the optimization criterion, then these 

parameters are used in the next iteration with perhaps a more aggressive perturbation. If the 

original parameters return a better result, then these parameters are used instead with relatively 

less perturbation. During the entirety of the optimization procedure, the Mattes mutual 

information algorithm uses a single set of pixel locations to estimate a joint probability 

distribution of pixels between the source and target images. The distribution measures the 

certainty that the selected pixels between the images have similar values. Hence, high mutual 
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information corresponds to a low entropy between the marginal distributions of each image. This 

suggests that there is better alignment between the images [5]. 500 pixel samples and 50 bins are 

used to compute the mutual information between the source and target images. 

The “imregdemons” command in MATLAB is also used to estimate a localized 

displacement field and apply a 3D nonrigid transformation to the source image. The command 

uses the non-parametric, diffeomorphic demons algorithm to register the source and target 

images [5]. In each iteration of the demons algorithm, a small deformation field is sought to 

minimize the intensity differences between the source and target images in a least-squares sense 

[11, 12]. Gaussian smoothing is applied to regularize the minimization problem [5]. This 

efficient, intensity-based registration method involves the minimization of the (mean square 

error) MSE criterion that uses the efficient second-order minimization (ESM) framework [12]. 

The “imhistmatch” command is used to correct the illumination differences between the source 

and target images using histogram matching [5].  

3.2.  ELASTIX 

A 3D affine transformation similar to one in MATLAB is used to register the source and 

target images [4]. The 3D B-spline deformation from Elastix along with the MI similarity criteria 

and the adaptive stochastic gradient descent optimizer is used to register the source and target 

images [3]. The transformation associated with a B-spline deformation consists of a weighted 

sum of B-spline basis functions placed on a uniform grid of control points [4]. The control points 

act as parameters of the B-spline deformation. The degree of the deformation depends on the 

resolution of the grid of control points. A large spacing of control points models global nonrigid 

deformations, whereas a small spacing of control points models highly local nonrigid 

deformations [13]. MI measures the extent to which the image intensity in an image relates to the 
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image intensity in another image. This in turn corresponds to measuring the dependency of the 

probability density distributions of the intensities of the source and target images. The MI is 

optimized via gradient descent with an adaptive gain [4].  

3.3.  VOXELMORPH 

 A 3D displacement field produced by VoxelMorph is used to register source and target 

images [8]. VoxelMorph passes a pair of source and target images through several convolutional 

layers to produce a displacement field. The displacement field is then used to warp the source 

image using a spatial transformer layer. The unsupervised loss function used to train 

VoxelMorph consists of an MSE between warped and target images as well as an L2 smoothness 

regularization on the spatial gradient of the displacement field. This L2 regularization term is 

used to penalize local spatial variations present in unrealistic displacement fields that result from 

minimizing the MSE. VoxelMorph is trained and tested on two separate sets of source and target 

image pairs, respectively. Resampling based on linear interpolation is used to resize the source 

and target images. 

3.4.  EVALUATING REGISTRATION ACCURACY USING AVERAGE SSIM 

The measurement of registration accuracy using pixel-wise error is not highly indicative 

of perceived similarities. The Structural Similarity Index (SSIM), on the other hand, addresses 

this shortcoming by taking texture into account in order to compare more complex aspects of two 

images such as luminance, contrast, and general structures [14]. For this reason, the SSIM is 

used as a metric of performance to measure registration accuracy. The SSIM of two images 𝑥, 𝑦 

is computed using the following formula 

𝑺𝑺𝑰𝑴(𝒙, 𝒚) =
,𝟐𝝁𝒙𝝁𝒚 + 𝑪𝟏1,𝟐	𝝈𝒙𝒚 + 𝑪𝟐1

,𝝁𝒙𝟐 + 𝝁𝒚𝟐 + 𝑪𝟏1,𝝈𝒙𝟐 +	𝝈𝒚𝟐 + 𝑪𝟐1
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where 𝜇% is the mean intensity of 𝑥, 𝜇& is the mean intensity of 𝑦, 𝜎% is the standard deviation of 

𝑥, 𝜎& is the standard deviation of 𝑦, and 𝜎%& is the covariance of 𝑥 and 𝑦. 𝐶' is a constant used to 

stabilize the expression 𝜇%( + 𝜇&(  when it is near zero. Similarly, 𝐶( is a constant used to address 

the case when 𝜎%( + 𝜎&( is close to zero.  

Since the aforementioned methods are applied to 3D microscopic dermatological data, 

the average SSIM is used to evaluate the methods. The average SSIM is calculated by taking an 

average across 𝑛 pairs of corresponding 2D image slices that comprise a pair of 3D images 𝑋, 𝑌. 

The following formula is therefore used to compute the average SSIM 

𝑺𝑺𝑰𝑴𝑨𝑽𝑬𝑹𝑨𝑮𝑬 =
𝟏
𝒏<𝑺𝑺𝑰𝑴(𝑿[𝒊], 𝒀[𝒊])

𝒏

𝒊0𝟏

 

 

where 𝑋[𝑖] and 𝑌[𝑖] denote the 𝑖 -th slices of 𝑋 and 𝑌, respectively. 
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4. EXPERIMENTAL ANALYSIS 
 

4.1.  3D MICROSOPIC DERMATOLOGICAL DATA 

For a given patient case, a set of 3D time-lapsed image stacks of microscopic 

dermatological data are acquired using Reflectance Confocal Microscopy. Pyramid Elastic 

Registration [15] is used to align two corresponding images from temporally neighbored image 

stacks. This procedure is performed so that the image stack acquired before staining can be 

roughly registered to the image stack acquired after staining. The other images within these 

stacks are respectively aligned with these two images. As a result, the two image stacks before 

and after staining are also aligned with each other forming the initially registered input-target 

image pairs. The dimension of each image in a stack is around 900x900. The images are mono-

channeled, and the number of images in each stack can vary. 

These image pairs are then used to train a neural network that performs virtual staining. 

After training, the network performs inference on the input images to generate output images. 

These output images are aligned with the target images using Pyramid Elastic Registration [15] 

to achieve a more accurate spatial correspondence between input and target images. Image pairs 

that consist of the input and output images of the previous registration are used to train another 

neural network to also perform virtual staining. After training, the network performs inference on 

the input images to generate output images as was conducted previously.  

 

 



14 
 

4.2.  COMPARISON OF STANDARD AND ADVANCED REGISTRATION 

APPROACHES 

The target images are aligned to the output images using standard and advanced 

registration methods from MATLAB and Elastix. The SSIM scores are averaged over all pairs of 

output and registered target images in their respective stacks to evaluate the registration methods. 

The optimizer and metric configurations of the MATLAB Affine 3D registration method are 

initialized with the multi-modal setting. The Initial Radius, Epsilon, Growth Factor, and 

Maximum Iterations of the optimizer are set to 0.009, 1.5e-4, 1.01, and 300, respectively. The 

average SSIM for the MATLAB and ELASTIX registration methods are reported in Table 4.1. 

The Gaussian smoothing value associated with the smoothing is set to 1.3 and three multi-

resolution image pyramid levels of 500, 400, and 200 iterations each are used in the MATLAB 

Demons 3D registration. For the first Elastix B-Spline 3D registration (ELASTIX BSPLINE-3D-

I), the maximum number of iterations for the convergence of the B-Spline Transform is set at 

512. For the second Elastix BSpline 3D Registration, the number of iterations for convergence 

was set to the default value and an Affine Transform was utilized prior to the BSpline Transform 

(ELASTIX BSPLINE-3D-II). MATLAB DEMONS-3D obtained the greatest mean average 

SSIM of 0.61 across the selected cases of patients in Table 4.1. Figure 4.1 shows the target, 

output, and registered target images for case number 112 layer 24 using the above standard and 

advanced registration approaches, while Figure 4.2 shows the target, output, and registered 

target images for case number 107 layer 21. 

4.3.  COMPARISON WITH MACHINE LEARNING-BASED REGISTRATION  

The target images are also aligned to the output images using the machine learning-based 

method VoxelMorph. 100 epochs are used to train VoxelMorph, and it is trained on 100 batches 
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per epoch. The batch size is set to 2. The implementation of VoxelMorph is from 

https://github.com/voxelmorph/voxelmorph. The number of encoder features for the U-Net are: 8 

and 16. The number of decoder features for the U-Net are: 16, 16, and 8. The diffeomorphism 

option is disabled. The 3D source and target images were resampled to 128x128x128. NVIDIA 

GeForce GTX 1060 3GB and NVIDIA TITAN RTX are used during the training procedure. 

VoxelMorph is trained on patient case numbers 29, 30, 32, 33, 34, 35, 36, 37, 39, and 61 and 

tested on patient case numbers 107, 108, 109, 110, 111, and 112. The regularization weight 

parameter was set to 0.05. The average SSIM for the VoxelMorph model corresponding to the 

58th epoch (ML-BASED VOXEL-MORPH-3D-REGISTRATION) as well as ELASTIX 

AFFINE-3D, ELASTIX BSPLINE-3D-II, MATLAB DEMONS-3D, and ELASTIX AFFINE-3D 

are reported in Table 4.2. The training and testing losses up to epoch 58 are shown in Figure 4.5 

and Figure 4.6, respectively. ML-BASED VOXEL-MORPH-3D-REGISTRATION obtained the 

greatest average SSIM across the selected cases of patients in Table 4.2, thus obtaining the 

greatest mean average SSIM of 0.72 when compared to the other registration methods. Figure 

4.3 shows the target, output, and registered target images for case number 112 layer 24 using 

ML-BASED VOXEL-MORPH-3D-REGISTRATION, while Figure 4.4 shows the target, 

output, and registered target images for case number 107 layer 21. 
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5. DISCUSSION AND CONLUSION 
 

Medical image registration techniques are used to automatically align patients’ images. In 

the thesis, previous literature studies related to standard, advanced, and machine learning-based 

registration methods are reviewed. Affine, B-spline, and Demons registration methods from 

MATLAB and Elastix, as well as the robust machine learning-based registration method 

VoxelMorph are applied to 3D microscopic histological dermatological data. VoxelMorph 

obtains the greatest registration accuracy across a selected set of patient cases. Therefore, the 

thesis demonstrates the effectiveness of Machine Learning-based approaches in the registration 

of skin samples used in virtual histological staining. Such approaches will help dermatologists by 

reducing the cost and effort involved in invasive techniques like skin biopsies.  
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FIGURE 4.1: PATIENT CASE NUMBER 112 LAYER 24 TARGET, OUTPUT, AND 

REGISTERED TARGET IMAGES FOR THE STANDARD AND ADVANCED 

REGISTRATION METHODS 
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FIGURE 4.2: PATIENT CASE NUMBER 107 LAYER 21 TARGET, OUTPUT, AND 

REGISTERED TARGET IMAGES FOR THE STANDARD AND ADVANCED 

REGISTRATION METHODS 
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FIGURE 4.3: PATIENT CASE NUMBER 112 LAYER 24 TARGET, OUTPUT, AND 

REGISTERED TARGET IMAGES FOR THE MACHINE LEARNING-BASED 

VOXELMORPH-3D REGISTRATION METHOD 
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FIGURE 4.4: PATIENT CASE NUMBER 107 LAYER 21 TARGET, OUTPUT, AND 

REGISTERED TARGET IMAGES FOR THE MACHINE LEARNING-BASED 

VOXELMORPH-3D REGISTRATION METHOD 
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FIGURE 4.5: TRAINING LOSS FOR MACHINE LEARNING-BASED  

VOXELMORPH-3D REGISTRATION 
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FIGURE 4.6: TESTING LOSS FOR MACHINE LEARNING-BASED  

VOXELMORPH-3D REGISTRATION 
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CASE 
NUMBER 
(patient) 

ORIGINAL MATLAB 
AFFINE-

3D 

MATLAB 
DEMONS-

3D 

ELASTIX 
AFFINE-

3D 

ELASTIX 
BSPLINE-

3D-I 

ELASTIX 
BSPLINE-

3D-II 

107 0.44 0.44 0.59 0.44 0.43 0.43 

108 0.40 0.40 0.63 0.40 0.39 0.39 

109 0.39 0.39 0.63 0.40 0.34 0.37 

110 0.37 0.37 0.53 0.40 0.42 0.41 

111 0.44 0.44 0.55 0.40 0.41 0.40 

112 0.49 0.49 0.70 0.48 0.46 0.46 

MEAN 0.42  0.42 0.61 0.42 0.41 0.41 

 

TABLE 4.1: THE COMPARISON OF STANDARD AND ADVANCED REGISTRATION 

APPROACHES UTILIZING AVERAGE SSIM FOR VARIOUS PATIENTS 
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CASE 
NUMBER 
(patient) 

ORIGINAL ELASTIX 
AFFINE- 

3D 

ELASTIX 
BSPLINE- 

3D-II 

MATLAB 
DEMONS- 

3D 

ML-BASED 
VOXELMORPH- 

3D 

107 0.44 0.44 0.43 0.59 0.67 

108 0.40 0.40 0.39 0.63 0.67 

109 0.39 0.40 0.37 0.63 0.72 

110 0.37 0.40 0.41 0.53 0.67 

111 0.44 0.40 0.40 0.55 0.79 

112 0.49 0.48 0.46 0.70 0.81 

MEAN 0.42 0.42 0.41 0.60 0.72 

 

TABLE 4.2: THE COMPARISON OF STANDARD AND ADVANCED REGISTRATION 

WITH MACHINE LEARNING-BASED VOXELMORPH-3D UTILIZING AVERAGE SSIM 

FOR VARIOUS PATIENTS  
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