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ABSTRACT OF THE DISSERTATION

Statistical Matching Model in Centralized Two-sided Markets

With Contexts, Constraints, and Incentive Compatibility Consideration

by

Yuantong Li

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2024

Professor Guang Cheng, Co-Chair

Professor Xiaowu Dai, Co-Chair

Two-sided online matching is a crucial aspect of optimizing social welfare sequentially within

economic frameworks, achieved through pairing participants via third-party platforms. These

platforms are utilized across various marketplaces such as college admissions, ride-sharing,

doctor placement, dating, and job applications. Typically, these markets allocate indivisi-

ble “good” to multiple agents based on mutual compatibility, with preferences often being

unknown due to the large participant volume, making it explicitly challenging. Moreover,

matching markets inherently involve scarcity due to limited resources on both sides. This

dissertation presents significant advances in statistical sequential modeling for two-sided on-

line matching markets, considering dynamic markets, quota constraints, and participants’

incentive compatibility. Situated at the intersection of sequential decision-making algorithm

design and economics, this work introduces new algorithms, theories, and insights with ap-

plications spanning economics, statistics, and machine learning.

Part I establishes foundational concepts of statistical sequential decision making and

ii



relevant economic terminology. Chapter 1 explores bandit algorithms, probability theory,

and concentration inequalities, while Chapter 2 elucidates essential concepts of two-sided

matching markets from an economic perspective, laying the groundwork for subsequent ap-

plications.

Part II presents a theoretical framework for multi-agent competitive two-sided matching

markets, crucial for online recommendation systems in job markets. The first project, de-

tailed in Chapter 3, introduces an online statistical ridge estimation method for the dynamic

matching problem (DMP) with its application in the LinkedIn text data. The second project,

discussed in Chapter 4, presents an online statistical sequential decision-making method for

the competing matching under complementary preferences recommendation problem (CM-

CPR), along with a novel algorithm addressing both complementary preferences and quota

constraints simultaneously.
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Part I

Foundation of Sequential Decision

Making and Two-Sided Matching

Markets

1



CHAPTER 1

Probability, Concentration, and Bandits

1.1 Probability

Proposition 1.1 (Connection between expectation and tail probability). If X > 0 is a

non-negative random variable, then

E[X] =

∫ ∞

0

f(X > x)dx (1.1)

Definition 1.1. (Subgaussian Noise). The noise ϵ’s are drawn independently from a σ-

subgaussian distribution. That is, for every α ∈ R, it is satisfied that

E[exp(αϵ)] ≤ exp(α2σ2/2) (1.2)

Proposition 1.2 (Tails of Normal distribution). Let g ∼ N(0, 1). Then for all t > 0, we

have

(
1

t
− 1

t3
)

1√
2π

e(−t2/2) ≤ P(g ≥ t) ≤ 1

t

1√
2π

e(−t2/2). (1.3)

Definition 1.2 (Martingale). A F -adapted sequence of random variables {Xt}t∈N+ is a

F -adapted martingale if

(a) E[Xt|Ft−1] = Xt−1, almostly surely for all t ∈ {2, 3, · · · }; and

(b) Xt is integrable.

2



If the equality is replaced with a less-than (greater-than), then we call (Xt)t a supermartin-

gale (respectively, a submartingale).

1.2 Concentration Inequaltiy

Proposition 1.3 (Hoeffding Inequaltiy). Suppose that the variables Xk, k = 1, · · · , n, are

independent, and Xk has mean µk and sub-Gaussian parameter σk. Then for all t ≥ 0, we

have

Pr[
n∑

k=1

(Xk − µk) ≥ t] ≤ exp{− t2

2
∑n

k=1 σ
2
k

} (1.4)

Definition 1.3 (Martingale Difference Sequence). An adapted sequence {(Dk,Fk)}∞k=1, such

that, for all k ≥ 1, then

E[|Dk+1|] <∞ and E[Dk+1|Fk] = 0 (1.5)

As suggested by their name, such difference sequences arise in a natural way from martin-

gales. In particular, given a martingale {(Xk,Fk)}∞k=0, let us define Dk = Xk−Xk1 for k ≥ 1.

We then have
E[Dk+1|Fk] = E[Xk+1 −Xk|Fk]

= E[Xk+1|Fk]−Xk

= 0,

using the definition of martingale and the fact that Xk is measurable with respect to Fk.

Thus, for any martingale sequence {Xk}∞k=0, we have the telescoping decomposition

Xn −X1 =
n∑

k=0

Dk

where {Dk}∞k=1 is a martingale difference sequence. This decomposition plays an important

role in the following concentration inequalities.
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Proposition 1.4 (Bernstein Concentration). Let {Dk,Fk}∞k=1 be a martingale difference,

and suppose that Dk is a σ-subgaussian in an adapted sense, i.e., for all α ∈ R. E[eαDk |Fk−1] ≤

e
α2σ2

2 almost surely. Then, for all t ≥ 0,

P[|
n∑

k=1

Dk| ≥ t] ≤ 2e−
t2

2nσ2 . (1.6)

Proposition 1.4 is from Theorem 2.3 of Wainwright (2019) (Wai19) when α∗ = αk = 0

and νk = σ for all k.

1.3 Bandit Algorithms

The bandit problem is a classic sequential decision making problem. In the simplest form

of the bandit problem, there are a fixed number of arms, each with an unknown probability

distribution of yielding rewards when played. The objective is to maximize the total reward

accumulated over a series of plays.

The challenge lies in balancing the exploration of different arms (trying out different op-

tions to learn their rewards) and the exploitation of the information gathered so far (favoring

the arms that appear to yield the highest rewards based on past experience).

There are various strategies and algorithms to solve the sequential decision making

problem (BC12; Sli19; Mai19; LS20), such as the ϵ-greedy algorithm (ACF02; CLS21c;

CLS21a; HSZ22; SZL22), explore-then-commit algorithm (Rob52; AAS09; LWC22), upper

confidence bound (UCB) algorithms (LR85; Aue02; LWC21; WWS23), Thompson sampling

(Tho33; RV14; RVK18; LCD23), boostrap sampling algorithm (KSV19; WYH20; WWL22;

RLY23), information directed sampling methods (RV14; HLQ22; HL22), and betting meth-

ods (WWR22; LLD24). These algorithms employ different trade-offs between exploration

and exploitation to achieve optimal or near-optimal rewards over time.

The contextual bandit problem extends the classic bandit problem by introducing contex-
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tual information or features associated with each bandit. In this setup, each arm is associated

with a context or a set of features that provide additional information about the environ-

ment or the state of the system. The objective in the contextual bandit problem remains the

same: to maximize the total reward accumulated over a series of plays. However, now the

reward that a arm yields may depend not only on the bandit itself but also on the context

or features associated with it. For example, consider a scenario where you have multiple ads

to display to users on a website. Each ad (arm) has its own click-through rate (CTR), but

the CTR may vary depending on factors like the user’s demographic information, browsing

history, or current session context. In this case, the contextual bandit problem arises in

deciding which ad to display to a user based on their context, with the goal of maximizing

the total number of clicks or some other relevant metric.

Solving the contextual bandit problem requires learning a policy that maps contexts to

actions (arms) in a way that maximizes the expected cumulative reward. This typically

involves using statistical or machine learning method to model the relationship between

contexts, actions, and rewards, and updating the policy based on observed data over time.

Algorithms like contextual bandit algorithms and reinforcement learning methods are com-

monly used to address this problem.
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CHAPTER 2

Two-sided Matching Market

2.1 Centralized Two-sided Matching Market

The Centralized Two-sided Matching Market problem, also known as the “stable marriage

problem”, is a variation of the classical stable marriage problem introduced by (GS62) and

summarized in (Rot08). In this problem, there are two groups of participants, traditionally

referred to as “men” and “women”, though the problem can be applied to any two-sided

matching scenario.

In the centralized two-sided matching problem, each participant in one group (e.g., men)

has preferences over the participants in the other group (e.g., women), and vice versa. The

goal is to find a stable matching where there are no two participants who prefer each other

over their current partners.

The deferred acceptance (DA) algorithm is a solution to this problem. Here’s how it

works:

1. Initialization: Initially, all participants are free and unmatched.

2. Proposal Phase: In each round, each unmatched participant (e.g., man) proposes to

the most preferred unmatched participant (e.g., woman) on his list whom he has not yet

proposed to.

3. Acceptance Phase: Each unmatched participant (e.g., woman) who receives proposals

holds on to the best proposal she has received so far and rejects the rest. If a participant

receives multiple proposals, she rejects all but the most preferred one.
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4. Iteration: The proposal and acceptance phases continue until all participants are

matched.

5. Termination: The algorithm terminates when no unmatched participants remain.

The resulting matching is stable because, by design, no participant prefers any other

participant over their current partner. If there were a blocking pair where a man and a

woman both prefer each other over their current partners, they would have already been

matched during the algorithm’s execution.

Overall, the DA algorithm provides a stable and efficient solution to the centralized two-

sided matching problem by ensuring that each participant ends up with a partner they find

acceptable and that no unstable pairings exist.

2.2 Decentralized Two-sided Matching Market

In the decentralized two-sided matching problem, participants on both sides of the market

(e.g., buyers and sellers, employers and job seekers) have preferences over potential matches,

but there is no central authority coordinating the matching process. Instead, participants

have to make their own decisions about whom to match with based on the information

available to them.

This decentralized setup often arises in real-world scenarios where agents made their own

decisions and can negotiate directly with potential matches without centralized control. In

this matching process, agents typically engage in a process of searching, evaluating, and

negotiating potential matches based on their preferences and constraints. The goal for each

agent is to find a satisfactory match that maximizes their utility or meets their specific

criteria.

Decentralized two-sided matching markets can be complex and challenging due to several

factors:
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1. Lack of Information Sharing: Participants may have incomplete information about

potential matches, leading to uncertainty and the need for strategies to gather information

effectively.

2. Dynamic Environment: The availability and preferences of participants may change

over time, requiring adaptive strategies to respond to changing conditions.

3. Negotiation and Bargaining: Participants may engage in negotiation and bargaining

to reach mutually acceptable matches, introducing additional complexity and uncertainty

into the matching process.

4. Potential for Suboptimal Matches: Without centralized coordination, there is a risk of

suboptimal matches or inefficiencies arising from participants’ decentralized decision-making

processes.

Addressing the decentralized two-sided matching problem often involves developing algo-

rithms, protocols, or mechanisms to facilitate efficient and stable matches while respecting

the autonomy and preferences of individual participants. Game theory, mechanism design,

and distributed optimization are some of the theoretical frameworks used to study and ad-

dress decentralized matching problems.
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Part II

Statistical Matching Models for

Centralized Two-sided Online Markets
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CHAPTER 3

Dynamic Matching For Two-Sided Online Market

Two-sided online matching platforms are employed in various markets. However, agents’

preferences in the current market are usually implicit and unknown, thus needing to be

learned from data. With the growing availability of dynamic side information involved in

the decision process, modern online matching methodology demands the capability to track

shifting preferences for agents based on contextual information. This motivates us to propose

a novel framework for this dynamic online matching problem with contextual information,

which allows for dynamic preferences in matching decisions. Existing works focus on online

matching with static preferences, but this is insufficient: the two-sided preference changes

as soon as one side’s contextual information updates, resulting in non-static matching. In

this paper, we propose a dynamic matching algorithm to adapt to this dynamic online

matching problem. The key component of the proposed dynamic matching algorithm is an

online estimation of the preference ranking with a statistical guarantee. Theoretically, we

show that the proposed the dynamic matching algorithm delivers an agent-optimal stable

matching result with high probability. In particular, we prove a logarithmic regret upper

bound O(log(T )) and construct a corresponding instance-dependent matching regret lower

bound.

3.1 Introduction

Two-sided online matching platforms are utilized in various marketplaces, including college

admissions (GS62; Rot08), ride-sharing (LC18; SWS23), medical doctor placement (Rot84),
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dating markets (GI89; Knu97; ZBB18), and job-seeking (MKO13; ATK14; GM20; VPD22).

In modern job matching platforms, the two sides are represented by recruiters and job-

seekers. The platform’s objective is to recommend job-seekers to recruiters to determine if

these recommendations meet the companies’ talent demands. Recruiters provide a matching

score for each recommended job-seeker, which the platforms use as feedback to enhance

their recommendation mechanisms. However, optimizing this recommendation process is

significantly complicated by two intrinsic factors: (1) competing characteristic—the supply

of job seekers and demand from companies create competition within the market; (2) dynamic

and two-sided preferences—preferences are not static and are two-sided, with recruiters and

job-seekers each having their own criteria and preferences. Recruiters’ preferences vary

based on the dynamic fitness of candidate profiles for current positions. Similarly, job-

seekers have fixed preferences regarding potential employers, roles, locations, salaries, and

other job-related aspects. These challenges significantly complicate the formulation of an

effective dynamic matching problem. The platform must continuously adapt its algorithms

and strategies to cater to the changing preferences and the competitive nature of the job

market. This adaptation requires a sophisticated understanding of market dynamics and

the ability to dynamically adjust recommendations based on online feedback and evolving

preferences on both sides of the job market.

The two-sided preference structure has been extensively studied in the literature as static

but not dynamic. In (LMJ20), the authors assume a static preference and one-sided prefer-

ence structure (from job-seekers to companies) is known, which is impractical in environments

with a large number of job-seekers where it is prohibitively expensive and time-consuming

for recruiters to rank them to have dynamic preferences over job-seekers. Similarly, (LCD23)

assumes knowledge of a single-sided preference structure and provides an extensive study on

static complementary preferences, overlooking the dynamic nature of job-matching, such as

the constantly changing talent pool. While these prior efforts advance the understanding of

matching in static talent market environments and deliver efficient algorithm designs, chal-
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Figure 3.1: Arm a1’s profile changes with an angular velocity, which results in different
optimal matching results. Phase 1’s optimal matching: (company 1, a1), (company 2, a2),
Phase 2’s optimal matching: (company 1, a2), (company 1, a1), and Phase 3’s optimal
matching: (company 1, a2), (company 2, a1).

lenges arise when engineers implement these algorithms in environments with dynamic pref-

erences. For instance, as job-seekers regularly update their skills, experiences, and wage ex-

pectations, companies dynamically change their preferences over these job-seekers (GAH16).

This concept of dynamic preference is illustrated in Figure 3.1. The scenario includes two

companies (Company 1 and Company 2) and three job applicants (a1, a2, a3). The profiles

of these job applicants are depicted along two dimensions: capability level (represented on

the x-axis) and character level (on the y-axis). The true preference parameters of Company

1 and Company 2 are denoted as {θ1, θ2} ∈ R2. The elements within θ1 and θ2 represent

the respective companies’ preference magnitudes for the capability and character traits of

the job applicants. It is assumed that all job applicants uniformly prefer Company 1 over

Company 2.

In this scenario, job applicant a1’s profile transitions from Phase 1 to Phase 3, while the

profiles of a2 and a3 remain unchanged. The preference of a company for a job applicant

is determined by the fitness (inner product) ⟨θi, xa⟩, where xa represents the profile of job

applicant a for a ∈ {1, 2, 3}. The higher this fitness, the more preferable the job applicant is

to the company. An interesting observation from this example is that as a1’s profile updates,

the company’s preference for job applicants shifts, and correspondingly, the optimal matching

changes. Such a dynamic nature of preferences and its impact on optimal matchings highlight
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the primary challenge in the dynamic online matching market.

The primary goal of the matching platform is to continuously pair companies with the

most suitable job applicants, thereby optimizing the overall matching outcome. However,

achieving this objective presents a significant challenge: platforms often struggle to ac-

curately estimate companies’ true preferences in an ever-changing pool of job applicants.

Furthermore, the matching process is complicated by the concept of bandit feedback. Specif-

ically, a company only receives feedback—namely, the level of satisfaction—from the job

applicant with whom it is currently matched, while the counterfactual (other applicants

not matched) outcomes remain unobserved (LS20). This interdependency implies that the

feedback received at any given step not only reflects the outcome of the current match but

also influences and shapes subsequent matching decisions. This interdependent nature of

feedback and decision-making introduces an additional layer of complexity to the dynamic

matching process, underscoring the need for adaptive algorithms capable of navigating these

complexities effectively.

3.1.1 Major Contributions

In this study, we leverage a critical observation: the optimality of matching decisions in a

dynamic environment depends on the sufficient exploration of two-sided preferences. This

insight emerges from an elegant integration of online ridge regression with bandit learning

strategies, which aims to achieve optimal matching decisions. This integration leads us to

propose a novel two-sided matching algorithm in a dynamic environment. We quantify the

uncertainties over learned preference parameters to identify a sufficient exploration horizon

that enables us to make optimal matching decisions. Consequently, a successful two-sided

matching algorithm will yield optimal decisions once the sample size surpasses this sufficient

exploration horizon.

We refer to our novel two-sided online matching algorithm as the Dynamic Matching Al-

gorithm (see Section 3.4). The dynamic matching algorithm offers three major advantages:
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it centralizes all matching decisions within the platform, addresses the continuously changing

dynamics in preference learning, and produces optimal dynamic matching decisions. These

attributes ensure the validity and robustness of our algorithm in practical two-sided matching

scenarios. Theoretically, we establish an upper bound on agent regret and a corresponding

theoretical lower bound in a two-agent and three-arms scenario to demonstrate the opti-

mality of our algorithm. Experimentally, we evaluate the performance of dynamic matching

algorithm using both synthetic and real datasets.

In summary, our work advances the algorithmic matching literature with the following

three major contributions:

1. Conceptually, we formulate the two-sided online matching problem as a Dynamic

Matching Problem (DMP) (see Section 3.2). The DMP encapsulates the ever-changing

nature of the talent pool in the job-matching market (see Figure 3.1) and highlights

the intrinsic challenges associated with preference learning in dynamic recommendation

environments.

2. Methodologically, we introduce a novel dynamic matching algorithm (see Section 3.4,

Algorithm 1) that addresses the DMP through a bandit algorithm design. The dynamic

matching algorithm initially estimates the dynamic preferences for agents (companies)

using a penalized statistical estimation method to construct complete ranking lists

over arms (job-seekers). After collecting these rankings, the platform employs the

classic deferred-acceptance (DA) algorithm (GS62) to provide the matching object for

all participants (agents and arms).

The design of our multi-agent dynamic matching algorithm extends the single-agent

bandit algorithm framework (LS20). Furthermore, we demonstrate that existing online

matching algorithms based on the Upper Confidence Bound (UCB) approach fail in the

DMP context and suffer from a linear regret (see Figure 3.2), due to the non-shrinking

upper confidence bounds for specific arms inherent in the dynamic matching problem’s
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characteristics. Our algorithm circumvents this issue by employing a sufficient and

theoretically-guided optimal exploration sample size. Additionally, through a simple

simulation example, we demonstrate this phenomenon (Section 3.3.1).

3. Empirically, we demonstrate that our algorithm exhibit robustness across diverse arm-

to-agent preference uncertainties, in scenarios with rapid temporal changes, preference

structures, contextual dimensions, and participant sizes in Section 3.7.1. Furthermore,

dynamic matching algorithm also showcases its versatility and practical applicability

in a dynamic and complex real-world job market, utilizing LinkedIn data, as discussed

in Section 3.7.2.

In addition to the methodological contributions listed above, we also discuss our theoret-

ical contributions in the following:

1. Connection Between Statistical Learing and DMP. In Section 3.5 Claims 3.5.1

and 3.5.2, we find that a fully correct ranking or an unbiased estimation of the pref-

erence parameter are the sufficient conditions to achieve an agent-optimal matching.

Our work is the first to elucidate the roles that build the bridge between the statistical

learning method and the DMP. Additionally, we introduce a novel conceptualization

of the DMP as essentially a dual-layered mixture of ranking and estimation challenges

in Section 3.5.3.

2. Stable Matching. We initially demonstrate the matching stability of the dynamic

matching algorithm at each time step with high probability, as highlighted in Theorem

3.2. A key characteristic is that at any given moment, and with a complete ranking list

available, no participant shows a willingness to deviate from the current recommended

matching assigned by dynamic matching algorithm in favor of another participant.

This aspect of matching stability is crucial in the dynamic matching problem, as it

underscores the efficacy and robustness of the algorithm in maintaining satisfactory

recommended matchings throughout the matching process.
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3. Regret Upper Bound. We establish that the dynamic matching algorithm achieves a

logarithmic expected cumulative regret over time T (Corollary 3.1). A significant find-

ing of is that the complexity of the dynamic matching problem is directly proportional

to the job-seeker feature dimension, number of participants, and matching feedback

noise level, and inversely proportional to the gap between different job-seekers. Achiev-

ing this regret upper bound presents considerable challenges due to the time-variant

dynamic preferences, which makes our proof more complex compared to scenarios with

fixed preferences between agents and arms over time, as considered in (LMJ20). To

navigate this regret upper bound, we employ novel non-asymptotic concentration re-

sults based on the online ridge regression (LWC21) to quantify the union-bound of

probability of “invalid ranking" (Lemma 3.2).

4. Instance-Dependent Regret Lower Bound. We utilize a two-agent, three-arm

example to explore the instance-dependent regret lower bound. Specifically, we de-

compose the instantaneous regret based on the correctness of other agents’ rankings

and evaluate the probabilities of correct and incorrect ranking events (Section 3.6.4).

By analyzing these events, we can assess the regret on a case-by-case basis and aggre-

gate the regret lower bound across all six identified cases. This analysis indicates that

our dynamic matching algorithm will encounter at least a logarithmic regret bound

(Theorem 3.3).

3.1.2 Related Work

Our work advances the study of preference-based two-sided market matching, and bandit

exploration policy design.

Matching in Two-Sided Markets. We first discuss the matching in discrete and

continuous two-sided markets when the preference from both sides are known to the platform.

(GS62) studied the two-sided matching markets as a pioneer and proposed the deferred-
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acceptance algorithm (also known as the DA Algorithm), which achieved the stable matching.

This algorithm (Rot08) has been widely used to match hospitals with residents (Rot86) and

students with public schools (APR05b; APR05a) in New York City and Boston. They focused

on discrete two-sided matching models without money transfer. (KTY18; NV19; ABY21)

focused on the two-sided market with side constraint, e.g., different races should have the

same admitting proportions in the college admission. However, these results assume that

preferences from both sides are known to the platform, which is fundamentally different from

our setting, where agents on the one side of the market’s preferences are unknown and need

to be learned through historical interactions.

In practice, there usually exists a centralized platform helping agents to match with each

other, which exhibits the same setting as our DMP. (LMJ20) is one of the first work which

considers the case that agents need to learn their preferences through bandit techniques in

the centralized platform. (JWW21) considers that both sides’ preferences are represented

by utility functions over contexts and allow money transfer. They optimize the total utility

in the viewpoint of the platform, which is different from ours. We focus on minimizing the

individual agent’s regret and considering the case where there is no money transfer among

agents.

For example, monetary transfer is prohibited in the job application market. In a similar

setting, (CS22) considers the case when both users and providers do not know their true pref-

erences a priori and incorporate costs and money transfers among agents to faithfully model

the competition among agents and discuss the fairness in the matching. (MWX22) considers

the uncertain utility of matching two agents in the episodic reinforcement learning setting.

(LCD23) studied the two-sided matching market with complementary preference with quota

constraints. However, most of the previous work considers the case where preference is fixed.

Bandit Exploration Strategy. Bandit algorithms (LS20) and reinforcement learning

(SB18) are modern strategies to solve sequential decision making problems. They have

received attentions in statistics community for business and scientific applications including
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dynamic pricing (CSW22; WWS23), online decision making (SZL22; CLS21b), dynamic

treatment regimes (LLK19; QLF20), and online causal effect in two-sided market (SWL23).

The two-sided competing matching problem can be transformed into a sequential decision-

making problem (DK05; LMJ20; Sar21).

To tackle the two-sided matching problem in the bandit framework, researchers transform

the matching objects into bandit notation and assume that one side of market participants

can be represented as agents (preferences are unknown) and the other side participants of the

market can be viewed as arms (preferences are known), and transform this problem into a

multi-agent bandit competing problem. (LMJ20) considered that an agent could only match

with one arm at one time, such as in the dating market, where (Sar21) considered the case

that an agent could match with multiple arms, such as in the lending market. However,

these works do not consider the arms’ contextual information and hence are not capable of

tackling our dynamic matching problem.

Notations. We denote [N ] = [1, 2, ..., N ]. Define the capital X ∈ Rd be the d-dimensional

random vector. Let x ∈ Rd represents a d-dimensional vector, x(r) represents the r-th element

of vector x, and the bold X ∈ Rd×d represents a real valued matrix. Let Id = diag(1, 1, ..., 1) ∈

Rd×d represent a d× d diagonal identity matrix. Denote ⌈x⌉ as the minimum integer greater

than x. We denote T as the time horizon.

3.2 Dynamic Matching Problem

This section formulates the Dynamic Matching Problem (DMP).

3.2.1 Environment

We use matching of job applicants and companies as the running example throughout the

paper. There are three primary roles in this environment: the organizer (recommendation

platform), job applicants, and companies. The goal of the organizer is to recommend the
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optimal job applicant to companies within this dynamic, online, competitive environment.

We begin by introducing three essential elements in the DMP.

(I) Participants. In this centralized platform, there are N companies (agents) denoted

by N = {p1, p2, ..., pN}, and K job applicants (arms) denoted by K = {a1, a2, ...aK}. We

assume that the number of companies (N = |N |) is fewer than the number of job applicants

(K = |K|).1

(II) Two-sided Preferences. For DMP, there are two types of preferences: arms to

agents’ preferences, and agents to arms’ preferences.

Arms to agents’ fixed and known preference π : K 7→ N : We assume that there exist

fixed preferences from job applicants to companies, and these preferences are known to the

centralized platform. For instance, job applicants are typically required to submit their

preferences for different companies via the platform. Let πj,i ∈ [N ] represent the ranking

for company pi from the perspective of job applicant aj, and πj = {πj,1, ..., πj,N} denote the

complete set of company rankings for arm aj. Here, πj is a permutation of [N ], and it is

assumed that there are no ties in rankings. Using shorthand notation, pi >j pi′ indicates that

job applicant aj prefers company pi over company pi′ . This known arm-to-agent preference

is a mild and common assumption in current online matching literature (LMJ20; LRM21;

LCD23).

Agents to arms’ dynamic and unknown preference r(t) : N 7→ K, t ∈ [T ]. Preferences

from companies to job applicants are dynamic and are unknown to the platform due to the

large scale of K. Denote ri,j(t) as the ranking for the job applicant aj from the perspective

of company pi and ri(t) = {ri,1(t), ..., ri,K(t)} represents the ranking for all job applicants at

time t which is a permutation of [K]. We assume that there are no ties in rankings. The

notation ri,j(t) < ri,j′(t) indicates that company pi prefers job applicant aj over job applicant

1Here we also allow job applicants joining and leaving. It is important to note that these job applicants
are not static entities within this platform; their composition may vary over time. However, wihtout loss of
generality, we assume that at each given time, the number of job applicants remains constant.
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aj′ at time t. Similarly, aj >t
i aj′ means that at time t, company pi prefers job applicant aj

over job applicant aj′ . The key distinction between the DMP and classic two-sided matching

(GS62) is that {ri(t)}i∈[N ] are both unknown and dynamic.

(III) Stable Matching and Optimal Matching. We introduce several key concepts

in the two-sided matching field (Rot08).

Definition 3.1 (Blocking). A matching m is blocked by agent pi if pi prefers being single to

being matched with m(pi), i.e. pi >i m(pi). A matching m is blocked by a pair of agent and

arm (pi, aj) if they each prefer each other to the partner they receive at m, i.e. aj >i m(pi)

and pi >j m
−1(aj).

Definition 3.2 (Stable Matching). A matching m is stable if it isn’t blocked by any indi-

vidual or pair of agent and arm applicant.

Stable matching in a two-sided market ensures that no pair of agent and arm prefers an-

other partner over their current match. This stability is crucial because it fosters efficiency

and reduces costs, leading to more satisfied participants and a robust marketplace. (1) Effi-

ciency is achieved as all participants are optimally matched, with no blocking pairs present,

ensuring that no participant can improve their situation without disadvantaging others. (2)

Reduced transaction costs arise because stable matchings prevent the need for repeated re-

negotiations, saving time, effort, and resources. Consequently, stability contributes to the

smooth and efficient operation of matching markets, providing predictable and cost-effective

outcomes for all involved.

To account for the potential non-uniqueness of stable matching, we introduce further

definitions to delineate agent-optimal matching:

Definition 3.3 (Valid Match). With true preferences from both sides, arm aj is called a

valid match of agent pi if there exist a stable matching according to those rankings such that

ai and pj are matched.
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Definition 3.4 (Agent-Optimal Match). Arm aj is an optimal match of agent pi if it is the

most preferred valid match.

Given true preferences, the DA algorithm shown in Appendix 3.10 (GS62) provides a

stable matching and is always optimal for members of the proposing side. We use mt(i)

to represent the agent-optimal matching arm for agent pi and mt = {mt(1), ....,mt(N)}

represent the agent-optimal matching from N to K at time t,.

3.2.2 Matching Protocol

At time t, the platform recommends a job applicant aj from K for company pi according

to the current matching policy mt(·). This recommendation is based on the contextual

information of the job applicant aj, xj(t) ∈ Rd, which may include demographics, geography,

or capabilities, etc,. In response, company pi evaluates the recommended arm aj by providing

a noisy matching score yi,j(t) written as:

yi,j(t) = µi,j(t) + ϵi,j(t),∀i ∈ [N ], j ∈ [K], t ∈ [T ], (3.1)

where µi,j(t) = θTi,∗xj(t) represents the true matching score, ϵi,j(t) is subgaussian noise (As-

sumption 3.1), and θi,∗ ∈ Rd denotes the true preference parameter for company pi, indicating

preference priority across different contexts. Additionally, for company pi, we define ∆i,j(t)

as the score gap between the optimal matching arm mt(i) and the currently recommended

arm aj at time t:

∆i,j(t) = µi,mt(i)(t)− µi,j(t). (3.2)

Unlike the score gap always positive in single agent bandit problems, this score gap in DMP

can be positive, negative, or zero. Detailed discussion of this gap can be found in Section

3.5.

21



Regret. Based on model (3.1), we define the agent-optimal regret for pi as

Ri(T ) =
T∑
t=1

µi,mt(i)(t)− µi,mt(i)(t). (3.3)

This agent-optimal regret represents the difference between the capability of a policy m(i)
∆
=

{m1(i),m2(i), ...,mT (i)} in hindsight and the agent-optimal stable matching oracle policy

m(i)
∆
= {m1(i),m2(i), ...,mT (i)}.

Social Welfare Gap. We define social welfare gap as the sum of the absolute value

of agent-optimal regret Ri(T ) across all agents,

Social Welfare Gap =
N∑
i=1

|Ri(T )|.

It indicates the difference between the total optimal matching score that could have been

achieved under ideal conditions and the actual outcome achieved under the current strategy.

Since in DMP, social welfare gap is always non-negative and is easier to compare among

different policies, which can be used to provide crucial insights into the efficiency of the

matching process.

3.3 Challenges and Resolutions

The challenges of the DMP stem from the ever-changing contextual information of job-

seekers, which lead to dynamic preferences. To accurately evaluate these dynamic prefer-

ences, the platform must learn from historical data, influenced by the policy it employs. An

ideal matching algorithm should effectively balance the trade-off between exploring these

contextual information and exploiting them to minimize the agent-optimal regret.
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Figure 3.2: Left: upper confidence bound (UCB) algorithm, Right: our algorithm. Incapable
exploration of UCB method.

3.3.1 Pitfall: Incapable Exploration of UCB in DMP

In this part, we demonstrate why directly applying the Upper Confidence Bound (UCB)

method (refer to Chapter 7 in (LS20)) to balance exploration—by adaptively shrinking the

upper confidence bound to quickly find the optimal arm—and exploitation—by frequently

pulling the optimal arm to minimize the agent-optimal regret—is infeasible. We show that

centralized UCB suffers a linear agent-optimal regret in the following DMP example.

Let N = {p1, p2, p3} and K = {a1, a2, a3}, with true preferences at time t given below:

p1 : a1 > a2 > a3 a1 : p2 > p3 > p1

p2 : a2 > a1 > a3 a2 : p1 > p2 > p3

p3 : a3 > a1 > a2 a3 : p3 > p1 > p2

Based on the above preference design, the agent-optimal stable matching is (p1, a1), (p2, a2),

(p3, a3). However, if the platform wrongly estimates p3’s preference as a1 > a3 > a2 based on

the UCB estimator, the output stable matching is (p1, a2), (p2, a1), (p3, a3). As a result, p1

and p2 suffer positive regrets since their optimal matching arms are a1 and a2. In this case,
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p3 will never have the opportunity to correct its mistake a1 > a3, as it will never be matched

with a1 where arm a1 has a higher upper confidence bound. Therefore, the upper confidence

bound for a1 will never shrink, maintaining the preference a1 > a3. Consequently, this leads

to p1 and p2 experiencing linear regrets. We empirically demonstrate this phenomenon in

Figure 3.2 and the detailed setting is available Section 4.9.3.1 at the appendix.

However, as shown in Figure 3.2, our algorithm to be introduced in Section 3.4 can avoid

this situation through a dedicated design to balance the exploration and exploitation. The

advantage of our algorithm is that it can utilize the historical matching data to acquire a

good estimate of θ∗i and ri(t) with a high probability (Lemma 3.2).

Remark 1. The above example illustrates that the mechanism to achieve the optimal match-

ing within the DMP is fundamentally different from the single agent bandit problem since the

best fitness (optimal) matching arm is not always the top-1 arm (with the highest matching

score) for agent due to the competitive characteristics.

Based on the previous finding, our goal is to design a matching policy {mt(i)}N,T
i=1,t=1

recommending arms for agents. It seems that we need our algorithm to possess the ability

to (i) learn the true agent-specific preference parameter θi,∗ to uncover the underlying true

preference model, (ii) design an exploration strategy based on bandit matching feedback.

This strategy efficiently explores potential matching pairs by extracting dynamic ranking

information, thereby assisting the algorithm in minimizing agent-optimal matching. To

summarize, we have to following to challenges.

3.3.2 Challenge 1: Dynamic Preference Learning

Learning companies’ preferences given dynamic job applicants’ profiles is challenging since

there are numbers of possible matchings between companies and job applicants. Recovering

true preference parameters from noisy matching scores requires modeling the relationship

between companies and job applicants. We resolve this challenge by considering the para-
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metric model (3.1) to capture the relationship between the matching score and job applicants’

profiles. Therefore, the main task becomes estimating the underlying preference parameter

by adaptively and sequentially conducting matching experiments to have a good statistical

property of these estimators. Such an estimate is important for inferring a true preference

scheme and informing future matching decisions.

3.3.3 Challenge 2: Bandit Feedback

The platform also needs to balance the exploration (collecting enough job applicants’ profiles

and companies’ matching information) to estimate companies’ true preference parameters

and the exploitation (providing the optimal matching for companies) tradeoff at each match-

ing time point. Compared to the single-agent bandit problem, the multi-agent competing

matching problem is more challenging since the platform needs to handle the multi-agent ex-

ploration and exploitation simultaneously. We resolve this challenge by using a new dynamic

matching algorithm to balance the multi-agent exploration-exploitation trade-off.

3.4 Dynamic Matching Algorithm

In this section, we propose the dynamic matching algorithm to learn all agents’ preference

parameters {θi,∗}Ni=1 and to minimize agent-optimal regret Ri(T ). The dynamic matching

algorithm functions as a online statistical estimation method, which achieves optimal match-

ing at most of time. This characteristic underscores the algorithm’s efficacy in balancing the

trade-offs between estimation accuracy and sample efficiency within dynamic matching prob-

lem.

Dynamic matching algorithm includes two major steps, the learning step, and the ex-

ploitation step. In the learning step, the platform recommends aj to pi randomly. After the

learning step ends, platform estimates agents’ preference parameters {θi,∗}Ni=1, constructs

estimated preference ranking {r̂i(t)}Ni=1, and collects arms preference {πj}Kj=1 in Stage 2 of
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Figure 3.3: A generic design of dynamic matching platform.

Figure 3.3. Then the platform operates the DA algorithm 4 in the appendix with previous

estimated preference ranking in Stage 3 of Figure 3.3 to recommend arms to agents in Stage 4

of Figure 3.3. Finally, agents provide matching score {yi,j(t)}N,K
i=1,j=1 to the platform in Stage

5 of Figure 3.3. The detailed dynamic matching algorithm is summarized in Algorithm 1.

Below we discuss these two major steps in details.

3.4.1 Learning Step

Let h denote the learning length of dynamic matching algorithm. The key challenge is to find

a sufficient learning length, which is a lower bound on h such that the resulting algorithm

secures a sub-linear regret. Determine the lower bound of h is a challenging task due to

many factors in DMP. We overcome this challenge by utilizing concentration results of the

online ridge regression (LWC21) to control probability of invalid ranking such that the agent

will enjoy valid ranking with high probability. The theoretical choice of h is provided in
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Algorithm 1: Dynamic Matching (DM) Algorithm
1 Input: Time horizon T ; exploration loop h; ridge parameters λi,∀i ∈ [N ]; preference

πj,∀j ∈ [K].
2 Learn: Get all companies’ estimated true parameters: (θ̂1(h), ..., θ̂N(h)) =

Learning(N , K, πj∈[K], λi∈[N ], h) from Algorithm 2.
3 Plan: Get the matching result: Planning(T, N ,K, πj∈[K], θ̂i∈[N ](h)) from Algorithm

3.

Corollary 3.1 in Section 3.6.

After h rounds, the platform collects the historical matching data Di(h) = {Xi(h),yi(h)}Ni=1,

where Xi(t) = [xi(1), xi(2), ..., xi(t)]
T ∈ Rt×d denotes pi’s historical matched arms’ profiles

and yi(t) = [yi(1), yi(2), ..., yi(t)]
T ∈ Rt represents pi’s historical noisy matching scores. With

data Di(h), the platform estimates {θi,∗}Ni=1 through minimizing the mean square error with

an l2 penalty. Specifically, the objective function is

min
θi∈Rd

∥yi(h)−Xi(h)θi∥22 + λi ∥θi∥22 , ∀i ∈ [N ], (3.4)

where λi > 0 is the penalty parameter. The corresponding online ridge estimator for com-

pany pi is

θ̂i(h) =
(
Xi(h)

TXi(h) + λiId
)−1

Xi(h)
Tyi(h), ∀i ∈ [N ]. (3.5)

The learning step is available in Algorithm 2. From lines 3-7, the platform sequentially

updates the collected contextual information Σi(t) and matching scores’ information Si(t). In

the end, dynamic matching algorithm obtains the estimated preference parameter {θ̂i(h)}Ni=1.

3.4.2 Exploitation Step

In the Exploitation Step (Algorithm 3), given the estimated preference parameter θ̂i(h) from

the learning step, platform constructs the estimated preference rankings {r̂t(i)}Ni=1 as follows.
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Algorithm 2: Learning Step
1 Input: Number of companies N ; number of job applicants K; preference

πj,∀j ∈ [K]; ridge parameters λi,∀i ∈ [N ]; learning length h.
2 Initialization: Σi(0) = λiId, Si(0) = 0d, θ̂i(0) = 0d, for ∀i ∈ [N ].
3 for t ∈ {1, ..., h} do
4 for i ∈ {1, ..., N} do
5 Match Arm: Recommend job applicant mt(i) to company pi.
6 Collect Response: Receive matching score yi(t) from company pi.
7 Update Information: Update the collected information for company pi.

Σi(t) = Σi(t− 1) + xmt(i)(t)xmt(i)(t)
T ,Si(t) = Si(t− 1) + xmt(i)(t)yi(t).

8 for i ∈ {1, ..., N} do
9 Estimate Parameters: Estimate preference parameter θ̂i(h) = Σ−1

i (t)Si(t).

At t = h+ 1, the platform estimates all arms’ matching score for agent pi as

µ̂i,j(t) = ⟨θ̂i(h), xj(t)⟩, ∀i ∈ [N ], j ∈ [K]. (3.6)

According these estimated matching scores µ̂i,j(t), the platform ranks all arms in descending

order. Denote the ranking list as r̂i,[K](t) = {r̂i,1(t), ..., r̂i,K(t)} for agent pi. The platform

then collects the estimated preferences of agents towards arms, {r̂i,[K](t)}Ni=1, along with the

arms’ true preferences towards agents, {πj}Kj=1, which are assumed to be known in the DMP

(see Section 3.2.1). Following this, the platform executes the DA algorithm. Subsequently,

the platform recommends job applicants {mt(i)}Ni=1 to each agent. In response, the companies

provide their matching scores {yi(t)}Ni=1 to the platform, as illustrated in Stage 5 of Figure

3.3.

Remark 2. (Doubling Trick for Unknown T for Dynamic Matching Algorithm). If T is

unknown, the platform can employ the doubling trick (ACF95; BK18). This approach in-

volves initially setting a small T , and if more decisions are required beyond this horizon,

the platform restarts the algorithm with a doubled horizon T := 2T and restart the learning

step followed by the exploitation step, which suffers the same order regret upper bound as the

dynamic matching algorithm with known T .
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Algorithm 3: Exploitation Step
1 Input: Time horizon T ; number of companies N ; number of job applicants K;

estimated true parameters θ̂i(h),∀i ∈ [N ]; preference πj,∀j ∈ [K].
2 for t ≥ h+ 1 do
3 for i ∈ {1, ..., N} do
4 Rank Candidates: Estimate scores µ̂i,j(t) = θ̂i(h)

Txj(t),∀j ∈ [K]. Rank
all job applicants in descending order by {µ̂i,j(t)}Kj=1 and get the preference
ranking list r̂i,[K](t).

5 Match: With two-sided preferences {r̂i,[K](t)}Ni=1 and {πj}Kj=1, platform
computes stable matching mt via DA Algorithm 4.

6 Receive Response: Company N provide their matching score {yi(t)}Ni=1.

Remark 3. (Computational Complexity). The computational costs for dynamic matching

algorithm consists of the learning step and exploitation step. In the learning step, it has the

one time estimation with cost O(d3) and matching cost O(NK). At each exploitation step,

it has the ranking cost O(K logK) and matching cost O(NK). So the total computational

cost for T steps’ DMP is O((T − h)(K logK +NK) + d3 +NK). If T is large, d is small

and N ≥ logK, the computational cost for DMP is O(TNK).

Remark 4. (Comparison with ϵ-greedy Algorithm). The strategy of a learning step followed

by a exploitation step is a typical approach in bandit learning (LS20), particularly when

historical data is available. This method is widely used in applications such as website opti-

mization (GLK16) and clinical trials (LRS83). It shares a similar exploration-exploitation

tradeoff with the ϵ-greedy algorithm (ACF02), but differs in the timing of exploration. Specif-

ically, our approach conducts explorations initially, while ϵ-greedy employs a randomized

strategy with gradually reduced exploration over time. In our real data study, we compare the

ϵ-greedy method and our dynamic matching algorithm in Section 3.7.2.

3.5 Connection Between Statistical Learning and DMP

In this section, we mainly focus on the underlying relationship between the statistical learning

and the dynamic matching problem. First in Section 3.5.1, we explore two types of measure
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to characterize the correctness of ranking — correct ranking and valid ranking — that lead

to optimal matching. In Section 3.5.2, we find that both unbiased and biased estimations

can achieve the optimal matching, and later we provide the motivation of our algorithm’s

design based on this findings. Finally, in Section 3.5.3, we discuss the foundational terms

determining the complexity of the DMP. It is obvious to achieve the optimal matching for
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Figure 3.4: Flow of sufficient conditions for optimal matching.

all agents hinges on the construction of correct ranking lists through the DA algorithm.

However, given that the platform operates within an online matching framework, there is

a non-neglectable possibility that it might generate partially accurate ranking lists due to

insufficient matching data. Such inaccuracies can significantly impact the matching results,

leading to suboptimal outcomes for agents.

In the following part, we find that the key quantity for assessing the accuracy of ranking

lists in the context of DMP is not merely the number of correctly ranked positions but

rather the concept of a valid ranking, which is a more precise and comprehensive measure

that directly influences the ability to achieve optimal matching outcomes.

3.5.1 Correct Ranking and Valid Ranking

In the toy example provided below, we illustrate an intriguing scenario where having zero

correct ranking positions can still yield the optimal matching result.
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Example 1. Suppose the platform provides correct rankings for all agents except pi, and

assume the optimal matching arm for pi is at rank j. All ranks from 1 to j− 2 are permuted

(i.e., r̂i,k ̸= ri,k and r̂i,k ∈ {1, 2, ..., j− 2} for all k ∈ [j− 2]). Similarly, all ranks from j+1 to

K are permuted (r̂i,k ̸= ri,k and r̂i,k ∈ {j+1, j+2, ..., K} for all k ∈ [j+1, K]). Additionally,

the platform swaps the arm at rank j − 1 with the arm at rank j (the optimal matching

arm). Despite this arrangement, agent pi can still achieve an optimal match. This is because

all arms ranked before j − 1 will be rejected based on the preferences from the other side

(arm side), as per the DA algorithm, even when the positions of the arm at rank j − 1 and

the optimal matching arm at rank j are switched.

The above example illustrates that the number of correct rankings is not the prime key

determinant in achieving optimal matching. We provide the following claim to summarize.

Correct ranking is a sufficient condition for the optimal matching. Building on the above

insight, we propose that the relative position of a wrongly ranked arm to the optimal arm is

crucial in determining the achievement of optimal matching. Consequently, we introduce the

term valid ranking to quantify this concept. To better present the concept of valid ranking,

we first classify arms based on its relative position over the optimal arm.

Definition 3.5 (Types of Arms). Arms can be classified into two types.

• Sub-optimal matching arms set : Ki,sub(t) = {aj|∆i,j(t) > 0, j ∈ [K]}, which is similar

to the single bandit problem’s definition.

• Super-optimal matching arms set : Ki,sup(t) = {aj|∆i,j(t) < 0, j ∈ [K]}, which is unique

for DMP.

Recall the score gap ∆i,j(t) = µi,mt(i)(t)− µi,j(t) which is defined in Eq. (3.2).

Definition 3.6. (Valid and Invalid Ranking). Ranking r̂i,[K](t) is valid if whenever arm

aj from the super-optimal matching arms set ranked lower than the optimal matching arm

mt(i), i.e, r̂i,j(t) > r̂i,mt(i)(t), it follows that score µi,j(t) > µi,mt(i)(t). On the other hand, if
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Figure 3.5: The corresponding matching results for p1 and p2 if p1 has valid ranking
a2 > a3 > a1 and p2 has six possible rankings. Valid ranking for both and optimal matching:
Case 1, 2, and 3. Single invalid ranking and non-optimal matching: Case 4, 5, and 6.

an agent ranks arms from sub-optimal matching arms set is ranked higher than the agent-

optimal arm, then it is invalid.

Valid ranking necessitates that the arms from the sub-optimal group Ki,sub(t) are not

ranked higher than the optimal arms amt(i) for agent pi at time t, rather than requiring fully

correct ranking. This perspective contrasts with focusing solely on the number of correct

rankings. We conclude that if agent pi maintains a valid ranking and all other agents also

possess valid rankings, then all agents can achieve optimal matching. This indicates that

keep all rankings valid is inherently easier, which obviously simplifies the learning objectives

and the matching process.

Lemma 3.1. If all agents maintain valid rankings, they all obtain the agent-optimal match-

ing.

The detailed proof of Lemma 3.1 is available in Section 3.11 of Appendix. To illustrate

Lemma 3.1, we consider a simplified scenario with two agents and three arms.

Example 2. We assume agent p1 has the valid ranking a2 > a3 > a1 and agent p2 has any

one of the six possible rankings (3! permutations), and preferences from agents to arms and
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arms to agents are

p1 : a2 > a1 > a3, p2 : a2 > a1 > a3

π1 : p1 > p2 π2 : p1 > p2, π3 : p1 > p2.

Given this preference setup, the agent-optimal matching for agents is {(p1, a2), (p2, a1)}. In

addition, the classification of the final matching result (Figure 3.5) is shown in as follows:

Case 1,2,3 (Optimal matching). If agent p2 has valid ranking as in Case 1,2,3, the matching

result is still (p1, a2) and (p2, a1). As long as p2 : a3 > a1 (omit a2) and p1 has valid ranking,

no agents suffers regret.

Case 4,5,6 (Non-optimal matching). If agent p2 has invalid ranking as in Case 4,5,6, the

matching result is no longer the (p1, a2) and (p2, a1). Since p2 : a1 > a3 (omit a2) and even

p1 has valid ranking, p2 suffers regret.

We observe that even if agent p2 does not have a correct ranking, it can still achieve an

optimal match in Cases 1, 2, and 3. The analysis across these six cases offers insights into

the conditions that allow an agent to attain an optimal matching result, despite incorrect in

the rankings.

3.5.2 Unbiased Estimation and Biased Estimation

Lemma 3.1 highlights that the valid ranking property is crucial for achieving optimal match-

ing. Intuitively, obtaining a valid ranking initially requires a good estimate of the preference

parameters to secure the correct ranking, which in turn ensures convergence to the correct

ranking as the sample size increases. Naturally, an unbiased estimator is a good option. Un-

biased estimation is a sufficient condition for the optimal matching. However, we present

an example demonstrating that correct/valid ranking can be achieved even with biased es-

timations of the preference parameters.

Example 3. (1).Correct ranking. If θ̂i = θi + b, where b ∈ Rd, this results in a biased

matching score µ̂i,j = θ̂⊤i xj = θ⊤i xj + b⊤xj = µi,j + b′ for all j ∈ [K]. Despite this bias, the
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correct ranking r̂i = ri can still be maintained because the shift b′ is consistently applied

across all arms. (2). Valid ranking. This approach involves applying a personalized bias to

these estimators, ensuring that as long as we maintain a valid ranking, it can produce an

optimal matching.

It is obvious that unbiased estimator can lead to the optimal matching. However, pur-

suing an unbiased estimator often comes at a high computational cost and can be infeasible

in practice. A more practical approach is to adopt a biased version of online estimation

but close enough to θi,∗. In this case, biased estimation is still capable of recovering the

correct/valid ranking, thereby attaining the optimal matching. That’s the reason why we

design our algorithm with the online ridge regression method as discussed in Section 3.4.

3.5.3 Foundations of DMP

In addressing the DMP, it’s crucial to differentiate between online ranking and online esti-

mation challenges, as they fundamentally guide the strategy of an algorithm’s design and

implementation. The key quantity that distinguishes between these two types of problems is

the “rate of error decay” in relation to sample size (CGZ22). (CGZ22) proposed that online

ranking problems tend to be less challenging than online estimation problems in terms of

the sample size needed. This is primarily because the number of incorrect rankings in on-

line ranking problems decays exponentially with the increase in sample size, while in online

estimation problems, the decay is polynomial. This distinction suggests that the ranking

method can swiftly approach the optimal matching in simpler scenarios. However, in more

complex problems, the ranking method may struggle due to the influence of feedback noise.

Indeed, the primary challenge that impedes the straightforward application of either the

online ranking or online estimation approaches lies in the information about the DMP’s

complexity available to determine which algorithm is optimal. This complexity leads to the

characterization of DMP as typically presenting an online dual-layered mixture of ranking
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and estimation challenges. Firstly, DMP results in a divergence of difficulty experiences due

to its multi-agent nature; at any given decision point, some agents are primarily dealing

with a ranking problem while others grapple with an estimation problem. This variation

is influenced by the interplay between the preference parameters θi for each agent i ∈ [N ]

and the contextual attributes xj(t) for each arm j ∈ [K]. Secondly, the dynamic and online

nature of DMP means that the difficulty dynamically shifts for each agent between ranking

and estimation challenges, corresponding to continuously evolving contexts.

This insight underscores the need for flexible estimation strategies and decision-making

within the DMP framework. Therefore, we have designed our algorithm from the perspective

that the worst-case scenario is one where all agents are confronted with dynamic online

estimation problems. It ensures that our algorithm is robust and capable of adapting to the

most challenging conditions, providing reliable performance even under significant variability

and uncertainty in agent preferences and market dynamics.

3.6 Regret Optimality of Dynamic Matching Algorithm

In this section, we outline the properties that our algorithm possesses. We first state several

necessary assumption in Section 3.6.1. Next, we provide the agent-optimal logarithmic shape

of regret upper bound of dynamic matching algorithm in Section 3.6.2, followed by the

critical step in decomposing regret and its key lemma. Furthermore, we demonstrate that

our algorithm produce stable matching with a high probability in Section 3.6.3. In addition,

we also provide the instance-dependent regret lower bound in Section 3.6.4 and its proof

outline.

3.6.1 Regularity Conditions

We first assume the noise follows the subguassian distribution.
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Assumption 3.1 (Subgaussian Noise). The noise ϵi,j(t)’s are drawn independently from a

σ-subgaussian distribution for t ∈ [T ], i ∈ [N ], j ∈ [K]. That is, for every α ∈ R, it is

satisfied that E[exp(αϵi,j(t))] ≤ exp(α2σ2/2).

Next, we assume that the context xj(t) distribution of the arm aj is from distribution

DXj
and the joint distribution of all arms DX = DX1 × ...×DXK

is independent product of

individual context distribution {DXj
}Kj=1.

Assumption 3.2. (Unit Sphere). ∥xj(t)∥∞ < 1,∀j ∈ [K], t ∈ [T ].

This assumption is common in literature (BB20; LCD23; WWS23) and easy to hold when

normalization is applied.

Assumption 3.3. (Positive-Definiteness). Define V = E[XXT |X ∈ DX ]. Then there exists

a deterministic constant ϕ0 ∈ R+ such that for all X ∈ DX we have the minimum eigenvalue

of the covariance matrix λmin(V ) ≥ ϕ2
0.

Assumption 3.3 is referred to as the compatibility condition in online statistical learning

literature (LWC21) and is to ensure that the online ridge estimate trained on samples X ∈ DX

converges to the true preference parameter {θi,∗}Ni=1 with high probability as the number of

samples grows to infinity.

Assumption 3.4. (Uniform Sub-optimal Minimal Gap Condition). The difference in terms

of the scaled matching score between the agent-optimal matching arm and arms from subop-

timal arm Ki,sub(t) for all agents over T is uniformly greater than ρ > 0. That is,

∆̃i,min = min
t∈[T ]

min
j∈Ki,sub(t)

∆i,j(t)/||xmt(i)(t)− xj(t)||2 > ρ,∀i ∈ [N ].

Assumption 3.4 assures the uniqueness of the agent-optimal match. This assumption

extends the fixed uniform sub-optimal minimal gap condition in static matching contexts
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(LMJ20) to the dynamic matching framework of DMP where the true matching score µi,j(t)

varies.

Without loss of generality, we have the following assumption over the preference param-

eter.

Assumption 3.5. (Positive Preference). θ
(r)
i,∗ > 0,∀r ∈ [d], i ∈ [N ].

Assumption 3.5 captures the fact that agents evaluate arms’ attributes positively but

with varying priorities based on the fitness of the arm to the agent.2

3.6.2 Regret Upper Bound

In this section, we provide the result of the agent-optimal regret upper bound of our algorithm

as follows.

Theorem 3.1. With Assumptions 3.1 - 3.5 and given the learning length h, if the platform

follows the dynamic matching algorithm, agent pi’s regret up to T is upper bounded by

Ri(T ) ≤
h∑

t=1

∆i,mt(i)(t)︸ ︷︷ ︸
Part I Regret

+2C0(λi)Nd

[
T∑

t=h+1

∆i,max(t)(K − min
i∈[N ]

τi(t))

]
exp

[
− h

2ϕ4
0ρ

2

d2σ2

]
︸ ︷︷ ︸

Part II Regret

,

(3.7)

where C0(λi) = exp
[
−4λiϕ

2
0ρ

2/d2σ2
]
, τi(t) is the agent pi’s optimal matching object’s ranking

position ri,mt(i)(t), and xi,max = ∥Xi(h)∥∞ is the maximum absolute value of the context entry.

Proof. We split the regret into two parts, the learning step’s regret (“Part I Regret") and

the exploitation step’s regret (“Part II Regret"). The detailed decomposition procedure can

be found in Section 3.6.2.1. To summarize, (i) the learning step’s regret is obtained through

directly adding the expected score gap between optimal matching arm ami(t) and policy

2In practice, if this assumption does not hold, the platform can initially estimate it, find that parameter
entries are negative, and subsequently adjust the sign of the context.
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recommended arm ami(t) at each time step; (ii) in the exploitation step, the regret is caused

by the “bad event”, which is the occurring of the invalid ranking.

Theorem 3.1 provides the decomposed regret upper bound of the dynamic matching.

With optimized h, we show dynamic matching algorithm has a logarithmic regret in the

following corollary.

Corollary 3.1. With h =

⌈
max
i∈[N ]

d2σ2

2ϕ4
0ρ

2 log
4C0(λi)NKϕ4

0ρ
2

dσ2∆i,max
T

⌉
, we have

Ri(T ) ≤ C1(1 + logC2T ) = Õ
(
d2σ2

ρ2
log(NKT )

)
(3.8)

where C1 = d2σ2∆i,max/(2ϕ
4
0ρ

2) and C2 = 4C0(λi)NKϕ4
0ρ

2/(dσ2∆i,max).

For part II regret in Eq.(3.7), it depends on the gap between the minimum optimal

arm rank mini∈[N ] τi(t) across all arms and the worst arm, which measures the difficulty

of dynamic matching problem’s characteristic. If there exists an agent’s optimal arm rank

τi(t) = 1, the gap is K −mini∈[N ] τi(t)) = K − 1. Given the optimal learning length h from

Eq. (3.8), we find the regret upper bound depends logarithmically over T , which means that

it is a no regret learning method.

We next discuss the dependence of the upper bound on several critical parameters. The

quantity ρ2/d2σ2 logNK represents the signal-to-noise ratio for dynamic online matching

problem. When the signal-to-noise ratio is high, the complexity level of the DMP is low;

conversely, in the low signal-to-noise regime, the complexity of the DMP is high. From an-

other perspective, if the uniform sub-optimal minimal gap ∆i,min is small, dynamic matching

algorithm faces a challenging task as it becomes difficult to distinguish between the optimal

arm and the suboptimal arm. Consequently, the ranking provided by the platform is prone

to errors, potentially leading to non-optimal stable matching results. Moreover, we observe

that both N and K increase at a logarithmic rate in terms of regret when the number of par-

ticipants increases. We further provide an instance-dependent lower bound, which matches
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the order of the regret upper bound (see Section 3.6.4).

3.6.2.1 Proof Outline

We provide key steps to prove Theorem 3.1. We decompose the agent regret Ri(T ) into the

learning step regret and the exploitation step regret as follows:

Ri(T ) =
T∑
t=1

µi,mt(i)(t)− µi,mt(i)(t) ≤
h∑

t=1

∆i,mt(i)(t)︸ ︷︷ ︸
Part I Regret

+

[
T∑

t=h+1

∆i,max(t)(NP(r̂i,t is invalid))

]
︸ ︷︷ ︸

Part II Regret

.

The “Part I regret” is the sum of gaps between the optimal arm and the arm recommended

by dynamic matching algorithm during the learning rounds. The Part II regret accumulates

during the exploitation step. Based on Lemma 3.1, it is necessary to quantify the probability

of an invalid ranking to calculate the instantaneous regret. At time t, the instantaneous regret

∆i,mt(i)(t)NP(r̂i,t is invalid) ≤ ∆i,max(t)NP(r̂i,t is invalid). We quantify the probability of

invalid ranking P(r̂i,t is invalid) in the following Lemma 3.2. We then sum all instantaneous

regrets from time h+ 1 to T to determine the “Part II Regret," as shown in Equation (3.7).

Following this, we provide the upper bound of the invalid ranking probability.

Lemma 3.2. Assume all agents receive recommended arms from dynamic matching algo-

rithm, the invalid ranking probability’s upper bound,

P(r̂i,t is invalid) ≤ 2d(K − τi(t)) exp

(
− h

2λ2
i ρ

2ϕ4
1

d2σ2

)
. (3.9)

3.6.3 Matching Stability of Dynamic Matching Algorithm

In this section, we prove that our algorithm provide stable matching result with high prob-

ability.

As we know, the DA algorithm can deliver stable matching based on the two-sided true
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preferences. However, this scenario is usually not available in the initial decision rounds of

the online setting. Our theory identifies the optimal minimum learning length in Corollary

3.1, which guarantees that dynamic matching algorithm delivers stable matching with high

probability (Theorem 3.2). This result connects the online learning techniques and offline

matching algorithm design, providing key insights for designing more general online dynamic

matching algorithms. In the following theorem, we demonstrate that our algorithm provides a

stable match with high probability Ψ. That is, no agents will deviate from the recommended

matching arm with a probability of at least Ψ after time t.

Theorem 3.2 (Stability of dynamic matching algorithm). Given

t ≥ ⌈ d2σ2

2λ2
minρ

2ϕ2
1

[log(2d(K − 1))− log(1−Ψ1/N)]⌉,

the dynamic matching algorithm provides an agent-optimal stable matching solution with

probability Ψ > 0.

Proof. The sketch proof of the stability property of dynamic matching algorithm consists of

two steps, naturally following the design of dynamic matching algorithm. In the exploitation

step, DA still produces a stable matching result based on estimated preferences and there are

no blocked pairs during the matching procedure with high probability and the main proof

follows Lemma 3.2 with a union bound of the valid ranking.

3.6.4 Instance-Dependent Regret Lower Bound

We next provide the instance-dependent regret lower bound over a two-agent, three-arm

instance and demonstrate the matching lower bound of our algorithm.

In the following lower bound analysis, we consider that there are two agents and three

arms in the platform. Contexts are generated from the uniform distribution, xj(t) ∼

U(0, 1)d,∀t ∈ [T ],∀j ∈ [K]. We also assume the true preference parameter are designed
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as follows θ1,∗ = (
√

1− 1/h, 1/
√
h, 0, ..., 0)T ∈ Rd, θ2,∗ = (

√
1− 1/h, 0, 1/

√
h, 0, ..., 0)T ∈ Rd.

Noise follows Gaussian distribution with variance σ2. Then the estimator from Eq. (3.5)

satisfies,

θ̂i(h)|Fi(h) ∼ N(θ̄i, σ
2Mi), i ∈ [N ],

where θ̄i =
(
Xi(h)

TXi(h)+λiI
)−1

Xi(h)
TXi(h)θi,∗ ∈ Rd, and Cov[θ̂i(h)|Fi(h)] = σ2

(
Xi(h)

TXi(h)+

λiI
)−1

Xi(h)
TXi(h)

(
Xi(h)

TXi(h) + λiI
)−1 ∈ Rd×d.

Theorem 3.3. Consider the designed two-agent three-arms instance above. The regret lower

bound for agent pi is,

Ri(T ) ≥
h∑

t=1

∆i,mt(i)(t) +
T∑

t=h+1

∆i,min

[
Lb

i(t)Lb
j(t) + Lb

i(t)L
g
j (t)
]
, (3.10)

where Lg
i (t) = 1−(3/c5(t)

√
2) exp (−c25(t)h/2), Lb

i(t) = (1/c7(t)
√
h−1/c37(t)h3/2) exp (−c27(t)h/2),

and c5(t), c7(t) are contextual time-dependent constants but independent of designing explo-

ration rounds h. With the optimized h provided by dynamic matching algorithm, the order

of the regret lower bound is Ri(T ) = Ω(log(T )).

From Theorem 3.3, we find that our algorithm achieve a matching regret lower bound.

This lower bound not only depends on both agents’ incorrect ranking’s probability lower

bound Lb
i(t), i = 1, 2, but also the other agent’s (pj) correct ranking estimate’s probability

lower bound Lg
j (t).

Remark 5. Similarly, (LMJ20) provided a regret lower bound by considering other agents

submitting truthful rather than strategic rankings to the platform and bounding the maximum

number of pulls of non-optimal arms in order to obtain the regret lower bound without context

consideration. (JWW21) presented a lower bound for the MAB problem instance with money

transfer instead of strict preference constraints compared with ours. (LCW22) considered the

minimax lower bound for the multi-agent Markov game where it shares the same action space

for all agents. However, the DMP setting is different from the two-sided competing matching

41



setting due to the exclusive action selection characteristic. In DMP, for agents, there is

exclusivity in action selection and this exclusivity is ubiquitous since one arm cannot be

matched with two agents.

3.6.4.1 Proof Outline

The agent-optimal regret Ri,t for agent pi at time t can be decomposed as

Ri,t = E[E[Ri,t|other agents’ ranking status]]

= E[Ri,t|
⋂
j ̸=i

{r̂j(t) = rj(t)}]P(
⋂
j ̸=i

{r̂j(t) = rj(t)}︸ ︷︷ ︸
Event I

)

+ E[Ri,t|
⋃
j ̸=i

{r̂j(t) ̸= rj(t)}︸ ︷︷ ︸
Event II

]P(
⋃
j ̸=i

{r̂j(t) ̸= rj(t)}).

(3.11)

Here if we assume i = 1, Event I becomes {r̂2(t) = r2(t)}, p2 has a correct ranking. Event II

becomes {r2(t) ̸= r2(t)}, p2 has incorrect ranking. R1,t(r̂2(t) = r2(t)) is the first component

of Eq.(3.11), which is the expected instantaneous regret for p1 conditioning on p2 having

correct ranking at time t. Similarly, R1,t(r̂2(t) ̸= r2(t)) is the second component of Eq.(3.11),

the expected instantaneous regret for p1 conditioning on p2 having incorrect ranking at time

t. R1,t(r̂2(t) = r2(t)) and R1,t(r̂2(t) ̸= r2(t)) are product of the Event I and II’s probabilities

and corresponding expected regret. Thus, the next step is to quantify the lower bound of two

probabilities and expected regret, which we provided in Lemmas 3.6 and 3.7 of appendix.

3.7 Experiments

This section demonstrates the effectiveness and robustness of dynamic matching algorithm

in simulation and real data, where the simulation studies include five different settings, its

robustness under different context distributions (S1 & S2). The additional experiments such
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as different minimal margins (S3), different feature vector dimensions (S4), and different

sizes of agents and arms (S5) are available at Section 3.16 of appendix. In real data, we

apply the dynamic matching algorithm in a online job-seeking market.

3.7.1 Simulation

From Scenario 1 to Scenario 4, we consider that there are two agents N = 2 and three arms

K = 3. In Scenario 5, we consider that N = K = 5. The penalty parameters for all agents

are set to be λ = 0.1 in all scenarios and T = 1000.

Scenario 1 (S1): Contexts are generated from a d-dimensional normal distribution with

four different fluctuation variance ζ = [0.01, 0.05, 0.1, 0.2] and d = 2, and normalized to have

unit norm. {θi,∗}2i=1 are randomly generated from uniform distribution and scaled to have

unit norm. The uniform minimal sub-optimal condition for this scenario is set to be ρ = 0.2.

In addition, the noise is generated from normal distribution with σ = 0.05. We assume

that arms to agents’ preference π are a1 : p1 > p2, a2 : p2 > p1, a3 : p1 > p2. According to

Corollary 3.1, the optimal learning step length h is 312.

Scenario 2 (S2): Contextual features move with an angular velocity wt = 0.005t which is

different from S1, and d = 2. Contexts for arms are still generated from normal distribution

and normalized. But for x1(t), its mean is constantly increasing with a velocity wt. The

true parameters {θi,∗}2i=1 are the same as these in S1. The uniform minimal sub-optimal for

this scenario is set to be ρ = 0.2. The example of moving context with an angular velocity

is illustrated in Figure 3.1. We consider three levels of noise σ = [0.01, 0.02, 0.05] to test

the robustness of our algorithm. In S2, the agent-optimal matching is no longer fixed even

when fluctuation level ζ = 0 since context x1(t) is dynamic. h for three noise levels are

h = [24, 66, 312], correspondingly.

Additional experiments settings and results are available in appendix.
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Figure 3.6: S1: Cumulative regret for different context variation levels ζ. Each black stick
means a change of optimal matching.

3.7.1.1 Results and Analysis

In Figures 3.6 and 3.7, the horizontal axis represents the time point and the vertical axis rep-

resents the cumulative regret. In all figures, we plot the maximum (worst) regret represented

as the upper bound shaded line, mean regret represented as the solid line, and minimum

(best) regret represented as the lower bound shaded line, over 100 replications.

S1: dynamic matching algorithm is robust to different contexts’ variance levels ζ. In Fig-

ure 3.6, our dynamic matching algorithm shows the logarithmic regret shape which demon-

strates that it is robust to contexts’ noise levels. When contexts’ variance level ζ increases,

the shaded area becomes wider, indicating the uncertainty of the regret increasing, and in-

dicates that the complexity of the DMP is also larger. In this figure and following figures,

we use the short black sticks to represent the change of the optimal matching between two

adjacent-time points due to the contextual information change. We mark the short black

stick at time t+ 1 on the horizontal axis if m(t) ̸= m(t+ 1), which means that the optimal

matching result is different on two continuous-time points. The denser the black stick is,

the more frequently the agent-optimal matching changes over time. In other words, when

the contexts’ fluctuation magnitudes increase, the optimal stable matching changes more

frequently, and it exhibits the dynamic property of DMP.

S2: dynamic matching algorithm is robust to mean shifting context distributions wt and
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Figure 3.7: Cumulative regret for different noise levels and context variation levels of mean
shifting context in Scenario S2.

different levels of observed score noise σ. In Figure 3.7, we present the S2’s results when

the mean of arm a1 changes with an angular velocity wt. In row 1, we find there is a small

“bump" in the mean regret of the cumulative regret in each plot, and the slight bump occurs

at the exploitation step where the occurring time of the bump is greater than h.

Two reasons cause the occurrence of the small bump. One is the coarse estimation of

parameters. Another is that the context’s angular velocity changes too slowly, violating the

uniform sub-optimal minimal condition assumption. Both of these will cause the incorrect

ranking estimated by the platform, resulting in regret. A similar pattern can also be found

in the second row of the figure. In order to demonstrate the conjecture of violating uniform

sub-optimal minimal condition assumption, we decrease it ∆i,min from 0.2 to 0.1 in S3 (Figure

3.11 in appendix), which indirectly extends the learning step h and therefore increases the

estimation accuracy because platform would gather more data to acquire more accurate

estimates. In addition, in the third row, the shaded area disappears because the learning
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step is long enough to accumulate sufficient data to get a reasonable estimate compared with

the first row and the second row, which demonstrate our conjecture.

Another interesting finding is the decreasing regret phenomena after the bump. In the

first and second rows of Figure 3.7, the phenomenon of decreasing regret occurs because the

agent, p1, needs to recover from the violation of the “uniform sub-optimal minimal condition"

assumption. This implies that agent p1 is unable to distinguish the differences between arms

when the uniform sub-optimal minimal condition is violated. In the third row’s, the regret

decreases over a long period because agent p1 is in the learning step and the super-optimal

arms have a much larger gain over sub-optimal arms. These significant gains will result in

a negative regret. So the cumulative regret will decrease. This interesting phenomenon is

only occurring in DMP when considering the contextual information. In all, we find that

dynamic matching algorithm is robust to changing the context format.

3.7.2 Real Data

We next apply the dynamic matching algorithm in the job application market with job

applicants’ profile information and companies’ job description information from LinkedIn.

3.7.2.1 Background

We have three job applicants and two companies in the market.

Job Applicants’ and Companies’ Preferences: Based on the profiles of the job ap-

plicants, three candidates with diverse backgrounds are seeking job opportunities in the

market:

• a1: a data scientist (ds),

• a2: a software development engineer (sde),

• a3: a quantitative researcher (qr).
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In addition, two companies provides two job descriptions indicating that they are interested

in hiring candidates with specific skill sets as follows:

• Company p1 is looking for a candidate with quantitative research skills,

• Company p2 is looking for a candidate with software development skills.

Given this setup, the preferences of the three job applicants for companies can be described

as follows:

• For the data scientist, a1, the preferences are πds(a1) : p1(qr) > p2(sde),

• For the software development engineer, a2, the preferences are πsde(a2) : p2(sde) >

p1(qr),

• For the quantitative researcher, a3, the preferences are πqr(a3) : p1(qr) > p2(sde).

This indicates that each applicant prefers the company whose job description best matches

their professional background and skills. Detailed description is provided at Section 3.16.5

of appendix.

Dynamic Contextual Information: To simulate the dynamic contextual information, we

take the following steps to construct the dynamic matching environment (T = 10800):

• Job applicants’ dynamic contextual information:

– At t = 0: the job applicant aj has textual information wj(0), a sequence of words

represented as wj(0) = {w1
j (0), w

2
j (0), ..., w

q0
j (0)} and q0 is the length of the se-

quence of the words at time t = 0, profile like research projects on modeling

of high-dimensional and multi-modal (partially observed), inputs for

classification, regression and clustering tasks, leveraging a wide range

of techniques.
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– At t = 600z, z ∈ N: we assume that job applicants learn new skills, update profile

like (1)t=600, Strong interested in data science, (2)t=1200, machine learning,

(3)t=1800, data visualization..., and updates his profile, so the textual

information becomes wj(t), the sequence of words is represented as wj(t) =

{w1
j (t), w

2
j (t), ..., w

qt
j (t)} for all t = 600z, z = 1, 2, ..., 18.34

• Companies’ fixed job descriptions:

– The job descriptions from companies are fixed texts over time denoted by wi =

{w1
i , w

2
i , ..., w

pi
i } where pi is the length of words for company pi, job descrip-

tions are like Strong passion in quant finance, strong mathematical and

statistical knowledge. Proficiency in programming languages like Python

or R, etc.

The detailed text data is available in Tables 3.1 and 3.2 at Section 3.16.5 of appendix.

Text-to-Embedding: We use the encoder of the Transformer model (DCL18) f to generate

the word embedding of these textual information from job applicants’ profiles {wj(t)}j=1,2,3;t∈[T ],

and companies’ job descriptions {wi}i=1,2.

hj(t) = f(wj(t)), hi = f(wi), (3.12)

where hj(t), hi ∈ Rdraw and draw = 768 is the commonly output dimension of the transformer

model (DCL18). For simplicity, here we use PCA method (Pea01; JC16) to extract the most

significant dimension from these word embedding vectors for job applicants and add Gaussian

noise to hj(t) at every time step to transform it into streaming data. So the observed

contextual information for each job applicant is xj(t) = PCA(hj(t) +N(0, ζ2)) ∈ Rd where

d = 3, ζ = 1e− 6.

3One agent update profile every 1800 steps for different updating frequency.

4Here we create the streaming data is through adding additional textual information over time.
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Figure 3.8: Total regret for agent p1 and p2 under noise σ = 0.1 (Left) and σ = 0.2 (Right)
of methods dynamic matching algorithm, greedy, 0.05-greedy, 1/t-greedy.

True Response: The true response is determined by the similarity of the job applicant’s

profile and job description with an added Guassian noise yi,j(t) = hT
j hi(t) + ϵi,j(t), ϵi,j(t) ∼

N(0, σ2), t ∈ [T ], σ = 0.1, 0.2.

Comparison Methods: Here we compare our algorithm with three methods:

• Greedy method: This approach constructs the ranking based purely on previously

collected data to form estimate µ̂i,j(t), without regard for exploration.

• ϵ-greedy method (where ϵ = 0.05): This method usually exploits the ranking list

based on previously collected data, but with a probability of ϵ exploration (5% random

matching in this case), it will randomly explore other options (randomly permute the

ranking list).

• 1/t-greedy method with a decaying rate 1/t: This technique adjusts the bal-

ance between exploring and exploiting by decreasing the exploration rate over time,

specifically using a rate that inversely decays with the number of matching t.

3.7.2.2 Results

In Figure 3.8, we demonstrate the social welfare gap—a measure of the absolute difference

between the optimal and actual total matching score across all agents—of different methods

at various noise levels. The dynamic matching algorithm consistently achieves the minimum

social welfare gap under these conditions. The sub-optimality of other comparison methods

can be attributed to their failure to utilize dynamic contextual information within the DMP

to adaptively design the exploration rate ϵ.

Additionally, we use a vertical dashed line to indicate the transition point of the optimal

matching pattern. It is noteworthy that our findings underscore the robustness of our method
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in the face of changes in the optimal matching pattern, a characteristic that is absent in the

greedy group method. For instance, examining the social welfare gap around the t = 5, 000

time step reveals a marked increase in the regret pattern associated with the comparison

methods.

3.8 Appendix

This appendix is organized as follows. In Section 3.9, we provide the Bernstein concentration

lemma and tail probability’s upper bound and lower bound for the normal distribution. In

Section 3.10, the detail of the DA Algorithm 4 under the job application scenario is provided.

In Section 3.11, we prove that if agents can submit valid rankings to the platform, agents

will acquire the matching which is as least as good as the stable matching. In Section 3.12,

we provide detailed proof of the regret upper bound of dynamic matching algorithm. In

Section 3.13, we prove the stable matching holding with high probability. In Section 3.14,

the detailed instantaneous regret decomposition at time t is available when we consider

there are two agents and three arms in this online matching market. Finally, we provide

detailed proof of the instance-dependent regret lower bound in Section 3.15. In Section 3.16,

we provide more experimental results of UCB method and dynamic matching algorithm.

In addition, various simulation settings’ result is presented in Section 3.16.2 and real data

related materials are available in Section 3.16.4.

3.9 Miscellaneous Lemmas

Lemma 3.3 (Bernstein Concentration). Let {Dk,Fk}∞k=1 be a martingale difference, and

suppose that Dk is a σ-subgaussian in an adapted sense, i.e., for all α ∈ R. E[eαDk |Fk−1] ≤

50



e
α2σ2

2 almost surely. Then, for all t ≥ 0,

P[|
n∑

k=1

Dk| ≥ t] ≤ 2e−
t2

2nσ2 . (3.13)

Lemma 3.3 is from Theorem 2.3 of Wainwright (2019) (Wai19) when α∗ = αk = 0 and

νk = σ for all k.

Lemma 3.4 (Tails of Normal distribution). Let g ∼ N(0, 1). Then for all t > 0, we have

(
1

t
− 1

t3
)

1√
2π

e(−t2/2) ≤ P(g ≥ t) ≤ 1

t

1√
2π

e(−t2/2). (3.14)

Lemma 3.5. With probability at most δ, we have the sample covariance matrix minimum

eigenvalue over n ≥ n0 = log(d/δ)/C̃2(ϕ0) i.i.d samples is bounded below by λi/2h + ϕ2
0/2

with probability 1− δ.

Pr
[
λmin(Σ̂(X(n)) >

λ

2n
+

ϕ2
0

2

]
≥ 1− exp

[
− C̃2(ϕ0)n+ log(d)

]
(3.15)

where C̃2(ϕ0) = min(1/2, ϕ2
0/8(x

2
max + λ)).

Proof. First, note that

λmax

(
Σ̂(X(n))

)
= max

∥u∥=1
uT Σ̂(X(n))u

= max
∥u∥=1

1

n

∑
t∈[n]

(XT
t u)

2 + λ

≤ x2
max + λ

(3.16)
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Algorithm 4: DA Algorithm
1 Input: Companies set N , job applicants set K, companies to job applicants’

preferences, job applicants to companies’ preferences.
2 Initialize: An empty set S.
3 while ∃ A company p who is not matched and has not contacted to every job

applicant do
4 Let a be the highest ranking job applicant in company p’s preference, to whom

company p has not yet contacted.
5 Now company p contacts the job applicant a.
6 if Job applicant a is free then
7 (p, a) become matched (add (p, a) to S).
8 else
9 Job applicant a is matched to company p′ (add (p′, a) to S).

10 if Job applicant a prefers company p′ to company p then
11 Company p remains free (remove (p, a) from S).
12 else
13 Job applicant a prefers company p to company p′.
14 Company p′ becomes free (remove (p′, a) from S).
15 (p, a) are paired (add (p, a) to S).
16 Output: Matching result S.

Then, it follows from the matrix Chernoff inequality, Corollary 5.2 in (Tro15), that

Pr
[
λmin(Σ̂(X(n)) >

λ

2n
+

ϕ2
0

2

]
≥ 1− d exp

[
− nϕ2

0

8(x2
max + λ)

]
≥ 1− d exp

[
− C̃2(ϕ0)n

]
,

(3.17)

if we take δ̃ = 1/2 and R = x2
max + λ.

3.10 Deferred Acceptance (DA) Algorithm

In algorithm 4, we present the DA algorithm in the example of job seeking scenario.
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3.11 Proof of Lemma 3.1

Lemma 3.1 states that if all agents have valid rankings to the platform, the DA-Algorithm

will provide a matching mt as least as good as mt.

Proof. First, we show that the agent-optimal matching m(t) is stable according to the

rankings submitted by agents when all those rankings are valid.

Let aj be an arm such that r̂i,j(t) < r̂i,mt(i)(t) for agent pi. Since r̂i,[K](t) is a valid ranking,

which means that pi prefers aj over mt(i) according to the true preference. However, since

m(t) is stable according to the true preference, arm aj must prefer agent mj(t)
−1 over pi

because arm aj has no incentive to deviate the current matching m(t), where mj(t)
−1 is aj’s

matching object according to the agent-optimal m(t) or the empty set if aj does not have a

match. Therefore, according to the ranking r̂i,[K](t), pi has no incentive to deviate to arm aj

because that arm aj would reject him.

Since m(t) is a stable matching according to the valid ranking r̂i,[K](t), we know that

the DA-algorithm will output a matching which is at least as good as m(t) for all agents

according to rankings r̂i,[K](t) since this r̂i,[K](t) ranking is an agent-optimal ranking if it were

the true ranking. Since all rankings are valid rankings, it follows that the DA algorithm will

output a matching m(t) which is as least as good as m(t).

3.12 Proof of Theorem 3.1 - Regret Upper Bound

3.12.1 Proof of Lemma 3.2

Proof. We consider one time step t at the exploitation step throughout this proof. We first

show how to quantify the invalid ranking probability.

If the ranking r̂i,[K](t) is invalid, there must exist an arm aj where j ̸= mt(i) such that

µi,mt(i)(t) > µi,j(t), but r̂i,j(t) < r̂i,mt(i)(t), due to the inaccurate estimation of the true
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parameter, which is equivalent to µ̂i,j(t) > µ̂i,mt(i)(t). So we have

P(µ̂i,j(t) > µ̂i,mt(i)(t))

= P
[
µ̂i,j(t)− µi,j(t)− µ̂i,mt(i)(t) + µi,mt(i)(t) ≥ µi,mt(i)(t)− µi,j(t)

]
= P

[
θ̂i(h)

Txj(t)− θTi,∗xj(t)− θ̂i(h)
Txmt(i)(t) + θTi,∗xmt(i)(t) ≥ µi,mt(i)(t)− µi,j(t)

]
= P

[
(θ̂i(h)− θi,∗)

T (xj(t)− xmt(i)(t)) ≥ θTi,∗(xmt(i)(t)− xj(t))
]

≤ P
[ ∥∥∥θ̂i(h)− θi,∗

∥∥∥
2

∥∥xj(t)− xmt(i)(t)
∥∥
2
≥ θTi,∗(xmt(i)(t)− xj(t))

]
= P

[ ∥∥∥θ̂i(h)− θi,∗

∥∥∥
2
≥ ⟨θi,∗,

xmt(i)(t)− xj(t)∥∥xmt(i)(t)− xj(t)
∥∥
2

⟩
]
,

(3.18)

where in the inequality, we use the Cauchy inequality to upper bound the left inner product.

Here we find an interesting term called, similarity difference (SD), which is

SD ∆
= ⟨θi,∗,

xmt(i)(t)− xj(t)∥∥xmt(i)(t)− xj(t)
∥∥
2

⟩

= ∥θi,∗∥2 ⟨
θi,∗
∥θi,∗∥2

,
xmt(i)(t)− xj(t)∥∥xmt(i)(t)− xj(t)

∥∥
2

⟩

= ∥θi,∗∥2 cos(ϕi,j(t)),

(3.19)

where ϕi,j(t) represents the angle between the normalized true parameter θi,∗ and the nor-

malized arms difference at time step t, which is the similarity difference between arm aj and

arm amt(i) from the viewpoint of agent pi.

Here we discuss the boundary scenario of the similarity difference. If SD = 0, there are

three possible reasons.

1. The first possible reason is that if the true parameter θi,∗ = 0. Since we assume all

agents’ true parameters are meaningful and positive, with Assumption 3.5, we can rule

out this case.

2. The second possible reason is that if arm aj and arm amt(i) are identical such that
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xj(t) = xmt(i). Since we assume all arms are different, we can also rule out this case.

3. The third possible reason is that if cos(ϕi,j(t)) = 0. That means from the view point

of agent pi at time t, arm aj and arm amt(i) are symmetric. Since we assume there are

no ties in ranking over time, we can also rule out this scenario.

The last case we also discussed in Assumption 3.4 where we assume that the uniform sub-

optimal minimal condition over time is greater than zero. That means there is no symmetric

case for the agent to distinguish two arms between the agent-optimal and the sub-optimal

arm—That is the key difference between the DMP and the MAB competing bandit problem.

The MAB competing bandit only has one constant gap over time and no existence of the

interesting symmetric arms. We now restate the uniform sub-optimal minimal condition

∆i,min for agent pi over time t, that is ∆i,min = min
j∈[K],t∈[T ]

∥θi,∗∥2 cos(ϕi,j(t)) > 0.

With Assumption 3.4, we consider the estimation error of the true parameter is lower

bounded by the uniform sub-optimal minimal condition ∆i,min. So the probability of the

invalid ranking is upper bounded by

P

[∥∥∥θ̂i(h)− θi,∗

∥∥∥
2
≥ ∥θi,∗∥2 cos(ϕi,j(t))

]
≤ P

[∥∥∥θ̂i(h)− θi,∗

∥∥∥
2
≥ ∆i,min

]
. (3.20)

To get the upper bound of this tail event’s probability, we use the technique of quantifying the

confidence ellipsoid from (LWC21). Notation Σ̂(Xi(t)) represents the normalized covariance

matrix, so Σ̂(Xi(t)) = Φi(t)/t = (Xi(t)
TXi(t) + λiId)/t for t ≥ 1, where we define Φi(0) =

λiId and λi is the prespecified penalty hyperparameter for agent pi. Note that the event

λmin(Σ̂(Xi(t))) ≥ ϕ2
0/2+λi/2t holds for t ≥ 1 with having that λmin

(
Xi(t)

TXi(t)
)
/t ≥ ϕ2

0/2,

based on the high probability in exponential decay wrt t (see Corollary 5.2 in (Tro15) and

Lemma 3.5. Thus after the learning step, agents have already gathered length h historical

data, which include actions, rewards and contexts. For notation simplicity, we use θ̂i to
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replace θ̂i(h) and Xi to replace Xi(h). So we have

∥∥∥θ̂i − θi,∗

∥∥∥
2

=
∥∥(XT

i Xi + λiI)
−1XT

i (Xiθi,∗ + ϵ)− θi,∗
∥∥
2

=
∥∥(XT

i Xi + λiI)
−1XT

i ϵ+ θi,∗ − λi(X
T
i Xi + λiI)

−1θi,∗ − θi,∗
∥∥
2

=
∥∥(XT

i Xi + λiI)
−1(XT

i ϵ− λiθi,∗)
∥∥
2

≤ 1

λi + hϕ2
0

∥∥XT
i ϵ− λiθi,∗

∥∥
2
.

(3.21)

Here we use a constant χ > 0 to get the estimation error. So we have

Pr
[∥∥∥θ̂i − θi,∗

∥∥∥
2
≤ χ

]
≥ Pr

[(∥∥XT
i ϵ− λiθi,∗

∥∥
2
≤ 2χ(λi + hϕ2

0)

)
∩
(
λmin(Σ̂(Xi) >

λi

2h
+

ϕ2
0

2

)]
≥ 1−

d∑
r=1

Pr
[
ϵTX

(r)
i > λiθ

(r)
i,∗ +

2χ(λi + hϕ2
0)√

d

]
︸ ︷︷ ︸

Part I

−Pr
[
ϵTX

(r)
i < λiθ

(r)
i,∗ −

2χ(λi + hϕ2
0)√

d

]
︸ ︷︷ ︸

Part II

− Pr
[
λmin(Σ̂(Xi) ≤

λi

2h
+

ϕ2
0

2

]
(3.22)

where we let X(r)
i (t) denote the rth column of Xi(t). To make Pr[ϵTX(r)

i < λiθ
(r)
i,∗ −

2χ(λi+hϕ2
0)√

d
]

have a relative small probability, based on the Assumption 3.5 that θ
(r)
i,∗ is positive and let

λi <
2χ(λi+hϕ2

0)√
dθ

(r)
i,∗

, with the analysis from Case B.2.3 from (LWC21), the part II’s probability

will be small. So when λi <
2χ(λi+hϕ2

0)√
dθ

(r)
i,∗

is small, part I and part II’s probability will be

similar5. So the previous probability lower bound will be

Pr
[∥∥∥θ̂i − θi,∗

∥∥∥
2
≤ χ

]
≥ 1−

d∑
r=1

2Pr
[
ϵTX

(r)
i > λiθ

(r)
i,∗ +

2χ(λi + hϕ2
0)√

d

]
− Pr

[
λmin(Σ̂(Xi) ≤

λi

2h
+

ϕ2
0

2

] (3.23)

5Or we can follow (LWC21)’s analysis for part I and part II separately. However, based on the Assumption
3.5, the probability difference is minor.
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We can expand ϵTX
(r)
i (t) =

∑
j∈[t] ϵ(j)x

(r)
i,j , where we note that Di,j,r ≡ ϵ(k)x

(r)
i,j is a xi,maxσ-

subgaussian random variable, where xi,max = ∥Xi(t)∥∞, conditioned on the sigma algebra

Fj−1 that is generated by random variable X1, ..., Xj−1, Y1, ..., Yj−1. Defining Di,0,r = 0, the

sequence Di,0,r, Di,1,r, ..., D(i,j,r) is a martingale difference sequence adapted to the filtration

F1 ⊂ F2 ⊂ ...Fj, since E[ϵ(j)x
(r)
j |Fj−1] = 0. Using the Bernstein concentration inequality

from Lemma 3.3,

Pr
[∥∥∥θ̂i − θi,∗

∥∥∥
2
≤ χ

]
≥ 1−

d∑
r=1

2Pr
[
ϵTX

(r)
i > λiθ

(r)
i,∗ +

2χ(λi + hϕ2
0)√

d

]
− Pr

[
λmin(Σ̂(Xi) ≤

λi

2h
+

ϕ2
0

2

]

≥ 1−
d∑

r=1

2Pr
[
ϵTX

(r)
i >

2hχλiϕ
2
1(h, λi)√
d

]
− Pr

[
λmin(Σ̂(Xi) ≤

λi

2h
+

ϕ2
0

2

]

≥ 1− 2d exp

[
− 2hχ2λ2

iϕ
4
1

d ∥Xi∥2∞ σ2

]
− Pr

[
λmin(Σ̂(Xi) ≤

λi

2h
+

ϕ2
0

2

]
,

(3.24)

where we denote ϕ2
1 := ϕ2

1(h, λi) = (λi+hϕ2
0)/(hλi) = 1/h+ϕ2

0/λi. So we have the probability

upper bound for the estimation error for any constant χ > 0,

Pr
[∥∥∥θ̂i − θi,∗

∥∥∥
2
≥ χ

]
≤ 2d exp

[
− 2hχ2λ2

iϕ
4
1

d ∥Xi∥2∞ σ2

]
− Pr

[
λmin(Σ̂(Xi) ≤

λi

2h
+

ϕ2
0

2

]
.

(3.25)

Now we replace χ with ∆i,min, and we have xi,max ≤ 1 by Assumption 3.2. So we get the

following upper bound of the invalid ranking probability,

P
[ ∥∥∥θ̂i(h)− θi,∗

∥∥∥
2
≥ ∆i,min

]
≤ exp

[
− h

2λ2
i ρ

2ϕ4
1

d2x2
i,maxσ

2
+ log(2d)

]
− P

[
λmin(Σ̂(Xi(h)) ≤

λi

2h
+

ϕ2
0

2

]
≲ exp

[
− h

2λ2
i ρ

2ϕ4
1

d2σ2
+ log(2d)

]
.

(3.26)
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So the invalid ranking’s probability created by agent pi at time t is upper bounded by

P(µ̂i,j(t) > µ̂i,mt(i)(t)) ≲ 2d exp

[
− h

2λ2
i ρ

2ϕ4
1

d2σ2

]
, (3.27)

and because we consider all such sub-optimal arms aj, we have the following upper bound

of the invalid ranking probability,

P(r̂i,[K](t) is invalid) ≤ 2d(K − τi(t)) exp

[
− h

2λ2
i ρ

2ϕ4
1

d2σ2

]
, (3.28)

where we use τi(t) to represent the agent pi’s optimal ranking position when matched with

mt(i).

With Lemma 3.2, we can quantify the regret at t > h. So the instantaneous regret for

agent pi at time t will be upper bounded by

Ri,t
∆
= ∆i,j(t)P(at least one r̂i,[K](t) is invalid,∀i ∈ [N ])

≤ N(K − min
i∈[N ]

τi(t))∆i,max(t)P(r̂i,[K](t) is invalid).
(3.29)

Then we add the part I regret and part II regret together and get the regret upper bound

of dynamic matching algorithm.

Ri(n) ≤
h∑

t=1

∆i,j(t) + 2Nd

[
T∑

t=h+1

∆i,max(t)(K − min
i∈[N ]

τi(t))

]
exp

[
− 2λ2

i ρ
2ϕ4

1

d2σ2
h

]
. (3.30)

By ϕ4
1 = (1/h+ ϕ2

0/λi)
2 = 1

h2 +
2ϕ2

0

λih
+

ϕ4
0

λ2
i
, we have ϕ4

1h = 1
h
+

2ϕ2
0

λi
+ h

ϕ4
0

λ2
i
≥ 2ϕ2

0

λi
+ h

ϕ4
0

λ2
i
,
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the regret upper bound is

Ri(n) ≤
h∑

t=1

∆i,j(t) + 2Nd

[
T∑

t=h+1

∆i,max(t)(K − min
i∈[N ]

τi(t))

]
exp

[
− 2λ2

i ρ
2ϕ4

1

d2σ2
h

]

<

h∑
t=1

∆i,j(t) + 2Nd

[
T∑

t=h+1

∆i,max(t)(K − min
i∈[N ]

τi(t))

]
exp

[
− 2λ2

i ρ
2

d2σ2
(
2ϕ2

0

λi

+ h
ϕ4
0

λ2
i

)

]

=
h∑

t=1

∆i,j(t) + 2C0(λi)Nd

[
T∑

t=h+1

∆i,max(t)(K − min
i∈[N ]

τi(t))

]
exp

[
− 2ϕ4

0ρ
2

d2σ2
h

]
(3.31)

where C0(λi) = exp

[
− 4λiϕ

2
0ρ

2

d2σ2

]
.

3.12.2 Proof of Corollary 3.1

Proof. Moreover, in order to analyze the order of the regret upper bound, we optimize the

the exploration horizon,

Ri(n) ≤
h∑

t=1

∆i,j(t) + 2C0(λi)Nd

[
T∑
t=1

∆i,max(t)(K − min
i∈[N ]

τi(t))

]
exp

[
− 2ϕ4

0ρ
2

d2σ2
h

]

≤ h∆i,max + 2C0(λi)Nd

[
T∑
t=1

∆i,max(t)(K − min
i∈[N ]

τi(t))

]
exp

[
− 2ϕ4

0ρ
2

d2σ2
h

]

≤ h∆i,max + 2C0(λi)NKdT∆i,max exp

[
− 2ϕ4

0ρ
2

d2σ2
h

]
,

(3.32)

where we know that ∆i,j(t) ≤ ∆i,max(t) ≤ ∆i,max,∀t ∈ [T ] and K − τi(t) < K. Taking the

derivative on the RHS of Eq. (3.32) with respect to h to obtain the optimal h,

∆i,max + 2C0(λi)NKdT∆i,max exp

[
− 2ϕ4

0ρ
2

d2σ2
h

]
× (−2ϕ4

0ρ
2

d2σ2
) = 0, (3.33)

and get

h =
d2σ2

2ϕ4
0ρ

2
log

4C0(λi)TNKϕ4
0ρ

2

dσ2∆i,max

, (3.34)
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when we set the optimal learning step to h← ⌈h⌉, we can achieve the minimum regret,

Ri(T ) ≤ max

{
h∆i,max,

d2σ2∆i,max

2ϕ4
0ρ

2
log

4C0(λi)NKϕ4
0ρ

2

dσ2∆i,max

T

}
+

d2σ2∆i,max

2ϕ4
0ρ

2

= C1(d, σ,∆i,min,∆i,max, λi, xi,max) log

[
C2(N,K, d, σ,∆i,min,∆i,max, λi, xi,max)× T

]
+ C1(d, σ,∆i,min,∆i,max, λi, xi,max)

= Õ
(
d2σ2

ρ2
log(NKT )

)
(3.35)

where the constants C1, C2 are given by

C1 =
d2σ2∆i,max

2ϕ4
0ρ

2
, C2 =

4C0(λi)NKϕ4
0ρ

2

dσ2∆i,max

. (3.36)

3.13 Proof of Theorem 3.2 - Stable Matching

Proof. Based on Lemmas 3.1 and 3.2, as long as all agents have valid rankings, then the

matching solution is stable. In order to have the P(matching solution is stable) ≥ Ψ, we

have

P(Matching solution is stable) = P(all agents have valid rankings)

≥
N∏
i=1

[
1− 2d(K − τi(t)) exp

(
− t

2λ2
i ρ

2ϕ4
1

d2σ2

)]
≥
[
1− 2d(K − 1) exp

(
− t

2λ2
minρ

2ϕ4
1

d2σ2

)]N
.

(3.37)

Thus, given t ≥ ⌈ d2σ2

2λ2
minρ

2ϕ2
1
[log(2d(K − 1))− log(1−Ψ1/N)]⌉ based on Corollary 3.1, we have

the matching solution provided by dynamic matching algorithm is stable with probability at

least Ψ.
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p1p1

p2p2

a1a1

a2a2

a3a3

True Matching

Global Preference

Preference

p1 : a1 > a2 > a3p1 : a1 > a2 > a3

p2 : a2 > a1 > a3p2 : a2 > a1 > a3

a1 : p1 > p2a1 : p1 > p2

a2 : p1 > p2a2 : p1 > p2

a3 : p1 > p2a3 : p1 > p2

Example 1Example 1

p1p1

p2p2

a1a1

a2a2

a3a3

Final MatchingFinal Matching

p1 : a2 > a1 > a3p1 : a2 > a1 > a3

Example 2Example 2

p1p1

p2p2

a1a1

a2a2

a3a3

p1 : a3 > a2 > a1p1 : a3 > a2 > a1

Incorrect Ranking by p1Incorrect Ranking by p1

Preference Final MatchingFinal MatchingPreference

p2 : a2 > a1 > a3p2 : a2 > a1 > a3

a1 : p1 > p2a1 : p1 > p2

a2 : p1 > p2a2 : p1 > p2

a3 : p1 > p2a3 : p1 > p2

a1 : p1 > p2a1 : p1 > p2

a2 : p1 > p2a2 : p1 > p2

a3 : p1 > p2a3 : p1 > p2

p2 : a2 > a1 > a3p2 : a2 > a1 > a3

Figure 3.9: Examples of the matching result caused by the incorrect ranking provided by
agent p1 when agent p2 submits the correct ranking list under the global preference. In
Example 1, Agent p1 provides an incorrect ranking p1 : a2 > a1 > a3. The final matching
result is {(p1, a2), (p2, a2)}. It creates a positive regret for both agents. In Example 2:
Agent p1 provides an incorrect ranking p1 : a3 > a2 > a1. The final matching result is
{(p1, a3), (p2, a2)}. It creates a positive regret for p1 and no regret for p2.

3.14 Detailed Regret Analysis for Two Agents and Three Arms

The expected instantaneous regret R1,t(r̂2(t) = r2(t)) = P(G2(t))
∑6

z=1 P
Cz
t RCz

1,t(r̂2(t) =

r2(t)), where G2(t) is the correct ranking. PCz
t is the probability of occurring matching case

z at time t. RCz
1,t(r̂2(t) = r2(t)) is the conditional instantaneous regret of occurring matching

case z at time t if p2 submits correct ranking list. Meanwhile
∑6

z=1 P
Cz
t RCz

1,t(r̂2(t) = r2(t))

represents the expected regret for p1 when p2 submits the correct ranking list. We find that

there are six cases in total if p2 submits the correct ranking list shown in Figures 3.9 and

3.10.

After collecting all probabilities’ lower bounds, we can compute the instantaneous regret

for agent p1 at time t. Then we can sum all instantaneous regret to get the regret lower
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p1p1

p2p2

a1a1

a2a2

a3a3

p1p1

p2p2

a1a1

a2a2

a3a3

p1p1

p2p2

a1a1

a2a2

a3a3

p1p1

p2p2

a1a1

a2a2

a3a3

p1p1

p2p2

a1a1

a2a2

a3a3

p1p1

p2p2

a1a1

a2a2

a3a3

Case 1 Case 2 Case 3

Case 6Case 4 Case 5

(p1 : +, p2 : 0)(p1 : +, p2 : 0) (p1 : +, p2 : 0)(p1 : +, p2 : 0) (p1 : +, p2 : +)(p1 : +, p2 : +)

(p1 : 0, p2 : 0)(p1 : 0, p2 : 0) (p1 : 0, p2 : 0)(p1 : 0, p2 : 0)(p1 : +, p2 : +)(p1 : +, p2 : +)

Figure 3.10: The corresponding matching results and regret status in six cases when agent
p1 submits an incorrect ranking. Single agent suffers regret : Case 1 and Case 2. Both agents
suffer regret : Case 3 and Case 4. No regret : Case 5 and Case 6.

bound.

Due to the incorrect raking from agent p1, it creates six cases in total. In the following

passage, we will analyze them case by case.

Case 1. If agent p1 wrongly estimates the ranking over arms as p1 : a3 > a1 > a2, the

matching result by DA Algorithm is shown in Figure 3.5 Case 1. Agent p1 is matched with a3

and agent p2 is matched with a2. In this case p1 suffers a positive regret. The instantaneous

regret can be decomposed as

RC1
1,t

∆
= θT1,∗x1(t)− θT1,∗x3(t) = θT1,∗(x1(t)− x3(t)), (3.38)

where we define RC1
1,t is the case 1 instantaneous regret for agent p1 at time t. Here C1

represents the case 1, “1" in the subscript represents agent p1, and t in the subscript represents

the time step. Similar definitions are used in the following analysis. In addition, agent p2

does not suffer regret in case 1.
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This incorrect ranking’s joint probability for agent p1 is the product of two ranking prob-

abilities PC1
t

∆
= P1

(
µ̂1,3(t) > µ̂1,1(t) > µ̂1,2(t)

)
from agent p1 and P(G2(t))

∆
= P2

(
µ̂2,2(t) >

µ̂2,1(t) > µ̂2,3(t)
)

from agent p2. Here we define PC1
t as the probability of occurring case 1

of agent p1 and G2(t) represents that agent p2 submits correct ranking list to the centralized

platform and we call this as the correct ranking in the following analysis, which is equivalent

to agent submitting the correct ranking list to the platform. And the bad event is equiv-

alent to agent submitting the incorrect rankings. So this {µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)} is a

good event because agent p2 correctly estimate its preference scheme over arms. {µ̂1,3(t) >

µ̂1,1(t) > µ̂1,2(t)} is a bad event because agent p1 wrongly estimate its preference scheme

over arms. The decomposed instantaneous regret for agent p1 is

P(G2(t))PC1
t RC1

1,t

= P
(
µ̂1,3 > µ̂1,1(t) > µ̂1,2(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)

)
θT1,∗(x1(t)− x3(t)),

(3.39)

where the above instantaneous regret is greater than zero. For agent p2, the decomposed

instantaneous regret is

P(G2(t))PC1
t RC1

2,t

= P
(
µ̂1,3 > µ̂1,1(t) > µ̂1,2(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) ≥ µ̂2,3

)
θT2,∗(x2(t)− x2(t)) = 0.

(3.40)

Case 2. If agent p1 wrongly estimates the ranking over arms as p1 : a3 > a2 > a1.

The matching result by DA Algorithm is in Figure 3.5 Case 2. Agent p1 is matched with

arm a3 and agent p2 is matched with arm a2, where agent p1 suffers a positive regret. The

instantaneous regret is

RC2
1,t = θT1,∗x1(t)− θT1,∗x3(t) = θT1,∗(x1(t)− x3(t)). (3.41)

In addition, agent p2 does not suffer regret in case 2.

This bad event’s joint probability is the product of two ranking probabilities PC2
t =
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P
(
µ̂1,3(t) > µ̂1,2(t) > µ̂1,1(t)

)
by agent p1 and P(G2(t)) by agent p2. {µ̂1,3(t) > µ̂1,2(t) > µ̂1,1(t)

is the bad event that agent p1 wrongly estimate its preference scheme over arms. The

decomposed instantaneous regret for agent p1 is

P(G2(t))PC2
t RC2

1,t

= P
(
µ̂1,3(t) > µ̂1,2(t) > µ̂1,1(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)

)
θT1,∗(x1(t)− x3(t)) > 0.

(3.42)

For agent p2, the decomposed instantaneous regret is

P(G2(t))PC2
t RC2

2,t

= P
(
µ̂1,3(t) > µ̂1,2(t) > µ̂1,1(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)

)
θT2,∗(x2(t)− x2(t)) = 0.

(3.43)

This case is the same as the case 1.

Case 3. If agent p1 wrongly estimates the ranking over arms as p1 : a2 > a3 > a1. The

matching result by DA Algorithm is in Figure 3.5 Case 3. Agent p1 is matched with arm a2

and agent p2 is matched with arm a1. The decomposed instantaneous regret for agent p1 is

RC3
1,t = θT1,∗x1(t)− θT1,∗x2(t) = θT1,∗(x1(t)− x2(t)) > 0. (3.44)

In addition, agent p2 suffers a regret. The decomposed instantaneous regret for agent p2 is

RC3
2,t = θT2,∗x2(t)− θT2,∗x1(t) = θT2,∗(x2(t)− x1(t)) > 0. (3.45)

This bad event’s joint probability is the product of two ranking probabilities PC3
t =

P
(
µ̂1,2(t) > µ̂1,3(t) > µ̂1,1(t)

)
by agent p1 and P(G2(t)) by agent p2. {µ̂1,2(t) > µ̂1,3(t) >

µ̂1,1(t)} is the bad event that agent p1 wrongly estimate its preference scheme over arms.
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The decomposed instantaneous regret for agent p1 is

P(G2(t))PC3
t RC3

1,t

= P
(
µ̂1,2(t) > µ̂1,3(t) > µ̂1,1(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)

)
θT1,∗(x1(t)− x2(t)) > 0.

(3.46)

For agent p2, the decomposed instantaneous regret is

P(G2(t))PC3
t RC3

2,t

= P
(
µ̂1,3(t) > µ̂1,1 > µ̂1,2(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)

)
θT2,∗(x2(t)− x1(t)) > 0.

(3.47)

Case 4. If agent p1 wrongly estimates the ranking over arms as p1 : a2 > a1 > a3. The

matching result by DA Algorithm is in Figure 3.5 Case 4. Agent p1 is matched with arm a2

and agent p2 is matched with arm a1. The decomposed instantaneous regret for agent p1 is

RC4
1,t = θT1,∗x1(t)− θT1,∗x2(t) = θT1,∗(x1(t)− x2(t)) > 0. (3.48)

In addition, agent p2 suffers a positive regret. The decomposed instantaneous regret for

agent p2 is

RC4
2,t = θT2,∗x2(t)− θT2,∗x1(t) = θT2,∗(x2(t)− x1(t)) > 0. (3.49)

This bad event’s joint probability is the product of two ranking probabilities PC4
t =

P
(
µ̂1,2(t) > µ̂1,1(t) > µ̂1,3(t)

)
by agent p1 and P(G2(t)) by agent p2. {µ̂1,2(t) > µ̂1,1(t) >

µ̂1,3(t)} is the bad event that agent p1 wrongly estimate its preference scheme over arms.

The decomposed instantaneous regret for agent p1 is

P(G2(t))PC4
t RC4

1,t

= P
(
µ̂1,2(t) > µ̂1,1(t) > µ̂1,3(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)

)
θT1,∗(x1(t)− x2(t)) > 0.

(3.50)
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For agent p2, the decomposed instantaneous regret is

P(G2(t))PC4
t RC4

2,t

= P
(
µ̂1,2(t) > µ̂1,1(t) > µ̂1,3(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)

)
θT2,∗(x2(t)− x1(t)) > 0.

(3.51)

Case 5. If agent p1 wrongly estimates the ranking over arms as p1 : a1 > a3 > a2. The

matching result by DA Algorithm is in Figure 3.5 Case 5. Agent p1 is matched with arm

a1 and agent p2 is matched with arm a2. This pair will not suffer regret. The decomposed

instantaneous regret for agent p1 is

RC5
1,t = θT1,∗x1(t)− θT1,∗x1(t) = θT1,∗(x1(t)− x1(t)) = 0. (3.52)

In addition, agent p2 will not suffer a regret. The decomposed instantaneous regret for agent

p2 is

RC5
2,t = θT2,∗x2(t)− θT2,∗x2(t) = θT2,∗(x2(t)− x2(t)) = 0. (3.53)

This bad event’s joint probability is the product of two ranking probabilities PC5
t =

P
(
µ̂1,1(t) > µ̂1,3(t) > µ̂1,2(t)

)
by agent p1 and P(G2(t)) by agent p2. {µ̂1,1(t) > µ̂1,3(t) >

µ̂1,2(t)} is the bad event that agent p1 wrongly estimate its preference scheme over arms.

The decomposed instantaneous regret for agent p1 is

P(G2(t))PC5
t RC5

1,t

= P
(
µ̂1,1(t) > µ̂1,3(t) > µ̂1,2(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)

)
θT1,∗(x1(t)− x1(t)) = 0.

(3.54)

For agent p2, the decomposed instantaneous regret is

P(G2(t))PC5
t RC5

2,t

= P
(
µ̂1,1(t) > µ̂1,3(t) > µ̂1,2(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)

)
θT2,∗(x2(t)− x2(t)) = 0.

(3.55)

This setting will not create any regret.
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Case 6. If agent p1 correctly estimates the ranking over arms as p1 : a1 > a2 > a3. The

matching result by DA Algorithm is in Figure 3.5 Case 6. Agent p1 is matched with arm

a1 and agent p2 is matched with arm a2. This pair will not suffer regret. The decomposed

instantaneous regret for agent p1 is

RC6
1,t = θT1,∗x1(t)− θT1,∗x1(t) = θT1,∗(x1(t)− x1(t)) = 0. (3.56)

In addition, agent p2 will not suffer a regret. The decomposed instantaneous regret for agent

p1 is

RC6
2,t = θT2,∗x2(t)− θT2,∗x2(t) = θT2,∗(x2(t)− x2(t)) = 0. (3.57)

This bad event’s joint probability is the product of two ranking probabilities PC6
t =

P
(
µ̂1,1(t) > µ̂1,2(t) > µ̂1,3(t)

)
by agent p1, which in fact is a good event and P(G2(t)) by

agent p2. {µ̂1,1(t) > µ̂1,2(t) > µ̂1,3(t)} is the good event that agent p1 correctly estimate its

preference scheme over arms. The decomposed instantaneous regret for agent p1 is

P(G2(t))PC6
t RC6

1,t

= P
(
µ̂1,1(t) > µ̂1,2(t) > µ̂1,3(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)

)
θT1,∗(x1(t)− x1(t)) = 0,

(3.58)

For agent p2, the decomposed instantaneous regret is

P(G2(t))PC6
t RC6

2,t

= P
(
µ̂1,1(t) > µ̂1,3(t) > µ̂1,2(t)

)
P
(
µ̂2,2(t) > µ̂2,1(t) > µ̂2,3(t)

)
θT2,∗(x2(t)− x2(t)) = 0.

(3.59)

This setting will also not create any regret.

In summary, for agent p1, the four regret occurred cases are represented in Case 1 to

Case 4, two regret vanished cases happen at Case 5 and Case 6. For agent p2, the two regret

occurred cases are represented in Case 3 and Case 4, four regret vanishing cases happen at

Case 1, Case 2, Case 5, and Case 6. These six cases represent all the possible regret occurring
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cases when p1 submits incorrect ranking and p2 submits correct ranking.

3.15 Proof of Theorem 3.3 - Instance - Dependent Lower Bound

Based on the setting constructed in Section 3.6.4, we conduct the regret analysis to get

the lower bound. After h rounds of exploration, for agent pi, its estimator θ̂i(t) is acquired

through the penalized linear regret. Thus at time step t, the estimated mean reward for

arm aj from the viewpoint of agent pi is µ̂i,j(t) = θ̂i(t)
Txj(t), which provides the basis to

construct the ranking list r̂i,[K](t). Besides, since all contexts are from uniform distribution,

conditioning on all previous information Fi(h) and contextual information of xj(t), we have

the distribution of the estimated mean reward µ̂i,j(t) following the normal distribution

µ̂i,j(t) = θ̂i(t)
Txj(t)|Fi(h) ∼ N(θ̄Ti xj(t), σ

2xj(t)
TMixj(t)), ∀j ∈ [K], (3.60)

where E[θ̂i(t)|Fi(h)] = θ̄i =
(
Xi(h)

TXi(h)+λiI
)−1

Xi(h)
TXi(h)θi,∗ ∈ Rd, and Cov[θ̂i(t)|Fi(h)] =

σ2Mi = σ2
(
Xi(h)

TXi(h) + λiI
)−1

Xi(h)
TXi(h)

(
Xi(h)

TXi(h) + λiI
)−1 ∈ Rd×d.

Denote the true preference for pi at t is aj1 <t
i aj2 <t

i aj3 and the correct ranking event

and partial correct ranking rank event as Gi(t) = {µ̂i,j1(t) > µ̂i,j2(t) > µ̂i,j3(t)} and Gci (t) =

{µ̂i,j1(t) > µ̂i,j2(t) > µ̂i,j3(t)}c. The lower bound probability of the correct ranking estimate

(good event) and partial correct ranking estimate (bad event) is provided as follows.

Lemma 3.6. (1) Define Mi =
(
Xi(h)

TXi(h)+λiI
)−1

Xi(h)
TXi(h)

(
Xi(h)

TXi(h)+λiI
)−1 ∈

Rd×d, and Σi,(j,k)(t) = σ2[xj(t)
TMixj(t) + xk(t)

TMixk(t)]. If the true preference for pi over

arms is aj1 < aj2 < aj3 at time step t, the probability of Gi(t) is lower bounded by

P(Gi(t)) ≥ 1− 1√
2π

[
Ψi,t(j1, j2) + Ψi,t(j2, j3) + Ψi,t(j1, j3)

]
, (3.61)

where Ψi,t(j, k) = exp (−ν2
i,(j,k)(t)/2)/νi,t(j, k) and νi,t(j, k) = θ̄Ti [xj(t)−xk(t)]/Σi,(j,k)(t) rep-

resents the scaled mean difference of aj and ak from the perspective of θ̄i at time t.
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(2) Define ν̃i,t(j, k) = θ̄Ti [xj(t) − xk(t)]/Σ̃i,t(j, k) and Σ̃i,t(j, k) = σ2[xj(t)
TMixj(t) +

xk(t)
TMixk(t) − 2xj(t)

TMixk(t)]. If the true preference for pi over arms is aj1 < aj2 < aj3

at time step t, the Gci (t) probability lower bound is,

P
(
Gci (t)

)
≥ min

{
Γi,t(j1, j2),Γi,t(j2, j3)

}
(3.62)

where Γi,t(j, k) = (1/ν̃i,t(j, k)− 1/ν̃3
i,t(j, k)) exp (−ν̃2

i,t(j, k)/2).

Lemma 3.6 is used to getting the Gi(t) and Gci (t)’s lower bounds via the sharp Gaussian

tail probability lower bound at each time step. In addition, the conditional expectation

regret is provided in Section 3.14. The following lemma provides the order of lower bounds

of Gi(t) and Gci (t).

Lemma 3.7. Considering the problem instance in appendix, the order of the probability’s

lower bound are

P(Gi(t)) ≥ Lg
i (t) and P

(
Gci (t)

)
≥ Lb

i(t), (3.63)

where Lg
i (t) = 1−(3/c5(t)

√
2) exp (−c25(t)h/2), Lb

i(t) = (1/c7(t)
√
h−1/c37(t)h3/2) exp (−c27(t)h/2),

and c5(t), c7(t) are contextual time-dependent constants but independent of designing explo-

ration rounds h.

With the distribution of µ̂i,j(t), to derive the regret lower bound, we provide the proof of

good events G1(t) and G2(t)’s probability lower bound in Section 3.15.1, and bad events Gc1(t)

and Gc2(t)’s lower bound in Section 3.15.2. In addition, we provide these events’ probability

lower bounds’ order at time t, which is provided in Section 3.15.3. Finally, with the previous

technical lemmas, we provide the final instance-dependent regret lower bound as a whole.

To get the regret of agent p1, we first assume that p2 correctly estimates its preference at

time step t in the exploitation step. So the instantaneous regret R1,t(r̂2(t) = r2(t)) for agent
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p1, if agent p2 submits correct ranking, can be decomposed as follows,

R1,t(r̂2(t) = r2(t)) = P
(
G2(t)

)
E[R1]

= P
(
G2(t)

) 6∑
z=1

PCz
t RCz

1,t(r̂2(t) = r2(t)).
(3.64)

where these six cases’ regret analysis can be found at Appendix 3.14. So we can decompose

these six cases’ regrets into

6∑
z=1

PCz
t RCz

1,t(r̂2(t) = r2(t)) = θT1,∗

[
P
(
µ̂1,3(t) > µ̂1,1(t) > µ̂1,2(t)

)
(x1(t)− x3(t))

+ P
(
µ̂1,3(t) > µ̂1,2(t) > µ̂1,1(t)

)
(x1(t)− x3(t))

+ P
(
µ̂1,2(t) > µ̂1,3(t) > µ̂1,1(t)

)
(x1(t)− x2(t))

+ P
(
µ̂1,2(t) > µ̂1,1(t) > µ̂1,3(t)

)
(x1(t)− x2(t))

]
,

(3.65)

because there are four cases suffering regret and two cases without suffering regret. Com-

bining case 1 and case 2 as a whole, and case 3 and case 4 together, we obtain

= θT1,∗

[(
P
(
µ̂1,3(t) > µ̂1,1(t) > µ̂1,2(t)

)
+ P

(
µ̂1,2(t) > µ̂1,3(t) > µ̂1,1(t)

))
(x1(t)− x3(t))

+

(
P
(
µ̂1,2(t) > µ̂1,3(t) > µ̂1,1(t)

)
+ P

(
µ̂1,2(t) > µ̂1,1(t) > µ̂1,3(t)

))
(x1(t)− x2(t))

]
.

(3.66)

With Lemma 3.6, we have the bad event’s probability lower bound, and define ∆1,min(t) =

min
j∈[3],∆1,j(t)>0

∆1,j(t) = min
j∈[K],∆1,j(t)>0

⟨θ1,∗, xmt(1)(t)−xj(t)⟩, we can get this instantaneous regret

70



as follows

≥

[(
P
(
µ̂1,3(t) > µ̂1,1(t) > µ̂1,2(t)

)
+ P

(
µ̂1,2(t) > µ̂1,3(t) > µ̂1,1(t)

))
∆1,min(t)

+

(
P
(
µ̂1,2(t) > µ̂1,3(t) > µ̂1,1(t)

)
+ P

(
µ̂1,2(t) > µ̂1,1(t) > µ̂1,3(t)

))
∆1,min(t)

]
= P

(
Gc1(t)

)
∆1,min(t)

(3.67)

So the regret for agent p1 is lower bounded by

R1,t(r̂2(t) = r2(t)) ≥ P
(
G2(t)

)
P
(
Gc1(t)

)
∆1,min(t) ≥ P

(
G2(t)

)
Lb

1(t)∆1,min(t). (3.68)

Based on Lemma 3.6, we have the good event G2(t)’s probability lower bound and get

R1,t(r̂2(t) = r2(t)) ≥ Lg
2(t)Lb

1(t)∆1,min(t). (3.69)

With the same rule, we obtain similar result when p2 is incorrect,

R1,t(r̂2(t) ̸= r2(t)) ≥ ∆1,min(t)
2∏

i=1

Lb
i(t). (3.70)

By considering agent p2’s preference at time t, the regret for agent p1 at time t is lower

bounded by

R1(t) ≥ ∆1,min(t)

( 2∏
i=1

Lb
i(t) + L

g
2(t)Lb

1(t)

)
. (3.71)

The agent p2 gets similar regret lower bound by symmetry. So the overall lower bound regret

for agent p1 is

R1(T ) ≥
h∑

t=1

∆i,mt(i)(t) +
T∑

t=h+1

∆1,min(t)

( 2∏
i=1

Lb
i(t) + L

g
2(t)Lb

1(t)

)
. (3.72)
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Besides, we analyze the order of the two probability lower bounds’ product.

Lg
2(t)Lb

1(t) = (
1√
h
− 1√

h3
)e−

h
2 (1− 1√

h
e−

h
2 ) =

c8(t)√
h
e−

h
2 , (3.73)

where c8(t) is a context-dependent constant, but independent of h. And the product order

of these bad events’ probability lower bounds between two agents is,

Lb
1(t)Lb

2(t) = (
1√
h
− 1√

h3
)e−

h
2 (

1√
h
− 1√

h3
)e−

h
2 =

1

h
e−c9(t)h, (3.74)

where c9(t) is a context-dependent constant, but independent of h. So the sum of Lg
2(t)Lb

1(t)

and Lb
1(t)Lb

2(t) will be c10(t)√
h
e−h. By 1/

√
h > 1/

√
T , the R1(T ) will be lower bounded by

h∆i,min +
√
T∆1,minc10(t)e

−h. Then by similar analysis derived in the upper bound order

analysis of dynamic matching in Appendix 3.12.2, we find that the order of the regret lower

bound will be Ω(log(T )).

3.15.1 Proof of Lemma 3.6 - Good Event

Proof. First, without loss of generality, suppose that the true preference from agent pi to

all arms is aj1 <t
i aj2 <t

i aj3 at time t. In order to present the competing status of those

agents, we need to quantify the probability of the good event Gi(t) = {µ̂i,j1(t) > µ̂i,j2(t) >

µ̂i,j3(t)}. Here we denote A(t) = {µ̂i,j1(t) > max(µ̂i,j2(t), µ̂i,j3(t))} as the 1st-good event and

B(t) = {µ̂i,j2(t) > µ̂i,j3(t)} as the 2nd-good event, where Gi(t) = A(t) ∩ B(t). Here we omit

the index ’i’ in 1st-good event and 2nd-good event. The 1st-good event A can also be divided

into to the event A1(t) = {µ̂i,j1(t) > µ̂i,j2(t)} and the event A2(t) = {µ̂i,j1(t) > µ̂i,j3(t)}

happening simultaneously, where A(t) = A1(t)∩A2(t). By the property of P(A(t)∩B(t)) ≥

P(A(t))+P(B(t))−P(A(t)∪B(t)) ≥ P(A(t))+P(B(t))−1, we use the same technique again

72



and have P(A(t)) ≥ P(A1(t))+P(A2(t))−1. So the event A(t)’s probability lower bound is,

P(A(t)) = P(µ̂i,j1(t) > max(µ̂i,j2(t), µ̂i,j3(t)))

= P({µ̂i,j1(t) > µ̂i,j2(t)} ∩ {µ̂i,j1(t) > µ̂i,j3(t)})

≥ P(µ̂i,j1(t) > µ̂i,j2(t)) + P(µ̂i,j1(t) > µ̂i,j3(t))− 1

= P(A1(t)) + P(A2(t))− 1.

(3.75)

Now we have to quantify the event A1(t) and event A2(t)’s probabilities’ lower bound. We

first define the estimated mean reward difference for agent pi at time t between arm aj1 and

arm aj2 as Ẑi,(j1,j2) = µ̂i,j1(t)− µ̂i,j2(t). Given all contextual information at time t, we get

Ẑi,(j1,j2)|Fi(h) ∼ N(θ̄Ti [xj1(t)− xj2(t)], Σ̃i,(j1,j2)(t)), (3.76)

where Σ̃i,(j1,j2)(t) = σ2[xj1(t)
TMixj1(t) + xj2(t)

TMixj2(t) − 2xj1(t)
TMixj2(t)] ∈ R is the

variance of the estimated mean reward µ̂i,j1(t) − µ̂i,j2(t). We know that µ̂i,j1(t) and µ̂i,j2(t)

are positively correlated because Mi is positive semi-definite since xj1 and xj2 ’s coordinates

are follow uniform distribution U(0, 1)d. So the variance of the difference µ̂i,j1(t)− µ̂i,j2(t) of

the two correlated normal random variables is less than the variance of the difference of two

independent normal random variables by the property var(ϖ1 −ϖ2) ≤ var(ϖ1) + var(ϖ2)

if ϖ1 and ϖ2 are positively correlated random variables. Besides, we know if two normal

random variables µ̂i,j1(t) and µ̂i,j2(t) are independent,

Σ̃i,(j1,j2)(t) ≤ σ2[xj1(t)
TMixj1(t) + xj2(t)

TMixj2(t)], (3.77)

where xj1(t)
TMixj1(t) and xj2(t)

TMixj2(t) are the variances of µ̂i,j1(t) and µ̂i,j2(t) corre-

spondingly, and we define Σi,(j1,j2)(t) = σ2[xj1(t)
TMixj1(t) + xj2(t)

TMixj2(t)]. We use the

proxy random variable Zi,(j1,j2) to define the difference of two independent Gaussian random
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variables. Zi,(j1,j2)’s distribution follows the normal distribution

Zi,(j1,j2)|Fi(h) ∼ N(θ̄Ti [xj1(t)− xj2(t)],Σi,(j1,j2)(t)), (3.78)

where θ̄Ti [xj1(t)−xj2(t)] is the Zi,(j1,j2)’s expectation and Σi,(j1,j2)(t) is the variance of Zi,(j1,j2).

In the following passage, we omit the filtration |Fi(h) in argument. Then we can obtain the

probability lower bound of arm aj1 is ranked higher than the arm aj2 at time step t from the

viewpoint of agent pi via the proxy random variable Zi,(j1,j2), that is

P(µ̂i,j1(t) > µ̂i,j2(t)) = P(µ̂i,j1(t)− µ̂i,j2(t) > 0)

= P(Ẑi,(j1,j2) > 0)

≥ P(Zi,(j1,j2) > 0), by the inequality (3.77)

= P

(
Zi,(j1,j2) − θ̄Ti [xj1(t)− xj2(t)]

Σi,(j1,j2)(t)
≥ −νi,(j1,j2)(t)

)
,

(3.79)

where νi,(j1,j2)(t) =
θ̄Ti [xj1

(t)−xj2
(t)]

Σi,(j1,j2)
(t)

greater than zero, is based on the true preference’s setting

that aj1 >t
i aj2 >t

i aj3 for agent pi at time t. The aim of the last equality is to transform

the proxy random variable to the standard normal variable and quantify the event A1(t)’s

probability lower bound. Now this event A1(t)’s probability lower bound is

P(µ̂i,j1(t) > µ̂i,j2(t)) ≥ 1− P

(
Zi,(j1,j2) − θ̄Ti [xj1(t)− xj2(t)]

Σi,(j1,j2)(t)
≥ νi,(j1,j2)(t)

)

≥ 1− 1

νi,(j1,j2)(t)

1√
2π

e

(
−

ν2
i,(j1,j2)

(t)

2

)
,

(3.80)

where the last inequality is by Lemma 3.4, which provides the tail probability of the normal

distribution since νi,(j1,j2)(t) is positive. With the same technique, we can acquire the event

A2(t)’s probability’s lower bound and we also define νt,(j1,j3) =
θ̄Ti [xj1

(t)−xj3
(t)]

Σi,(j1,j3)
(t)

, which is greater
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than zero. Then we have

P(µ̂i,j1(t) > µ̂i,j3(t)) ≥ 1− 1

νt,(j1,j3)

1√
2π

e

(
−

ν2
t,(j1,j3)

2

)
. (3.81)

So the 1st-good event ’s lower bound probability is,

P(µ̂i,j1(t) > max(µ̂i,j2(t), µ̂i,j3(t)))

≥ 1− 1

νi,(j1,j2)(t)

1√
2π

e

(
−

ν2
i,(j1,j2)

(t)

2

)
+ 1− 1

νt,(j1,j3)

1√
2π

e

(
−

ν2
t,(j1,j3)

2

)
− 1

= 1− 1

νi,(j1,j2)(t)

1√
2π

e

(
−

ν2
i,(j1,j2)

(t)

2

)
− 1

νt,(j1,j3)

1√
2π

e

(
−

ν2
t,(j1,j3)

2

)
.

(3.82)

And the 2nd-good event ’s lower bound probability is,

P(µ̂i,j2(t) > µ̂i,j3(t)) ≥ 1− 1

νi,(j2,j3)(t)

1√
2π

e

(
−

ν2
i,(j2,j3)

(t)

2

)
, (3.83)

where νt,(j2,j3) =
θ̄Ti [xj2

(t)−xj3
(t)]

Σi,(j2,j3)
(t)

> 0 and we define Σi,(j2,j3)(t) = σ2[xj2(t)
TMixj2(t)+xj3(t)

TMixj3(t)].

Here we provide all definitions of Σi,(j1,j2)(t), Σi,(j2,j3)(t), and Σi,(j1,j3)(t),

νi,(j1,j2)(t) =
θ̄Ti [xj1(t)− xj2(t)]

Σi,(j1,j2)(t)
,Σi,(j1,j2)(t) = σ2[xj1(t)

TMixj1(t) + xj2(t)
TMixj2(t)]

νi,(j2,j3)(t) =
θ̄Ti [xj2(t)− xj3(t)]

Σi,(j2,j3)(t)
,Σi,(j2,j3)(t) = σ2[xj2(t)

TMixj2(t) + xj3(t)
TMixj3(t)]

νi,(j1,j3)(t) =
θ̄Ti [xj1(t)− xj3(t)]

Σi,(j1,j3)(t)
,Σi,(j1,j3)(t) = σ2[xj1(t)

TMixj1(t) + xj3(t)
TMixj3(t)]

(3.84)
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So the final good event Gi(t)’s probability lower bound is

P(Gi(t)) ≥ 1− 1

νi,(j1,j2)(t)

1√
2π

e(−
ν2
i,(j1,j2)

(t)

2
)

− 1

νi,(j1,j3)(t)

1√
2π

e(−
ν2
i,(j1,j3)

(t)

2
) − 1

νi,(j2,j3)(t)

1√
2π

e(−
ν2
i,(j2,j3)

(t)

2
).

(3.85)

3.15.2 Proof of Lemma 3.6 - Bad Event

Proof. To get the probability lower bound of the bad event Gci (t), we can obtain the upper

bound of the good event Gi(t) probability first. The proof path is similar to the proof of

Lemma 3.6 but with the upper bound of the tail probability of the normal distribution and

exists some nuances. We have

P
(
Gi(t)

)
= P

(
µ̂i,j1(t)− µ̂i,j2(t) > 0, µ̂i,j2(t)− µ̂i,j3(t) > 0

)
= P

(
µ̂i,j1(t)− µ̂i,j2(t) > 0|µ̂i,j2(t)− µ̂i,j3(t) > 0

)
P
(
µ̂i,j2(t)− µ̂i,j3(t) > 0

)
≤ P

(
µ̂i,j2(t)− µ̂i,j3(t) > 0

)
,

(3.86)

where the last inequality holds because P
(
µ̂i,j1(t) − µ̂i,j2(t) > 0|µ̂i,j2(t) − µ̂i,j3(t) > 0

)
≤ 1.

Similarly we have

P
(
Gi(t)

)
= P

(
µ̂i,j2(t)− µ̂i,j3(t) > 0|µ̂i,j1(t)− µ̂i,j2(t) > 0

)
P
(
µ̂i,j1(t)− µ̂i,j2(t) > 0

)
≤ P

(
µ̂i,j1(t)− µ̂i,j2(t) > 0

)
,

(3.87)

where the last inequality holds because P
(
µ̂i,j2(t)− µ̂i,j3(t) > 0|µ̂i,j1(t)− µ̂i,j2(t) > 0

)
≤ 1.

To get the upper bound of P
(
Gi(t)

)
, we need to quantify the maximum value of P

(
µ̂i,j1(t)−

µ̂i,j2(t) > 0
)

and P
(
µ̂i,j2(t) − µ̂i,j3(t) > 0

)
. Here we use the same definition in Lemma 3.6,

A1(t) = {µ̂i,j1(t) > µ̂i,j2(t)} and B(t) = µ̂i,j2(t) > µ̂i,j3(t). In the following, we provide
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the proof of getting upper bound probability of B(t) and A1(t). The proof of getting the

probability upper bound of two quantities is similar, so we get the upper bound of P
(
B(t)

)
first.

Let’s use the similar notation defined in Lemma 3.6.

Ẑi,(j2,j3) = µ̂i,j2(t)− µ̂i,j3(t)|Fi(h) ∼ N(θ̄Ti [xj2(t)− xj3(t)], Σ̃i,(j2,j3)), (3.88)

where Σ̃i,(j2,j3) = σ2[xj2(t)
TMixj2(t)+xj3(t)

TMixj3(t)−2xj2(t)
TMixj3(t)], greater than zero,

is the true variance of Ẑi,(j2,j3). So

P
(
B(t)

)
= P

(
Ẑi,(j2,j3) > 0

)
= P

(
Ẑi,(j2,j3) − θ̄Ti [xj2(t)− xj3(t)]

Σ̃i,(j2,j3)

≥ −ν̃i,(j2,j3)(t)
)

= 1− P
(
Ẑi,(j2,j3) − θ̄Ti [xj2(t)− xj3(t)]

Σ̃i,(j2,j3)

≥ ν̃i,(j2,j3)(t)

) (3.89)

where the last equality holds by the symmetry property of normal distribution and define

ν̃i,(j2,j3)(t) =
θ̄Ti [xj2

(t)−xj3
(t)]

Σ̃i,(j2,j3)
, greater than zero. Besides, ν̃i,(j1,j2)(t) can be defined similarly,

ν̃i,(j1,j2)(t) =
θ̄Ti [xj1(t)− xj2(t)]

Σ̃i,(j1,j2)(t)
,

Σ̃i,(j1,j2)(t) = σ2[xj1(t)
TMixj1(t) + xj2(t)

TMixj2(t)− 2xj1(t)
TMixj2(t)].

(3.90)

So by the Lemma 3.4’s lower bound of normal tail probability, we have the upper bound

probability of B(t),

P
(
B(t)

)
≤ 1− (

1

ν̃i,(j2,j3)(t)
− 1

ν̃3
i,(j2,j3)

(t)
)e

(
−

ν̃2
i,(j2,j3)

(t)

2

)
. (3.91)
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So the similar result can be obtained for A1(t),

P
(
A1(t)

)
≤ 1− (

1

ν̃i,(j1,j2)(t)
− 1

ν̃3
i,(j1,j2)

(t)
)e

(
−

ν̃2
i,(j1,j2)

(t)

2

)
. (3.92)

Since

P
(
Gi(t)

)
≤ max

{
P
(
µ̂i,j2(t)− µ̂i,j3(t) > 0

)
,P
(
µ̂i,j1(t)− µ̂i,j2(t) > 0

)}
,

≤ 1−min
{
(

1

ν̃i,(j2,j3)(t)
− 1

ν̃3
i,(j2,j3)

(t)
)e

(
−

ν̃2
i,(j2,j3)

(t)

2

)
,

(
1

ν̃i,(j1,j2)(t)
− 1

ν̃3
i,(j1,j2)

(t)
)e

(
−

ν̃2
i,(j1,j2)

(t)

2

)}
.

(3.93)

Meanwhile we get the lower bound of Gci (t) as follows,

P
(
Gci (t)

)
≥ min

{
(

1

ν̃i,(j2,j3)(t)
− 1

ν̃3
i,(j2,j3)

(t)
)e

(
−

ν̃2
i,(j2,j3)

(t)

2

)
,

(
1

ν̃i,(j1,j2)(t)
− 1

ν̃3
i,(j1,j2)

(t)
)e

(
−

ν̃2
i,(j1,j2)

(t)

2

)} (3.94)

3.15.3 Proof of Lemma 3.7

Proof. In order to get the good event Gi(t) and bad event Gci (t)’s probability order. We first

need to analyze the order of νi,(j1,j2)(t), ν̃i,(j1,j2)(t), Σi,(j2,j3)(t), Σ̃i,(j2,j3)(t) and other similar

terms.

Based on the definition of νi,(j1,j2)(t) =
θ̄Ti [xj1

(t)−xj2
(t)]

Σi,(j1,j2)
, we know that the context dif-

ference at time t, which is xj1(t) − xj2(t), independent of h. The expected ridge param-

eter is θ̄i =
(
Xi(h)

TXi(h) + λiI
)−1

Xi(h)
TXi(h)θi,∗. Based on the problem design in Eq.

(??), θ̄i can be rewritten as {
√

1− 1/hc1 + 1/
√
hc2} = 1/

√
hc3, where c1, c2 are time-

78



dependent constants based on (Xi(h)
TXi(h)+λiI

)−1
Xi(h)

TXi but independent of h, and c3

is also a context-constant, but independent of h. Besides, we know that xj1(t)
TMixj1(t) ≤

λmax(Mi)||xj1(t)||22 ≤ λmax(Mi)L by the property ||xj1(t)||22 ≤ L, where L is a constant and

we assume L = 1. So λmax(Mi) = c4/h by Chapter 4 from (Ver18), where c4 can be viewed

as a context-constant, independent of h. Thus νi,(j1,j2)(t) =
cT3 [xj1

(t)−xj2
(t)]/

√
h

c4/h
= c5(t)

√
h,

where c5(t) is a context-dependent constant, but independent of h.

From Lemma 3.6, we get the lower bound of of probability P(Gi(t)) such as

P(Gi(t))

≥ 1− 1

νi,(j1,j2)(t)

1√
2π

e

(
−

ν2
i,(j1,j2)

(t)

2

)

− 1

νi,(j1,j3)(t)

1√
2π

e

(
−

ν2
i,(j1,j3)

(t)

2

)
− 1

νi,(j2,j3)(t)

1√
2π

e

(
−

ν2
i,(j2,j3)

(t)

2

)

= 1− 3max

{
1

νi,(j1,j2)(t)

1√
2π

e

(
−

ν2
i,(j1,j2)

(t)

2

)
,

1

νi,(j1,j3)(t)

1√
2π

e

(
−

ν2
i,(j1,j3)

(t)

2

)
,

1

νi,(j2,j3)(t)

1√
2π

e

(
−

ν2
i,(j2,j3)

(t)

2

)}
,

(3.95)

and its corresponding order,

P
(
Gi(t)

)
≥ Lg

i (t), (3.96)

where we define Lg
i (t)

∆
= 1 − 3√

2π
1

c5(t)
√
h
e

(
− c25(t)

2
h
)

as the good event Gi(t)’s probability lower

bound.
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Based on Lemma 3.6, we can get the bad event Gci (t)’ probability lower bound, which is

P
(
Gci (t)

)
≥ min

{
(

1

ν̃i,(j2,j3)(t)
− 1

ν̃3
i,(j2,j3)

(t)
)e

(
−

ν̃2
i,(j2,j3)

(t)

2

)
,

(
1

ν̃i,(j1,j2)(t)
− 1

ν̃3
i,(j1,j2)

(t)
)e

(
−

ν̃2
i,(j1,j2)

(t)

2

)} (3.97)

where ν̃i,(j1,j2)(t), ν̃i,(j2,j3)(t) and Σ̃i,(j1,j2)(t), Σ̃i,(j2,j3)(t) are defined in Lemma 3.6.

In addition, we know θ̄i =
√
hc3 by the instance design. Since xj2(t)

TMixj2(t) ≥

λmin(Mi)||xj2(t)||22 ≥ λmin(Mi)cmin,j2(t) where cmin,j2(t) = min
t∈[h,T ]

||xj2(t)||22 and we assume

contexts are meaningful, so ||xj2(t)|| ̸= 0. Because we know that ⟨xj2(t), xj3(t)⟩ ≥ 0,

2xj2(t)
TMixj3(t) ≥ 2λmin(Mi)⟨xj2(t), xj3(t)⟩ ≥ 2λmin(Mi)cmin,(j2,j3)(t), where

cmin,(j2,j3)(t) = min
t∈[h+1,T ]

⟨xj2(t), xj3(t)⟩. Then Σ̃i,(j2,j3) ≥ 2σ2Lλmin(Mi)− 2σ2λmax(Mi)

cmin,(j2,j3)(t) = c6,(j2,j3)(t)/h. Thus ν̃i,(j2,j3)(t) is less cT3 [xj2
(t)−xj3

(t)]/
√
h

c6,(j2,j3)(t)/h

∆
= c7(t)

√
h, where c7(t)

is a context-dependent constant, but independent of h.

So we get the lower bound order of P
(
Gci (t)

)
,

P
(
Gci (t)

)
≥ Lb

i(t), (3.98)

where we define Lb
i(t)

∆
= ( 1

c7(t)
√
h
− 1

c37(t)h
3/2 )e

(
− c27(t)

2
h
)

as the bad event Gci (t)’s probability

lower bound.

3.16 More Simulations

3.16.1 Section 3.3.1 Example - Incapable Exploration

We set the true matching reward for three firms to (0.8, 0.4, 0.2), (0.5, 0.7, 0.2), (0.6, 0.3, 0.65).

All preferences from companies over workers can be derived from the true matching reward.
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As we can view, company p3 has a similar preference over a1 (0.6) and a3 (0.65). Thus, the

small difference can lead the incapable exploration as described in Section 3.3.1 by the UCB

algorithm.

Next we present the experiment settings of S3, S4, and S5.

3.16.2 More Simulation Settings

Scenario 3 (S3): The uniform sub-optimal minimal condition for this scenario is set to be

∆i,min = 0.05, ∀i ∈ [N ]. The time horizon is set to be T = 5000 to have a long enough learning

length since we decrease the uniform sub-optimal minimal condition. The learning length

h for the three noise levels are h = [264, 876, 4014], correspondingly. Thus the difference

between S3 and S2 is the time horizon T and different hyperparameters. The data generation

process for S3 and S2 are the same.

Scenario 4 (S4): The difference between S4 and S1 is that the context dimension changes

from d = 2 to d = 10. The time horizon is set to be T = 10000 to accommodate the large

dimension. Besides, the contextual features µj ∈ R10,∀j ∈ [3], follow similar data generation

process as it in S1. Here we consider the global preference, i.e, we assume that arms to agents’

preference is the global preference, a1 : p1 > p2, a2 : p1 > p2, a3 : p1 > p2. When contexts are

noiseless (ρ = 0), the true optimal matching is {(p1, a1), (p2, a2)}. The uniform sub-optimal

minimal condition for this scenario is set as ∆i,min = 0.2, ∀i ∈ [N ]. The learning step length

h is 5856.

Scenario 5 (S5): The setting in S5 is the same as the setting in S4 except N = 5, K = 5,

and d = 5. The time horizon is set to be T = 15000 to accommodate the increasing number

of participants. The uniform sub-optimal minimal condition for this scenario is set to be

∆i,min = 0.1, ∀i ∈ [N ]. The learning step length h is 1975.
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3.16.3 Additional Simulation Results

Here we present the experimental analysis of S3 - S5.

Scenario 3 (S3): dynamic matching algorithm is robust to different uniform minimal

margin scenarios. In Figure 3.11, we present the result of S3. As we change ∆i,min = 0.2

in S2 to ∆i,min = 0.05,∀i ∈ [1, 2], the learning length becomes larger and the estimation

becomes better. Compared with S2’s first row and second row, the shaded area in S3’s first

row and second row becomes narrower, which substantiates our conjecture. In the second

row and third row, we find that agent p1 achieves the negative cumulative regret mainly

because in the learning step, agent p1 is periodically matched with the super-optimal arm

with a huge (in absolute value) negative regret.

Scenario 4 (S4): dynamic matching algorithm is robust to different dimensions. In Figure

3.12, we present the result of S4. Compared with all previous results, we find that when

dimension d increases, the regret increases, and the logarithm regret pattern indicates that

dynamic matching algorithm is still robust to the dimension.

Scenario 5 (S5): dynamic matching algorithm is robust to multiple participants. In Figure

3.13, we present the result of S5, which includes five agents and five arms. Based on the

analysis from previous figures and results, dynamic matching algorithm is robust to the choice

of preference, context dimension, and context changing format (fixed mean and dynamic

mean). Furthermore, we find that dynamic matching is also robust to multiple participants.

The cumulative regret still shows the logarithmic shape.

3.16.4 Additional Real Data Result

In Figure 3.14, we exhibit the regret of two companies and find that dynamic matching

algorithm’s individual regret is superior over all comparison methods under different noise

levels for both agents. The shaded area represents the upper and lower bound regret over

100 replications. Lines are used to represent the regret mean over these replications.
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Figure 3.11: Cumulative regret for different noise levels and context variation levels in Sce-
nario S3.

0 2000 4000 6000 8000 10000
0

100

200

300

400
 = 0.02,  = 0.01

0 2000 4000 6000 8000 10000

 = 0.02,  = 0.05

0 2000 4000 6000 8000 10000

 = 0.02,  = 0.1

0 2000 4000 6000 8000 10000

 = 0.02,  = 0.2

Time (t)

Cu
m

ul
at

iv
e 

Re
gr

et

Agent 1 Agent 2

Figure 3.12: Cumulative regret for different context dimensions in Scenario S4.
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Figure 3.13: Cumulative regret for different number of agents and arms in Scenario S5.
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Figure 3.14: Individual regret for agent p1 and p2 under noise σ = 0.1 (Left two) and σ = 0.2
(Right two) of methods dynamic matching algorithm, greedy, 0.05-greedy, 1/t-greedy.

3.16.5 Textual Information of job applicants and job description

o the space Θi,K(γ, C0), we will develop a clear but nontrivial understanding of the full

ranking problem in this paper. DXj
and DXk

are independent, the variance of the difference

between yi,j and yi,k is 2σ2. With the deign of dynamic matching algorithm, the initial

exploration is independent sampling from the DX . For each agent pi, it has h =
∑K

j=1Ai,j

total number of observations for yi,j with observation number Ai,j, so it has Ai,(j,k) = Ai,j ∗

Ai,k observations of yi,(j,k). The joint distribution {Ai,(j,k)} and {yi,(j,k)} under the above

generating process, is denoted by P((µi, σ
2, r)).
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Candidate Profile Text

DS profile
research projects on modeling of high-dimensional and multi-modal

(partially observed) inputs for classification,
regression and clustering tasks, leveraging a wide range of techniques.

DS update
info (18)

(1) Strong interested in data science, (2) machine learning,
(3) data visualization, (4) data analysis,
(5) statistical model, (6) deep learning,

(7) natural language processing, (8) coding,
(9) options, (10) derivatives,

(11) futures, (12) analyze investments,
(13) assess risk, (14) assess return profiles,

(15) knowledge in math, (16) statistical model,
(17) programming python, (18) R.

SDE profile

Experienced Software Engineer working at Cisco, skilled in Go,
Java, and C++, (1) Working on APIC (Application Policy

Infrastructure Controller) and a virtualization project of CMTS
(Cable Modem Terminal System). (2) Working on a Cloud-native system

utilizing containerized microservices using Kubernetes, Docker, etc.

SDE update
info (18)

(1) Algorithms, (2) data structures,
(3) Architecture, (4) Artificial Intelligence,

(5) Machine Learning, (6) Compilers,
(7) Database, (8) Distributed Systems,

(9) Networking, (10) Systems,
(11) C, (12) C++,
(13) C, (14) Java,

(15) JavaScript, (16) go,
(17) Python, (18) objective C.

Quant profile

Strong passion in quant finance. Well-coordinated skill sets consisting
of math, finance, statistics and programming. Industrial experiences

in equity space including both linear and non-linear products.
Pricing desk quant covering equity exotic derivatives, hybrid derivatives.

Quant update
info (6)

(1) strong math, (2) statistics modeling,
(3) Programming, (4) Python,

(5) R, (6) economics.

Table 3.1: Job applicants’ profile

85



Job description Text

Quantitative
job description

Strong passion in quant finance, strong mathematical
and statistical knowledge. Proficiency in programming languages

like Python or R. Data analysis and visualization skills.
Understanding of quantitative modeling

and statistical methods. Domain-specific knowledge (e.g., finance,
economics). know equitable product and derivatives.

SDE
job description

Research experience in Algorithms, Architecture, Artificial Intelligence,
Compilers, Database, Data Mining, Distributed Systems, Machine Learning,

Networking, or Systems. Programming experience in one or more
of the following: C/C++, C, Java, JavaScript, Python Objective C, Go,
or similar. Experience in computer science, with competencies in data

structures, algorithms and software design.

Table 3.2: Job description
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CHAPTER 4

Two-sided Competing Matching Recommendation

Markets With Quota and Complementary Preferences

Constraints

In this project, we propose a new recommendation algorithm for addressing the problem of

two-sided matching markets with complementary preferences and quota constraints, where

agents’ preferences are unknown a priori and must be learned from data. The presence

of mixed quota and complementary preferences constraints can lead to instability in the

matching process, making this problem challenging to solve. To overcome this challenge, we

formulate the problem as a bandit learning framework and propose the Multi-agent Multi-

type Thompson Sampling (MMTS) algorithm. The algorithm combines the strengths of

Thompson Sampling for exploration with a double matching technique to achieve a stable

matching outcome. Our theoretical analysis demonstrates the effectiveness of MMTS as it

can achieve stability at every matching step and has a total Õ(Q
√
KmaxT )-Bayesian regret,

which exhibits linearity with respect to the total firm’s quota Q and the square root of the

maximum size of available type workers
√
Kmax.

4.1 Introduction

Two-sided matching markets with recommendation have been a mainstay of theoretical re-

search and real-world applications for several decades since the seminal work by (GS62).

Matching markets are used to allocate indivisible “goods” to multiple decision-making agents
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based on mutual compatibility as assessed via sets of preferences. Preferences are usually

unknown in the recommendation process due to large volume of participants and hard to

be explicit. Besides, matching markets embody a notion of scarcity in which the resources

on both sides of the market are limited. One of the key concepts that contribute to the

success of matching markets is stability, which criterion ensures that all participants have

no incentive to block a prescribed matching (Rot82). Matching markets often consist of

participants with complementary preferences that can lead to instability (CKK19). Exam-

ples of complementary preferences in matching markets include: firms seeking workers with

skills that complement their existing workforce, sports teams forming teams with players

that have complementary roles, and colleges admitting students with diverse backgrounds

and demographics that complement each other. Studying the stability issue in the context

of complementary preferences is crucial in ensuring the successful functioning of matching

markets with complementarities.

In this paper, we propose a novel algorithm and present an in-depth analysis of the

problem of complementary preferences in matching markets. Specifically, we focus on a

many-to-one matching scenario and use the job market as the example. In our proposed

model, there are a set of agents (e.g., firms), each with limited quota, and a set of arms (e.g.,

workers), each of which can be matched to at most one agent. Each arm belongs to a unique

type, and each agent wants to match with a minimum quota of arms from each type. This

leads to complementarities in agents’ preferences. Additionally, the agents’ preference of arms

from each type is unknown a priori and must be learned from data, which we refer to as the

competing matching under complementary preference recommendation problem (CMCPR).

Our first result is the formulation of CMCPR into a bandit learning framework as de-

scribed in (LS20). Using this framework, we propose a new algorithm, the Multi-agent

Multi-type Thompson Sampling (MMTS), to solve CMCPR. Our algorithm builds on the

strengths of Thompson Sampling (TS) (Tho33; AG12; RVK18) in terms of exploration and

further enhances it by incorporating a double matching technique to find a stable solution for
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CMCPR, illustrated in Section 4.5.2. Unlike the upper confidence bound (UCB) algorithm,

TS method can achieve sufficient exploration by incorporating a deterministic, non-negative

bias inversely proportional to the number of matches into the observed empirical means. Fur-

thermore, the double matching technique proposed in this paper uses two stages of matching

to satisfy both the type quota and total quota requirements. These two stages mainly consist

of using the deferred-acceptance (DA) algorithm from (GS62).

Second, we provide the theoretical analysis of the proposed MMTS algorithm. Our

analysis shows that MMTS can achieve stability at each matching step and show the incentive

compatibility (IC) of the MMTS. The proof of stability is obtained through a two-stage

design of the double matching technique, and the proof of IC is obtained through the regret

lower bound. To the best of our knowledge, MMTS is the first algorithm to achieve stability

and IC in the CMCPR.

Finally, our theoretical results indicate that MMTS achieves a Bayesian regret that scales

Õ(
√
T ) and is near linear in terms of total quota of all firms (Q). Besides, we find that

the Bayesian regret only depends on the square root of the maximum number of workers

(Kmax) in one type rather than the square root of the total number of workers (
∑

m Km)

in all types, which is important for the large market. This is a more challenging setting

than that considered in previous works such as (LMJ20; JWW21), which only consider a

single type of worker in the market and a quota of one for each firm. To address these

challenges, we use the eluder dimension (RV13) to measure the uncertainty set widths and

bound the instantaneous regret for each firm, and use the concentration results to measure

the probability of bad events occurring to get the final regret. Bounding the uncertainty set

width is the key step for deriving the regret upper bound of MMTS.

The rest of this paper is organized as follows. Section 4.2 discussed related works. Section

4.3 introduces seven elements of CMCPR. Section 4.4 states the challenges of this problem.

Section 4.5 provides MMTS algorithm, its comparison with UCB-family algorithms, and

show the incapable exploration of UCB algorithm in CMCPR. Then we present the stability,
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Figure 4.1: MMTS Algorithm for CMCPR with its application in the job market, including
five stages: preference learning, ranking construction, matching, recommendation, feedback
collection.

regret upper bound, and the incentive-compatibility of MMTS in Section 4.6. Finally, Section

4.7 shows the application of MMTS in simulations including the distribution of learning

parameters, and demonstrating the robustness of MMTS in large markets.

4.2 Related Works

This section reviews two-sided matching market with unknown preferences, multi-agent sys-

tems, assortment optimization, and matching markets.

Multi-Agent Systems and Game theory. There are some papers considering the

multi-agent in the sequential decision-making systems including the cooperative setting

(Lit01; GH13; ZYL18; PPP18; SWS22) and competing setting (Lit94; AO06; ZJB07; WHL17;

FCR19; JNJ20). (ZYW21) study the multi-player general-sum Markov games with one of

the players designated as the leader and the other players regarded as followers and establish
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the efficient RL algorithms to achieve the Stackelberg-Nash equilibrium.

Assortment Optimization. To maximize the number of matches between the two sides

(customers and suppliers), the platform must balance the inherent tension between recom-

mending customers more potential suppliers to match with and avoiding potential collisions.

(AKM22) introduce a stylized model to study the above trade-off. Motivated by online labor

markets (AS22) consider the online assortment optimization problem faced by a two-sided

matching platform that hosts a set of suppliers waiting to match with a customer. (ILM21)

consider a two-sided matching assortment optimization under the continuum model and

achieve the optimized meeting rates and maximize the equilibrium social welfare. (RSZ22)

discuss the application of assortment optimization in dating markets. (Shi22) studies the

minimum communication needed for a two-sided marketplace to reach an approximately

stable outcome with the transaction price.

Two-sided Matching Markets with Known Preferences. One strand of related

literature is two-sided matching, which is a stream of papers that started in (GS62). They

propose the DA algorithm with its application in the marriage problem and college admission

problem. A series work (Knu76; Rot82; RS92; Rot08) discuss the history of the DA algorithm

and summarize theories about stability, optimality, and incentive compatibility, and finally

provide its practical use and further open questions. In particular, (Rot85; Son97) propose

that the college admissions problem is not equivalent to the marriage problem, especially

when a college can manipulate its capacity and preference. Notably, in the hospital doctor

matching example, since hospitals want diversity of specializations, or demographic diversity,

or whatever, they care about the combination (group of doctors) they get. (Rot86) state

that when all preferences are strict, and hospitals (firms) have responsive preferences, the

set of doctors (workers) employed and positions filled is the same at every stable match.

However, when there exist couples in the preference list (not responsive preference (KK05)),

which might make the set of stable matchings empty. Even when stable matchings exist,

there need not be an optimal stable matching for either side. Later, (ABH11) revisit this
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couple matching problem and provide the sorted deferred acceptance algorithm that can

find a stable matching with high probability in large random markets. (BMM14) provide

an integer programming model for hospital/resident problems with couples (HRC) and ties

(HRCT). (MMT17) release the HRC with minimal blocking pairs and show that if the

preference list of every single resident and hospital is of length at most 2, their method can

find a polynomial-time algorithm. (NV18; NV22) find the stable matching in the nearby

NRC problem, which is that the quota constraints are soft. (AH18; CKK19; GK21) discuss

the existence and uniqueness of stable matching with complementaries and its relationship

with substitutable preferences in large economies. Besides, there are also papers considering

stability and optimality of the refugee allocation matching (ACG18; HT22). (Tom18; BH22)

consider a case that firms have hard constraints both on the minimum and maximum type-

specific quotas and other type-specific quota consideration works.

Two-sided Matching Market with Unknown Preferences. (LMJ20) considers the

multi-agent multi-armed competing problem in the centralized platform with explore-then-

commit (ETC) and upper confidence bound (UCB) style algorithms where preferences from

agents to arms are unknown and need to be learned through streaming interactive data.

(JWW21) considers the two-sided matching problem where preferences from both sides are

defined through dynamic utilities rather than fixed preferences and provide regret upper

bounds over different contexts settings, and (MWX22) apply it to the Markov matching

market. (CS22) show that if there is transfer between agents, then the three desiderata

(stability, low regret, and fairness) can be simultaneously achieved. (LWC22) discuss the

two-sided matching problem when the arm side has dynamic contextual information and

preference is fixed from the arm side and propose a centralized contextual ETC algorithm to

obtain the near-optimal regret bound. Besides, there are a plethora of works discussing the

two-sided matching problem in the decentralized markets (LRM21; BSS21; SBS21; DJ21a;

DJ21b; DQJ22). In particular, (DJ21b) study the college admission problem and provides an

optimal strategy for agents, and shows its incentive-compatible property. Moreover, (JJH22)
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explores the phenomenon of the two-sided matching problem with two competing markets.

4.3 Problem

We now describe the problem formulation of the Competing Matching under Complementary

Preferences Recommendation problem (CMCPR).

Notations. We define T as the time horizon and assume it is known1. We denote [N ] =

[1, 2, ..., N ] where N ∈ N+. Define the bold x ∈ Rd be a d-dimensional random vector.

4.3.1 Environment

The matching of workers and firms will be our running example throughout the paper. The

organizer is the centralized platform and the overall goal of the platform is to recommend

the best fit worker and match two-sided participants with their ideal objects over time. We

first introduce seven elements in CMCPR.

(I) Participants. In the centralized, there are N firms (agents), denoted byN = {p1, p2, ..., pN},

and various types of workers (arms), represented Km = {am1 , am2 , ...amKm
}, ∀m ∈ [M ], where

Km is the number of m-th type workers and M types in total.

(II) Quota. pi has a minimum quota qmi for m-type workers, and a maximum total quota

Qi (e.g., seasonal headcount in company) and we assume
∑M

i=1 q
m
i ≤ Qi. Define the total

market quota as Q =
∑N

i=1Qi and the total number of workers as K =
∑M

m=1Km. And we

assume that Q≪ K and T is large.

(III) Two-sided Complementary Preferences. There are two kinds of preferences:

workers to firms’ preferences, firms to workers’ preferences.

a. Preferences of m-type workers towards firms πm : Km 7→ N . We assume that there

exists fixed preferences from workers to firms, and these preferences are known for the plat-

1The unknown T can be handled with the doubling trick (ACF95).
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form. For instance, workers submit their preferences for different firms on the platform. πm
j,i

represents the rank for pi from the view of amj , and we assume that there are no ties in

the rank orders, πm
j ⊆ {πm

j,1, ..., π
m
j,N}. In other words, πm

j is a subset of the permutation

of [N ]. And πm
j,i < πm

j,i′ implies that m − type worker amj prefers firm pi over firm pi′ and

as a shorthand, denoted as pi <
m
j pi′ . This known worker-to-firm preference is a mild and

common assumption in matching market literature (LMJ20; LRM21; LWC22).

b. Preferences of firms towards m − type workers rm : N 7→ Km. The true unknown

preferences of firms towards workers are fixed, but unknown. The goal of the platform is

to infer these unknown preferences through historical matching data. We denote rmi,j as the

true rank of worker amj in the preference list of firm pi, and assume there are no ties. pi’s

preferences towards workers is represented by rmi , which is a subset of the permutation of

[Km]. rmi,j < rmi,j′ implies that firm pi prefers worker amj over worker amj′ .

4.3.2 Policy

(IV) Matching Policy. um
t (pi) : N 7→ Km is a recommendation mapping function from pi

to m− type workers at time t.

(V) Stable Matching and Optimal Matching. We introduce key concepts in matching

fields (Rot08).

Definition 4.1. (Blocking pair). A matching u is blocked by firm pi if pi prefers being single

to being matched with u(pi), i.e. pi >i u(pi). A matching u is blocked by a pair of firm and

worker (pi, aj) if they each prefer each other to the partner they receive at u, i.e. aj >i u(pi)

and pi >j u
−1(aj).

Definition 4.2. (Stable Matching). A matching u is stable if it isn’t blocked by any indi-

vidual or pair of worker and firm.

Definition 4.3 (Valid Match). With true preferences from both sides, arm aj is called a

valid match of agent pi if there exist a stable matching according to those rankings such that
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ai and pj are matched.

Definition 4.4 (Agent Optimal Match). Arm aj is an optimal match of agent pi if it is the

most preferred valid match.

Given two-sided true preferences, the DA algorithm (GS62) will provide a stable match-

ing. The matching result by the DA algorithm is always optimal for members of the proposing

side and denote the agent-optimal policy as {um
i }Mm=1 for CMCPR.

In CMCPR, however, each firm has a minimum quota constraint qi = [q1i , ..., q
M
i ] for all

type workers to fill. Therefore, we define the concept of stability as the absence of "blocking

pairs" across all types of workers and firms. Based on the definition of stable matching, we

discussed the feasibility of the stable matching in CMCPR in Appendix 4.9.1.

(VI) Matching Score. If pi is matched with amj at time t, pi provides a noisy reward ymi,j(t)

which is sampled from the Bernoulli distribution with the true matching score µm
i,j(t),

ymi,j(t) ∼ Ber(µm
i,j(t)), (4.1)

∀i, j,m, t ∈ [N ], [Km], [M ], [T ], where we know the noise follows the sub-Gaussian ran-

dom variable with parameter σ = 1/2. That is, for every α ∈ R, it is satisfied that

E[exp(αϵmi,j(t))] ≤ exp(α2σ2/2).

(VII) Regret. Based on model (4.1), we denote the matching score for pi as ym
i (t) :=

yi,um
t (pi)

(t). Define the firm-optimal regret with m-type worker for pi as

Rm
i (T, θ) :=

T∑
t=1

[µi,um
i
− µi,um

t (pi)(t)], (4.2)

where denote θ as the sampled problem instance from the distribution Θ. Rm
i (T, θ) represents

the total expected score difference between the policy um
i := {um

t (pi)}Tt=1 and the optimal

policy um
i in hindsight.
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As each firm have to recruit M types workers with total quota Qi, the total firm-optimal

stable regret for pi is defined as

Ri(T, θ) :=
M∑

m=1

Rm
i (T, θ). (4.3)

Finally, define the Bayesian Social Welfare Gap (BSWG) R(T ) as the expected regret over

all firms and problem instance,

R(T ) := Eθ∈Θ

[
N∑
i=1

Ri(T, θ)

]
. (4.4)

The goal of the centralized platform is to design a learning algorithm that achieves stable

matchings through learning the firms’ complementary preferences for multiple types of work-

ers preciously from the previous matchings for better recommendation. This is equivalent

to design an algorithm that minimizes BSWG R(T ).

4.4 Challenges and Solutions

When preferences are unknown a priori in matching markets, the stability issue while sat-

isfying complementary preferences and quota requirements is a challenging problem due to

the interplay of multiple factors.

4.4.1 Challenge 1: How to design a stable matching algorithm to solve comple-

mentary preferences?

This is a prevalent issue in real-world applications such as hiring workers with complementary

skills in hospitals and high-tech firms or admitting students with diverse backgrounds in

college admissions. Despite its importance, no implementable algorithm is currently available

to solve this challenge. In this paper, we propose a novel approach to resolving this issue
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by utilizing a double matching (Algorithm 7) to marginalize complementary preferences

and achieve stability. Our algorithm can efficiently learn a stable matching using historical

matching data, providing a practical solution to CMCPR.

4.4.2 Challenge 2: How to balance the exploration and exploitation to achieve

the sublinear regret?

The platform must find a way to recommend the most fit workers to firms to establish

the credibility among workers and firms to stay at the platform, towards achieving optimal

matching. Compared to traditional matching algorithms, the CMCPR is not an one-time

recommendation algorithm but a recycled recommendation matching algorithm with supply

and demand consideration (workers and firms), which is more challenging as it requires more

time to balance this trade-off. In addition, the classic UCB bandit methods could function

well in exploration and suffer sublinear regret demonstrated in Section 4.5.2. To overcome

this challenge, we propose the use of sampling algorithm which allows for better exploration

and achieves sublinear regret.

4.4.3 Challenge 3: How to solving CMCPR with quota constraints in large

markets?

Unlike the classic DA algorithm (GS62), our problem involves type-specific and quota re-

quirements for each firm. Can we find a stable matching algorithm that satisfies these

constraints while also adapting to unknown preferences? Furthermore, can this algorithm be

applied in large markets with efficiency? We address these challenges by proposing a novel

algorithm, MMTS, that effectively balances exploration and exploitation while can also be

partially parallel implemented.
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Algorithm 5: Multi-agent Multi-type Thompson Sampling Algorithm(MMTS)
Input : Time horizon T ; firms’ priors (αm,0

i ,βm,0
i ),∀i,m ∈ [N ], [M ]; workers’

preference πm, ∀m ∈ [M ].
1 for t ∈ {1, ..., T} do
2 Step 1: preference learning Stage
3 Sample estimated mean reward µ̂m

i (t) over all types of workers (Algo. 6)
4 Step 2: Ranking Construction Stage
5 Construct all firms’ estimated rankings {r̂mi (t)}

N,M
i=1,m=1 according µ̂m

i (t).
6 Step 3: Double Matching Stage
7 Get the matching result um

t (pi),∀i ∈ [N ],m ∈ [M ] from the double matching
in Algo 7.

8 Step 4: Collecting Feedback Stage
9 Each firm receives its corresponding rewards from all types of workers ym

i (t).
10 Step 5: Updating Belief Stage
11 Based on received rewards, the platform updates firms’ posterior belief.

4.5 MMTS Algorithm

In this section, we propose the Multi-agent Multi-type Thompson Sampling algorithm (MMTS),

which aims to learn the true preferences of all firms over all types of workers, achieve stable

matchings, and minimize firms’ Bayesian regret. We provide a description of MMTS and

demonstrate its benefits of using sampling method. The overall MMTS algorithm procedure

is in Figure 4.1. The computational complexity of MMTS is in Appendix 4.9.2.

4.5.1 Algorithm Description - 3 Stages

The MMTS (Algorithm 5) is composed of five stages, preference learning stage, ranking

construction stage, double matching stage, collecting feedback stage, and updating belief stage.

At each matching step t, MMTS iterates these four steps.

Step 1: Preference Learning Stage. (Algorithm 6). For pi, platform samples the

mean feedback (reward) µ̂m
i,j(t) of amj from distribution Pm

j with estimated parameters

(αm,t−1
i,j , βm,t−1

i,j ) learned from the historical matching data.
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Step 2: Ranking Construction Stage. Then the platform sorts these workers within

each type according {µ̂m
i,j(t)}Km

j=1 in descending order and gets the estimated rank r̂m(t) =

{r̂mi (t)}
N,M
i=1,m=1 where r̂mi (t) = {r̂

m
i,j(t)}Km

j=1.

Step 3: Double Matching Stage. (Algorithm 7). With sampled mean reward µ̂(t) :=

{µ̂m
i,j(t)}

N,Km,M
i=1,j=1,m=1, estimated ranks r̂(t), quota constraints {Qi}Ni=1, the double matching

algorithm provides the final matching result with two-stage matchings.

The goal of the first match is to allow all firms to satisfy their minimum type-specific

quota qmi first followed by sanitizing the status quo as a priori. The second match is to fill

the left-over positions Q̃i (defined below) for each firm and match firms and workers without

type consideration.

3.1. First Match: The platform implements the type-specific DA (Algo. 8) given quota

constraints {qmi }
N,M
i=1,m=1. The matching road map starts from matching all firms with type

from 1 to M and returns the matching result {ũm
t (pi)}m∈[M ]. This step can be implemented

in parallel.

3.2. Sanitize Quota: After the first match, the centralized platform sanitizes each firm’s

left-over quota Q̃i = Qi −
∑M

m=1 q
m
i . If there exists a firm pi, s.t., Q̃i > 0, then the platform

will step into the second match. For those firms like pi whose leftover quota is zero Q̃i = 0,

they and their matched workers will skip the second match.

3.3. Second Match: When rest firms and workers continue to join in the second match,

the centralized platform implements the standard DA in Algorithm 9 without type consid-

eration. That is, the platform re-ranks the rest M types of workers who do not have a

match in the first match for firms, and fill available vacant positions. It is worth noting that

in Algorithm 9, each firm will not propose to the previous workers who rejected him/her

already or matched in Step 1. Then firm pi gets the corresponding matched workers ŭt(pi)
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Algorithm 6: Preference Learning Stage
Input : Time horizon T ; firms’ priors (αm,0

i ,βm,0
i ),∀i ∈ [N ],∀m ∈ [M ].

1 Sample: Sample mean reward µ̂m
i,j(t) ∼ P(α

m,t−1
i,j , βm,t−1

i,j ), ∀i,m, j ∈ [N ], [M ], [Km].
2 Sort: Sort estimated mean feedback µ̂m

i,j(t) in descending order and get the
estimated rank r̂mi (t).

3 Output: The estimated rank r̂mi (t) and the estimated mean feedback µ̂m
i (t),

∀i,m ∈ [N ], [M ].

Algorithm 7: Double Matching
Input : Estimated rank r̂(t), estimated mean µ̂m

i (t), type quota
qmi ,∀m ∈ [M ], i ∈ [N ] and total quota Qi,∀i ∈ [N ]; workers’ preference
{πm}m∈[M ].

1 Step 1: First Match
2 Given estimated ranks r̂(t) and all workers’ preferences πm, the platform operate

the firm-propose DA Algo and return the matching {ũm
t (pi)}

N,M
i=1,m.

3 Step 2: Sanitize Quota
4 Sanitize whether all firms’ positions have been filled. For each company pi, if

Qi −
∑M

m=1 q
m
i > 0, set the left quota as Q̃i ← Qi −

∑M
m=1 q

m
i for firm pi.

5 Step 3: Second Match
6 if Q̃ ̸= 0 then
7 Given left quota {Q̃i}i∈[N ], estimated means µ̂(t), and workers’ preferences

{πm}m∈[M ], the platform runs the firm-propose DA and return the matching
ŭt(pi).

8 else
9 Set the matching ŭt(pi) = ∅.

Output: The matching um
t (pi)← Merge(ũm

t (pi), ŭt(pi)) for all firms.

in the second match. Finally, the platform merges the first and second results to obtain a

final matching um
t (pi) = Merge(ũm

t (pi), ŭt(pi)),∀i,m ∈ [N ], [M ].

Step 4: Collecting Feedback Stage. When the platform broadcasts the matching result

um
t (pi) to all firms, each firm then receives its corresponding stochastic reward ym

i (t),∀i ∈

[N ],m ∈ [M ].

Step 5: Updating Belief Stage. After receiving these noisy rewards, the platform updates

firms’ belief (posterior) parameters as follows, (αm,t
i ,βm,t

i ) = Update(αm,t−1
i ,βm,t−1

i ,ym
i (t)),∀i ∈

[N ],∀m ∈ [M ].
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Figure 4.2: A comparison of centralized UCB and TS. A demonstrate of the incapable
exploration of UCB.

4.5.2 Incapable Exploration

We show why the sampling method has an advantage over the UCB style method in esti-

mating the ranks of workers. We find that centralized UCB suffers linear firm-optimal stable

regret in some cases and show it in Appendix 4.9.3 with detailed experimental setting and

analysis.

Why sampling method is capable of avoiding the curse of linear regret? By the property

of sampling shown in Algorithm 6. Firm pi’s initial prior over worker ai is a uniform random

variable, and thus rj(t) > ri(t) with probability µ̂j ≈ µj, rather than zero! This differs from

the UCB style method, which cannot update ai’s upper bound due to lacking exploration over

ai. The benefit of TS is that it can occasionally explore different ranking patterns, especially

when there exists such a previous example. In Figure 4.2, we show a quick comparison of

centralized UCB (LMJ20) in the settings shown above and MMTS when M = 1, Q = 1, N =

3, K = 3. The UCB method occurs a linear regret for firm 1 and firm 2. However, TS

method achieves a sublinear regret in firm 1 and firm 2.
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4.6 Properties of MMTS: Matching Stability, Bayesian Regret Up-

per Bound, and Incentive Compatible

Section 4.6.1 demonstrates the double matching algorithm can provide the stability property

for CMCPR. Section 4.6.2 establishes the Bayesian regret upper bound for all firms when

they follow the MMTS. Section 4.6.3 discusses the incentive-compatibility property of the

MMTS.

4.6.1 Matching Stability

In the following theorem, we show the double matching algorithm (Algo.7) provides stable

matching solution in the following theorem.

Theorem 4.1. Given two sides’ preferences from firms and M types of workers. The double-

matching procedure can provide a firm-optimal stable matching solution ∀t ∈ [T ].

Proof. The sketch proof of the stability property of MMTS is two steps, naturally following

the design of MMTS. The first match is conducted in parallel, and the output is stable

and guaranteed by (GS62). As the need of MMTS, before the second match, firms without

leftover quotas (Q̃ = 0) will quit the second round of matching, which will not affect the

stability. After the quota sanitizing stage, firms and leftover workers will continue to join in

the second matching stage, where firms do no need to consider the type of workers designed

by double matching. And the DA algorithm still provides a stable result based on each firm’s

sub-preference list. The reason is that for firm pi, all previous possible favorite workers have

been proposed in the first match. If they are matched in the first match, they quit together,

which won’t affect the stability property; otherwise, the worker has a better candidate (firm)

and has already rejected the firm pi. So for each firm pi, it only needs to consider a sub-

preference list excluding the already matched workers in the first match and the proposed

workers in the first match. It will provide a stable match in the second match and won’t
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be affected by the first match. So the overall double matching is a stable algorithm. The

detailed proof can be found in Appendix Section 4.9.5.

4.6.2 Bayesian Regret Upper Bound

Next we provide MMTS’s Bayesian total firm-optimal regret upper bound.

Theorem 4.2. Assume Kmax = max{K1, ..., KM}, K =
∑M

m=1Km, with probability 1 −

1/QT , when all firms follow the MMTS algorithm, firms together will suffer the Bayesian

expected regret

R(T ) ≤ 8Q log(QT )
√
KmaxT +NK/Q.

Proof. The detailed proof can be found in Appendix 4.9.6.

The derived Bayesian regret bound, which is dependent on the square root of the time

horizon T and a logarithmic term, is nearly rate-optimal. Additionally, we examine the

dependence of this regret bound on other key parameters. The first of which is a near-linear

dependency on the total quota Q. Secondly, the regret bound is dependent only on the

square root of the maximum worker Kmax of one type, as opposed to the total number of

workers,
∑M

m=1Km in previous literature (LMJ20; JWW21). This highlights the ability of

our proposed algorithm, MMTS, to effectively capture the interactions of multiple types of

matching in CMCPR. The second term in the regret is a constant which is only dependent on

constants N,K and the total quota Q. Notably, if we assume that each qi = 1 and Qi = M ,

then NK/Q will be reduced to NK/(NM) = K/M , which is an unavoidable regret term

due to the exploration in bandits (LS20). This also demonstrates that the Bayesian total

cumulative firm-optimal exploration regret is only dependent on the average number of

workers of each type available in the market, as opposed to the total number of workers or

the maximum number of workers available of all types. Additionally, if one Qi is dominant

over other firms’ Qi, then the regret will mainly be determined by that dominant quota Qi

and Kmax, highlighting the inter-dependence of this complementary matching problem.
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4.6.3 Incentive-Compatibility

In this section, we discuss the incentive-compatibility property of MMTS. That is, if one firm

does not match the worker that MMTS (platform) recommended when all other firms follow

MMTS recommended matching objects which is equivalent to that firm submits a ranking

preferences different from the sampled ranking list from MMTS, and we know that firm

cannot benefit (matched with a better worker than his optimal stable matching worker) over

a sublinear order. As we know, (DF81) discussed the Machiavelli firm could not benefit from

incorrectly stating their true preference when there exists a unique stable matching. However,

when one side’s preferences are unknown and need to be learned through data, this result

no longer holds. Thus, the maximum benefits that can be gained by the Machiavelli firm are

under-explored in the setting of learning in matching. (LMJ20) discussed the benefits that

can be obtained by Machiavelli firm when other firms follow the centralized-UCB algorithm

with the problem setting of one type of worker and quota equal one in the market.

We now show in CMCPR, when all firms except one pi accept their MMTS recommended

workers from the matching platform, the firm pi has an incentive also to follow the sampling

rankings in a long horizon, so long as the matching result do not have multiple stable

solutions. Now we establish the following lemma, which is an upper bound of the expected

number of pulls that a firm pi can match with a m-type worker that is better than their

optimal m-type workers, regardless of what workers they want to match.

Let’s use Hm
i,l to define the achievable sub-matching set of um when all firms follow the

MMTS, which represents firm pi and m − type worker aml is matched such that aml ∈ um
i .

Let Υum(T ) be the number of times sub-matching um is played by time t. We also provide

the blocking triplet in a matching definition as follows.

Definition 4.5. (Blocking triplet) A blocking triplet (pi, ak, ak′) for a matching u is that

there must exist a firm pi and worker aj that they both prefer to match with each other than

their current match. That is, if ak′ ∈ ui, µi,k′ < µi,k and worker ak is either unmatched or
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πk,i < πk,u−1(k).

The following lemma presents the upper bound of the number of matching times of pi

and aml by time T , where aml is a super optimal m − type worker (preferred than all stable

optimal m− type workers under true preferences), when all firms follow the MMTS.

Lemma 4.1. Let Υm
i,l(T ) be the number of times a firm pi matched with a m-type worker

such that the mean reward of aml for firm pi is greater than pi’s optimal match um
i , which is

µm
i,aml

> max
amj ∈um

i

µm
i,j. Then the expected number of matches between pi and aml is upper bounded

by

E[Υm
i,l(T )] ≤ min

Sm∈C(Hm
i,l)

∑
(pj ,amk ,am

k′ )∈S
m

(
Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)

)
, (4.5)

where um
i,min = argmin

amk ∈um
j

µm
i,k, and Cm

i,j,k′ = O((log(T ))−1/3).

Then we show the benefit (lower bound of the regret) of Machiavelli firm pi can gain

by not following the MMTS recommended workers. Let’s define the super reward gap as

∆
m

i,l = max
amj ∈um

i

µm
i,j − µm

i,l, where aml /∈ um
i .

Theorem 4.3. Suppose all firms other than firm pi follow the preferences according to the

MMTS to the centralized platform. Then the following upper bound on firm pi’s optimal

regret for m-type workers holds:

Rm
i (T, θ) ≥

∑
l:∆

m
i,l<0

∆
m

i,l

[
min

Sm∈C(Hm
i,l)

∑
(pj ,amk ,am

k′ )∈S
m

(
Cm

i,j,k′ +
log(T )

d(µj,um
i,min

, µj,k′)

)]
(4.6)

where um
i,min = argmin

amk ∈um
j

µm
i,k, and Cm

i,j,k′ = O((log(T ))−1/3).

This result can be directly derived from Lemma 4.1. Theorem 4.3 demonstrates that there

is no sequence of preferences that a firm can manipulate and does not follow MMTS recom-

mended workers that would achieve negative optimal regret and its absolute value greater

thanO(log T ). Considering M types together for firm pi, this magnitude remainsO(M log T ).
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Theorem 4.3 confirms that, when there is a unique stable matching, firms cannot gain signif-

icant advantage in terms of firm-optimal stable regret due to incorrect estimated preferences

if others follow MMTS.

An example is provided in Section 4.7.1 to illustrate this incentive compatibility property.

Figure 4.3(a) illustrates the total regret, with solid lines representing the aggregate regret

over all types for each firm, and dashed lines representing the each type’s regret. It is

observed that the type I regret of p1 is negative, owing to the inaccuracies in the rankings

estimated for both p1 and p2. A detailed analysis of this negative regret pattern is given in

Appendix Section 4.9.11.1.

4.7 Experiments

In this section, we present simulation results to demonstrate the effectiveness of MMTS in

learning firms’ unknown preferences. The overall experiment setup can be found in Appendix

Section 4.9.10. Section 4.7.1 presents two examples to analyze the underlying causes of the

novel phenomenon of negative regret (gain benefit by matching with over-optimal workers)

and large market effect. Appendix Section 4.9.11.1 showcases the distribution of learning pa-

rameters and provides insight of reasons for non-optimal stable matchings. Additionally, we

demonstrate the robustness of MMTS in large markets in Appendix 4.9.11.2. All simulation

results are run in 100 trials.

4.7.1 Two Examples: Small Market and Large Market

Example 1. There are N = 2 firms, M = 2 types of workers, and there are Km = 5,∀m ∈

[M ]. The quota qmi for each type and each firm pi is 2, and the total quota/capacity for each

firm is Qi = 5. The time horizon is T = 2000.

Preferences. True preferences from workers to firms and from firms to workers are all

randomly generated. Preferences from workers to firms’ {πm}Mm=1 are fixed and known. We
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use the data scientist (D or DS ) and software developer engineer (S or SDE ) as our example.

The following are true preferences,

D1 : p1 ≻ p2, D2 : p1 ≻ p2, D3 : p2 ≻ p1, D4 : p1 ≻ p2, D5 : p2 ≻ p1,

S1 : p1 ≻ p2, S2 : p1 ≻ p2, S3 : p2 ≻ p1, S4 : p2 ≻ p1, S5 : p1 ≻ p2,

π1
1 : D4 ≻ D2 ≻ D3 ≻ D5 ≻ D1, π

2
1 : S1 ≻ S4 ≻ S5 ≻ S2 ≻ S3,

π1
2 : D2 ≻ D3 ≻ D1 ≻ D5 ≻ D4, π

2
2 : S4 ≻ S2 ≻ S5 ≻ S1 ≻ S3.

(4.7)

The true matching score of each worker for firms are sampled from U([0, 1]), and are available

in Appendix Table 4.1. In addition, feedback ymi,j(t) (0 or 1) provided by firms is generated

by Bernoulli(µm
i,j(t)). If two sides’ preferences are known, the firm optimal stable matching is

ū1 = {[D2, D4], [S5, S1, S3]}, ū2 = {[D3, D1, D5], [S4, S2]} by the double matching algorithm.

However, if firms’ preferences are unknown, MMTS can learn these unknown preferences and

attain the optimal stable matching while achieving a sublinear regret for each firm.

MMTS Parameters. We set priors αm,0
i,j = βm,0

i,j = 0.1,∀i ∈ [N ],∀j ∈ [Km],∀m ∈ [M ] to

limit the strong impact of the prior belief. The update formula for each firm pi at time t of

the m-type worker amj : αm,t+1
i,j = αm,t

i,j +1 if the worker amj is matched with the firm pi, that is

amj ∈ um
t (pi), and the provided score is ymi,j(t) = 1; otherwise αm,t+1

i,j = αm,t
i,j ; βm,t+1

i,j = βm,t
i,j +1

if the provided score is ymi,j(t) = 0, otherwise βm,t+1
i,j = βm,t

i,j . For other unmatched pairs (firm,

m− type worker), parameters retain.

Results. In Figure 4.3(a), we find that firm 1, 2 achieve a total negative sublinear regret

and a total positive sublinear regret separately (solid lines). However, we find that due to

the incorrect rankings estimated for firms, firm 1 benefits from this non-optimal matching

result to achieve negative sublinear regret specifically for matching with type 1 workers often

(blue dashed line). More discussion about the negative regret phenomenon is available in

Appendix 4.9.11.

Example 2. We enlarge the market by expanding the DS market, particularly wanting to
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explore interactions between two types of workers. N = 2 firms, M = 2 types, K1 = 20 (DS)

and K2 = 6 (SDE). The DS quota for two firms is q11 = q12 = 1 and the SDE quota for two

firms is q21 = q22 = 3, and the total quota is Qi = 6 for both firms. Preferences from firms to

workers and workers to firms are still randomly generated. Therefore, the optimal matching

result for each firm should consist of three workers for each type, and type II workers will

be fully allocated in the first match, and the rest workers are all type II workers. All MMTS

initial parameters are set the same procedure as it in Example 1.

Results. In Figure 4.3(b), we show when excessive type II workers exist, and type I workers

are just right. Both firms can achieve positive sublinear regret. We find that since type

II worker K2 = q21 + q22 = 6, which means in the first match stage, those type II workers

are fully allocated into two firms. Thus, in the second match stage, the left quota would

be all allocated to the type I workers for two firms. Two dotted lines represent type II

regret suffered by two firms. Both firms can quickly find the type II optimal matching since

finding the optimal type II match just needs the first stage of the match. However, the

type I workers’ matching takes a longer time to find the optimal matching (take two stages),

represented by dashed lines, and both are positive sublinear regret. Therefore, these two

types of matching are fully independent, which is different from Example 1.

4.8 Discussion

In this project, we proposed a new algorithm, MMTS to solve the CMCPR. MMTS builds on

the strengths of TS for exploration and employs a double matching method to find a stable

solution for complementary preferences and quota constraints. Through theoretical analysis,

we show the effectiveness of the algorithm in achieving stability at every matching step under

these constraints, achieving a Õ(Q
√
KmaxT )-Bayesian regret over time, and exhibiting the

incentive compatibility property.

There are several directions for future research. One is to investigate more efficient ex-
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Figure 4.3: Firms and their sub-types regret for Example 1 and, firms and their sub-types
regret for Example 2.

ploration strategies to reduce the time required to learn the agents’ unknown preferences.

Another is to examine scenarios where agents have indifferent preferences, and explore the

optimal strategy for breaking ties. Additionally, it is of interest to incorporate real-world

constraints such as budget or physical locations into the matching process, which could be

studied using techniques from constrained optimization. Moreover, it is interesting to incor-

porate side information, such as agents’ background information, into the matching process.

This can be approached using techniques from recommendation systems or other machine

learning algorithms that incorporate side information. Finally, it would be interesting to

extend the algorithm to handle time-varying matching markets where preferences and the

number of agents may change over time.

4.9 Appendix

This supplement is organized as follows. In Section 4.9.1, we discuss the feasibility and its

corresponding assumption of the stable matching. In Section 4.9.2, we show the computa-
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tional complexity of MMTS. In Section 4.9.3, we exhibit why the centralized UCB suffers

insufficient exploration. In Section 4.9.4, we provide the Hoeffding concentration lemma.

In Section 4.9.5, we provide the stability property of MMTS. In Section 4.9.6, we give the

detailed proof of the regret upper bound of MMTS and decompose its proof into three parts,

regret decomposition (4.9.6.1), bound for confidence width (4.4), and bad events’ probabil-

ities’ upper bound (4.9.6.3). In Section 4.9.8.1, we prove MMTS’s strategy-proof property.

Besides, as a reference, we append the DA with type and without type algorithms in Sec-

tion 4.9.9. In Section 4.9.10, we provide details of experiments and the explanation of the

negative regret, and also demonstrate the robustness of MMTS in large markets.

4.9.1 Feasibility of the Stable Matching

The feasibility solution is an interesting and well-discussed problem in the stable matching

problem.

Assumption of the feasibility: In the finite market, it is the marginal preference

assumption for the feasibility. But for the large market, it requires more assumptions such

as the substitutability and indifferences, etc,. The difference between the infinite and finite

(AH18; GK21) lies in matching problem and the techniques they use. In the infinite market,

we assume that there is an uncountable number of agents on both sides of the market. This

essentially means that the number of agents is so large that it can be treated as continuous,

and you can’t assign a specific numerical value to it. An example of an infinite market could

be the matching of agents is extremely large and cannot be practically counted. In the

finite market, the number of agents on both sides is limited and countable. You can assign

a specific numerical value to the number of agents. An example could be the matching of

agents where there is a definite small number of agents. However, such an exploration in the

infinite market is beyond the scope of our current study.

In our case, if the complementary preference can be marginalized (or referred as the

responsive preference (Rot85), (a1, b1) > (a1, b2) as long as b1 > b2, verse visa for (a1, b1) >
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(a2, b1) as long as a1 > a2, which is at the top of Figure 4.4, then based on our proposed

double matching algorithm and Theory 1, it exists such a stable matching solution. However,

as discussed in the related works, if there exists couples in the preference list, which could

potentially lead to an empty set of stable matchings.

(CKK19) discussed that if there exists couples in the preference list in a infinite market

(large) with a continuum of workers, provided that each firm’s choice is convex and changes

continuously as the set of available workers changes. They proved the existence and structure

of stable matchings under preferences exhibiting substitutability and indifferences in a large

market. The difference between our result and (CKK19)’s result is in two ways: (1) we

consider the finite market and they consider the infinite market. (2) we consider one side’s

preferences are unknown and (CKK19)’s both sides preferences are known. (3) (CKK19)

proved the existence of stable matching in the infinite market and no algorithm provided.

However, in our paper, we provide the double matching algorithm to find it effectively.
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4.9.2 Complexity

Based on (GS62; Knu97), the stable marriage problem’s DA algorithm’s worst total proposal

number is N2 − 2N + 2 = O(N2) when the number of participants on both sides is equal

(N = K). The computational complexity of the college admission matching problem with

quota consideration is also O(NK). MMTS algorithm consists of two steps of matching.

The computational complexity of the first step matching is O(
∑M

m=1NKm) if we virtually

consider each type’s matching process is organized in parallel. The second step’s computation

cost is also O(
∑M

m=1NKm). That is, in the first match, if all firms are matched with their

best workers, this step meets the lower bound quota constraints. Then the second match

will be reduced to the standard college admission problem without type consideration and

the computational complexity is O(N
∑M

m=1 Km). So the total computational complexity

is still O(
∑M

m=1NKm), which is polynomial in the of firm (N) and the number of workers∑M
m=1Km in the market.

4.9.3 Incapable Exploration

In this section, we show why the TS strategy has an advantage over the UCB style method in

estimating the ranks of workers. We even find that centralized UCB does achieve linear firm-

optimal stable regret in some cases. In the following example (Example 6 from (LMJ20)),

we show the firm achieves linear optimal stable regret if follow the UCB algorithm.2

Let N = {p1, p2, p3}, Km = {a1, a2, a3}, and M = 1, with true preferences given below:

p1 : a1 ≻ a2 ≻ a3 a1 : p2 ≻ p3 ≻ p1

p2 : a2 ≻ a1 ≻ a3 a2 : p1 ≻ p2 ≻ p3

p3 : a3 ≻ a1 ≻ a2 a3 : p3 ≻ p1 ≻ p2

2Here we only consider one type of worker, and the firm’s quota is one.
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The firm optimal stable matching is (p1, a1), (p2, a2), (p3, a3). However, due to incorrect

ranking from firm p3, a1 ≻ a3 ≻ a2, and the output stable matching is (p1, a2), (p2, a1), (p3, a3)

based on the DA algorithm. In this case, p3 will never have a chance to correct its mistake

because p3 will never be matched with a1 again and cause the upper confidence bound for

a1 will never shrink and result in this rank a1 ≻ a3. Thus, it causes that p1 and p2 suffer

linear regret.

However, the TS is capable of avoiding this situation. By the property of sampling showed

in Algorithm 6, firm p1’s initial prior over worker a1 is a uniform random variable, and thus

r3(t) > r1(t) (if we omit a2) with probability µ̂3 ≈ µ3, rather than zero! This differs from

the UCB style method, which cannot update a1’s upper bound due to lacking exploration

over a1. The benefit of TS is that it can occasionally explore different ranking patterns,

especially when there exists such a previous example.

In Figure 4.2, we show a quick comparison of centralized UCB (LMJ20) in the settings

shown above and MMTS when M = 1, Q = 1, N = 3, K = 3. The UCB method occurs a

linear regret in firm 1 and firm 2 and achieves a low matching rate (0.031)3. However, the

TS method suffers a sublinear regret in firm 1 and firm 2 and achieves a high matching rate

(0.741). All results are averaged over 100 trials. See Section 4.9.3.1 for the experimental

details.

4.9.3.1 Section 4.5.2 Example - Insufficient Exploration

We set the true matching score for three firms to (0.8, 0.4, 0.2), (0.5, 0.7, 0.2), (0.6, 0.3, 0.65).

All preferences from companies over workers can be derived from the true matching score.

As we can view, company p3 has a similar preference over a1 (0.6) and a3 (0.65). Thus, the

small difference can lead the incapable exploration as described in Section 4.5.2 by the UCB

algorithm.

3We count 1 if the matching at time t is fully equal to the optimal match when two sides’ preferences are
known. Then we take an average over the time horizon T .
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4.9.4 Hoeffding Lemma

Lemma 4.2. For any δ > 0, with probability 1−δ, the confidence width for a m−type worker

amj ∈ Am
i,t at time t is upper bounded by

wm
i,Fm

i,t
(amj ) ≤ min

(
2

√
log(2

δ
)

nm
i,j(t)

, 1

)
(4.8)

where nm
i,j(t) is the number of times that the pair (pi, a

m
j ) has been matched at the start of

round t.

Proof. Let µ̂m,LS
i,j,t =

∑t
s=1 1(a

m
j ∈Am

i,s)y
m
i,j(s)

nm
i,j(t)

denote the empirical mean reward from matching

firm pi and m− type worker amj up to time t. Define upper and lower confidence bounds as

follows:

Um
i,t(a

m
j ) = min

{
µ̂m,LS
i,j,t +

√
log(2

δ
)

nm
i,j(t)

, 1

}
, Lm

i,t(a
m
j ) = max

{
µ̂m,LS
i,j,t −

√
log(2

δ
)

nm
i,j(t)

, 0

}
. (4.9)

The the confidence width is upper bounded by min

(
2

√
log( 2

δ
)

nm
i,j(t)

, 1

)
.

4.9.5 Proof of the Stability of MMTS

Proof. We shall prove existence by giving an iterative procedure to find a stable matching.

Part I To start, in the first match loop, based on the double matching procedure, we can

discuss M types of matching in parallel. So we will only discuss the path for seeking the

type-m company-worker stable matching.

Suppose firm pi has qmi quota for m-type workers. We replace each firm pi by qmi copies of

pi denoted by {pi,1, pi,2, ..., pi,qmi }. Each of these pi,h has preferences identical with those of pi

but with a quota of 1. Further, each m-type worker who has pi on his/her preference list now

replace pi by the set {pi,1, pi,2, ..., pi,qmi } in that order of preference. It is now easy to verify
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that the stable matchings for the firm m-type worker matching problem are in natural one-

to-one correspondence with the stable matchings of this modified version problem. Then in

the following, we only need to prove that stable matching exists in this transformed problem

where each firm has quota 1, which is the standard stable marriage problem (GS62). The

existence of stable matching has been given in (GS62). Here we reiterate it to help us to

find the stable matching in the second match.

Let each firm propose to his favorite m-type worker. Each worker who receives more than

one offer rejects all but her favorite from among those who have proposed to her. However,

the worker does not fully accept the firm, but keeps the firm on a string to allow for the

possibility that some better firm come along later.

Now we are in the second stage. Those firms who were rejected in the first stage propose

to their second choices. Each m-type worker receiving offers chooses her favorite from the

group of new firms and the firm on her string, if any. The worker rejects all the rest and

again keeps the favorite in suspense. We proceed in the same manner. Those firms who are

rejected at the second stage propose to their next choices, and the m-type workers again

reject all but the best offer they have had so far.

Eventually, every m-type worker will have rejected a proposal, for as long as any worker

has not been proposed to there will be rejections and new offers4, but since no firm can

propose the same m-type worker more than once, every worker is sure to get a proposal in

due time. As soon as the last worker gets her offer, the “recruiting" is declared over, and

each m-type worker is now required to accept the firm on her string.

We asset that this set of matching is stable. Suppose firm pi and m-type worker aj are not

matched to each other but firm pi prefers aj to his current matching m-type worker aj′ . Then

pi must have proposed to aj at some stage (since the proposal is ordered by the preference

list) and subsequently been rejected in favor of some firm pi′ that aj liked better. It is clear

4Here we assume the number of firms is less than or equal to the number workers, and those workers
unmatched finally will be matched to themselves and assume their matching object is on the firm side.
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that aj must prefer her current matching firm pi′ and there is no instability/blocking pair.

Thus, each m-type firm-worker matching established on the first match is stable. Then

each firm pi’s matching object in the first match with quota qmi can be recovered as grouping

all matching objects of firm {pi,h}
qmi
h=1.

Part II To start the second match, we first check the left quota Q̃i for each firm. If the left

quota is zero for firm pi, then firm pi and its matching workers will quit the matching market

and get its stable matching object. Otherwise, the left firm will continue to participate in

the second match.

In the second match, preferences from firms to workers are un-categorized. Based on line

19 in Algorithm 7, all types of workers will be ranked to fill the left quota. Thus, it reduces to

the problem in part I, and the result matching in the second match is also stable. What is left

to prove is that the overall double matching algorithm can provide stable matching. In the

second match, each firm proposes to workers in his left concatenate ordered preference list,

and all previous workers not in the second match preference list have already been matched

or rejected. So it cannot form a blocking pair between the firm pi with leftover workers.

4.9.6 MMTS Regret Upper Bound

4.9.6.1 Regret Decomposition

In this part, we provide the road map of the regret decomposition and key steps to prove

Theorem 4.6.2. First, we define the history for firm pi up to time t of type m as Hm
i,t :=

{Am
i,1,y

m
i,Am

i,1
(1),Am

i,2,y
m
i,Am

i,2
(2), ...,Am

i,t−1,y
m
i,Am

i,t−1
(t−1)}, composed by actions (matched work-

ers) and rewards, where Am
i,t := um

t (pi) is a set of workers (based on quota requirement qmi

and Qi) belong to m-type which is matched with firm pi at time t, ym
i,Am

i,t−1
(t−1) are realized

rewards when firm pi matched with m− type workers Am
i,t. Define H̃i,t := {H1

i,t, H
2
i,t, ..., H

M
i,t }

as the aggregated interaction history between firm pi and all types of workers up to time t.
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Next, we define the good event for firm pi when matching with m− type worker at time t

and the true mean Matching Score falls in the uncertainty set as Em
i,t = {µm

i,Am
i,t
∈ Fm

i,t}, where

µm
i,Am

i,t
is the true mean reward vector of actually pulled arms (matched with m−type workers)

at time t for firm pi, and Fm
i,t is the uncertainty set for m − type worker at time t for firm

pi. Similarly, the good event for firm pi when matching with all types of workers at time t is

Ei,t =
⋂M

m=1 E
m
i,t, over all firms Et =

⋂N
i=1 Ei,t. And the corresponding bad event is defined as

E
m

i,t, Ei,t, Et respectively. That represents the true mean vector/tensor reward of the pulled

arms is not in the uncertainty set.

Lemma 4.3. Fix any sequence {F̃i,t : i ∈ [N ], t ∈ N}, where F̃i,t ⊂ F is measurable with

respect to σ(H̃i,t). Then for any T ∈ N, with probability 1,

R(T ) ≤ E
T∑
t=1

[ N∑
i=1

M∑
m=1

W̃m
i,Fm

i,t
(Am

i,t) + C1(Et)

]
(4.10)

where W̃m
i,F̃m

i,t

(·) =
∑

amj ∈Am
i,t
wm

i,F̃m
i,t

(amj ) represents the sum of the element-wise value of uncer-

tainty width at m− type worker amj . The uncertainty width wm
i,F̃m

i,t

(amj ) = sup
µ̄m
i ,µm

i
∈F̃m

i,t

(µ̄m
i (a

m
j )−

µm
i
(amj )) is a worst-case measure of the uncertain about the mean reward of m− type worker

amj . Here C is a constant less than 1.

Proof. The key step of regret decomposition is to split the instantaneous regret by firms,

types, and quotas. Then we categorize regret by the happening of good events and bad

events. The good events’ regret is measured by the uncertainty width, and the bad events’

regret is measured by the probability of happening it.

To reduce notation, define element-wise upper and lower bounds Um
i,t(a) = sup{µm

i (a) :

µm
i ∈ Fm

i,t, a ∈ Km} and Lm
i,t(a) = inf{µm

i (a) : µm
i ∈ Fm

i,t, a ∈ Km}, where µm
i is the mean

reward function µm
i ∈ Fm

i,t : R 7→ R,∀i ∈ [N ], ∀m ∈ [M ]. Whenever µm
i,Ãm

i

∈ Fm
i,t, the bounds

Lm
i,t(a) ≤ µm

i,Ãm
i

(a) ≤ Um
i,t(a) hold for all types of workers. Here we define Am

i,t = um
i (t) as the

matched m − type workers for firm pi at time t and Am,∗
i,t = um

i (t) as the firm pi’s optimal
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stable matching result of m− type workers at time t. Since the firm-optimal stable matching

result is fixed, given both sides’ preferences, we can omit time t here. The firm-optimal

stable matching result set is also denoted as Am,∗
i = Am,∗

i,t .

As for type-m workers’ matching for the firm pi at time t, the instantaneous regret

with a given instance θ can be implied as follows, here for simplicity, we omit the instance

conditional notation

Imi,t = µm
i (A

m,∗
i )− µm

i (Am
i,t) ≤

∑
a∈Am,∗

i

Um
i,t(a)−

∑
a∈Am

i,t

Lm
i,t(a) + C1(µm

i,Ãi
/∈ Fm

i,t)

= Ũm
i,t(A

m,∗
i )− L̃m

i,t(Am
i,t) + C1(µm

i,Ãi
/∈ Fm

i,t)

= W̃i,Fm
i,t
(Am

i,t) + [Ũm
i,t(A

m,∗
i )− Ũm

i,t(Am
i,t)] + C1(µm

i,Ãi
/∈ Fm

i,t),

(4.11)

where C ≤ 1 is a constant, and we let Ũm
i,t(·) =

∑
a U

m
i,t(a) and W̃i,Fm

i,t
(·) =

∑
a w

m
i,Ft

(a)

represent the sum of the element-wise value of Um
i,t(·), wm

i,Fi,t
(·), respectively. Define the good

event for firm pi, matching with m − type worker at time t is Em
i,t = {µm

i,Ãi
∈ Fm

i,t}, over all

types Ei,t =
⋂M

m=1 E
m
i,t, over all firms Et =

⋂N
i=1Ei,t. And the corresponding bad event is

defined as E
m

i,t, Ei,t, Et respectively.

Now consider Eq. (4.10), summing over the previous equation over time t, firms pi, and

workers’ type m, we get

R(T ) ≤ E
N∑
i=1

T∑
t=1

M∑
m=1

[W̃i,Fm
i,t
(Am

i,t) + C1(Et)] +
N∑
i=1

EMi,T

= E
T∑
t=1

[C1(Et) +
N∑
i=1

M∑
m=1

W̃i,Fm
i,t
(Am

i,t)] +
N∑
i=1

EMi,T

(4.12)

where Mi,T =
∑T

t=1

∑M
m=1[Ũ

m
i,t(A

m,∗
i ) − Ũm

i,t(Am
i,t)]. Now by the definition of TS, Pm(Am

i,t ∈

·|Hm
i,t) = Pm(Am,∗

i ∈ ·|Hm
i,t) for all types, where Pm(·|Hm

i,t) represents this probability is

conditional on history Hm
i,t and the selected action (worker) belongs in m-type workers for

firm pi. That is Am
i,t and Am,∗

i within type-m is identically distributed under the posterior.
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Besides, since the confidence set Fm
i,t is σ(Hm

i,t)-measurable, so is the induced upper confidence

bound Um
i,t(·). This implies Em[U

m
i,t(Am

i,t)|Hm
t ] = Em[U

m
i,t(A

m,∗
i )|Hm

t ], and there for E[Mi,T ] = 0

and
∑N

i=1 EMi,T = 0. Then we can obtain the desired result.

4.9.6.2 Uncertainty Widths

In this part, we provide the upper bound of the accumulated uncertainty widths over all

types of workers and all firms, which is the first part in Eq. (4.10).

Lemma 4.4. If (βm
i,j,t ≥ 0|t ∈ N) is a non-decreasing sequence and Fm

i,j,t := {µm
i,j ∈ Fm

i,j :∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
1
≤
√

βm
i,j,t}, then with probability 1,

T∑
t=1

N∑
i=1

M∑
m=1

W̃m
i,Fm

i,t
(Am

i,t) ≤ 8Q log(QT )
√

KmaxT .

The proof of this lemma builds upon Lemma 4.5, which establishes the number of instances

where the widths of uncertainty sets for a chosen set of m− type workers Am
i,t greater than

ϵ. We show that this number is determined by the Eluder dimension (RV14).

Proof. By Lemma 4.3, the instantaneous regret It over all firms and all types, can be de-

composed by types and by firms and shown as

It =
M∑

m=1

Imt =
N∑
i=1

M∑
m=1

Imi,t

≤
N∑
i=1

M∑
m=1

W̃i,Fm
i,t
(Am

i,t), if Et holds.

≤ 2
∑

i∈[N ],m∈[M ],amj ∈Km

√
log(

∑N
i=1QiT )

nm
i,j(t)

, with prob 1− δ

(4.13)

where the first inequality is based on Lemma 4.3 and if Et holds for t ∈ N,m ∈ M, i ∈ [N ],

nm
i,j(t) is the number of times that the pair (pi, amj ) has been matched at the start of round t.
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The second inequality is constructed from a union concentration inequality based on Lemma

4.2, and we set δ = 2/
∑

i=1QiT . We denote zmi,j(t) = 1√
nm
i,j(t)

as the size of the scaled

confidence set (without the log factor) for the pair (pi, a
m
j ) at the time t.

At each time step t, let’s consider the list consisting of zmi,j(t) and reorder the overall list

consisting of concatenating all those scaled confidence sets over all rounds and all types in

decreasing order. Then we obtain a list z̃1 ≥ z̃2 ≥ ...,≥ z̃L, where L =
∑T

t=1

∑N
i=1Qi =

T
∑N

i=1Qi. We reorganize the Eq. (4.13) to get

T∑
t=1

It ≤
T∑
t=1

M∑
m=1

N∑
i=1

W̃i,Fm
i,t
(Am

i,t) ≤ 2 log(
N∑
i=1

QiT )
L∑
l=1

z̃l. (4.14)

By Lemma 4.5, the number of rounds that a pair of a firm and any m − type worker can

have it confidence set have size at least z̃l is upper bounded by (1 + 4
z̃2l
)Km when we set

ϵ = z̃l and know βm
i,j,t ≤ 1. Thus, the total number of times that any confidence set can

have size at least z̃l is upper bounded by
(
1 + 4

z̃2l

)∑N
i=1

∑M
m=1 |Am

i,t|Km. To determine the

minimum condition for z̃l, which is equivalent to determine the maximum of l, we have

l ≤
(
1 + 4

z̃2l

)∑N
i=1

∑M
m=1 |Am

i,t|Km. So we claim that

z̃l ≤ min

(
1,

2√
l∑N

i=1

∑M
m=1 |Am

i,t|Km
− 1

)
≤ min

(
1,

2√
l∑N

i=1 QiKmax
− 1

)
, (4.15)

where the second inequality above is by
∑N

i=1

∑M
m=1 |Am

i,t|Km ≤ Kmax

∑N
i=1

∑M
m=1 |Am

i,t| ≤

Kmax

∑N
i=1Qi = QKmax and Kmax = max{K1, ..., KM}, Q =

∑N
i=1Qi. Putting all these
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together, we have

2 log(
N∑
i=1

QiT )
L∑
l=1

z̃l ≤ 2 log(QT )
L∑
l=1

min(1,
2√
l

QKmax
− 1

)

= 4 log(QT )

QT∑
l=1

1√
l

QKmax
− 1

≤ 8 log(QT )
√
QKmax

√
QT

(4.16)

where the last inequality is by intergral inequality

QT∑
l=1

1√
l

QKmax
− 1
≤
√

QKmax

QT∑
l=1

1√
l
≤
√

QKmax

∫ QT

x=0

1√
x
dx = 2

√
QKmax

√
QT.

Based on Eq. (4.14) and the above result, we can get the regret

T∑
t=1

It ≤ 8Q log(QT )
√

KmaxT , (4.17)

if Et holds.

Lemma 4.5. If (βm
i,j,t ≥ 0|t ∈ N) is a nondecreasing sequence for i ∈ [N ], amj ∈ Km,m ∈ [M ]

and Fm
i,j,t := {µm

i,j ∈ Fm
i,j :

∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
1
≤
√

βm
i,j,t}, for all T ∈ N and ϵ > 0, then

T∑
t=1

M∑
m=1

∑
amj ∈Am

i,t

1
(
wm

i,Fm
i,t
(amj ) > ϵ

)
≤
(4β̃i,T

ϵ2
+ 1
) M∑
m=1

|Am
i,t|Km.

Here µ̂m,LS
i,j,t =

∑t
s=1 1(a

m
j ∈Am

i,s)y
m
i,j(s)

nm
i,j(t)

is the estimated average reward for m − type worker amj

from the view point of firm pi at time t, and nm
i,j(t) is the number of matched times up to

time t of firm pi with m− type worker amj . Besides, we define β̃i,T = max
amj ∈Km,m∈[M ]

βm
i,j,T as the

maximum uncertainty bound over all types of workers at time T for firm pi.

The proof of this result is based on techniques from (RV13; RV14). This result demonstrates
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that the upper bound of the number of times the widths of uncertainty sets exceeds ϵ is

dependent on the error O(ϵ−2) and linearly proportional to the product of the number of

m− type worker and the type quota size qmi .

Proof. Based on the Proposition 3 from (RV13), we can use the eluder dimension dimE(Fm
i , ϵ)

to bound the number of times the widths of confidence intervals for a selection of set of

m− type workers Am
i,t greater than ϵ.

T∑
t=1

M∑
m=1

∑
amj ∈Am

i,t

1

(
wm

i,Fm
i,t
(amj ) > ϵ

)
≤

M∑
m=1

∑
amj ∈Am

i,t

(
4βm

i,j,T

ϵ2
+ 1

)
dimE(Fm

i , ϵ)

≤

(4 max
amj ∈Km,m∈[M ]

βm
i,j,T

ϵ2
+ 1

)
M∑

m=1

|Am
i,t|dimE(Fm

i , ϵ),

(4.18)

where the eluder dimension of a multi-arm bandit problem is the number of arms, we get

T∑
t=1

M∑
m=1

∑
amj ∈Am

i,t

1

(
wm

i,Ft
(amj ) > ϵ

)
≤

(
4β̃i,T

ϵ2
+ 1

)
M∑

m=1

|Am
i,t|Km ≤

(
4β̃i,T

ϵ2
+ 1

)
QiKmax

(4.19)

where β̃i,T = max
amj ∈Km,m∈[M ]

βm
i,j,T . Besides, we know that Qi =

∑M
m=1 |Am

i,t| and define Kmax =

max
m∈[M ]

Km, so we can get the second inequality.

4.9.6.3 Bad Event Upper Bound

In this part, we provide an upper bound of the second part of Eq. (4.10). The regret caused

by the happening of the bad event at each time step is quantified by the following lemma.

Lemma 4.6. If Fm
i,j,t := {µm

i,j ∈ Fm
i,j :

∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
1
≤
√
βm
i,j,t} holds with probability

1 − δ, then the bad event Et happening’s probability is upper bounded by E1(Et) ≤ NKδ.

In particular, if δ = 1/QT , the accumulated bad events’ probability is upper bounded by∑T
t=1 E1(Et) ≤ NK/Q.
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To bound the probability of bad events, we use a union bound to obtain the desired result.

Specifically, if Qi = 1, which means each firm has a total quota of 1 and only considers one

type of worker, then
∑T

t=1 E1(Et) ≤ NK/(N × 1) = K. This shows that each firm needs to

explore a single type of worker, and the worst total regret is less than K. If Qi = 1,M = 1,

which means all firms have the same recruiting requirements, the result reduces to the general

competitive matching scenario, and the worst regret is the number of workers of type KM

in the market.

Proof. If Et does not hold, the probability of the true Matching Score is not in the confidence

interval we constructed is upper bounded by

E1(Et) = P(Et) = P

(( ⋂
i∈[N ]

⋂
m∈[M ]

⋂
amj ∈Km

{µm
i,j ∈ Fm

i,j,t}
)c)

= P
( ⋃

i∈[N ]

⋃
amj ∈Km

⋃
m∈[M ]

{µm
i,j /∈ Fm

i,j,t}
)

= P
( ⋃

i∈[N ]

⋃
amj ∈Km

⋃
m∈[M ]

{∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
2,Et

≥
√

βm
i,j,t

})

= P
( ⋃

i∈[N ]

⋃
amj ∈Km

⋃
m∈[M ]

{∥∥∥µm
i,j − µ̂m,LS

i,j,t

∥∥∥
1
≥

√
log(2

δ
)

nm
i,j(t)

})

≤
∑
i∈[N ]

∑
amj ∈Km

∑
m∈[M ]

P
(∥∥∥µm

i,j − µ̂m,LS
i,j,t

∥∥∥
1
≥

√
log(2

δ
)

nm
i,j(t)

)

(4.20)

where the third equality is by De-Morgan’s Law of sets. In the last inequality, we use the

union bound to control the probability. Since each µ̂m,LS
i,j −µm

i,j is a mean zero and 1
2nm

i,j
-sub-

Gaussian random variable, based on Lemma 4.2, have P(
∥∥∥µm

i,j − µ̂m,LS
i,j,t

∥∥∥
1
≥
√

log( 2
δ
)

nm
i,j(t)

) ≤ δ.

The overall bad event’s probability’s upper bound is

P(Et) ≤ NKδ (4.21)
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Based on our confidence width is less than 1, so C = 1, ∀i ∈ [N ]. The expected regret from

this bad event is not in the confidence interval at most

NKδ · CT ≤ NK
1∑N

i=1QiT
T =

NK

Q
(4.22)

This part’s regret is negligible compared with the regret from Lemma 4.4. In particular,

if there is only one type and each firm has only one position to be filled. Thus, Q = N ,

the bad event’s upper bounded probability will shrink to K, the number of workers to be

explored.

In this part, we provide the proof of MMTS’s Bayesian regret upper bound.

4.9.7 Proof of Theorem 4.2

Theorem 4.4. When all firms follow the MMTS algorithm, the platform will incur the

Bayesian total expected regret

R(T ) ≤ 8 log(QT )
√

QKmax

√
QT +NK/Q (4.23)

where Kmax = max{K1, ..., KM}, K =
∑M

m=1 Km .

Proof. We decompose the Bayesian Social Welfare Gap for all firms by

R(T ) = Eθ∈Θ

[ N∑
i=1

Ri(T, θ)

]
= Eθ∈Θ

[ N∑
i=1

M∑
m=1

T∑
t=1

µi,um
i (t)(t)−

N∑
i=1

M∑
m=1

T∑
t=1

µi,um
i
(t)|θ

]

=
N∑
i=1

T∑
t=1

Eθ∈Θ

[ M∑
m=1

(µi,um
i (t)(t)− µi,um

i
(t))|θ

]

= Eθ∈Θ

[ T∑
t=1

N∑
i=1

M∑
m=1

Imi,t|θ
]

= Eθ∈Θ

[ T∑
t=1

It|θ
]

(4.24)
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where we define Imi,t = µm
i,θ(A

m,∗
i ) − µm

i,θ(Am
i,t) and It =

∑N
i=1

∑M
m=1 Imi,t. Here Am,∗

i is the

optimal matched workers for firm pi of type m and Am
i,t is the actual matched workers for

firm pi of type m at time t under the instance θ.

Based Lemma 4.3, R(T ) is upper bounded by E
∑T

t=1

[
C1(Et)+

∑N
i=1

∑M
m=1 W̃i,Fm

i,t
(Am

i,t)
]
.

The first term, the sum of the bad event probability E
∑T

t=1C1(Et) = C
∑T

t=1 P(Et), which

is upper bounded by NK/Q based on Lemma 4.6 and C ≤ 1. The second term, the sum of

confidence widths is upper bounded by 8Q log(QT )
√
TKmax based on Lemma 4.4. Thus the

Bayesian regret is upper bounded by 8Q log(QT )
√
TKmax +NK/Q.

4.9.8 Incentive-Compatibility

In this section, we discuss the incentive-compatibility property of MMTS. That is, if one firm

does not follow the MMTS when all other firms submit their MMTS preferences, that firm

cannot benefit (matched with a better worker than his optimal stable matching worker) over

a sublinear order. As we know, (DF81) discussed the Machiavelli firm could not benefit from

incorrectly stating their true preference when there exists a unique stable matching. However,

when one side’s preferences are unknown and need to be learned through data, this result

no longer holds. Thus, the maximum benefits that can be gained by the Machiavelli firm are

under-explored in the setting of learning in matching. (LMJ20) discussed the benefits that

can be obtained by Machiavelli firm when other firms follow the centralized-UCB algorithm

with the problem setting of one type of worker and quota equal one in the market.

We now show in CMCPR, when all firms except one pi submit their MMTS-based pref-

erences to the matching platform, the firm pi has an incentive also to submit preferences

based on their sampling rankings in a long horizon, so long as the matching result do not

have multiple stable solutions. Now we establish the following lemma, which is an upper

bound of the expected number of pulls that a firm pi can match with a m-type worker that

is better than their optimal m-type workers, regardless of what preferences they submit to
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the platform.

Let’s use Hm
i,l to define the achievable sub-matching set of um when all firms follow the

MMTS, which represents firm pi and m − type worker aml is matched such that aml ∈ um
i .

Let Υum(T ) be the number of times sub-matching um is played by time t. We also provide

the blocking triplet in a matching definition as follows.

Definition 4.6. (Blocking triplet) A blocking triplet (pi, ak, ak′) for a matching u is that

there must exist a firm pi and worker aj that they both prefer to match with each other than

their current match. That is, if ak′ ∈ ui, µi,k′ < µi,k and worker ak is either unmatched or

πk,i < πk,u−1(k).

The following lemma presents the upper bound of the number of matching times of pi

and aml by time T , where aml is a super optimal m − type worker (preferred than all stable

optimal m− type workers under true preferences), when all firms follow the MMTS.

Lemma 4.7. Let Υm
i,l(T ) be the number of times a firm pi matched with a m-type worker

such that the mean reward of aml for firm pi is greater than pi’s optimal match um
i , which is

µm
i,aml

> max
amj ∈um

i

µm
i,j. Then the expected number of matches between pi and aml is upper bounded

by

E[Υm
i,l(T )] ≤ min

Sm∈C(Hm
i,l)

∑
(pj ,amk ,am

k′ )∈S
m

(
Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)

)
,

where um
i,min = argmin

amk ∈um
j

µm
i,k, and Cm

i,j,k′ = O((log(T ))−1/3).

Then we provide the benefit (lower bound of the regret) of Machiavelli firm pi can gain by

not following the MMTS from matching with m-type workers. Let’s define the super worker

reward gap as ∆
m

i,l = max
amj ∈um

i

µm
i,j − µm

i,l, where aml /∈ um
i .

Theorem 4.5. Suppose all firms other than firm pi submit preferences according to the

MMTS to the centralized platform. Then the following upper bound on firm pi’s optimal
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regret for m-type workers holds:

Rm
i (T, θ) ≥

∑
l:∆

m
i,l<0

∆
m

i,l

[
min

Sm∈C(Hm
i,l)

∑
(pj ,amk ,am

k′ )∈S
m

(
Cm

i,j,k′ +
log(T )

d(µj,um
i,min

, µj,k′)

)]
(4.25)

where um
i,min = argmin

amk ∈um
j

µm
i,k, and Cm

i,j,k′ = O((log(T ))−1/3).

This result can be directly derived from Lemma 4.1. Theorem 4.3 demonstrates that

there is no sequence of preferences that a firm can submit to the centralized platform that

would result in negative optimal regret greater than O(log T ) in magnitude within type

m. When considering multiple types together for firm pi, this magnitude remains O(log T )

in total. Theorem 4.3 confirms that, when there is a unique stable matching in type m,

firms cannot gain significant advantage in terms of firm-optimal stable regret by submitting

preferences other than those generated by the MMTS algorithm. An example is provided in

Section 4.7.1 to illustrate this incentive compatibility property. Figure 4.3(a) illustrates the

total regret, with solid lines representing the aggregate regret over all types for each firm,

and dashed lines representing the regret for each type. It is observed that the type 1 regret

of firm 1 is negative, owing to the inaccuracies in the rankings submitted by both firm 1 and

firm 2. A detailed analysis of this negative regret pattern is given in Section 4.9.11.1.

4.9.8.1 Proof of Incentive Compatibility

Lemma 4.8. Let Υm
i,l(T ) be the number of times a firm pi matched with a m-type worker

such that the mean reward of aml for firm pi is greater than pi’s optimal match um
i , which is

µm
i,aml

> max
amj ∈um

i

µm
i,j. Then

E[Υm
i,l(T )] ≤ min

Sm∈C(Hm
i,l)

∑
(pj ,amk ,am

k′ )∈S
m

(
Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)

)
(4.26)
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where um
i,min = argmin

amk ∈um
j

µm
i,k, Cm

i,j,k′ = O((log(T ))−1/3).

Proof. We claim that if firm pi is matched with a super optimal m− type worker aml in any

round, the matching um must be unstable according to true preferences from both sides. We

then state that there must exist a m-type blocking triplet (pj, a
m
k , a

m
k′) where pj ̸= pi.

We prove it by contradiction. Suppose all blocking triplets in matching u only involve

firm pi within m− type worker. By Theorem 4.2 in (AR95), we can start from any matching

u to a stable matching by iteratively satisfying blocking pairs in a gender consistent order,

which means that we can provide a well-defined order to determine which blocking triplet

should be satisfied (matched) first within preferences from firm pi
5. Doing so, firm pi can

never get a worse match than aml since a blocking pair will let firm pi match with a better

m− type worker than aml , or become unmatched as the algorithm proceeds, so the matching

will remain unstable. The matching will continue, which is a contradiction.

Hence there must exist a firm pj ̸= pi such that pj is part of a blocking triplet in u when

firm pi is matched with m− type worker aml under the matching u. In particular, based on

the Theorem 9 (Dubins-Freedman Theorem), firm pj must submit its TS preference.

Let Lm
j,k,k′(T ) be the number of times firm pj matched with m − type worker amk′ when

the triplet (pj, amk , amk′) is blocking the matching provided by the centralized platform. Then

by the definition ∑
um∈Bm

j,k,k′

Υum(T ) = Lm
j,k,k′(T ) (4.27)

By the definition of a blocking triplet, we know that if pj is matched with m−type worker amk′

when the blocking triplet (pj, a
m
k , a

m
k′) is blocking, the TS sample must have a higher mean

reward for amk′ than amk . In other words, we need to bound the expected number of times that

the TS mean reward for m − type worker amk′ is greater than amk . From (KHN15), we know

that the number of times that (pj, a
m
k , a

m
k′) forms a blocking pair in Thompson sampling, is

5This gender consistent requirement is to satisfy a blocking pair (pj , amk ) and those blocking pairs can be
ordered before we break their current matches if any, and then match pj and amk to get a new matching.
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upper bounded by

ELm
j,k,k′ ≤ Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)
(4.28)

where um
i,min = argmin

amk ∈um
j

µm
i,k and Cm

i,j,k′ = O((log(T ))−1/3). The d(x, y) = x log(x/y) + (1 −

x) log((1−x)/(1− y)) is the KL divergence between two Bernoulli distributions with expec-

tation x and y.

The expected number of times Υm
i,l(T ) a firm pi matched with a m − type worker such

that the mean reward of aml for firm pi is greater than pi’s optimal match um
i , which is

equivalent to the expected number of times viat the achievable sub-matching set Υum(T )

where um ∈ Hm
i,l. So the result then follows from the identity

E[Υm
i,l(T )] =

∑
um∈Hm

i,l

EΥum(T ) (4.29)

Given a set Hm
i,l of matchings, we say a set Sm of triplets (pj, a

m
k , a

m
k′) is a cover of Hm

i,l if

⋃
(pj ,amk ,am

k′ )∈S
m

Bm
j,k,k′ ⊇ Hm

i,l (4.30)
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Let C(Hm
i,l) denote the set of covers of Hm

i,l . Then

E[Υm
i,l(T )] = E

∑
um∈Hm

i,l

Υum(T )

≤ E min
Sm∈C(Hm

i,l)

∑
(pj ,amk ,am

k′ )∈S
m

Υum(T )

= min
Sm∈C(Hm

i,l)
E

∑
(pj ,amk ,am

k′ )∈S
m

Υum(T )

= min
Sm∈C(Hm

i,l)

∑
(pj ,amk ,am

k′ )∈S
m

ELm
j,k,k′(T )

≤ min
Sm∈C(Hm

i,l)

∑
(pj ,amk ,am

k′ )∈S
m

(
Cm

i,j,k′(T ) +
log(T )

d(µj,k, µj,k′)

)

≤ min
Sm∈C(Hm

i,l)

∑
(pj ,amk ,am

k′ )∈S
m

(
Cm

i,j,k′(T ) +
log(T )

d(µj,um
i,min

, µj,k′)

)

(4.31)

where the first inequality is from the property of cover and we select the minimum cover

Sm from C(Hm
i,l). And summation in the third line is equivalent to

∑
um∈Bm

j,k,k′
. Based on

Eq. (4.27), the third equality is obvious. From (KHN15), we know the expected number of

times of matching with the sub-optimal m−type worker is upper bounded by Eq. (4.28).

4.9.9 Firm DA Algorithm with type and without type consideration

In this section, we present the DA algorithm with type consideration and without type

consideration.
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Algorithm 8: Firm-Proposing DA Algorithm with Type Consideration.
Input : Type. firms set N , workers set Km,∀m ∈ [M ]; firms to workers’

preferences rmi ,∀i ∈ [N ],∀m ∈ [M ], workers to firms’ preferences
πm,∀m ∈ [M ]; firms’ type-specific quota qmi ,∀i ∈ [N ],∀m ∈ [M ], firms’
total quota Qi,∀i ∈ [N ].

Initialize: Empty set S = {}, empty sets Sm = ∅,∀m ∈ [M ].
1 for m = 1, ...,M do
2 while ∃ A firm p who is not fully filled with the quota qm and has not contacted

every m− type worker do
3 Let a be the highest-ranking worker in firm p’s preference, to whom firm p

has not yet contacted.
4 Now firm p contacts the worker a.
5 if Worker a is free then
6 (p, a) become matched (add (p, a) to Sm).
7 else
8 Worker a is matched to firm p′ (add (p′, a) to Sm).
9 if Worker a prefers firm p′ to firm p then

10 firm p filled number minus 1 (remove (p, a) from Sm).
11 else
12 Worker a prefers firm p to firm p′.
13 firm p′ filled number minus 1 (remove (p′, a) from Sm).
14 (p, a) are paired (add (p, a) to Sm).
15 Update: Add Sm to S.

Output : Matching result S.
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Algorithm 9: Firm-Proposing DA Algorithm without Type Consideration (GS62).
Input : Worker Types, firms set N , workers set Km,∀m ∈ [M ]; firms to workers’

preferences rmi ,∀i ∈ [N ],∀m ∈ [M ], workers to firms’ preferences

πm,∀m ∈ [M ]; firms’ type-specific quota qmi ,∀i ∈ [N ],∀m ∈ [M ], firms’

total quota Qi,∀i ∈ [N ].

Initialize: Empty set S.

1 while ∃ A firm p who is not fully filled with the quota Q̃ and has not contacted

every worker do

2 Let a be the highest-ranking worker in firm p’s preference over all types of

workers, to whom firm p has not yet contacted.

3 Now firm p contacts the worker a.

4 if Worker a is free then

5 (p, a) become matched (add (p, a) to S).

6 else

7 Worker a is matched to firm p′ (add (p′, a) to S).

8 if Worker a prefers firm p′ to firm p then

9 firm p filled number minus 1 (remove (p, a) from S).

10 else

11 Worker a prefers firm p to firm p′.

12 firm p′ filled number minus 1 (remove (p′, a) from S).

13 (p, a) are paired (add (p, a) to S).
Output : Matching result S.

4.9.10 Experimental Details

In this section, we provide more details about the analysis of the negative regret, parameters,

and large market.
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Table 4.1: True Matching Scores of two types of workers from two firms.
Mean ID Type 1 2 3 4 5

µ1

1 0.406 0.956 0.738 0.970 0.695
2 0.932 0.241 0.040 0.657 0.289

µ2

1 0.682 0.909 0.823 0.204 0.218
2 0.303 0.849 0.131 0.886 0.428

4.9.11 Negative Regret Phenomenon

The occurrence of negative regret in multi-agent matching schemes presents an interesting

phenomenon, contrasting the single-agent bandit problem wherein negative regret is non-

existent.

In the context of the single-agent bandit problem, it is known that the best arm can

be pulled, resulting in instantaneous regret that can attain zero but not take negative val-

ues. Conversely, in the multi-agent competing bandit problem, the oracle firm-optimal arm

is determined by the true expected reward/utility, assuming knowledge of the true param-

eter µ∗. However, due to the imprecise estimation of rankings/parameters at each time

step, an exact match with the oracle policy cannot be guaranteed. This discrepancy leads

to varied outcomes for firms in terms of benefits (negative instantaneous regret) or losses

(positive instantaneous regret) from the matching process. Instances arise where firms may

strategically submit inaccurate rankings to exploit these matches, a phenomenon termed

machiavelli/strategic behaviors. Nevertheless, over the long term, such strategic actions do

not yield utility gains in accordance with our policy.

Furthermore, it is crucial to note that our matching solution remains a stable matching

at each time step. This means that the stable matching remains independent of the negative

regret generated by our policy, as stable matching is a short-term discrete metric, while

regret serves as a long-term evaluation continuous metric.
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Figure 4.5: Posterior distribution of learning parameters for two firms in Example 1.

4.9.11.1 Learning

In this section, we present the learning parameters of (α,β) of Example 1. Besides, we

analyze which kind of pattern causes the non-optimal stable matching of Examples 1 and 2.

Findings from Example 1.

We show the posterior distribution of (α,β) in Figure 4.5. The first and second row

represents the posterior distributions of firm 1 and firm 2 over two types of workers after T

rounds interaction. The first and second columns in Figure 4.5 represent two firms’ posterior

distributions over type I and type II workers.

We find that the posterior distributions of the workers that firms most frequently match

with exhibit a relatively sharp shape, indicating that firms can easily construct uncertainty

sets over these workers. However, in some instances, the distributions are relatively flat,

indicating a lack of exploration. This can be attributed to two possible reasons: (1) the
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Table 4.2: Estimated mean reward and variance of each type of worker in view of two firms.
The bold font is to represent the firm’s optimal stable matching. † represents the difference
between the estimated mean and the true mean less than 1%. ‡ represents the difference is
less than 1.5%.

Mean & Var Type 1 2 3 4 5

µ̂1

1 (DS) 0.5330.015 0.943‡
0.000 0.9170.035 0.968†

0.000 0.682‡0.003
2 (SDE) 0.9500.000 0.2230.000 0.041†

0.000 0.5000.208 0.303‡
0.000

µ̂2

1 (DS) 0.683†
0.000 0.5000.035 0.823†

0.000 0.2620.037 0.210†
0.000

2 (SDE) 0.0830.035 0.851†
0.000 0.124†0.001 0.887†

0.000 0.415‡0.001

workers in question are not optimal stable matches for the firms, and are thus abandoned

early on in the matching process, such as firm 1’s DS 1 and DS 5, or (2) the workers are

optimal, but are erroneously ranked by the firms and subsequently blocked, such as firm 2’s

SDE 3. To further illustrate this, we present the posterior mean and variance in Table 4.2.

The optimal stable matches for each firm are represented in bold, and the variance of the

distributions is denoted by small font. Additionally, we use the dagger symbol to indicate

when the difference between the posterior mean reward and true Matching Score is less than

1% and 1.5%.

Pattern Analysis. We find that firm 1’s type I matching in Figure 4.3(a), achieves a

negative regret due to the high-frequency matching pattern of u1 = {[D4, D2, D5], [S1, S5]},

and u2 = {[D3, D1], [S4, S2, S3]}. That means firm 1 and firm 2 have a correct (stable)

matching in the first match ũ1 = {[D4, D2], [S1, S5]}, ũ2 = {[D3, D1], [S4, S2]}. In the second

match, they both need to compare worker D5 and worker S3, because all other workers are

matched with firms or have been proposed in the first match. In Table 4.1, we find that

two workers’ true mean rewards for firm 1 are µ1
1,5 = 0.695, µ2

1,3 = 0.040 and two workers’

estimated rewards for firm 1 are µ̂1
1,5 = 0.682, µ̂2

1,3 = 0.041. These two workers are pretty

different and can be easily detected. So firm 1 has a high chance of ranking them correctly.

However, two workers’ true rewards for firm 2 are µ1
2,5 = 0.218, µ2

2,3 = 0.131, and two workers’

estimated rewards for firm 2 are µ̂1
1,5 = 0.210, µ̂2

1,3 = 0.124. These workers are close to each
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other, where these two posteriors’ distributions overlap a lot and can be checked in Figure

4.5. So firm 2 has a non-negligible probability to incorrectly rank S3 ahead of D5. Therefore,

based on the true preference, firm 2 could match with S3 and firm 1 matches with D5 with a

non-negligible probability rather than the optimal stable matching (p1, S3) and (p2, D5) by

D5 preferring firm 2.

The above pattern links to Section 4.5.2, incapable exploration, and Section 4.6.3, in-

centive compatibility. Due to the insufficient exploration of S3 and D5, firm 2 may rank

them incorrectly to get a match with S3 rather than optimal D3 and the regret gap is

µ1
2,3 − µ2

2,3 = 0.823 − 0.131 = 0.692, which is a positive instantaneous regret. Due to the

incorrect ranking from firm 2, firm 1 gets a final match with D5 rather than optimal S3, and

suffers a regret gap µ2
1,3 − µ1

1,5 = 0.040− 0.695 = −0.655, which is a negative instantaneous

regret. Thus firm 1 benefits from firm 2’s incorrect ranking and can achieve a total negative

regret, as shown in Figure 4.3(a).

Findings from Example 2. In our analysis of the non-optimal stable matching in

Example 2, we observed that both firms incurred positive total regret, shown in Figure

4.3(b). We find that the quota setting resulted in all workers of type II being assigned to

firms in the first match. As a result, in the second match, the ranking submitted by firm 1

to the centralized platform did not affect firm 2’s matching result for type II workers. This

can be thought of as an analogy where firms are schools and workers are students. In the

second stage of the admission process, school 2 would not participate in the competition for

type II students, and its matching outcome would not be affected by the strategic behavior

of other schools in the second stage, but rather by the strategic behavior of other schools in

the first stage.

4.9.11.2 Large markets

In this part, we provide two large market examples to demonstrate the robustness of our

algorithm. All preferences are randomly generated and all results are over 50 trials to take
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Figure 4.6: Left: 10 out of 100 randomly selected firms’ total regret in Examples 3. Right:
all firms’ total regret in Example 4.

the average.

Example 3. We consider a large market composed of many firms (N = 100) and many

workers (K1 = K2 = 300). Besides, we have Q1 = Q2 = 3, q11 = q12 = q12 = q22 = 1.

Example 4. We also consider a large market consisting of many workers, and each firm

has a large, specified quota and an unspecified type quota. In this setting, N = 10,M =

2, K1 = K2 = 500, Q1 = Q2 = 30, q11 = q12 = q12 = q22 = 10.

Results. In Figure 4.6(a), we randomly select 10 out of 100 to present firms’ total regret,

and all those firms suffer sublinear regret. In Figure 4.6(b), we also show all 10 firms’ total

regret. Comparing Examples 3 and 4, we find that firms’ regret in Example 3 is less than

firms’ regret from Example 4 because in Example 4, each firm has more quotas (30 versus 3),

which demonstrates our findings from Theorem 4.2. In addition, we find there is a sudden

exchange in Figure 4.6(a) nearby time t = 1500. We speculate this phenomenon is due to

the small gap between different workers and the shifting of the explored workers.
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CHAPTER 5

Conclusion

The field of AI has traditionally focused on the idea that intelligence lies solely within indi-

vidual agents, such as ChatGPT, and that these agents should be able to act independently

to show their intelligence without relying on human input. As a result, social complex as-

pects have often been overlooked when designing AI systems for use in social contexts. This

limited paradigm should not be the only approach used in the development of AI. Instead,

a more comprehensive approach is needed, in which AI agents are active, cooperative, and

competitive, and have a vested interest in contributing to the system. To achieve this, it is

important to incorporate economic and social principles into the design of AI systems and to

create a more interdisciplinary approach that involves economics science, statistics science,

and computer science.

In today’s two-sided matching platforms, preferences are often implicit and unknown to

the platform and two-sided agents involved, making it difficult for agents to match their

limited best resources with those on the other side of the market. Matching problems like

this arise due to the scarce resources in these markets, and agents must compete to match

their best scarce resources, making it essential to design an optimal policy to maximize long-

term interests. In the area of two-sided markets, preference estimation using statistical and

machine learning methods have gained increasing attention in recent years because of the

emergence of the large volume of data. Most of industrial-employed matching models are

static and one-time recommendation, without considering the competing property, contexts

shifting, existence of constraints, and incentive compatibility requirement. For instance,
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state-of-the-art (LMJ20) method solved when preferences are static and one side having

unknown preferences through statistical decision methods. However, it remains an open

question how to handle cases where contextual information is dynamically available and how

it affects the matching result over time. Another open question is how to address situa-

tions where agents’ preferences are mutually or co-expressed, which can lead to instability

(CKK19).

In my first project, we propose a new problem, dynamic matching problem, to make an

online matching decision with dynamic preferences due to contexts shifting of arms. We find

that the direct application of upper confidence bound - style estimators often fail in some

matching cases if no communication mechanism exists. The reason is that the exploration

collision of simultaneous pulling the same arm by multiple agents. We discover and explore

this special competing characteristic in the dynamic matching market, agents’ decisions

interfering each other, named “incapable exploration” in short given current state-of-the-art

methods. Given this competing characteristic, we design a dynamic matching algorithm. We

theoretically prove that it achieves an individual O(log(T )) regret. We provide the regret

bound analysis and show that the regret exhibits a quadratic relationship with the context

dimension, noise level, and the inverse of the minimum gap, while the number of agents and

decision horizon demonstrate a logarithmic correlation with the regret. In data analysis, we

further show the benefit of theoretical analysis in determining the exploration length if one

has no prior information about how many data points need to collect to design an optimal

policy and the robustness of our algorithm with variants of noise, number of agents, and

context shifting patterns and its application in the real online job market with LinkedIn text

data.

In my second project, we propose a new problem, called CMCPR. This problem focuses

on two-sided competing matching markets where agents have complementary preferences,

meaning that their preferences are assessed through sets and one side agents (e.g., companies)

have quota or headcount constraints. These complementary preferences are unknown in
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advance and need be learned from historical interactive data, and the existence of these

unknown preferences can lead to instability in the matching process. In CMCPR, preferences

are unknown, and decisions are data driven. To solve this problem, we propose a new

algorithm, called multi-agent multi-type Thompson sampling (MMTS), which formulates the

problem as a two-stage bandit learning framework. MMTS uses a combination of Thompson

sampling for exploration and a proposed double matching technique to achieve an individual

any-time valid stable matching outcome. In theory, we first show that MMTS is effective

and efficient, as it achieves stability at every matching step and provide the regret bound

analysis to show the regret exhibits a square root relationship with maximum number of

arms and decision horizon, while the number of quotas demonstrates a linear correlation

with the regret. In addition, we prove MMTS satisfies the incentive compatibility, which is

a desirable property of the mechanism where participants have a self-interested incentive to

reveal their true preferences.

The thesis explores the application and limitations of AI in social contexts, challenging the

traditional view that intelligence in AI systems solely relies on individual autonomous agents.

It advocates for a broader, interdisciplinary approach incorporating economics, statistics,

and computer science to enhance the design of AI systems. The research particularly focuses

on dynamic matching problems in two-sided markets, where agents compete over scarce

resources and preferences change over time due to shifting contexts. It introduces two novel

online matching algorithm that addresses issues arising from simultaneous actions by multiple

agents in such markets with constraints. Theoretical proofs demonstrate the algorithm’s

efficacy, providing a regret bound analysis showing dependencies on various factors. Practical

applications of this theory are tested using data from platforms like LinkedIn, underscoring

the importance of incorporating dynamic and competitive elements into AI system design

to better mimic and integrate into human economic and social structures.
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