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ABSTRACT OF THE DISSERTATION 

 

Optimization of optogenetic proteins and protein-focused deep learning algorithms 
 

by 

 

Marianne Catanho Halloran 

Doctor of Philosophy in Bioengineering 

 

University of California, San Diego, 2018 

 

Professor Todd Prentice Coleman, Chair  

 

Light-responsive proteins enable control of biological processes with 

unprecedented precision, holding great promise for clinical and industrial applications. 

Introducing these proteins into cultured cells or tissues of live animals allows investigation 

and control of various cellular and organism functions, from neuronal activity, to 

intracellular signaling, gene expression and cell proliferation, for example. In this work, we 

take different approaches to the optimization of phytochromes and phytochrome-based 

optobiology tools. We also present a deep learning framework for protein biology with 

direct implications on identification of functionally relevant residues in phytochromes.



 

xvii 

First, by co-expressing cyanobacterial enzymes, we show that it is possible to 

increase endogenous chromophore production. Chromophores are bilin molecules that 

covalently bind to phytochromes, enabling photoconversion. Endogenous production of 

chromophores is a key development for phytochrome its use in mammalian cells. We 

demonstrate the limiting factors in chromophore production are two of the required 

enzymes in the chromophore’s pathway, and not solely heme as previously reported. We 

show how stoichiometry and species-matching affect chromophore production, and how 

chromophore levels can impact the performance of phytochrome-based optogenetic 

systems. Next, we demonstrate the utility of coupling the endogenous chromophore 

pathway and a light-responsive module composed of cyanobacterial Phytochrome B 

(PhyB) and its interacting factor (PIF3) to control expression of reporter genes.  

Finally, we present a deep learning framework to identify complex relationships 

inherent in multiple sequence alignments. We develop a Hierarchical Attention network 

(HAN) for protein sequence families (HANprot) and demonstrate its performance in terms 

of relevant residue matching. We also demonstrate its utility in finding relevant residues 

for PhyB, towards potential optimization of its photolabile properties. The residues 

identified by HANprot can be used as a starting point for further protein investigations 

when structural or database annotations are lacking.  



 

1 

INTRODUCTION 

Optical control of biology holds great promise as a tool for studying gene function, 

developmental biology, gene therapies and tissue engineering (Müller, Engesser, 

Metzger, et al., 2013). The exquisite temporal and spatial precision achieved through 

optics has been used to develop an assortment of tools to control biological functions such 

as gene expression, neural activity (Levskaya, Weiner, Lim, & Voigt, 2009), cell signaling 

(Zhang & Cui, 2015), secretion (Müller, Engesser, Metzger, et al., 2013), and protein 

activity (Beyer et al., 2015). Rapidly reversible, space- and time-resolved light-inducible 

expression systems are poised to become an important tool in the areas mentioned above, 

as well as translational medicine and biomedical applications (Shimizu-Sato, Huq, 

Tepperman, & Quail, 2002). Similar controllable gene expression systems, like chemically 

induced systems, suffer from poor spatiotemporal control and activity.  

As a whole, the Phytochrome photoreceptor family of proteins has been utilized in 

several gene expression systems, in which light is used to induce conformational changes 

and make possible to direct photoregulation of gene expression and protein production in 

plant and animal cells (Auldridge & Forest, 2011; Beyer et al., 2015; M. Chen, Tao, Lim, 

Shaw, & Chory, 2005; Hughes, Bolger, Tapadia, & Tucker, 2012; Li, Li, Wang, & Wang 

Deng, 2011; Quail et al., 1995; Rockwell, Su, & Lagarias, 2006; Sakamoto & Nagatani, 

1996; Shimizu-Sato et al., 2002; von Horsten et al., 2016). Within the phytochrome family, 

phytochrome B (PhyB) has the optical characteristics long sought after in optobiology: it 

requires minimal light for activation and absorbs light in the near-infrared (NIR) window 

(Li, Li, Wang, & Wang Deng, 2011; Shimizu-Sato, Huq, Tepperman, & Quail, 2002). PhyB-

based switches have been shown to be very robust compared to other switches, but 
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required external addition of a chromophore, limiting them to in vitro applications (Beyer 

et al., 2015; Müller, Engesser, Metzger, et al., 2013).  

In this work, we approach optimization and mammalian in vitro application of PhyB 

as an optogenetic tool to control biology in a multifaced approach: genetic engineering 

and deep learning. In Chapter 1, we show that genetically encoding mammalian cells to 

produce the chromophores required of PhyB activity can be achieved by co-expressing 

Ferredoxin and Ferredoxin-oxyreductase (Fd and FNR, respectively) in mammalian cells. 

These results were confirmed both for cytoplasmic and mitochondrial production of 

chromophores in mammalian cells. This effectively removed the barriers for multiple uses 

in vivo and in vitro studies. Combined with the endogenous production of chromophores 

enabled by our results, a robust NIR gene switch was developed that is fully genetically 

encoded, as shown in Chapter 2. This optimized switch can control genes with low 

background, high dynamic range, and orders of magnitude less light than any other 

optogenetic system. This finding creates many new opportunities for engineering synthetic 

systems to produce these molecules, along with many others. The principles presented 

can be applied industrially to cost effective production of plant molecules in microbes or 

for drug delivery by genetically encoding the pathway to make therapeutic molecules. 

 Finally, in Chapter 3, we explore the complex dependency between a protein’s 

sequence and its function. Functional divergence is often reflected in changes in 

evolutionary rate of a particular protein family (Chakrabarti, Bryant, & Panchenko, 2007). 

Those changes are hard to detect, being determined by small changes in a residue's 

stereochemistry. Physio-chemical mechanisms are often sought as answer to this 

problem, since several functional activities are based on a same region or fold within a 

protein family (Chakrabarti et al., 2007). Machine and deep learning, rapidly developing 
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fields, have been shown to bring new perspectives to problems centered around complex 

relationships, such as the one between protein sequence, structure and function. Deep 

learning methods have been shown to achieve the good performance in residue-residue 

contact prediction and disorder prediction (Chakrabarti et al., 2007; Marsella, Sirocco, 

Trovato, Seno, & Tosatto, 2009; Walsh, Martin, Di Domenico, & Tosatto, 2012).  

We propose a biologically-centered Hierarchical Attention Network (HAN) with two 

hierarchies, each composed of bidirectional long-short term memory layers with a softmax 

attention mechanism, to predict residues relevant to a protein’s function, based solely on 

a familial sequence alignment. As such, this attention-based network for relation 

classification enables identification of important features and residues, and prediction of 

relevant residues for the protein’s function. In the case of PhyB, identifying more key 

residues associated with the dynamics of how light triggers photoisomerization of the 

protein between its different conformational states could lead to more control and 

engineering of this system. These changes could lead to shifted wavelengths, length of 

stay in a conformational state, speed of reversal, etc., which can be used in several 

different applications, from gene therapy to understanding neurological disease with 

spatial, temporal, and cell type precision.  

Our results show that HANprot is sensible to functional sites and its measure is 

significantly different from methods based on amino acid distribution and coevolution. The 

key difference to previous work is that HANprot discovers single residues or short 

sequences of relevant residues based on context and relies entirely on non-annotated 

inputs from multiple sequence alignments, rather than three-dimensional distances or 

position-specific scoring matrices. By focusing on the complex relationships within protein 

sequences through the application of deep learning algorithms, this work could be a 
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gateway to explore perturbation analyses, drug response, and enzyme kinetics, among 

other possibilities.  

 Overall, this work aims to optimize and better understand of the 

fundamental mechanisms of photolabile proteins’ interaction and resulting dynamics in 

response to light. Application of the methodologies and architectures proposed can 

amplify PhyB’s usability and applicability in biological and biomedical studies, translational 

medicine, and potentially in biofuel engineering. Future work could enable modification 

and customization of the protein’s photoswitchable properties towards shifted 

wavelengths, length of stay in a conformational state, speed of reversal, etc., enabling 

further optimization of our proposed light switch for different applications.  
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CHAPTER 1 CHROMOPHORE PATHWAY 

 

Reproduced in part with permission from: 

Kyriakakis, P., Catanho, M., Hoffner, N., Thavarajah, W., Jian-Yu, V., Chao, S.-S., … 

Coleman, T. (2018). Biosynthesis of Orthogonal Molecules Using Ferredoxin and 

Ferredoxin-NADP+ Reductase Systems Enables Genetically Encoded PhyB 

Optogenetics. ACS Synthetic Biology. doi:10.1021/acssynbio.7b00413 

Copyright 2018 American Chemical Society. (Kyriakakis et al., 2018). 

 

1.1 Abstract 

The chromophores phycocyanobilin (PCB) and phytochromobilin (PΦB) are 

pigments used for photoreception in cyanobacteria and plants. Those chromophores 

operate in the near-infrared (NIR) range (600-900nm), a range ideal for use in 

optobiological manipulation since these wavelengths allow for maximal tissue penetration 

with minimal light phototoxicity. However, the genetic switches reliant on those 

chromophores are often used in mammalian cell lines, whose chromophore production is 

limited by the endogenous oxidation-reduction system containing Ferredoxin (Fd) and 

Ferredoxin-NADP+-Reductase (FNR) (Fd+FNR).  

We show that by co-expressing the cyanobacterial Fd+FNR along with their 

interacting biosynthetic enzymes, endogenous chromophore production increases by over 

20-fold. We delineated the rate limiting factors and found that the main metabolic 

precursor, heme, was not the primary limiting factor for producing either the cyanobacterial 

or plant chromophores, but that in fact Fd is limiting, followed by Fd+FNR and finally heme. 

Boosting chromophore production by matching metabolic pathways with specific 
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ferredoxin systems enables unparalleled use of many optogenetic tools and has broader 

implications for optimizing synthetic metabolic pathways. 

1.2 Introduction 

The transplantation of metabolic reactions from one species to another is an 

established research practice used in synthetic biology. Wide-ranging potential 

applications of this methodology include metabolic gene therapy(Gaspar et al., 2011; X. 

Y. Zhou et al., 1995), production of crops without fertilizer (Burén et al., 2017; Shintani & 

DellaPenna, 1998), and more fundamental applications in research, such as optogenetics. 

The temporal and spatial precision achieved through optogenetics has been used to 

develop an assortment of powerful analytical tools to control biological functions such as 

gene expression (Folcher et al., 2014; Kaberniuk, Shemetov, & Verkhusha, 2016; Müller, 

Engesser, Metzger, et al., 2013; Pathak, Strickland, Vrana, & Tucker, 2014; Shimizu-Sato 

et al., 2002; X. Wang, Chen, & Yang, 2012), neural activity (Boyden, Zhang, Bamberg, 

Nagel, & Deisseroth, 2005; John Y Lin, Knutsen, Muller, Kleinfeld, & Tsien, 2013), cell 

signaling (Levskaya et al., 2009), secretion (D. Chen, Gibson, & Kennedy, 2013), 

peroxisomal trafficking (Spiltoir, Strickland, Glotzer, & Tucker, 2016), and protein activity 

(X. X. Zhou, Chung, Lam, & Lin, 2012). Metabolically engineering cells to endogenously 

produce specific chromophores enables many of those optogenetic applications, including 

genetically encoded systems for optical control of genes (Müller, Engesser, Timmer, et 

al., 2013). Many of the systems used and characterized for these applications utilize 

proteins that require red and far-red responsive phytobilin chromophores like 

phycocyanobilin (PCB) and phytochromobilin (PΦB).  

These molecules originate from phytochrome systems in cyanobacteria, algae, 

and plants, but are not naturally made in many fungal species, bacteria, or animal cells 
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(Auldridge & Forest, 2011; Karniol, Wagner, Walker, & Vierstra, 2005; Rockwell et al., 

2006; Rodriguez-Romero, Hedtke, Kastner, Müller, & Fischer, 2010). They are produced 

by the enzymes phycocyanobilin:ferredoxin oxidoreductase (PcyA) and 

phytochromobilin:ferredoxin oxidoreductase (Hy2), respectively, from Biliverdin IXα (BV), 

a degradation product of heme (Figure 1) (Beale, 1993; N Frankenberg, Mukougawa, 

Kohchi, & Lagarias, 2001; Hübschmann, Börner, Hartmann, & Lamparter, 2001; Terry, 

McDowell, & Lagarias, 1995). Several groups have shown that it is possible to produce 

these chromophores in E. coli by expressing PcyA or Hy2 without adding the matching 

ferredoxin (Fd) and ferredoxin-NADP+-reductase (FNR) reduction system (Landgraf, 

Forreiter, Hurtado Picó, Lamparter, & Hughes, 2001; Mukougawa, Kanamoto, Kobayashi, 

Yokota, & Kohchi, 2006; Tooley, Cai, & Glazer, 2001).  

Likewise, Müller et al. tested PCB production in mammalian cells by expressing 

PcyA and HO1, but there was no direct measurement of chromophore production (Müller, 

Engesser, Timmer, et al., 2013). Müller et al. reasoned mitochondrial placement of PcyA 

and HO1 in the same cellular compartment where the chromophore precursor (heme) is 

produced would enhance PCB production (Müller, Engesser, Timmer, et al., 2013). 

However, because mammalian cells also express Fd and FNR (Fd+FNR) exclusively in 

the mitochondria, those experiments did not address the possibility that PCB production 

failed to occur in the cytoplasm because of the mitochondrial localization of Fd+FNR. 

However, in addition to heme, HO1, PcyA, and HY2 also depend on Fd activity, leaving 

open the possibility that Fd and not heme was limiting.  
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Figure 1: PCB metabolic production pathway. The metabolic pathway for PCB synthesis 
including the NADPH/FNR/Fd redox cascade (Heme: ChemSpider ID 4802, Bv: 
ChemSpider ID 10628548, PCB: ChemSpider ID 16736730).  

 

Frankenberg et al. demonstrated in vitro that Fd activity on PcyA from Anabaena 

sp. PCC 7120 varies greatly depending on the Fd species (Nicole Frankenberg & 

Lagarias, 2003). Beale et al. and Frankenberg et al. demonstrated that Fd activity on PcyA 

from Anabaena sp. PCC 7120 varies greatly depending on the species Fd comes from 

(Beale, 1993; Nicole Frankenberg & Lagarias, 2003). Similarly, mammalian Fds have also 

been shown to be highly specific to their target enzymes, suggesting that Fd and/or FNR 

may be limiting for chromophore production in mammalian cells (Aliverti, Pandini, Pennati, 

de Rosa, & Zanetti, 2008; Sheftel et al., 2010). Most cells already contain endogenous Fd; 

therefore, researchers have not typically considered it when transplanting enzymes from 

one species to another. Consequently, to increase production of molecules like PCB for 

optogenetic uses in animal cells, we investigated the limiting factors for the PCB and PΦB 

production in mammalian cells.  

Because mammalian Fds have also been shown to be highly substrate- and tissue- 

specific, it was possible that mammalian Fds may not be efficient replacements for 

cyanobacterial or plant ferredoxins (Matsubara & Saeki, 1992; Sheftel et al., 2010). This 

remained untested and may be important for the production of many plant and bacterial 

molecules in other cells, or generally when introducing metabolic pathways from one 



 

9 

species to another. Moreover, since Fds are the some of the most electronegative proteins 

in metabolic pathways (Matsubara & Saeki, 1992), introducing the matching Fd for a 

orthogonal biosynthetic pathway could be key for efficiently producing a wide array of 

molecules including lipids, sterols, dolichols, luciferins, quinones, carotenoids, 

nitrates/nitrogen, and sulfites (Burén et al., 2017; Curatti & Rubio, 2014; G. Hanke & Mulo, 

2013; Pinto, Harrison, Hsu, Jacobs, & Leyh, 2007; Rekittke et al., 2013; Yonekura-

Sakakibara et al., 2000).  

Using PCB and PΦB as examples, we show that by species matching the Fd+FNR 

system, it is possible to produce over one order of magnitude higher levels of PCB 

compared to relying on endogenous Fd+FNR. This highlights the importance of our finding 

that the availibility of electrons in the biosynthetic pathway are important considerations in 

synthetic biology. Production of molecules from one species in another can be used to 

deliver plant molecules (e.g. steroids or lipids) through human gene therapy, produce 

bacterial molecules in plants or a number of molecules in bioreactor friendly species. We 

demonstrate the utility of coupling matching reduction systems, such as Fd+FNR, with the 

PCB metabolic pathway by developing a phytochrome based tool to control biological 

processes with NIR light in mammalian cells. In addition, to evaluate the rate-limiting 

reactants for endogenous chromophore production, we systematically tested each 

component of the biosynthetic pathway, including Fd and FNR. We showed that Fd+FNR 

is the primary rate-limiting component, followed by heme. The increased PCB production 

found with the addition of Fd+FNR was further improved by testing different stoichiometric 

expression levels of each enzyme. Endogenous PCB production was greatly increased 

compared to previous approaches (Müller, Engesser, Timmer, et al., 2013) that did not 

consider metabolic engineering with Fd+FNR systems.  
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Using PySB(Lopez, Muhlich, Bachman, & Sorger, 2013), we generated an in silico 

model to describe the biochemical interactions among the enzymes that compose the 

hypothesized PCB-production pathway, as seen in Figure 1. The quantitative 

mathematical model was parametrized (Appendix C) by experimental data and uses 

ordinary differential equations to describe the changes in the concentration of the 

molecular components of the reaction. We probed the proposed model directly as 

proposed in the literature and similar pathways published (Gambetta & Lagarias, 2001; 

Müller, Engesser, Timmer, et al., 2013; Okada, 2009). We complement this work showing 

the model’s agreement with the tested pathway, demonstrating how heme, Fd, and FNR 

are rate limiting factors for the production of PCB, as confirmed experimentally in Figures 

2, 3, 4.and 5.  

More generally than optogenetics, there are numerous biomolecules produced in 

bacteria and plants that are Fd-dependent. Matching the Fd species to a biosynthetic 

production pathway makes possible the metabolism of many other classes of molecules 

such as lipids, sterols, luciferins, quinones, carotenoids, nitrates/nitrogen, and sulfites not 

normally produced in those cells (Burén et al., 2017; Cahoon & Shanklin, 2000; Curatti & 

Rubio, 2014; G. Hanke & Mulo, 2013; Pinto et al., 2007; Rekittke et al., 2013; Yonekura-

Sakakibara et al., 2000). Increasing product ion of these classes of molecules can improve 

agriculture, increase the production of pharmaceuticals, and enable other tools for 

synthetic biology. 
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1.3 Methodology 

1.3.1 Marvin 

Marvin was used for drawing and displaying chemical structures in Figure 1. Marvin 

17.28.0, 2017, ChemAxon (http://www.chemaxon.com). 

1.3.2 Zinc-PAGE-Immunoprecipitation Assays 

Protein G PLUS-Agarose (ThermoFisher, 22851) beads were prepared by adding 

200μg anti-HA (clone HA-7, Sigma H9658) into 2ml 25% agarose. After overnight binding 

at 4°C, unbound anti-HA was washed off four times with 1X Phosphate-buffered Saline 

(PBS, pH 7.4, ThermoFisher, 10010023). For each 6-well plate, 500,000 HEK293 cells 

(ATCC, CRL-1573) were transfected using 2.5µg DNA and 6µl of Lipofectamine 2000 per 

well (ThermoFisher Scientific, 11668019). For heme experiments, media or media 

containing 10µM heme (Frontier Scientific, H651-9), was exchanged 18 hours after 

transfection and again 43 hours after transfection. Heme was dissolved at 10  mM in 100  

mM NaOH and sterile filtered with a 0.22μM filter (Millipore, SLGP033RS). Cells were then 

harvested with RIPA buffer (1% Triton X-100, 0.5% Sodium Deoxycholate, 25  mM Tris 

pH8.0, 150  mM NaCl, 0.10% SDS and 2.5  mM EDTA, and 2X protease inhibitors (Sigma, 

P8340-1ML), immediately placed on ice, sonicated briefly and then centrifuged for 30 

minutes at 21,000g. BCA assays (ThermoFisher Scientific, 23225) were used to determine 

the protein concentration of resulting supernatant/lysates. Equal masses for each protein 

sample were diluted with two parts of cold PBS, then loaded onto Protein G PLUS-Agarose 

beads containing anti-HA (preparation above), for overnight binding while mixing at 4°C.  

Next beads were washed and boiled in sample buffer (30% glycerol, 10% SDS, 

300  mM Tris pH 6.8, 0.03% Bromophenol Blue, 179  mM 2-Mercaptoethanol). After 

loading and running the samples in a SDS-PAGE gel, the gels were incubated in SDS-
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PAGE Running Buffer (25 mM Tris, 192 mM glycine, 0.1% SDS) containing 10  mM Zinc 

Acetate for 10 minutes prior to imaging in a Fluorochem E (Protein Simple). Gels were 

then transferred onto nitrocellulose and probed with the primary antibody anti-HA 1:5000 

(Sigma, clone HA-7, H9658), and by Goat anti-Mouse secondary antibody 1:5000 

(ThermoFisher, 32230). Western blots were imaged in a Fluorochem E (Protein Simple). 

Gel bands were quantified using the FIJI (ImageJ) gel analysis tool (Schindelin et al., 

2012). 

1.3.3 Imaging PCB Production 

HEK293 cells (ATCC, CRL-1573), plated at 100,000 cells per well in a 24-well 

plate, were transfected 24 hours after plating on polylysine (Sigma P6407-5mg) coated 

coverslips in each well. Forty-three hours later, the media was exchanged with fresh media 

or media+5µM PCB (Frontier Scientific, P14137) for the NE+PCB control. One hour later, 

cells were rinsed in 1X PBS and then fixed in 4% Paraformaldehyde in 1X PBS for 10 

minutes. Cells were then washed with 1X PBS before incubating in permeabilization buffer 

(5% BSA + 0.3% TritonX-100 in PBS) for 30 minutes, followed by incubating with primary 

antibodies, anti-flag mouse monoclonal 1:1000 (Sigma, F3165) and polyclonal anti-HA 

rabbit 1:500 (Santa Cruz, Y-11) in antibody buffer (2% BSA + 0.2% TritonX-100 in PBS) 

at 4°C overnight. Next coverslips were rinsed twice and washed three times in 1X PBS 

and then incubated in antibody buffer containing goat anti-mouse AlexaFluor 488 1:1000 

(ThermoFisher, A11001), and goat anti-rabbit AlexaFluor 568 1:1000 (ThermoFisher, 

A11011). Coverslips were rinsed and washed again, then mounted with Fluoromount-G 

(SouthernBiotech, 0100-20). Images were taken using a DeltaVision RT Deconvolution 

Microscope (Figure 9).  
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1.3.4 Cell Culture, Transfection, Light Induction and Reporter Gene Assays 

Human Embryonic Kidney 293 cells (HEK293, ATCC CRL-1573) were cultivated 

in Dulbecco’s Modified Eagle Medium (DMEM, Gibco, 11965-092) supplemented with 

10% fetal bovine serum (FBS, Omega Scientific, FB-02) and 100 U/ml of penicillin and 0.1 

mg/ml of streptomycin (Gibco, 11548876). All cells were cultured under 5% CO2 at 37°C. 

Cells were seeded at 100,000 HEK293 cells per well in 24-well plates, 24 hours before 

transfection. Transfection of plasmids was achieved through lipofection following the 

manufacturer’s instructions and protocol (Lipofectamine 2000, ThermoFisher, 11668019). 

For each transfection reaction, a total of 0.5 μg of plasmid DNA was combined with specific 

plasmid ratios for each experiment as detailed in Appendix A and B. A construct with 

Renilla luciferase reporter plasmid DNA was included as an internal transfection control in 

all transfections. The culture medium was replaced with fresh medium 24 hours after 

transfection and the plates were placed inside black boxes (Hammond Manufacturing 

Company, 1591ESBK) for the remainder of the experimental procedure.  

1.3.5 Luciferase Activity Assay 

Luciferase assays were carried out using the Dual-Luciferase Assay system 

(Promega, PRE1960), and following the manufacturer’s protocol. Cells were lysed 

immediately after removing from the incubator using the manufacturer’s instructions. 

Firefly and Renilla Luciferase activities were measured from cell lysates using the 

luminometer module of the Infinite 200 PRO multimode reader (Tecan). Results of 

luciferase activity assays are expressed as a ratio of firefly luciferase (Fluc) activity to 

Renilla luciferase (Rluc) activity.  
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1.3.6 Illumination Circuits and Software 

To obtain programmable control needed to drive the high-power LEDs used in our 

experiments, we designed the light control system shown in Figure 5. The light control 

system employs an Arduino Uno and a light intensity control circuit driven by a user 

interface developed in LabVIEW (National Instruments) to control each box’s LED intensity 

(Figure 6). This system is ideal for precise timing and light-intensity control of each 

experimental box while allowing for user-determined experimental start delay, illumination 

frequencies, and control of the total duration of the experiment. Using this system, we 

have precise timing and light-intensity control for 8 experimental boxes that required red 

and/or far-red illumination. Each black box can house a standard 6-well, 12-well, 24-well, 

96-well plate or can be fitted for a single dish with minimum modifications. The system can 

be replicated for experiments requiring a larger number of boxes or experimental 

conditions. Far-red and red lights can be controlled independently if placed in the same 

box. For our experimental setup, boxes contained either far-red 735nm LEDs or red 

660nm LEDs. The light control system employs: (a) an Arduino Uno and voltage regulation 

circuits, managed through a (b) user interface developed in LabVIEW (National 

Instruments).  

The voltage regulation circuit is shown in Figure 6. Coupled with the Arduino 

signals, this system delivers light pulses with precise timing and intensity control to the 

experiment boxes. The circuit is build using a LM317T linear voltage regulator 

(STMicroelectronics), a NPN general-purpose amplifier (2N2222, Fairchild 

Semiconductors), a resistor and a trimmer potentiometer (Helitrim, model 75PK10K). An 

external power supply was outfitted for the circuit (Safety Mark, 12V 1.5A Switch-mode 
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power supply). The power supply allows the circuit to vary its current and voltage needs 

depending upon the intensity chosen by a user using the trimmer potentiometer.  

The LabVIEW user interface, available for download at 

https://github.com/mcatanho/Kyriakakis_et_al_SupplementaryFiles (See Supplementary 

Note), controls the Arduino and connected circuits. It allows the user to connect to the 

Arduino effortlessly and to control experimental conditions such as time delay before 

illumination, a total duration of sample illumination, and pulse frequencies for each 

individual illumination box. It also contains digital displays of all relevant experimental 

times.  
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Figure 2: Plasmid used to test for PCB expression under different species of PcyA. 
HEK293 cells were analyzed for phytobilin production using the plasmids shown. 
Phytobilin production was measured by covalent linkage to PhyB followed by 
immunoprecipitation with anti-HA, Zn-PAGE and western blots. sPCYA and tPCYA 
produce PCB and aHY2 produces PΦB. Cells were either transfected with two ferredoxin-
dependent enzymes (ho1 and pcyA or ho1 and HY2) alone (condition M2) or along with 
matching Fd+FNR (tpetF+tpetH) plasmids (condition M4). ho1 = heme oxygenase, pcyA 
= phycocyanobilin:ferredoxin oxidoreductase, HY2 = phytochromobilin:ferredoxin 
oxidoreductase, petF = ferredoxin, petH = ferredoxin:oxidoreductase/FNR, NE = No 
Enzymes, SYNP2= Synechococcus PCC7002 and THEEB= Thermosynechococcus 
elongatus, ARATH= Arabidopsis thaliana, MTS = Mitochondrial Targeting Sequence, P2A 
= 2A self-cleaving peptide, IRES = Internal Ribosome Entry Site, NLS = Nuclear 
Localization Sequence, DBD = DNA Binding Domain. 
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Figure 3: Order of rate limiting factors of PCB production in mammalian cells.(A-B) 
HEK293 cells were analyzed for PCB production using the plasmids shown. PCB 
production was measured by covalent linkage to PhyB followed by immunoprecipitation 
with anti-HA, Zn-PAGE and western blots. (A) PCB production was compared with excess 
(+heme) and without (-heme), using the cytoplasmic expression of pcyA+ho1 alone 
(condition C2) or with cytoplasmic pcyA+ho1 +fd+fnr (condition C4); mitochondrial 
expression of pcyA+ho1 alone (condition M2) or with mitochondrial pcyA+ho1 +fd+fnr 
(condition M4). (n = 4) (B) Cells were either transfected with two ferredoxin-dependent 
enzymes alone, ho1 and pcyA (condition M2), or along with a matching fd:tpetF (condition 
M3) or along with matching fd+fnr:tpetF + tpetH (condition M4). (n = 4) 
ho1 = heme oxygenase, pcyA = phycocyanobilin:ferredoxin oxidoreductase, HY2 = 
phytochromobilin:ferredoxin oxidoreductase, petF = ferredoxin/fd, petH = 
ferredoxin:oxidoreductase/fnr, NE = No Enzymes, SYNP2= Synechococcus PCC7002 
and THEEB= Thermosynechococcus elongatus, ARATH= Arabidopsis thaliana, IRES = 
Internal Ribosome Entry Site, NLS = Nuclear Localization Sequence, MTS = Mitochondrial 
Targeting Sequence, P2A = 2A self-cleaving peptide, DBD = DNA Binding Domain. (One-
way ANOVA with Bonferroni post-test was used to calculate p values using GraphPad 
Prism 5.01. (*) = p<0.05, (**) = p<0.01, (***) = p<0.001 Error bars = Standard Deviation, n 
= independent experiments). 
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Figure 4: Stoichiometry of PCB production constructs. (A) PCB production assay 
comparing plasmid ratios of pcyA+ho1 to fd+fnr using the plasmids shown. Transfection 
ratios are indicated in boxes below the western blot. PCB production was measured by 
covalent linkage to PhyB followed by immunoprecipitation with anti-HA, Zn-PAGE and 
western blots. (B) Schematic of the PhyB/PIF33 light switch. PhyB is fused to a DNA 
Binding Domain (DBD) and bound to a light-sensitive chromophore (PCB). The PhyB-DBD 
fusion remains bound to the UAS promoter. PIF3 is fused to an Activation Domain (AD). 
Upon absorption of a red photon (660nm), PhyB changes conformation and recruits PIF3 
to the promoter region. The AD fused to PIF3 then activates the gene downstream of the 
promoter. Upon absorption of a far-red photon (735nm), PhyB changes conformation that 
leads to PIF3 unbinding, removing the AD from the promoter, shutting the downstream 
gene off (C) Plasmid maps for endogenous PCB production and PhyB/PIF33 light 
switchable promoter. (D) Luciferase gene activation levels using endogenously produced 
PCB with several ratios of pcyA+ho1:petF+petH (n=3). ho1 = heme oxygenase, pcyA = 
Phycocyanobilin:ferredoxin oxidoreductase, petF = ferredoxin, petH = 
ferredoxin:oxidoreductase/FNR, MTS = Mitochondrial Targeting Sequence, P2A = 2A self-
cleaving peptide, NLS = Nuclear Localization Sequence, IRES = Internal Ribosome Entry 
Site, AD = Activation Domain, DBD = DNA Binding Domain, R/FR = Red light/Far-red light. 
Error bars = Standard Deviation, (*) = p<0.05, (**) = p<0.01. Statistics were calculated 
using one-way ANOVA with Bonferroni post-test using GraphPad Prism 5.01. n = 
individual experiments. 
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Figure 5: Illumination setup consists of black boxes with LED arrays controlled via an 
Arduino-driven circuitry and a LabVIEW user interface. The system is easily expandable 
to allow for the control of up to 12 boxes simultaneously. Each box can be activated at 
different frequencies. 
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Figure 6: Circuit Design for LED illumination. Electronic schematic of the circuit used to 
control the LEDs for each box, coupled with an Arduino UNO. The circuit requires a 9 Volt 
voltage source and uses simple components. A trimmer potential allows for intensity and 
brightness control of the LEDs. This circuit can control 6 high power LEDs in series. 
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1.3.7 Kinetic Model 

We demonstrate the biochemical interactions among the enzymes shown in Figure 

1 in the production of PCB through a kinetic model developed with the PySB framework 

(Lopez et al., 2013). The model’s code, equations, and simulation files are available for 

download at https://github.com/mcatanho/Kyriakakis_et_al_SupplementaryFiles. The 

quantitative mathematical model was parametrized (Appendix C) by experimental data 

and uses ordinary differential equations to describe the changes in the concentration of 

the molecular components of the reaction.  

For the model, we assume that the production of PCB can be described by the set 

of sequential steps detailed in Section 1.3.8, and depicted in Figure 1. This kinetic model 

builds upon Tu et al. description of the four electron reduction of biliverdin IX-alpha (BV) 

to phycocyanobilin (PCB), catalyzed by cyanobacterial phycocyanobilin:ferredoxin 

oxidoreductase (PcyA) (Tu, Gunn, Toney, Britt, & Lagarias, 2004). As demonstrated 

experimentally in this work, the ferredoxin (Fd) and ferredoxin:oxidoreductase (FNR) 

complex is of paramount importance to the redox metabolism in plants and cyanobacteria, 

working as an electron transfer complex to reduce or oxidize enzymes in different 

pathways, further acting to reduce or NADP+ to NADPH or the reverse of this reaction 

(Batie & Kamin, 1984; G. Hanke & Mulo, 2013; G. T. Hanke, Kurisu, Kusunoki, & Hase, 

2004). As described in Figure 1, the first step in the PCB production pathway involves the 

formation of the HO1:Heme complex, which receives electron transfers from reduced 

ferredoxin (Fdred), producing BV (Okada, 2009). Following a PcyA:BV complex is formed, 

which in turn also receives electron transfers from Fdred, leading to the production of PCB. 

As the preferred electron donor for HO1 and PcyA, reduced Fd allows for continuous 

turnover of those enzymes in the PCB production pathway (Okada, 2009).  
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The reactions described above to produce PCB are shown in Section 1.3.8. The 

model assumes that those molecules are present in vitro at stoichiometry levels 

compatible with our transient transfection plasmid ratio. For simplicity, the model ignores 

differences in overall expression and degradation of each enzyme. Our model does not 

assume degradation of heme or BV, since we assumed there were saturating amounts in 

the cell medium. We also assume that the oxidized ferredoxin, a result of the electron 

transfer to the HO1:Heme and PcyA:BV complexes, is renewed in the NADP+/NADPH 

pathway catalyzed by FNR. We probed the proposed model directly as proposed in 

literature (Nicole Frankenberg & Lagarias, 2003; Müller, Engesser, Timmer, et al., 2013; 

Tu et al., 2004), and similar pathways published. We complement this work showing the 

model’s agreement with the hypothesized pathway, confirming that in the presence of 

heme, Fd and FNR are the rate limiting factors to produce PCB, confirmed experimentally 

in Figure 2. We also show in Figure 1, how PCB’s production dependence on Heme and 

the NADP/NAPDH pathway, characterized by the presence of Fd and FNR, are 

interlinked.  

1.3.8 Design and Parametrization of the Mathematical Model 

Coupled, first order, ordinary differential equations (ODEs), parametrization of the 

model was performed using previously reported endogenous PCB production curves 

(Müller, Engesser, Timmer, et al., 2013). The reaction schemes below were translated into 

the PySB rule-based language. Rates were calculated through a parametric sweep 

method utilizing maximum-likelihood minimization for model-fitting procedures. The rule-

based model simulates PCB production, following the reactions described in below. 

(1) Formation of the Heme and HO1 complex 

(2) Formation of Fdred:HO1:Heme complex, electron transfer from Fdred, producing BV 
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(3) Formation of the BV:PcyA complex 

(4) Fdred:PcyA:BV complex formation, and electron transfer from Fdred, producing PCB 

(5) FNR-enabled Fd reduction 

(6) Spontaneous degradation of PCB, as described by Mueller et al (Müller, Engesser, 

Timmer, et al., 2013). 

 

𝐻𝑒𝑚𝑒 + 𝐻𝑂1

𝑘1
→

𝑘2
←
𝐻𝑂1:𝐻𝑒𝑚𝑒 (1) 

𝐻𝑂1:𝐻𝑒𝑚𝑒 + 𝐹𝑑𝑟𝑒𝑑

𝑘3
→

𝑘4
←
𝐹𝑑𝑟𝑒𝑑: 𝐻𝑂1:𝐻𝑒𝑚𝑒 (2) 

𝐹𝑑𝑟𝑒𝑑: 𝐻𝑂1:𝐻𝑒𝑚𝑒
𝑘5
→𝐻𝑂1:𝐵𝑉 + 𝐹𝑑𝑜𝑥𝑖 (3) 

𝐻𝑂1:𝐵𝑉
𝑘6
→𝐵𝑉 +  𝐻𝑂1 (4) 

𝐵𝑉 + 𝑃𝑐𝑦𝐴

𝑘7
→

𝑘8
←
𝑃𝑐𝑦𝐴: 𝐵𝑉 (5) 

𝑃𝑐𝑦𝐴: 𝐵𝑉 + 𝐹𝑑𝑟𝑒𝑑

𝑘9
→

𝑘10
← 

𝐹𝑑𝑟𝑒𝑑: 𝑃𝑐𝑦𝐴:𝐵𝑉 (6) 

𝐹𝑑𝑟𝑒𝑑: 𝑃𝑐𝑦𝐴: 𝐵𝑉 
𝑘11
→ 𝑃𝑐𝑦𝐴: 𝑃𝐶𝐵 + 𝐹𝑑𝑜𝑥𝑖 (7) 

𝑃𝑐𝑦𝐴: 𝑃𝐶𝐵 
𝑘12
→ 𝑃𝐶𝐵 + 𝑃𝑐𝑦𝐴 (8) 

𝐹𝑑𝑜𝑥𝑖
𝑘13
→ 𝐹𝑑𝑟𝑒𝑑 (9) 
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𝑃𝐶𝐵
𝑘𝑑𝑒𝑔,𝑃𝐶𝐵
→      ∅ (10) 

 

The set of coupled ordinary differential equations obtained from those reactions, following 

mass-action kinetics (Chellaboina, Bhat, Haddad, & Bernstein, 2009), is shown below. 

 

𝑑[𝐻𝑒𝑚𝑒](𝑡)

𝑑𝑡
= −𝑘1[𝐻𝑒𝑚𝑒][𝐻𝑂1] + 𝑘2[𝐻𝑂1:𝐻𝑒𝑚𝑒] (11) 

𝑑[𝐻𝑂1](𝑡)

𝑑𝑡
= −𝑘1[𝐻𝑒𝑚𝑒][𝐻𝑂1] + 𝑘2[𝐻𝑂1:𝐻𝑒𝑚𝑒] + 𝑘6[𝐻𝑂1:𝐵𝑉] (12) 

𝑑[𝐹𝑑𝑟𝑒𝑑](𝑡)

𝑑𝑡
= −𝑘9[𝑃𝑐𝑦𝐴: 𝐵𝑉][𝐹𝑑𝑟𝑒𝑑] + 𝑘10[𝐹𝑑𝑟𝑒𝑑: 𝑃𝑐𝑦𝐴: 𝐵𝑉]

− 𝑘3[𝐹𝑑𝑟𝑒𝑑][𝐻𝑂1:𝐻𝑒𝑚𝑒] + 𝑘13[𝐹𝑑𝑜𝑥𝑖] + 𝑘4[𝐹𝑑𝑟𝑒𝑑: 𝐻𝑂1:𝐻𝑒𝑚𝑒] 

(13) 

𝑑[𝐹𝑑𝑜𝑥𝑖](𝑡)

𝑑𝑡
= 𝑘11[𝐹𝑑𝑟𝑒𝑑: 𝑃𝑐𝑦𝐴: 𝐵𝑉] − 𝑘13[𝐹𝑑𝑟𝑒𝑑] + 𝑘5[𝐹𝑑𝑟𝑒𝑑: 𝐻𝑂1:𝐻𝑒𝑚𝑒] (14) 

𝑑[𝑃𝑐𝑦𝐴](𝑡)

𝑑𝑡
= 𝑘8[𝑃𝑐𝑦𝐴: 𝐵𝑉] + 𝑘12[𝑃𝑐𝑦𝐴: 𝑃𝐶𝐵] − 𝑘7[𝑃𝑐𝑦𝐴][𝐵𝑉] (15) 

𝑑[𝐻𝑒𝑚𝑒:𝐻𝑂1](𝑡)

𝑑𝑡

= 𝑘1[𝐻𝑒𝑚𝑒][𝐻𝑂1] − 𝑘3[𝐹𝑑𝑟𝑒𝑑][𝐻𝑂1:𝐻𝑒𝑚𝑒] − 𝑘2[𝐻𝑂1:𝐻𝑒𝑚𝑒]

+ 𝑘4[𝐹𝑑𝑟𝑒𝑑: 𝐻𝑂1:𝐻𝑒𝑚𝑒] 

(16) 

𝑑[𝐹𝑑𝑟𝑒𝑑: 𝐻𝑂1:𝐻𝑒𝑚𝑒](𝑡)

𝑑𝑡

= 𝑘3[𝐹𝑑𝑟𝑒𝑑][𝐻𝑂1:𝐻𝑒𝑚𝑒] − (𝑘4 + 𝑘5)[𝐹𝑑𝑟𝑒𝑑: 𝐻𝑂1:𝐻𝑒𝑚𝑒] 

(17) 

𝑑[𝐻𝑂1:𝐵𝑉](𝑡)

𝑑𝑡
= 𝑘5[𝐹𝑑𝑟𝑒𝑑: 𝐻𝑂1:𝐻𝑒𝑚𝑒] − 𝑘6[𝐻𝑂1:𝐵𝑉] (18) 
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𝑑[𝐵𝑉](𝑡)

𝑑𝑡
= −𝑘7[𝑃𝑐𝑦𝑎][𝐵𝑉] + 𝑘6[𝐻𝑂1:𝐵𝑉] + 𝑘8[𝑃𝑐𝑦𝐴:𝐵𝑉] (19) 

𝑑[𝑃𝑐𝑦𝐴:𝐵𝑉](𝑡)

𝑑𝑡

= −𝑘9[𝑃𝐶𝑦𝐴:𝐵𝑉][𝐹𝑑𝑟𝑒𝑑] − 𝑘8[𝑃𝑐𝑦𝐴: 𝐵𝑉] + 𝑘10[𝐹𝑑𝑟𝑒𝑑: 𝐵𝑉: 𝑃𝑐𝑦𝐴]

+ 𝑘7[𝐵𝑉][𝑃𝑐𝑦𝐴] 

(20) 

𝑑[𝐹𝑑𝑟𝑒𝑑: 𝑃𝑐𝑦𝐴:𝐵𝑉](𝑡)

𝑑𝑡
= 𝑘9[𝐹𝑑𝑟𝑒𝑑][𝑃𝑐𝑦𝐴: 𝐵𝑉] − (𝑘10 + 𝑘11) [𝐹𝑑𝑟𝑒𝑑: 𝑃𝑐𝑦𝐴: 𝐵𝑉] (21) 

𝑑[𝑃𝑐𝑦𝐴: 𝑃𝐶𝐵](𝑡)

𝑑𝑡
= −𝑘12[𝑃𝑐𝑦𝐴: 𝑃𝐶𝐵] + 𝑘11 [𝐹𝑑𝑟𝑒𝑑: 𝑃𝑐𝑦𝐴: 𝐵𝑉] (22) 

𝑑[𝑃𝐶𝐵](𝑡)

𝑑𝑡
= 𝑘12 ∗ [𝑃𝑐𝑦𝐴: 𝑃𝐶𝐵] − 𝑘𝑑𝑒𝑔𝑃𝐶𝐵 ∗ [𝑃𝐶𝐵] (23) 

 

A. Fitting the Model to Experimental Data. 

The model’s unknown parameters were determined by a maximum likelihood approach 

fitted to the data shown in Muller et al (Müller, Engesser, Timmer, et al., 2013). Units are 

defined in S.I. units with concentrations as the number of molecules for species 

(#𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠, or 𝑐), and parameters as bimolecular rate constants in #𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠/𝑠−1(or 𝑐/

𝑠−1). 

B. Sum-of-Squares and Parameter Estimation. 

We assume that the system of ordinary differential equations (ODE) shown in above can 

be represented as a dynamical system given by an 𝑁-dimensional state variable 𝑥(𝑡) ∈

ℝ𝑁, at time 𝑡 ∈ 𝐼 = [𝑡0, 𝑡𝑓], which is the unique and differentiable solution for the initial 

value problem given by: 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑡, 𝜃)      𝑥(𝑡0) = 𝑥0 (24) 
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As such, the ODE depends on certain parameters 𝜃 ∈ ℝ𝑛𝑝 (Peifer & Timmer, 

2007). Also, let 𝑌𝑖 denote the data of measurement 𝑖 = 1,… , 𝑛, where 𝑛 represents the 

total amount of data. Moreover, the data 𝑌𝑖 satisfies 𝑌𝑖 = 𝑔(𝑡𝑖 , 𝜃) + 𝜎𝑖𝜖𝑖, for some function 

𝑔:ℝ𝑑 → ℝ𝑜𝑏𝑠, and 𝑑 ≥ 𝑜𝑏𝑠, 𝜎𝑖 > 0 and 𝜖𝑖 are independent and standard Gaussian 

distributed random variables (Peifer & Timmer, 2007). The function 𝑔(⋅) is continuously 

differentiable. To estimate the parameters 𝜃, given the initial conditions, utilizing the 

principle of maximum-likelihood to yield a cost function to be minimized gives us: 

 

ℒ(𝜃) =∑
(𝑌𝑖 − 𝑔(𝑥(𝑡𝑖; 𝜃), 𝜃))

2

2𝜎𝑖
2

𝑛

𝑖=1

 (25) 

We perform a direct minimization of ℒ with respect to 𝜃 to obtain the parameters show in 

Appendix C, and used throughout the experiments described next.  

C. Implementation of Experiments.  

Our model was used to gain insight into the dependencies of this pathway and to further 

validate our experimental results. HO1 and PcyA were assumed to be at equimolar 

amounts and Fd at 1/10th of that molar concentration. Unless stated otherwise, the 

following initial conditions were used. If not listed, the initial concentrations were set to 

zero at 𝑡 = 0. 

[𝐻𝑒𝑚𝑒](0)  =  100 

[𝐻𝑂1](0)  =  10 

[𝐹𝑑 𝑟𝑒𝑑, 𝑜𝑥𝑖](0)  =  5 

[𝑃𝑐𝑦𝐴](0)  =  10  
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Figure 7: Kinetic model results. By varying the initial Heme concentrations and the rate of 
renewal of Fdoxi to Fdred, we show the dependence on these parameters in the PCB 
pathway. 
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Figure 8: Kinetic model results. (A) We simulate the presence and absence of the FD: 
FNR complex, demonstrating more robust production of PCB with the 4 enzymes. (B) 
Decreasing sweep Figure 8: Kinetic model results, Continued: through the parameters k3 

and k9, which control binding of HO1 and PcyA to Fd respectively. This graph shows that 
with decreasing species specificity, a decrease in PCB production is observed. (C) Varying 
initial concentrations of heme, demonstrating PCB dependence to Heme levels. 
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Figure 9: Imaging endogenously produced PCB in mammalian cells. HEK293 cells were 
transfected with PhyB alone (NE), PhyB+5µM PCB (NE+PCB), cytoplasmic sho1+spcyA 
(C2), cytoplasmic sho1+spcyA+spetF+spetH (C4), mitochondrial sho1+spcyA (M2), or 
mitochondrial sho1+spcyA+spetF+spetH (M4). DAPI DNA stain was imaged using the 
DAPI channel (purple). PhyB tagged with HA was imaged using anti-HA (green), PcyA 
tagged with FLAG was imaged using anti-FLAG (red). PCB was imaged using the Cy-5 
channel (blue). All images were taken under the same exposure and contrast settings 
using a 60X (1.40NA) objective. IRES = Internal Ribosome Entry Site, NLS = Nuclear 
Localization Sequence, MTS = Mitochondria Targeting Sequence, P2A = 2A self-cleaving 
peptide, DBD = DNA Binding Domain, R/FR = Red light/Far-red light. 
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A. Experiment 1: Fd and Heme dependence. 

We determined experimentally the rate limiting factors are Fd, followed by Fd+FNR and 

finally heme. To model this experimental result, we performed a sweep over initial 

concentrations of Fd ([Fd](0)), heme ([Heme](0)), and rate of renewal of Fd by FNR (k13). 

The result of those sweeps are shown in Figure 7A (Heme concentration vs. Fd renewal) 

and Figure 7B (Heme concentration vs. Fd concentration). The resulting graphs show the 

dependency of PCB production on those molecules, and how the initial condition of each 

affects the rate of production of PCB.  

B. Experiment 2: 2E vs 4E. 

Our experimental results show that PCB is only produced to high levels under the 

presence of Fd, PcyA, and HO1. To model this experimental result, we modified the 

following parameters to simulate the lack of compatible Fd, namely a “two enzyme” (2E) 

case, that limits the production of PCB versus the output of the pathway when all four 

enzymes (4E) are present. For the 2E case, we set [Fd red,oxi](0) to zero (Figure 8A).  

C. Experiment 3: Species Specificity as Demonstrated by Different Binding Coefficients. 

To demonstrate how the species specificity between Fd and HO1/PcyA plays a pivotal 

role in the amount of PCB produced, we performed a decreasing sweep through the 

parameters k3 and k9, which control binding of HO1 and PcyA to Fd respectively. The 

sweeps were started at the parameter’s value as described in Appendix C to 1e-3 𝒄/𝒔−𝟏. 

The resulting graph is shown in Figure 8B. 

D. Experiment 4: Variable Levels of Heme. 

In this experiment, we performed a sweep over a range of Heme concentrations, from 

100, 10, 5, 1 and 0.1 𝒄. This experiment, similar to Figure 7, shows the heme dependency 

of PCB production. The respective graph is shown in Figure 8C.  
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1.4 Results 

1.4.1 Regulation of PCB Production in Mammalian Cells. 

Given that previous studies have shown that PCB production can be limited by 

heme, Fd or FNR (Nicole Frankenberg & Lagarias, 2003; Gambetta & Lagarias, 2001), 

we tested limiting factors of PCB production in mammalian cells using combinations of 

these components in excess. Zinc-PAGE PhyB immunoprecipitation assays in Human 

Embryonic Kidney (HEK293) cells were used to test PCB production with metabolic 

enzymes from two species: Synechococcus sp. PCC 7002 (SYNP2/sPcyA) or 

Thermosynechococcus elongatus (THEEB/tPcyA). We tested PCB production under two 

conditions, either mitochondrial-HO1+PcyA (M2) or mitochondrial-HO1+PcyA+Fd+FNR 

(M4), (Figure 2). When either species of HO1+PcyA enzymes were expressed, we 

detected low levels of PCB (Figure 2, M2). However, when all four enzymes 

HO1+PcyA+Fd+FNR (M4) were expressed, we observed a striking increase in PCB levels 

(Figure 2).  

To exclude the possibility that this was specific to cyanobacterial enzymes, we also 

produced the plant chromophore PΦB, by replacing the cyanobacterial PcyA with a plant 

homolog Arabidopsis HY2. PcyA and HY2 showed the same Fd+FNR dependence 

(Figure 2, M2-asHY2 versus M4-asHY2). It is noteworthy that the Fd+FNR-dependent 

increase in PΦB production was still observed when plant HY2 was used along with 

cyanobacterial HO1/Fd/FNR. We chose SYNP2 Fd+FNR for recycling HY2 because 

SYNP2 Fd was more similar than THEEB Fd in amino acid sequence identity to 

Arabidopsis Fds and specifically the major ferredoxin that recycles HY2 in Arabidopsis 

(Appendix D) (Chiu, Chen, & Tu, 2010). However, PΦB production may be further 

increased by employing Arabidopsis Fd+FNR enzymes. It may be possible to predict 
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compatibility of a transplanted ferredoxin-dependent pathway to the host cells Fd based 

on sequence similarity as shown in Appendix D. These findings show that excess Fd+FNR 

activity can increase PCB or PΦB production in mammalian cells (Figure 2).  

Next, we delineated the limiting factors for the endogenous production of 

chromophores in mammalian cells. We decided to test PCB production in both the 

cytoplasm and mitochondria because the endogenous ferredoxin system of mammalian 

cells is localized in the mitochondria; therefore, we considered the cytoplasmic enzyme 

localization as a condition with negligible endogenous Fd+FNR activity. We show in Figure 

3A that expression of cytoplasmic-PcyA+HO1 (C2) is not sufficient to produce significant 

levels of PCB (lane 3 vs. lane 2). When cytoplasmic-PcyA+HO1 was co-transfected along 

with cytoplasmic Fd+FNR (C4) higher, but statistically non-significant levels of PCB were 

detected (lane 3 vs. 4, p > 0.05). Similarly, when PcyA+HO1 were localized to the 

mitochondria (M2), very low levels of PCB were detected (lane 5). However, when 

PcyA+HO1 and Fd+FNR were all localized to the mitochondria (M4), PCB production was 

significantly increased when compared to PcyA+HO1 only (M2) (lane 5 vs. 6, p<0.001). 

These findings were corroborated by imaging PhyB-bound PCB using the Cy-5 channel 

(blue) (Figure 9). These results demonstrate that the Fd+FNR system is the primary 

limiting factor of the PCB production pathway in mammalian mitochondria, but it is not 

sufficient for high levels of PCB production when expressed in the cytoplasm.  

Since heme is a metabolic precursor in the PCB production pathway, we 

systematically tested if it was limiting for PCB production in either the cytoplasm or in the 

mitochondria. We hypothesized that if heme was a limiting factor for PCB production in 

the cytoplasm, then the addition of excess heme would increase production. While a faint 

band was visible in C2+heme (Figure 3A lane 9), it was indistinguishable from cells 
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transfected with PhyB and no enzymes and given excess heme (Figure 3A lane 8). 

However, excess heme significantly increased levels of PCB production in the C4 

condition (lanes 4 and 10, p<0.01). In addition, we found that Fd+FNR was limiting when 

comparing C2+heme to C4+heme (lanes 9 and 10, p<0.01). This demonstrates that heme 

is the limiting factor for PCB production when an excess of Fd+FNR is present in the 

cytoplasm. Importantly, PCB production was not influenced by excess heme when 

enzymes were localized to the mitochondria (M4-heme and M4+heme, lanes 6 and 12). 

This confirms that Fd+FNR is primarily limiting in both the cytoplasm and the mitochondria 

and that heme is secondarily limiting only in the cytoplasm.  

To further investigate the PCB production dependence on Fd, we transfected cells 

with two, three or all four enzymes in the pathway: PcyA-HO1 (M2), PcyA+HO1+Fd (M3), 

or PcyA+HO1+Fd+FNR (M4), along with PhyB for all conditions (Figure 3B). We show in 

Figure 3B that the addition of Fd to PcyA+HO1 (M3) significantly increased PCB 

production compared to PcyA+HO1 alone (M2) (p<0.05). Importantly, Fd+FNR (M4) 

produces significantly more PCB than adding Fd alone (p<0.01), demonstrating that for 

maximum PCB production both Fd and FNR are required.  

While we considered testing the overexpression of the host cell’s Fd+FNR, there 

are noteworthy advantages to using orthogonal Fd+FNR matching the species of the 

transplanted metabolic pathway. The mammalian Fd+FNR may be able to reduce BV 

bound to PcyA but only at a fraction of the rate of the cyanobacterial Fd+FNR. The required 

overexpression needed for the host cell’s system to perform at the same production rate 

would therefore more likely disturb the cell’s metabolism. Using an orthogonal system 

would be more efficient and would also less likely interact with the host cell’s metabolic 
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proteins. Matching the orthogonal enzyme species thus allows for minimal perturbation of 

the normal host cell physiology and at the same time maximize production rates.  

1.4.2 Effects of Enzyme Stoichiometry on PCB Production Levels.  

Okada et al. (Okada, 2009) demonstrated that Fd forms stable complexes with 

both HO1 and PcyA. Therefore, we hypothesized that PCB production may be further 

optimized through enzyme stoichiometry. We transfected separate PcyA+HO1 and 

Fd+FNR plasmids at different ratios and observed that PCB production was highly 

dependent on the ratio between PcyA+HO1 and Fd+FNR (Figure 4A). Considering this, 

to serve as a quantitative guide for optimizing PCB production, we developed 

computational models of this pathway using coupled ordinary differential equations. We 

tested the enzyme stoichiometry using a functional PhyB/PIF33 luciferase gene 

expression system adapted from Shimizu Sato et al. (Shimizu-Sato et al., 2002) (Figure 

4B). This was done by transfecting different ratios of the PcyA+HO1 and Fd+FNR 

plasmids and illuminating the cells with red light for 24 hours, followed by a luciferase 

assay to compare gene induction levels. We found that gene activation levels were also 

highly dependent on enzyme stoichiometry, with only the 17:1 PcyA+HO1:Fd+FNR 

showing any measurable response to light (Figure 4C and 4D, p<0.01). This demonstrates 

how chromophore levels influence the performance of PhyB optogenetic systems. 

1.5 Summary 

Phytochromes are promising candidates for improving light delivery for imaging 

and optical control of biology. We have shown that the Fd+FNR system is the rate-limiting 

factor for the production of the chromophores PCB and PΦB in the mitochondria of 

mammalian cells, and is limited by the Fd+FNR system followed by heme in the cytoplasm. 

The ability to produce PCB and PΦB with PcyA and HY2, respectively, suggests that 
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matching reduction systems that efficiently supply electrons to a metabolic pathway can 

also enhance the production of other bilins and other classes of molecules. This finding 

creates new opportunities for engineering synthetic systems to produce these 

chromophores, along with many other molecules. This has potential industrial applications 

in decreasing costs of crop production, producing plant molecules in microbes, or 

delivering therapeutic molecules via genetically encoded pathways.  

Genetically encoding endogenous production of chromophores like PCB also 

enables the use of several existing and compatible optogenetic tools to regulate cell 

signaling (Levskaya et al., 2009; Toettcher, Gong, Lim, & Weiner, 2011), cell migration 

(Levskaya et al., 2009), or protein localization (Levskaya et al., 2009) without the addition 

of exogenous chemicals. This makes possible the use of PhyB when constant levels of 

PCB are required, facilitating potential in vivo applications, or when the addition of PCB to 

samples is not practical (such as when samples are in a sealed container or for long 

illumination times). This study achieves the long-sought goals in optogenetics of enabling 

high-level production of the chromophores PCB and PΦB in mammalian cells and 

demonstrates a more general method for efficiently producing molecules from one species 

in another.  

In the following chapter, we show how genetically encoding mammalian cells to 

produce these chromophores enabled us to develop a robust NIR gene switch that is fully 

genetically encoded, removing these barriers for in vivo applications. In addition, to 

demonstrate the utility of increased chromophore production for optogenetic applications, 

we chose a PhyB-based optogenetic system, which utilizes PCB and has been used to 

control a wide array of biological processes. Since the light sensitivity of PhyB is 

proportional to the amount of chromophore in the cell, to apply PhyB optogenetic tools in 



 

44 

transgenic animal models, it will be essential to genetically encode a high level of 

chromophore production.  

Chapter 1, in part, is a reprint of the material as it appears in ACS Synthetic 

Biology, 2018. “Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-

NADP+ Reductase Systems Enables Genetically Encoded PhyB Optogenetics" Phillip 

Kyriakakis, Marianne Catanho, Nicole Hoffner, Walter Thavarajah, Vincent Jian-Yu Hu, 

Syh-Shiuan Chao, Athena Hsu, Vivian Pham, Ladan Naghavian, Lara E. Dozier, Gentry 

Patrick and Todd P. Coleman. DOI: 10.1021/acssynbio.7b00413.  
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CHAPTER 2 OPTIMIZED OPTOGENETIC SWITCH  

 

Reproduced in part with permission from: 

Kyriakakis, P., Catanho, M., Hoffner, N., Thavarajah, W., Jian-Yu, V., Chao, S.-S., … 

Coleman, T. (2018). Biosynthesis of Orthogonal Molecules Using Ferredoxin and 

Ferredoxin-NADP+ Reductase Systems Enables Genetically Encoded PhyB 

Optogenetics. ACS Synthetic Biology. doi:10.1021/acssynbio.7b00413 

Copyright 2018 American Chemical Society. (Kyriakakis et al., 2018) 

 

2.1 Abstract 

Using light to tune cellular activity of genes and proteins represents a very 

attractive methodology for producing various temporal interventions in living systems. 

Phytochromes are red and far-red light photochromic biliprotein photoreceptors known to 

bind directly to the transcription factor PIF3. In this heterodimer form PhyB/PIF33 has been 

utilized in several gene expression systems in which light is used to induce conformational 

changes and direct regulation of gene expression and protein production in plant and 

animal cells. Expressing the FD-FNR system from bacteria and plants, along with 

phycocyanobilin:ferredoxin oxidoreductase (PcyA) and heme oxygenase-1 HO1, enabled 

the production of these chromophores in mammalian cells and the development of a fully 

endogenous PhyB/PIF33 red-light activated gene switch.  

We further characterized the fully endogenous PhyB/PIF33 optogenetic gene 

system in several mammalian cell lines. We were able to control genes with low 

background, high dynamic range, and orders of magnitude less light than any other 

optogenetic system. More importantly, we found that the light-switchable gene system 
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remains active for several hours upon illumination, even with a short light pulse and 

requires very small amounts of light for maximal activation. By combining the ability of red 

light to penetrate deeply into tissue with the low light requirements for maximal activation 

of the PhyB/PIF33 optogenetic gene switch, our methodology enables unprecedented 

control of genes through light both in vitro and in vivo. This system has great potential in 

animal studies and light-modulated gene therapies, and to enable new areas of synthetic 

biology. 

 

 

 

 

Figure 10: Schematic of the PhyB/PIF33 light switch. PhyB is fused to a DNA Binding 
Domain (DBD) and bound to a light sensitive chromophore (PCB). The PhyB-DBD fusion 
remains bound to the UAS promoter. PIF3 is fused to an Activation Domain (AD). Upon 
absorption of a red photon (650nm), PhyB changes conformation and recruits PIF3 to the 
promoter region. The AD fused to PIF3 then activates the gene downstream of the 
promoter. Upon absorption of a far-red photon (740nm), PhyB changes conformation that 
leads to PIF3 unbinding, removing the AD from the promoter, shutting the downstream 
gene off. 
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2.2 Introduction 

Optical control of biology holds great promise as a tool for studying gene function, 

developmental biology, gene therapies and tissue engineering. The exquisite temporal 

and spatial precision achieved through optics has been used to develop an assortment of 

tools to control biological functions such as gene expression (Folcher et al., 2014; 

Kaberniuk et al., 2016; Müller, Engesser, Metzger, et al., 2013; Pathak et al., 2014; 

Shimizu-Sato et al., 2002; X. Wang et al., 2012), neural activity (Boyden et al., 2005; John 

Y Lin et al., 2013), cell signaling (Levskaya et al., 2009), secretion (D. Chen et al., 2013), 

peroxisomal trafficking (Spiltoir et al., 2016), and protein activity (X. X. Zhou et al., 2012). 

However, most of these existing systems have significant limitations. Particularly, they are 

either not very robust (Folcher et al., 2014; Kaberniuk et al., 2016; Müller, Zurbriggen, & 

Weber, 2014; Pathak et al., 2014), require sufficient presence of light-absorbing 

chromophores (Kawano, Suzuki, Furuya, & Sato, 2015; Konermann et al., 2013; Pathak 

et al., 2014), interfere with the cells intracellular signaling pathways (Folcher et al., 2014), 

or the wavelength of light used penetrates tissue poorly (Kawano et al., 2015; Konermann 

et al., 2013).  

Phytochromes-based optogenetic systems have been shown to be ideal 

candidates to address those shortcomings, having evolved to require minimal light for 

activation and to absorb light in the NIR window. These are inherent properties of 

phytochromes and many proteins with a bilin chromophore because: i) the chromophores 

are very sensitive to light (high absorbance/extinction coefficient) and ii) the chromophores 

bound to the phytochrome can have a long-lived activation state, ranging from tens of 

minutes to hours (J Y Lin, Lin, Steinbach, & Tsien, 2009; Mattis et al., 2011; Smith et al., 

2016; Yizhar, Fenno, Davidson, Mogri, & Deisseroth, 2011). However, Arabidopsis 
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thaliana’s Phytochrome B (PhyB), the most characterized phytochrome, has these optical 

characteristics and has been shown to be very robust compared to other switches (Folcher 

et al., 2014; Kaberniuk et al., 2016; Müller, Engesser, Metzger, et al., 2013; Pathak et al., 

2014). It still requires external addition of a chromophore, limiting them to in vitro 

applications.  

PhyB is known to interact with the transcription factor phytochrome interacting 

factor 3 (PIF3) in a light-dependent way (Shimizu-Sato et al., 2002; Tyszkiewicz & Muir, 

2008): it covalently binds to the chromophore PCB, which activates a light-induced 

conformational change and enables its interaction with the phytochrome interacting factor 

PIF3(Li et al., 2011; Milias-Argeitis et al., 2011). Together, PhyB/PIF33 compose a light-

dependent two-hybrid system, associating and dissociating in response to red (650nm) 

and far-red (730nm). The basic principle of this interaction is shown in Figure 10. Originally 

create to explore protein-protein interactions, this photoreversible gene system based on 

the PhyB/PIF33 interaction has been used to induce gene transcription (Hughes et al., 

2012; Li et al., 2011), control the activity of proteins at the post-translational level 

(Tyszkiewicz & Muir, 2008), regulate intracellular pathways (Zhang & Cui, 2015), nuclear 

translocation of synthetic transcription factors (Beyer et al., 2015), angiogenesis in chicken 

embryos (Müller, Engesser, Metzger, et al., 2013), among others.  

As shown in Chapter 1, we are now able to genetically encode mammalian cells 

to produce the chromophores needed for phytochrome systems. Building upon this 

endogenous availability of chromophores in mammalian cells, we have developed a fully 

genetically encoded and robust NIR gene switch based on the light-responsive 

PhyB/PIF33 module (M. Chen et al., 2005; Elich & Chory, 1997; Kunkel, Speth, Büche, 

& Schäfer, 1995; Li et al., 2011; Remberg, Ruddat, Braslavsky, Gärtner, & Schaffner, 



 

49 

1998), removing the barriers for in vivo applications. We demonstrate the utility of coupling 

matching reduction systems, such as Fd+FNR, with the PCB metabolic pathway by 

developing a phytochrome based tool to control biological processes with NIR light in 

mammalian cells. In addition, we show that increasing the production of PCB in 

mammalian cells enables the development of a robust genetically encoded Red-light 

Activated Gene Switch, compatible with PhyB based optogenetic systems.  

To our knowledge, the genetic tool presented in this work is the most light sensitive 

optogenetic system to date: the peak intensity required for maximal activation is at most 

2nWatts/mm2. For comparison, it requires 500,000X-2,500,000X less light than the peak 

activation for stimulating neurons with ChR2 (Yizhar et al., 2011) and is 50-100X more 

sensitive than other phytochrome-based gene switches in yeast and mammalian cells 

(Müller et al., 2014; Shimizu-Sato et al., 2002). By combining the ability of red light to 

penetrate deeply into tissue with the low light requirements for maximal activation of our 

system, it will now be possible to use light to control genes deeper into tissues than ever 

before. Our red-light activated gene switch has great potential in animal studies and light-

modulated gene therapies.  

2.3 Methodology 

2.3.1 Cell Culture, Transfection, Light Induction and Reporter Gene Assays  

Human Embryonic Kidney 293 cells (HEK293, ATCC CRL-1573) were cultivated 

in Dulbecco’s Modified Eagle Medium (DMEM, Gibco, 11965-092) supplemented with 

10% fetal bovine serum (FBS, Omega Scientific, FB-02) and 100 U/ml of penicillin and 0.1 

mg/ml of streptomycin (Gibco, 11548876). All cells were cultured under 5% CO2 at 37°C. 

Cells were seeded at 100,000 HEK293 cells per well in 24-well plates, 24 hours before 

transfection. Transfection of plasmids was achieved through lipofection following the 
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manufacturer’s instructions and protocol (Lipofectamine 2000, ThermoFisher, 11668019). 

For each transfection reaction, a total of 0.5μg of plasmid DNA was combined with specific 

plasmid ratios for each experiment as detailed in Appendix A and B.  

A construct with Renilla luciferase reporter plasmid DNA was included as an 

internal transfection control in all transfections. The culture medium was replaced with 

fresh medium 24 hours after transfection and the plates were placed inside black boxes 

(Hammond Manufacturing Company, 1591ESBK) for the remainder of the experimental 

procedure. For conditions where external PCB is added, 15µM of PCB (Frontier Scientific, 

P14137) from a 20  mM stock dissolved in DMSO (Santa Cruz Biotechnology, sc-202581) 

was supplemented in fresh medium 24 hours after transfection (Figure 11A).  

Light induction was programmed to start 12 hours after medium replacement. Each 

black box was equipped with a circuit consisting of six red LEDs (660nm, Thorlabs, 

M660L3), except for the dark boxes and far-red boxes which had no LEDs or a single far-

red LED (735nm, Thorlabs, M735L2), respectively. In addition, each black box circuit was 

designed to allow for fine adjustment of light intensity (circuitry is shown Figure 5 and 6), 

from 0.0008 to 200 μmol/m2/s. Light intensity was measured in μW at the cell level, 

converted to μmol/m2/s (light sensor area = 63.6mm2), and adjusted for each experiment 

design using Sper Scientific Direct’s Laser Power Meter (SSD, 8400). Detailed information 

on wavelengths, illumination intensity, and duration used for each experimental procedure 

and data shown are detailed in Appendix B. Pulse duration and total illumination times 

were electronically controlled via a LabVIEW computer driving an Arduino microprocessor 

and custom-made circuits (see Section 1.3.6). 
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2.3.2 Luciferase Activity Assay  

Luciferase assays were carried out using the Dual-Luciferase Assay system 

(Promega, PRE1960), and following the manufacturer’s protocol. Cells were lysed 

immediately after removing from the incubator using the manufacturer’s instructions. 

Firefly and Renilla Luciferase activities were measured from cell lysates using the 

luminometer module of the Infinite 200 PRO multimode reader (Tecan). Results of 

luciferase activity assays are expressed as a ratio of firefly luciferase (Fluc) activity to 

Renilla luciferase (Rluc) activity.  

2.4 Results 

2.4.1 PCB production in mammalian cells enables genetically encoded 

PhyB/PIF33 based optogenetic systems 

3 After identifying the requirements for high levels of endogenous PCB production, 

we sought to encode all four biosynthetic enzymes on a single plasmid. Our original four 

enzyme plasmid (pPKm-245) contained all PCB biosynthetic enzymes separated by P2A 

sequences to achieve a 1:1:1:1 expression level of each enzyme (Szymczak et al., 2004). 

However, the results in Figures 4A-4D suggested that PCB production could be further 

optimized by modifying the plasmid’s expression stoichiometry. To this end, we replaced 

one of the P2A sequences with an Internal Ribosomal Entry Site (IRES), which typically 

gives one order of magnitude lower expression to the gene following the IRES sequence 

(Bochkov & Palmenberg, 2006; Licursi, Christian, Pongnopparat, & Hirasawa, 2011; 

Mizuguchi, Xu, Ishii-Watabe, Uchida, & Hayakawa, 2000). The plasmid pPKm-244 was 

generated by placing an IRES between pcyA and Fd, leading to higher PcyA-HO1 levels 

and lower Fd+FNR levels (Figure 11A). We also constructed a plasmid, pPKm-248, 

containing HO1, Fd, and FNR all placed after the IRES sequence. This plasmid results in 
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minimized heme oxygenase and Fd+FNR activity while keeping higher levels of PcyA 

(Figure 11A). Using the experiment timeline in Figure 12, we found that lowering HO1 and 

Fd+FNR levels with the pPKm-248 plasmid produced 1.8-fold (p<0.05) and 2.2-fold 

(p<0.01) higher gene activation levels than pPKm-244 and pPKm-245 respectively (Figure 

11B). In addition to producing more PCB, lower expression of HO1, Fd and FNR should 

provide maximal PCB levels with minimal interference in the host cells metabolism.  

Adapted from Shimizu-Sato et al. and Müller et al. (Müller, Engesser, Metzger, et 

al., 2013; Shimizu-Sato et al., 2002), we constructed several versions of the PHYB/PIF33 

gene switch to optimize gene induction in mammalian cells (Figure 12). In the presence 

of exogenous PCB, we compared red light gene activation using two strong synthetic 

activation domains, MTAD and VPR (Chavez et al., 2015; Tachikawa et al., 2004). The 

VPR domain activated luciferase 2.6 fold more than MTAD (Figure 12C). To find the 

optimal configuration for the activation domain, we also compared C-terminal and N-

terminal fusions of VPR to PIF3. VPR on the C-terminus produced 2.4 fold higher 

luciferase activation compared to the N-terminal fusion (Figure 12C).  

Next, we compared the leakiness of promoter constructs containing CMV minimal 

promoter with 13X TET-UAS from Müller et al. to Fluc and CMV minimal promoters with 

5X Gal4-UAS and to cells transfected with Renilla alone (Müller et al., 2014). The 13X 

TET-UAS gave a signal 172.6 fold higher than the Renilla only control, and both Fluc and 

CMV Gal4-UAS constructs had similar levels of leakiness with 16.0 and 14.2 fold 

activation, respectively, above the Renilla only control (Figure 13A). As an additional test, 

we also measured transcription levels of the entire gene switch in the off state, under far-

red light. The Fluc and CMV minimal promoters gave a luciferase signal 6.2 fold and 31.4 

fold higher than the Renilla alone, respectively (Figure 13A).  
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The decrease in leakiness with the entire switch under far-red light means that for 

phytochrome-based gene switches, there are two useful ways to define leakiness: (1) the 

basal transcription rate when cells contain with reporter and control plasmids alone (UAS-

Luciferase and Renilla, for our experiments) and (2) the basal transcription rate when cells 

contain the complete switch and illuminated with far-red light. We also tested maximal 

activation levels of the Gal4 UAS reporters Fluc and CMV by using Gal4-VP16. The CMV 

minimal promoter had 3.4 fold higher the activation levels than the Fluc promoter (Figure 

13B). Together these promoter constructs allow for modularity for higher activation levels 

at the expense of leakiness. Depending on the application where low leakiness is 

essential, Fluc can be used or where high activation levels are required, the CMV minimal 

promoter or other UAS constructs such as the 13X-TET-UAS can be employed. 
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Figure 11: Stoichiometry of PCB production constructs. (A) Three construct designs 
consisting of all four biosynthetic enzymes on a single plasmid and a single plasmid for 
PIF3 and PhyB. (B) Testing gene activation comparing single plasmid biosynthetic 
plasmids (n=7). ho1 = heme oxygenase, pcyA = Phycocyanobilin:ferredoxin 
oxidoreductase, petF = ferredoxin, petH = ferredoxin:oxidoreductase/FNR, MTS = 
Mitochondrial Targeting Sequence, P2A = 2A self-cleaving peptide, NLS = Nuclear 
Localization Sequence, IRES = Internal Ribosome Entry Site, AD = Activation Domain, 
DBD = DNA Binding Domain, R/FR = Red light/Far-red light. Error bars = Standard 
Deviation, (*) = p<0.05, (**) = p<0.01. Statistics were calculated using one-way ANOVA 
with Bonferroni post-test using GraphPad Prism 5.01. n = individual experiments. 
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Figure 12: Activation domain optimization. (A) Timeline for experiments where HEK293 
cells were transfected and illuminated for 24 hours. (B) Plasmid maps for constructs with 
MTAD and VPR activation domains fused to the C-terminal or N-terminal of PIF3 (C) 
Comparison of MTAD and VPR fusions with PIF3 effects of luciferase gene activation. 
Fold gene expression was calculated comparing cells incubated in red light to cells 
incubated in far-red light, after normalizing to a Renilla control (n=3). DBD = DNA Binding 
Domain, AD = Activation Domain, MTAD = Minimal Trans-Activation Domain, VPR = 
VP64+P65+RTA, R/FR = Red light/Far-red light. (Error bars = s.d. (***) = p<0.001, 
Statistics were calculated using one-way ANOVA with Bonferroni post-test using 
GraphPad Prism 5.01). 
 

 

  



 

57 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

58 

Figure 13: Comparing reporter constructs. (A) Leakiness analysis comparing different 
reporter vectors. HEK293 cells were transfected using the reporter vector along with 
Renilla (pRL-TK) alone or with Renilla+filler DNA (pRL-TK +pPKm-102) plasmids. Leaky 
luciferase values were compared to Renilla alone (n=5) (B) Activation level comparison of 
Gal4 UAS and TET UAS reporters. HEK293 cells transfected with pPKm-202 or pMZ-802 
along with pPKm-292 or pPKm-293 respectively (n=3). G-UAS = Gal4 UAS, TET-UAS = 
TET UAS, GDBD = Gal4 DNA Binding Domain, TETDBD = TET DNA Binding Domain. 
(Error bars = s.d. (***) = p<0.001, Statistics were calculated using one-way ANOVA with 
Bonferroni post-test using GraphPad Prism 5.01). 
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Figure 14: Light sensitivity of the genetically encoded PhyB-PIF3 switch. (A) Plasmids 
optimized for an endogenous PhyB-PIF3 light switchable promoter. (B) Pulsing program 
for 24-hour illumination experiments. (C) Pulsing program for one-minute illumination 
experiments. (D) Gene response to a 24-hour pulse with several light intensities (n = 4). 
(E) Gene response to a one-minute pulse with several light intensities (n = 4). (F) Gene 

activation responses using 1µmole/m
2

/sec or 0.1µmole/m
2

/sec of continuous light 
compared with using 0.1umole light at different pulse intervals for 24 hours. (n=3) – The 
blue star indicates minimal light doses for 24-hour illuminations. (G) Pulsing program for 
testing the duration of activation. Pulsing was done as in 4B. (H) Gene response to pulsing 

at increasing intervals. Cells were pulsed for one minute using 1µmole/m
2

/sec 660nm light, 
followed by darkness for the indicated times for a total of 24 hours (n=5). Cont. = 
continuous illumination, 1m/4m = one-minute red light, 4 minutes darkness, 1m/9m = one 
minute red light, 9 minutes darkness, 1m/29m = one minute red light, 29 minutes darkness. 
ho1 = heme oxygenase, pcyA = Phycocyanobilin:ferredoxin oxidoreductase, petF = 
ferredoxin, petH = ferredoxin:oxidoreductase/FNR IRES = Internal Ribosome Entry Site, 
MTS = Mitochondrial Targeting Sequence, NLS = Nuclear Localization Sequence, P2A = 
2A self-cleaving peptide, AD = Activation Domain, DBD = DNA Binding Domain, R/FR = 
Red light/Far-red light. (Error bars = Standard Deviation, (*) = p<0.05, (***) = p<0.001. 
Statistics were calculated using one-way ANOVA with Bonferroni post-test using 
GraphPad Prism 5.01). n = individual experiments. 
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Figure 15: The PhyB-PIF3 light switch bistability and reversibility with far-red light and 
performance in several cell types. (A) Plasmids optimized for an endogenous PhyB-PIF3 
light switchable promoter. (B) Testing the reversibility of the PhyB-PIF3 light-switchable 
promoter in mammalian cells. Cells were in darkness, illuminated with 735nm far-red light, 
660nm red light for 24 hours, or with 12 hours or red light followed by darkness or followed 
by far-red light (n=3). (C) Testing the PhyB-PIF3 light switch in four different cell types. 
Cells were transfected, then illuminated with red light for 24 hours as shown in Figure 3C. 
(n=4). ho1 = heme oxygenase, pcyA = phycocyanobilin:ferredoxin oxidoreductase, petF = 
ferredoxin, petH = ferredoxin:oxidoreductase/fnr, IRES = Internal Ribosome Entry Site, 
MTS = Mitochondrial Targeting Sequence, NLS = Nuclear Localization Sequence, P2A = 
2A self-cleaving peptide, AD = Activation Domain, DBD = DNA Binding Domain, R/FR = 
Red light/Far-red light. (Error bars=s.d., (*) = p<0.05, Statistics were calculated using one-
way ANOVA with Bonferroni post-test using GraphPad Prism 5.01). n = individual 
experiments. 
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2.4.2 Light Sensitivity of the Mammalian PhyB/PIF33 Gene Switch Using 

Endogenously Produced PCB 

PhyB/PIF3 optogenetic systems in animal cells have mostly been characterized in 

conditions where PCB is added externally. However, PCB degrades rapidly in cell culture 

media (Müller, Engesser, Metzger, et al., 2013), which affects PhyB’s light sensitivity over 

long time spans (Li et al., 2011). Since our constructs enable constant endogenous 

production of PCB, we sought to test the light sensitivity of the PhyB/PIF33 switch (pPKm-

230) with the endogenously produced chromophore. We illuminated transfected cells with 

the activating red light, at different intensities for 24 hours, and found that light intensities 

of 1.00μmol/m2/s, 0.1μmol/m2/s, and 0.01μmol/m2/s achieved similar high levels of gene 

activation (Figure 14B and 14D). In contrast, transfected cells illuminated with a light 

intensity of 0.001μmol/m2/s had a significantly lower gene response (p<0.05).  

Since the system is bistable (Smith et al., 2016), we reasoned that activating with 

intensities between 1.0-0.01 μmol/m2/s, which activate the system over a long time span 

(24 hours), may not represent saturating amounts of light for shorter illumination times 

(Mattis et al., 2011). To test this hypothesis, we characterized the gene switch using these 

same light intensities, but with a single one-minute pulse of red light (Figure 14C and 14E). 

Unlike the 24-hour illumination experiment, we found that when we illuminated the cells 

with red light for 1 minute, light intensities of 0.1μmol/m2/s and 0.01μmol/m2/s had a 

significantly lower gene response than an intensity of 1.0μmol/m2/s (p<0.001). This finding 

highlights that for characterizing these light responsive bistable proteins, we should 

consider both the light intensity and duration of illumination. For example, our results using 

0.1μmol/m2/s and 0.01μmol/m2/s show that those intensities are not saturating with a one-

minute pulse, but those same intensities induce saturating activation levels over 24 hours 
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(Figure 14D and 14E). This is expected from a system that is bistable with a long-lived 

activation state (Mattis et al., 2011), inactive molecules not activated in the first minute will 

be activated later if light is continuously applied, eventually activating all of the light-

sensitive molecules.  

2.4.3 Endogenous Mammalian PhyB/PIF33 Gene Switch Bistability and 

Reversibility with Far-red Light 

We further tested the light sensitivity and bistability by shining activating red light 

at different pulse intervals (Figure 14F). As controls, we illuminated HEK293 cells with 

continuous 1.0μmol/m2/s or 0.1μmol/m2/s red light for 24 hours and found they reach 

similar levels of gene activation. In addition to continuous illumination, we utilized 

alternating light/dark cycles composed of 1 minute of red light and 4, 9, or 29 minutes of 

darkness (1m/4m, 1m/9m, 1m/29m respectively) for 24 hours. Continuous red light at 

0.1μmol/m2/s, as well as the 1m/4m and 1m/9m conditions, did not produce statistically 

different activation levels (Figure 14F). In contrast, the condition with 0.1μmol/m2/s of red 

light pulsed at 1m/29m had significantly lower activation levels than continuous light and 

pulsed light in the 1m/4m and 1m/9m conditions (Figure 14F, p<0.05). Because the 1m/9m 

(blue star) condition has one-tenth the number of photons as 0.1μmol/m2/s in total photon 

flux, it is equivalent in the number of photons to 0.01μmol/m2/s of continuous illumination 

or 183nW/cm2 for 660nm red light. This agrees with the result where the same total 

amount of light is applied continuously, suggesting that the activation state of PhyB is 

much longer than the 9-minute dark interval (Figure 14D and 14F). 

Interestingly, we also found that cells containing the PhyB/PIF33 system had a 

slightly higher level of gene activation in the darkness than cells in the presence of far-red 

light, potentially due to the bistability of the protein (Figures 14F). Thermodynamically, in 
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darkness, a mixed population of species (Pf and Pfr forms) is the expected nature of a 

bistable molecule, since some PhyB molecules can spontaneously switch to the “activated 

state”. Therefore, the proportion of activated PhyB molecules should be higher in darkness 

than when PhyB is illuminated with a deactivating far-red light.  

Since pulsing the light on a minute time scale achieved similar levels of activation 

as continuous light (Figure 14F), we decided to test the duration of the activated state of 

PCB bound PhyB (PhyB∙PCB) by increasing the spacing between red light pulses as 

shown in Figure 14G. Our results show similar levels of gene activation for red light pulses 

delivered for one minute every eight hours, six hours, four hours, two hours, one hour, and 

a half hour at 1 μmol/m2/s (Figure 14H). However, a pulse delivered every 12 hours (a 

total of two pulses in the 24 hour period) produced significantly lower gene activation than 

the pulses delivered in the shorter intervals (Figure 14H). It is possible that those two 

pulses in the 24-hour period delivered too little total amount of light to fully activate the 

system (Figure 14I). However, this data still supports that the switch effectively stays “on” 

for at least eight hours following a one-minute pulse of 1μmol/m2/s of red light (Figure 14H, 

blue arrow). In terms of total light delivery (μmol/m2), the one-minute pulses every 8 hours 

using 1.0μmol/m2/s is effectively equivalent to the number of photons with continuous light 

at 0.0021μmol/m2/s or 38nW/cm2 for 660nm light, which is a strikingly small amount of 

light and speaks to the high sensitivity of this system.  

One hallmark of PhyB based optogenetic switches is their conformational 

reversibility upon absorption of another photon of a different wavelength (Smith et al., 

2016). While the ability for PCB bound PhyB (PhyB∙PCB) to isomerize upon red light 

absorption and reverse upon far-red light absorption has been previously shown (Shimizu-

Sato et al., 2002), whether the PhyB(1-621)-DBD and PIF3(1-524)-AD interaction was 
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reversible by far-red light when expressed in mammalian cells has not been tested (Beyer 

et al., 2015; Levskaya et al., 2009). To test the reversibility of the switch, we exposed 

HEK293 cells, transfected with the PhyB/PIF33 switch and endogenously producing PCB 

constructs (Figure 15A), to either 24 hours of red light, 12 hours of red light followed by 12 

hours of darkness, or 12 hours of red light followed by 12 hours of far-red light (Figure 

15B). Luciferase expression was significantly lower in cells shifted into darkness after 12 

hours of continuous red light than cells exposed to 24 hours of light (p<0.05), indicating 

PhyB reversed to its inactive state once red-light illumination ended.  

Compared to switching from red light to darkness, switching from red to far-red 

light showed significantly lower luciferase expression, indicating that the far-red light 

inactivated the gene switch (red box, p<0.05). This result indicates that after red light 

activation, the switch remains on for some time in the darkness and that it can be switched 

off with far-red light. This finding has important implications for the switch’s ability to control 

genes since it shows that the gene expression levels can be titrated temporally by timing 

the duration of red light or by red light followed by far-red light. Thus, this system can be 

used for spatial control by patterning red and far-red light for targeted localization of gene 

activation (Adrian, Nijenhuis, Hoogstraaten, Willems, & Kapitein, 2017).  

2.4.4  Genetically Encoded PhyB/PIF33 Gene Switch  in Several Mammalian Cell 

Lines 

We also tested the PhyB/PIF33 gene switch performance in different cell types 

containing endogenously produced PCB. We transfected HEK293, hepato-cellular 

carcinoma (HUH-7), HeLa, and mouse fibroblasts (3T3) cells with the PhyB/PIF33 gene 

switch and HO1+PcyA+Fd+FNR plasmids (pPKm-230 and pPKm-248, respectively). We 

used 1 μmol/m2/s of red light illumination in a cycle composed of 1-minute pulses of red 
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light followed by 4 minutes of darkness, for a duration of 24 hours (Figure 15C). The 

PhyB/PIF33 switch with endogenously produced PCB activated luciferase about 280-fold 

in HEK293 cells, 70-fold in HUH-7 cells, 300-fold in HeLa cells and 440-fold in 3T3 cells. 

These findings show that the system is effective in producing PCB and activating different 

mammalian cell types.  

While we have highly optimized the PhyB/PIF33 light switch with endogenously 

produced PCB, there are several ways to customize the levels of activation or leakiness 

to tailor it to specific cell types and applications. For example, different activation or 

repression domains could be used (Figure 12). In addition, there are still other 

permutations of gene fusions that can be tested in future studies that may further enhance 

this system, such as using a DBD on the N-terminus of PhyB or optimizing linker 

sequences. Using a stronger or tissue-specific promoter to drive expression of PCB or 

PΦB biosynthetic enzymes may also lead to higher activation levels or can restrict light 

sensitivity to specific cell types (Qin et al., 2010). As presented in this research, using 

wavelengths that are optimal for tissue penetration (Kaberniuk et al., 2016; John Y Lin et 

al., 2013), the PhyB(1-621)-PIF3 gene switch with endogenously produced PCB is among 

the most light-sensitive optogenetic switches. 

2.5 Summary 

We demonstrate the utility of coupling the PCB metabolic pathway and a 

phytochrome based tool to control biological processes with NIR light in mammalian cells. 

We were able to genetically encode mammalian cells to produce the chromophores 

needed for phytochrome systems and to deploy a red-light activated gene switch based 

on the light-responsive PhyB/PIF33 module. While we have highly optimized the fully 

endogenous red-light gene switch, we have also demonstrated several ways through 
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which customization of activation levels or leakiness is possible, to tailor it for specific 

applications.  

As stated above, modifying the promoter can greatly affect the level of activation 

at the expense of leakiness. We also found that the VPR activation domain is a stronger 

activator than MTAD, however, VPR is 8.9X larger than MTAD, which can create problems 

in transfection efficiency. There are still other permutations of gene fusions that were not 

tested in our study that may further enhance this gene switch, such as DBD on the N-

terminus of PhyB or optimizing linker sequences. It may also be the case that using a 

stronger or tissue specific promoter to drive expression of PCB or PΦB biosynthetic 

enzymes could lead to higher activation levels or restrict light sensitivity to specific cell 

types (Qin et al., 2010).  

Our fully genetically encoded system works robustly in several cell types and can 

be used widely in optogenetics. For example, with our switch, it is possible to make light-

sensitive model organisms to instantaneously control genes deep into tissue due to NIR’s 

tissue penetration properties. The endogenous production of chromophores like PCB 

enables the in vivo use of several existing and compatible optogentic tools to regulate cell 

signalling (Levskaya et al., 2009; Toettcher et al., 2011), cell migration (Levskaya et al., 

2009), or protein localization (Levskaya et al., 2009). Complementarily, our red-light 

activated gene switch, a fully endogenous NIR-PhyB switch with Fd+FNR matching, 

provides long sought goals for non-invasive optogenetics and genetically-efficient 

encoded production of a multitude of molecules from one species in another.  

Chapter 2, in part, is a reprint of the material as it appears in ACS Synthetic 

Biology, 2018. “Biosynthesis of Orthogonal Molecules Using Ferredoxin and Ferredoxin-

NADP+ Reductase Systems Enables Genetically Encoded PhyB Optogenetics" Phillip 
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Kyriakakis, Marianne Catanho, Nicole Hoffner, Walter Thavarajah, Vincent Jian-Yu Hu, 

Syh-Shiuan Chao, Athena Hsu, Vivian Pham, Ladan Naghavian, Lara E. Dozier, Gentry 

Patrick and Todd P. Coleman. DOI: 10.1021/acssynbio.7b00413.  
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CHAPTER 3 HIERARCHICAL ATTENTION NETWORKS APPLIED TO PROTEIN 

SEQUENCES  

 

Reproduced in part with permission from: 

Catanho, M., Gao, S., Kyriakakis, P., Coleman, T.P., Ramanathan, A. 

“Discovering sequence coevolution signatures with hierarchical attention networks”. In 

preparation for submission.  

 

3.1 Abstract 

One of the keys to understanding life at the molecular level is to understand the 

components driving a protein’s function. Sequencing technologies have improved greatly 

over the last few years and with it an increase in millions of functionally uncharacterized 

proteins. In comparison, experimental assays are still lacking, greatly restricting studies 

that depend on functionally annotated proteins. Given the volume of data and lack of 

annotations, automated analysis and predictions of important residues for protein function 

and structure have emerged as a promising trend in proteomics. Here, I proposed a 

Hierarchical Attention Network for Proteins (HANprot), deploying a bidirectional long-

short-term memory unit, capable of predicting residues and sectors of importance for a 

protein’s function. HANprot uses multiple sequence alignments as input and requires 

minimum preprocessing. Applied to the PDZ protein family, the analysis of the residues 

identified by HANprot utilizing on multiple sequence alignments indicates physically-

connected protein residues when checked against three-dimensional structures. 

Functionally relevant residues, identified based on database annotations, are identified as 

well. The attention residues highlighted by my methodology can be used as a tool select 
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few residues or short stretches of amino acids of long protein sequences, enabling quicker 

exploration of perturbation analyses, drug response, and enzyme kinetics, among other 

possibilities. 

3.2 Introduction 

Physics and evolution come together to generate a complex set of relationships in 

proteins, of which several experimental and theoretical experiments have sought to 

qualify. In 1973, Anfinsen et al. showed that the function of a protein could be predicted 

from its amino acid sequence, and demonstrated the intimate relationship between native 

tertiary structures and functionality (Anfinsen, 1973; Sadowski & Jones, 2009). An 

important aspect of a protein’s functional characterization is the determination of important 

residues mediating its function (Sadowski & Jones, 2009). These residues exist in short 

regions of a protein’s sequence and three-dimensional structure (Fischer, Mayer, & 

Söding, 2008; Watson, Laskowski, & Thornton, 2005). Often, these residues obey a 

specific arrangement and, given evolutionary constraints, they remain conserved over 

time, forming active sites or binding sites for other molecules, or enabling protein-protein 

interactions (Fischer et al., 2008; Ouzounis, Pérez-Irratxeta, Sander, & Valencia, 1998; 

Watson et al., 2005).  

In their review of computational methods of protein function determination, Watson 

et al. argued that the function of some proteins is enabled by a small number of those 

residues, usually grouped in a region of the three-dimensional protein structure (Watson 

et al., 2005). In DNA-binding proteins, for example, residues localized in the surface of the 

protein’s structure enabled it to bind to a DNA sequence (Sadowski & Jones, 2009). In 

enzymes, a small number of residues in the active site are responsible for the enzyme’s 

catalytic function (Di Lena, Nagata, & Baldi, 2012; Nagao, Nagano, & Mizuguchi, 2014). 
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Those residues remain conserved through evolution, in a process named residue 

coevolution (Lockless & Ranganathan, 1999; Ouzounis et al., 1998).  

Protein coevolution follows similar principles as Hebb’s rule, commonly known as 

the “fire together wire together” of neurobiology: residues that have undergone 

evolutionary constraints together are likely to be conserved together (Ribeiro & Ortiz, 

2015). It often indicates the residues’ importance for the protein’s function, structural 

stability and chemical activity. As such, protein structure and function depend on 

cooperation between residues. As pointed by Halabi et al., the specific position or the 

distribution of residues at specific positions are not to be considered independent of one 

another (Halabi, Rivoire, Leibler, & Ranganathan, 2009). Halabi et al. also posited that 

residues contribute unequally, but cooperate to form a protein’s structure and function 

(Halabi et al., 2009). Furthermore, sequence conservation is not only determined by local 

interactions, but is also influenced by interactions of residues that are further apart (Rost 

& Sander, 1993). This has driven a central problem in computational biology: 

discriminating between residues that are conserved for strictly for structural reasons from 

those that are conserved for other functional reasons (Sadowski & Jones, 2009).  

Identifying active site residues strictly from protein three-dimensional structure has 

been shown to be a difficult task and structural information is only available for a small 

fraction of proteins (Fischer et al., 2008). Additionally, large-scale sequencing has resulted 

in an exploding widening of the sequence-structure-function gap (Ofran & Rost, 2003; 

Rost & Sander, 1993, 1994). Methods relying on the relationship between sequence and 

structural information have been shown to be largely complementary (Rost & Sander, 

1994). Predictions that are structure-focused can fail to recognize the binding sites, 

especially when those sites undergo a drastic conformational change during ligand binding 
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(Fischer et al., 2008). Another shortfall of predicting allosteric function from a protein 

structure occurs when remote pockets on the surface of a protein act as binding site, over 

time replacing major clefts as the most important site for the protein’s allosteric control 

(Fischer et al., 2008; Lockless & Ranganathan, 1999). Combined with the increase in 

knowledge on the relationship between structure and function, those factors have 

motivated the development of computational methods to predict different characteristics 

of proteins using sequences (de Juan, Pazos, & Valencia, 2013; Elloumi, Iliopoulos, 

Wang, & Zomaya, 2015; Rost & Sander, 1993; S. Wang, Peng, Ma, & Xu, 2016). 

Historically, one of the first strategies for predictions that relied on sequences used 

non-annotated databases, even though some relationships, such as between homology 

and function, are not highlighted (Rost & Sander, 1993). Other methods have used 

multiple sequence alignments (MSAs) to infer protein familial relationships and its 

approximate structure (Binkowski, Adamian, & Liang, 2003). Overall, it is widely accepted 

that MSAs often contain more information about the protein, its structure and function than 

a single sequence (Rost & Sander, 1993, 1994; Sadowski & Jones, 2009; Watson et al., 

2005). On the other hand, studies based on MSA have revealed that structure is more 

conserved than sequence, and that different sequences can adopt the same structure 

(Rost & Sander, 1993). Multiple sequence alignments are an evolutionary record of 

unlikeliness: even evolutionarily-linked protein residues in different proteins can have 

identical structure and dissimilar sequence (Rost & Sander, 1993). Computational tools 

that rely on co-evolution to predict functional sites focus on changes happening between 

interacting residues, which can provide information on the protein stability, function and 

folding (Sadowski & Jones, 2009).  
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Even when experimental determination of important residues in a protein is 

unattainable at first, sequence similarity can often generate meaningful predictions. As 

such, sequence conservation is still considered to be the greater single contributor to 

assigning function to protein structures and a powerful predictor of functional residues 

(Capra & Singh, 2007; Lockless & Ranganathan, 1999; Ouzounis et al., 1998; Rost & 

Sander, 1994). Overall, sequence alignments have been used to (i) improve protein 

secondary structure prediction (Cuff & Barton, 2000), (ii) predicting damaging missense 

mutations (Adzhubei et al., 2010), (iii) determine similarities between target proteins 

(Baker & Sali, 2001), (iv) predict physicochemical properties (Tung & Ho, 2007), (v) 

evolutionary relationships (Chenna et al., 2003; Feng & Doolittle, 1987; Strimmer & von 

Haeseler, 1997), (vi) map protein–protein interaction networks (Ofran & Rost, 2003; Yan, 

Dobbs, & Honavar, 2004), among others.  

Identifying residues of importance or functional sites through computational 

methods has been addressed by several groups (Hamilton, Burrage, Ragan, & Huber, 

2004; Lockless & Ranganathan, 1999; Mihalek, Res, & Lichtarge, 2004; Morcos et al., 

2011), but most have focused mostly on protein-protein interactions. The methodologies 

used include mutual information and information theoretic approaches (Morcos et al., 

2011; Yan et al., 2004), machine learning (Pugalenthi, Kumar, Suganthan, & Gangal, 

2008; Somarowthu & Ondrechen, 2012; Somarowthu, Yang, Hildebrand, & Ondrechen, 

2011), statistical approaches (Hamilton et al., 2004; Mihalek et al., 2004; Morcos et al., 

2011), continuum electrostatics (Elcock, 2001), and sequence conservation (Capra & 

Singh, 2007; Lockless & Ranganathan, 1999). Those methods leveraged the evolutionary 

conservation, inherently captured by sequence alignments, and structural information as 

basis for the predictions (de Juan et al., 2013).  



 

76 

One residue coevolution approach, called Statistical Coupling Analysis (SCA) 

aimed to characterize protein co-evolution and was shown to identify groups of coevolving 

residues (Ranganathan & Ross, 1997). Those residues have been associated to 

functionally relevant, conserved sectors of the protein (Halabi et al., 2009; Lockless & 

Ranganathan, 1999; Ranganathan & Ross, 1997). A similar method of residue co-

evolution, called Direct Coupling Analysis (DCA) utilizes a premise similar to SCA to infer 

the statistical correlation between co-evolving pairs of residues in a protein (Morcos et al., 

2011). In DCA, correlated residues are used as a starting point to identify direct and 

indirect interactions using a global inference approach implemented by an algorithm that 

relies on a maximum-entropy statistical model for entire protein sequences and use the 

conditional mutual information to obviate spurious relationships. DCA, SCA and similar 

algorithms are limited by their reliance of protein structural data to generate meaningful 

predictions, the ambiguity in the results and are particularly prone to returning long lists of 

false positive matches (Min, Lee, & Yoon, 2017; Zvelebil & Baum, 2008).  

As evidenced by those methods, evolutionary information stored in multiple 

sequence alignments can be used as input to neural networks to predict residues of 

importance with increased accuracy. Machine learning methods are poised for such 

approaches, being able to learn relationships from data and derive predictive models 

without the need for an a priori definition or strong assumptions about underlying 

mechanisms (Angermueller, Pärnamaa, Parts, & Stegle, 2016). For proteins, this is 

particularly beneficial, since they often have unknown or insufficiently defined 

mechanisms, or their information is stored in non-annotated databases. The most 

accurate models of gene expression levels (Lamb et al., 2006), genomics (Park & Kellis, 

2015; Quang, Chen, & Xie, 2015), proteomics (Jo, Hou, Eickholt, & Cheng, 2015; Spencer, 
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Eickholt, & Jianlin Cheng, 2015; S. Wang et al., 2016), metabolomics (Aggio, Villas-Bôas, 

& Ruggiero, 2011; Min et al., 2017), all rely on machine learning (Angermueller et al., 

2016). These methods usually employ convolutional neural networks (CNN) or support 

vector machines (SVM) (Sønderby, Sønderby, Nielsen, & Winther, 2015). A 

comprehensive review of machine learning approaches in bioinformatics can be found 

here (Angermueller et al., 2016; Min et al., 2017; Park & Kellis, 2015).  

Differently from CNNs and SVMs, bidirectional long-short-term memory (BLSTM) 

units are a class of recurrent neural networks (RNNs) designed to handle sequential data. 

RNNs’ units share identical weights at each time step, which allows for information to flow 

across a sequence through recurrent weights placed between each hidden layer 

(Sønderby et al., 2015). Even though RNNs have been used in bioinformatics in contact 

map prediction (Di Lena et al., 2012), and to solve protein secondary structure (Magnan 

& Baldi, 2014), they have been shown to be difficult to train due to vanishing and exploding 

gradients (Sønderby et al., 2015). This caveat has made RNNs unreliable when 

exploitation of long-range dependencies is needed (D. Wang & Nyberg, 2015). To address 

this shortcoming, Hochreiter et al. developed BLSTMs, which rely on input, modulation, 

forget and output gates memory cells instead of the standard sigmoid or tangent units 

used by RNNs (Graves, Mohamed, & Hinton, 2013; Sønderby et al., 2015). Figure 16 

shows diagrammatically the difference between RNNs and LSTMs. Hierarchical Attention 

Networks (HAN) build upon the work of Graves et al., and were first proposed for 

document classification (Graves et al., 2013; Yang et al., 2016). When used in natural 

language processing (NLP), HAN architectures assume that documents have hierarchical 

structure (words, sentences, documents) and that different words are inherently different 

in the information they convey (Yang et al., 2016).  



 

78 

Here, I employ a hierarchical attention network for protein sequences (HANprot), 

trained on public, non-annotated datasets from NCBI and PFAM, to identify residues of 

importance in the third PDZ domain of the PSD95 protein (PSD95-PDZ3, hereby ‘PDZ’), 

Phytochrome B (PhyB), and other protein families. A detailed analysis is provided for PDZ 

and PhyB. PDZ was chosen as a proof of concept protein, due to its small size (81 amino 

acids), well-defined structure, and varied conservation throughout its sequence. Further, I 

compared HAN results of highly annotated proteins and found it over-performs a 

comparable method (SCA) in most proteins families analyzed in this work.  

HANprot deploys a hierarchical structure with a bidirectional long-short term 

memory unit and an attention mechanism for protein sequence recognition, which 

explicitly captures both local and global interaction information in an end to end process. 

Similar to the assumptions applied to HANs in NLP applications, I assume that MSAs have 

hierarchical structure: sequences (documents) have segments (sentences), often 

domains or motifs, that are composed of amino acid residues (words). Depending on 

where a residue (a word) is located, the level of information it conveys can change. 

Therefore, similarly to what was proposed by Yang et al., the importance of residues 

(words) and sequences (sentences) are highly context-dependent (Yang et al., 2016). My 

hypothesis is that by capturing which residues are of importance through the HAN 

mechanism, I am effectively ranking residues on their contribution to a protein’s function.  

My findings highlight the importance of residues at specific positions in a protein 

sequence and help define a metric for residues’ contribution to the protein structure, 

function, and evolution. By narrowing into which residues are important for a previously 

non-annotated sequence, the methodology proposed here can motivate theoretical and 

experimental analysis of sequence positions, towards elucidating how protein sequences 



 

79 

encode the basic conserved biological features of a protein family. These findings can 

motivate a deeper theoretical and experimental analysis of deep learning architectures 

with the goal of understanding how protein sequences encode conserved biological 

properties.  

 

3.3  Methodology 

3.3.1 Protein Family Datasets 

Training of HANprot was performed using multiple sequence alignments obtained 

from PFAM (Jones, Buchan, Cozzetto, & Pontil, 2012), or collected from the NCBI non-

redundant database, utilizing an expected threshold of 0.1 and other parameters as 

default (National Center for Biotechnology Information, 1988; Waterhouse, Procter, 

Martin, Clamp, & Barton, 2009). Jalview (Version 2) was used for preprocessing of NCBI 

alignments and to remove 95% of sequence redundancy for those alignments. Specific 

protein sequences from those alignments (hereby a “reference protein”), whose sequence 

was fully covered within their respective PFAM alignment, was used to generate attention 

residue predictions. A solved 3D structure of those proteins was used to generate images 

depicting spatial distribution of identified residues. Appendix E: Table 5 lists the protein 

families used in this work, alignment size and other information.  

3.3.2 Amino acid and Sequence Encoding 

Integers (1 through 21) were assigned to the 20-letter amino acid alphabet, 

arranged from most correlated (known to naturally form groups with similar 

physiochemical properties) to least, following Murphy et al. (Murphy, Wallqvist, & Levy, 

2000). Accordingly, the following order was observed in numbering the amino acids: L V 

E M C A G S T P F Y W E D N Q K R H. Gaps, denoted “-” in the alignments, were given 
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a value of zero. As such, for an alignment with 𝑆 sequences of length 𝐿, each amino acid 

is given by 𝑥𝑖𝑗 ∈ [0,21], with 𝑖 ∈ [0, 𝑆] and 𝑗 ∈ [0, 𝐿] (Figure 17A).  

Training labels, or targets, were formulated from Henikoff weights (Henikoff & 

Henikoff, 1994), henceforth referred to as the Henikoff Sequence Weight, or HSW. 

Henikoff weights, based on the Rumelhart backpropagation of errors method, are often 

used in bioinformatics for their simplicity and broad applicability, requiring minimum 

preprocessing (Elloumi et al., 2015). Each HSW is given by a conservation score of a 

specific sequence given an alignment. Because HANprot inputs are from non-annotated 

databases or MSAs, which do not contain annotations of important residues, this is ideal 

since sequencing weighting methods compensate for over-representation in MSAs, often 

being tree-based or pairwise-distance based (Henikoff & Henikoff, 1994). HSWs were 

assigned to individual alignment columns, and normalized to generate a sequence weight 

(Figure 18). For an alignment of size [𝑁, 𝐿], where 𝑁 is the number of sequences and 𝐿 is 

the length of the sequences, assume that 𝑛𝑖𝑗, 𝑖 = [0, 𝑁] and 𝑗 = [0, 𝐿], is the number of 

times residue 𝑥𝑖𝑗 = [0,21], appears in column 𝑗, and that there are 𝑑𝑗 different types of 

residues in column 𝑗. For a specific sequence 𝑖, each residue is given a weight equal to 

𝑤𝑖𝑗 = 1/(𝑛𝑖𝑗𝑑𝑗). The sequence weight is given by the sum of the individual residue weight 

(Zvelebil & Baum, 2008). Assume that the residue weights are labeled 𝑤𝑖𝑗 for residue 𝑗 of 

sequence 𝑖, the weight of sequence 𝑖 will be given by: 

𝑤𝑖 =∑𝑤𝑖𝑗

𝑗

=∑
1

𝑛𝑖𝑗𝑑𝑗 
𝑗

 
(1) 

Averaging over all columns, will give the final HSW:  

𝐻𝑆𝑊𝑖  =
𝑤𝑖

𝑁
 (2) 

As such, the dataset’s labels are given by the vector 𝐻𝑆𝑊𝑖, with 𝑖 ∈ [0, 𝑁].  
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3.3.3 BLSTM 

BLSTMs are an extension of LSTM algorithms (Hochreiter & Schmidhuber, 1997) 

(Figure 16B and 16C). An LSTM is a set of recurrently connected blocks (memory blocks), 

containing one or more memory cells that are recurrently connected and three 

multiplicative units (input, output, forget). Given a sequence 𝑖 with residues 𝑥𝑖𝑡 with 𝑡 ∈

 [1, 𝐿], embedded as mentioned above, the precise gating mechanism of updates are as 

follows: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡 − 1 +𝑊𝐶𝑖𝐶𝑡 − 1+ 𝑏𝑖) (3) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡 − 1 +𝑊𝐶𝑓𝐶𝑡 − 1+ 𝑏𝑓) (4) 

𝐶𝑡 = 𝑓𝑡𝐶𝑡 − 1 + 𝑖𝑡 tanh(𝑊𝑥𝐶𝑥𝑡 +𝑊ℎ𝐶ℎ𝑡 − 1 + 𝑏𝐶) (5) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡 − 1 +𝑊𝐶𝑜𝐶𝑡 − 1+ 𝑏𝑜) (6) 

ℎ𝑡 = 𝑜𝑡 tanh(𝐶𝑡) (7) 

 

LSTMs are an efficient way to approach sequence learning since it relies on a 

casual structure: the state at time 𝑡 only receives information from the present (𝑥𝑡) and the 

past (𝑥1, … , 𝑥𝑡−1). However, for a protein sequence of length 𝐿, a residue at position 𝑥𝑚, 

𝑚 ∈  𝐿, can be closely related to both the residues in its “past” (𝑡 < 𝑚, with 𝑡,𝑚 ∈  𝐿) and 

its future (𝑡 > 𝑚, with 𝑡,𝑚 ∈  𝐿). In other words, if we consider the protein sequence to be 

like a time sequence, both future and past, that is the whole protein sequence, can provide 

insight about hidden states that can help predict important characteristics of a protein. As 

shown in Figure 16B, Equation 7 for LSTMs is replaced by Equations 8 and 9 for BLSTMs, 

since there are now forward hidden units ℎ1, which reads the sequence 𝑠𝑖 from 𝑥𝑖1 to 𝑥𝑖𝐿, 

and backward hidden units ℎ2, which reads the sequence 𝑠𝑖 from 𝑥𝑖𝐿 to 𝑥𝑖1: 
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ℎ𝑖1 = 𝑓(𝑊𝑥𝑖ℎ𝑖1𝑥𝑖𝑡 +𝑊ℎ𝑖1ℎ𝑖1ℎ𝑖1𝑡 − 1+ 𝑏ℎ𝑖1) (8) 

ℎ𝑖2 = 𝑓(𝑊𝑥𝑖ℎ𝑖2𝑥𝑖𝑡 +𝑊ℎ𝑖2ℎ𝑖2ℎ𝑖2𝑡 − 1+ 𝑏ℎ𝑖2) (9) 

The final ℎ𝑖𝑡 is given by the sum of ℎ1 and ℎ2.  

 

3.3.4 HANprot Architecture  

The structure of the HAN deployed in this work follows that of Yang et al. (Yang et 

al., 2016), which assumes that not all words (residues) contribute equally to the 

representation of the sentence (sequence) meaning (function). The attention mechanism 

is adopted on the input features (amino acid residues) with the BLSTM, each with 500 

hidden units, to learn the important regions in a protein sequence and the crucial 

sequences in an alignment. The proposed architecture projects the protein’s MSA into a 

vector representation. Assume that each protein MSA has 𝑆 sequences 𝑠𝑖, with 𝑖 ∈  [1, 𝑆], 

and each sequence contains 𝐿 residues: 𝑥𝑖𝑡, with 𝑡 ∈  [1, 𝐿], represents the residues in 

the 𝑖th sequence. Figure 19 shows the HANprot architecture in detail.  

Two types of inputs were tested: 

(i) Whole sequence, where 𝑥𝑖𝑡 represents the residues in the 𝑖th sequence of 

length 𝐿.  

(ii) Overlapping windows (Figure 17B), 𝑜𝑘𝑖 (here I abuse the notation), in which 

each sequence 𝑖 was divided into windows of size 𝑘 with an 𝑚-residue overlap. 

For this work, 𝑘 ∈ [5, 12] and 𝑚 ∈ [1, 4]. HSW (labels) are assigned per sequence, 

such that labels across methods are identical for a sequence 𝑖 or for a group of 

windows generated from a sequence 𝑖.  
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The attention mechanism, adopted from (Ahmed, 2017) extracts the residues of 

importance and aggregates their representation to form a sequence vector: 

𝑢𝑖𝑡 = tanh(𝑊𝑤ℎ𝑖𝑡 + 𝑏𝑤) (10) 

𝛼𝑖𝑡 =
exp(𝑢𝑖𝑡

𝑇 𝑢𝑤)

∑ exp(𝑢𝑖𝑡
𝑇 𝑢𝑤)𝑡

 
(11) 

𝑝𝑖 =∑𝛼𝑖𝑡ℎ𝑖𝑡
𝑡

 (12) 

As such, the residue annotation ℎ𝑖𝑡 is feed through the two layers of the BLSTM to 

get 𝑢𝑖𝑡 (hidden representation of ℎ𝑖𝑡). I measure importance of a residue as the similarity 

of 𝑢𝑖𝑡  with a residue level context vector 𝑢𝑤 (randomly initialized and jointly learned during 

training), resulting in a normalized importance weight 𝛼𝑖𝑡 through a softmax function. I then 

compute a sequence vector 𝑝𝑖, given by the weighted sum of the residue annotations built 

on the weights. In a way, 𝑢𝑤  is a representation of a fixed query “What are the most 

important residues?” over the residues in the sequence, and 𝑝𝑖 is a vector representation 

of each residue and its relevance to the model.  

The same calculations are performed at the sentence level, with the only difference 

being that the layers learn the encoding of the whole sequence, as given by the Henikoff 

weight. Since I have trained the network on non-annotated datasets, I do not perform a 

classification task, but rather fit the model using a final sigmoid layer: 

𝑞 =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑞𝑠 + 𝑏𝑞) (13) 

I minimize the loss using a mean squared error function and an adaptive learning 

rate method (Tieleman & Hinton, 2012).  
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Figure 16: RNNs and LSTMs architectures. (A) A simple folder and unfolded RNN 
architecture.(B) Three common LSTMs, composed of cell, input, output and forget gates, 
(C) BLSTM with a concatenated output. 
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Figure 17: Residue encoding and windows.  (A) Each residue is assigned a value in 
between zero and 21, with gap (‘-‘) being zero. The entire numerical vector is then used 
as input to HANprot. (B) For the same sequence, I show how windows are determined, 
using a window size example of five and an overlap size of two. Each sequence is then 
given by a group of windows (color segments), which is the input for the window method 
adaptation of HANprot.  
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Figure 18: Henikoff weight calculation. For each position j, each residue in a sequence i 
is given a weight wij equal to 1/(nijdj), where nij is number of times that particular residue 

occurs in that position, and dj is the number of different residues in position j, with 𝑗 =

[1, 𝑁], where 𝑁 is the total number of sequences, and 𝐿 the length of the sequence. The 
Henikoff sequence weight is given by the sum of each weight, and normalized by the total 
number of positions (𝐿)in the sequence. 
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𝒊 Sequence 

Position (𝑗) 
Total HSW 

1 2 3 4 5 6 

Position weight 𝑤𝑖𝑗  𝑤𝑖  𝑯𝑺𝑾𝒊 =
𝒘𝒊

𝑵  

1 GDQGID 1/(1*5) 1/(1*5) 1/(3*1) 1/(1*5) 1/(2*3) 1/(3*2) 1.267 0.211 

2 GDRGIN 1/(1*5) 1/(1*5) 1/(3*3) 1/(1*5) 1/(2*3) 1/(3*2) 1.044 0.174 

3 GDLGVN 1/(1*5) 1/(1*5) 1/(3*1) 1/(1*5) 1/(2*2) 1/(3*2) 1.350 0.225 

4 GDRGVQ 1/(1*5) 1/(1*5) 1/(3*3) 1/(1*5) 1/(2*2) 1/(3*1) 1.294 0.216 

5 GDRGID 1/(1*5) 1/(1*5) 1/(3*3) 1/(1*5) 1/(2*3) 1/(3*2) 1.044 0.174 

N=5 Total 1 1 1 1 1 1 L=6 1 
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Figure 19: HANprot layers. Residues encoded numerically are fed in windows or as a full 
sequence to the first layer of HANprot. A residue-level BLSTM learns the patterns of 
residues being inputted, and its output is inputted into the sequence-level BLSTM. The 
sequence-level BLSTM learns features of the whole alignment. Those features are not 
explored in this work. Finally, a dense layer followed by a sigmoid is used for loss 
minimization during training.  
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Figure 20: Example of annotations extracted from published databases: (A) RCSB, (B) 
NCBI and (C) UniProt. 
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3.3.5 Training and Validation  

HANprot was trained for 200 epochs for each protein family, using batches of 300 

sequences, with a dropout rate of 30%, learning rate of 0.1, and using an RMSprop 

optimizer (Tieleman & Hinton, 2012). Each dataset was randomized, and split into a 

0.6/0.3/0.1 partition for train/validation/test sets. Each BLSTM was composed of 500 

hidden units, as mentioned previously. The network weights at the epoch with highest 

validation performance is saved and used to evaluate the model performance on the test 

set. For each protein family, attention values for the full sequence of the protein being 

tested were extracted using the reference protein’s sequence, as a vector 𝑝𝑖, with 𝑝𝑖 ∈

[0,1], for 𝑖 ∈ [0, 𝐿]. Attention residues are determined by a threshold, given by the values 

above one standard deviation of the mean of 𝑝𝑖.  

Using each reference protein’s sequence, important residues were compiled from 

NCBI, RCSB and UniProt, and are hereby referred to as annotated binding sites (National 

Center for Biotechnology Information, 1988; The UniProt Consortium, 2017). Due to the 

lack of standardized annotation in protein databases to date, annotated binding sites or 

residues were defined as residues that are involved in coenzyme binding, enzymatic 

catalysis, effector interactions, ligand binding, etc. (Ouzounis et al., 1998). Figure 20 

shows annotations from those databases for PhyB, as an example. In PhyB’s case 

specifically, to circumvent lack of annotations in those databases, as seen in Figure 20, 

residues of relevance were extracted from previously published data ) (Burgie, Bussell, 

Walker, Dubiel, & Vierstra, 2014; Burgie & Vierstra, 2014). Appendix F shows similar 

screenshots for the other protein families used in this work. Other than PhyB, all proteins 

used annotated binding sites or residues from UniProt, NCBI and RCSB. 
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Pertinent literature was reviewed and used to extracted motif, domain and binding 

pocket annotations, and used in the three-dimensional structure images in this work. The 

collection of these manually extracted residues was used to validate the results (or in other 

terms, the true labels). As another method of comparison, residues determined as relevant 

by SCA were obtained through direct application of the SCA methodology, as instructed 

and utilizing MATLAB toolbox distributed by the authors (Halabi et al., 2009). Since SCA 

does not discriminate residues with regards to their importance, function, or relevance to 

the protein function or structure, each residue output was considered important (e.g., 

received an attention value or 1). 

The receiver operating characteristic’s area under the curve (AUC) analysis was 

chosen as a measure to assess the ability of HANprot to identify important residues. This 

allows for uniform performance assessment. AUC scores were calculated for HANprot and 

SCA using the manually extracted residues (from NCBI, RCSB and UniProt) as the true 

label. F1 scores are also reported, and are given by: 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (12) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(13) 

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙) (14) 

Where TP is the number of true positives, TN true negatives, FP false positives 

and FN false negatives. For ROC AUC, given by the True Positive Rate (TPR) against the 

False Positive Rate (FPR).  

𝑇𝑃𝑅 =
𝑇𝑃

𝐹𝑃 + 𝐹𝑁
 

(15) 

𝑇𝑃𝑅 =
𝑇𝑃

𝐹𝑃 + 𝐹𝑁
 

(16) 
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3.4 Results 

I analyzed existing experimental datasets to compare the functional significance 

of attention residues to that of annotated residues from public databases (NCBI, RCSB, 

UniProt), or ‘annotated binding sites’. Datasets discussed below are PDZ and PhyB. In 

addition, two other protein families were analyzed: Cadherin and HSP70. See Appendix 

E: Table 5 for dataset information. Summarized AUC results for all families are shown in 

Appendix G: Table 6. Here, I show that in all these cases, HANprot identifies functional 

positions effectively, obtaining better AUC scores than a previously established methods 

(SCA), in both window and full sequence methods, for 4 out of 5 protein families analyzed. 

HANprot not only identifies important residues for the protein’s function, but it assigns each 

residue a score based on the attention mechanism and perceived relevance of the 

residue.  

3.4.1 PDZ Domains 

PDZ domains are found in highly divergent species and are known to regulate 

diverse biological activities, having abundant protein-protein interactions (Lee & Zheng, 

2010). In the mouse genome, for example, PDZ domains are present in over 300 proteins, 

accounting for over 900 of the domains (Lee & Zheng, 2010). PDZ domains are typically 

composed of 5 to 6 β-strands and 2 or 3 α-helices, often displaying a short and a long α-

helix in canonical domains. Those canonical domains also present a highly conserved 

fold. Although they’re known to recognize the C-terminus of proteins, PDZ domains also 

have a single binding site known to bind to internal motifs in target proteins (Lee & Zheng, 

2010). This single binding site exists in a groove between an α-helix and a β-strand (Figure 

21). In this groove, several residues are located in the α-helix (α2 in Figure 21, with 

sequence ‘HEQAAIALKN’), and the remaining are part of a highly conserved carboxylate-
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binding loop, (R/K-XXX-G-Φ-G-Φ motif, X represents any amino acid residue, and Φ 

hydrophobic residues), whose side chains allow for hydrophobic binding of ligands, in the 

β2 sheet (Du, Meng, Wang, Long, & Huang, 2011). In that motif, the second Glycine 

residue (Gly, G) is highly conserved, whereas the first Gly is often replaced by a serine, 

threonine or phenylalanine (Lee & Zheng, 2010; Ranganathan & Ross, 1997).  

Utilizing the PDZ dataset from PFAM, HANprot was trained using windows of 

sequence residues and using full sequences. Structure and sequence of the PDZ domain 

from the synaptic protein PSD-95 was used for visualization. Additionally, HANprot was 

trained with a dataset sourced from NCBI, to demonstrate the architecture’s robustness. 

This result is discussed in Section 3.4.3. 
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Figure 21 Structure of PDZ domain (PDB ID: 1BE9) (Doyle et al., 1996). Ligands are 
known to bind to a surface groove formed in the α2-β2 groove. Residues in that groove 
can determine ligand affinity and enable recognition of specific amino acid sequences of 
its binding partner. Blue segments in the three-dimensional structure represent annotated 
binding sites. 
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Figure 22: HANprot results for the window method, using windows of size 5 through 12 
and an overlap size of 1. Different features are identified by the network throughout the 
different window sizes. Window size 9 achieved the highest AUC score (0.799), with the 
GLGF domain (red bar under axis) receiving the highest attention scores. Red line 
indicates attention threshold, given by the values above one standard deviation of the 
mean of the sequence’s attention score (blue). 
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Figure 23: HANprot results for the window method, using windows of size 5 through 12 
and an overlap size of 2. Different features are identified by the network throughout the 
different window sizes. Window size 12 achieved the highest AUC score (0.632), with the 
GLGF domain (red bar under axis) receiving the second highest attention scores. The 
highest attention scores are obtained by the second set of relevant residues, located in 
α2. Red line indicates attention threshold, given by the values above one standard 
deviation of the mean of the sequence’s attention score (blue).  
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Figure 24: HANprot results for the window method, using windows of size 5 through 12 
and an overlap size of 3. Different features are identified by the network throughout the 
different window sizes. The highest attention scores are obtained by the second set of 
relevant residues located in the α2. Red line indicates attention threshold, given by the 
values above one standard deviation of the mean of the sequence’s attention score (blue). 
 

  



 

105 

  



 

106 

Figure 25: HANprot results for the window method, using windows of size 5 through 12 
and an overlap size of 4. Different features are identified by the network throughout the 
different window sizes. In this case, window size 12 achieved the highest AUC score 
(0.631). Red line indicates attention threshold, given by the values above one standard 
deviation of the mean of the sequence’s attention score (blue). 
 

 

 

  



 

107 

 

  



 

108 

Figure 26: HANprot results for PDZ, using a window size of 9 and overlap of 1. (A) 
Attention scores for each residue are plotted (blue line). Blue bars represent annotated 
binding residues. Red line indicates attention threshold, given by the values above one 
standard deviation of the mean of the sequence’s attention score (blue line). (B) In the 
1BE9 PDZ structure (yellow), HANprot attention residues are shown in red. (C) Red mesh 
= attention residues, blue residues = annotated binding sites.  
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3.4.2 PDZ, trained using the window input  

HANprot was trained using 8 configurations of windows (Figure 17B) and 3 

different overlaps. Figures 22, 23, 24 and 25 show the normalized attention values for 

overlaps of size 1,2,3,4 (respectively) under different window lengths. Attention threshold 

is indicated by red line, and given by the values above one standard deviation of the mean 

of the sequence’s attention score (blue). Appendix H: Table 7 shows the AUC and F1 

scores computed for each condition. The highest AUC score is obtained by window of size 

9 with an overlap of size 1 (Figure 22). Figure 26 shows HANprot results for PDZ (1BE9) 

displayed in structure for windows size 9 and overlaps 1, which achieved the highest AUC 

score for the window trainings (0.799). HANprot identifies residues (marked in red in 

Figure 26B and as a red mesh in 26C) in the carboxylate binding site (Figure 26C, blue 

residues in α-helix), among other residues in the vicinity. In addition, HANprot identifies 

other binding sites (Figure 26C, blue in β-sheet) in the groove where the binding site is 

located. However, for overlaps of size 2 and 4, windows of size 12 achieve higher scores 

(Figure 23 and 25). Any other larger window size seldom obtained higher scores than the 

other sizes. Smaller window with different overlaps size, in particular with overlaps of 2 

and 3, achieve high AUC scores. However, we note that there is a lack of discernible 

pattern across the different combinations of windows and overlaps for AUC scores lower 

than 0.55. This can serve as an indicator for future analysis, when little information about 

the protein’s functional residues is available. 

The two highest AUC scores are with window size of 9 and 8 with scores of 0.799 

and 0.667, respectively. Smaller windows can capture local interactions more accurately, 

whereas long-range interactions, although present, and attenuated when windows of 

larger size are used. This indicates that HANprot captures protein interactions over small 
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and medium alignment segments better than over long segments, when segments of the 

protein sequence are used as input in the window method. However, when the full 

sequence is used as input, which effectively compares to a window of size 𝐿, HANprot 

identifies important residues, achieving AUC scores of over 0.65, as discussed in the 

following section. This suggests an optimal window size through which both short-range 

or long-range interactions are captured by the network, which we expect to investigate in 

future works.  

 

3.4.3 PDZ, Full sequence input  

When trained in the full sequence instead of windows, HANprot achieves ROC of 

0.715 for NCBI alignments and 0.660 for PFAM (Figure 27 and Figure 28). SCA obtains a 

ROC of 0.520 in comparison. As highlighted previously, HANprot can not only determine 

important residues for the protein’s function, but it assigns each residue a score (0, 1) 

based on the attention mechanism. For example, the highest attention score for PDZ is 

given to a Glycine (G), known to be the most conserved G in that motif in the GLGF motif 

(Lee & Zheng, 2010). Figure 27A and 28A shows the normalized attention over the whole 

PDZ sequence, followed by its comparison with annotated binding sites for PFAM and 

NCBI PDZ MSA inputs, respectively. Figure 27B and 28B, show attention scores and 

conservation scores (calculated according to Halabi et al.), for PFAM and NCBI PDZ MSA 

inputs, respectively (Halabi et al., 2009). Figure 27C shows residues identified through the 

SCA method for PDZ. Figure 29A shows the pairwise distance of residues in PDZ, with 

attention residues superimposed, and Figure 29B shows the three-dimensional structure 

and the attention residues for PDZ MSA sourced from PFAM. Similarly, Figure 30 shows 

these same results for PDZ MSA sourced from NCBI.  
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Figure 27: PDZ attention residues for full sequence inputs (PFAM alignment). (A) In logo 
form, attention levels for each residue are shown in black. Attention scores are plotted 
(black) with the blue bars represent annotated binding sites. Red line indicates attention 
threshold, given by the values above one standard deviation of the mean of the 
sequence’s attention score (black line). (B) Attention scores versus conservation scores 
(Halabi et al., 2009). (C) Residues identified through the SCA method are shown in black 
and annotated binding sites in blue.  
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Figure 28: PDZ attention residues for full sequence inputs (NCBI alignment). (A) In logo 
form, attention levels for each residue are shown in black. Attention levels are plotted 
(black) with the blue bars represent annotated binding sites. Red line indicates attention 
threshold, given by the values above one standard deviation of the mean of the 
sequence’s attention score (black line). (B) Attention levels versus conservation scores 
(Halabi et al., 2009). (C) Residues identified through the SCA method are shown in black 
and annotated binding sites in blue.  
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Figure 29: Structural details for PDZ attention residues for full sequence inputs (PFAM 
alignment). (A) Inter-residue distance versus attention residues. Note that attention 
residues have varying inter-residue distances, indicating possible short and long-range 
interactions. (B) Three-dimensional visualization of attention residues. Red 
segments/mesh = attention residues, blue segments = annotated binding sites. 
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Figure 30: Structural details for PDZ attention residues for full sequence inputs (NCBI 
alignment). (A) Inter-residue distance versus attention residues. Note that attention 

residues have varying inter-residue distances, indicating possible short and long-range 

interactions. High attention values (dark blue) display short to mid inter-residue distances. 

This is further confirmed by the proximity displayed by those residue segments in the 

structural figure that follows. (B) Three-dimensional visualization of attention residues. 

Red segments/mesh = attention residues, blue segments = annotated binding sites. 
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Figure 31: Structure of Arabidopsis thaliana phytochrome B photosensory module (PDB 
ID 4OUR) (Burgie et al., 2014). (A) Ribbon diagrams of PHY (orange), PAS (cyan) and 
GAF (green) domains and the chromophore (PCB) (in pink, indicated by arrow). (B) 
Closeup of the chromophore binding pocket, with interacting residues in red, according to 
Burgie et al. (Burgie et al., 2014; Burgie & Vierstra, 2014). 
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3.4.4 PhyB 

Phytochromes are dimeric chromoproteins, composed of two polypeptides (each 

~125-kD) each carrying a covalently linked tetrapyrrole chromophore in the N-terminal 

domain (Quail et al., 1995; Sakamoto & Nagatani, 1996). When bound to a chromophore, 

these signaling proteins undergo photoisomerization upon red and far-red illumination, a 

light induced molecular change that plants and algae use for “measuring” light (Cerdán & 

Chory, 2003; Yanovsky & Kay, 2003). The photoisomerization event is linked to an 

allosteric transition in the phytochrome between two spectrally distinct conformational 

states, called Pr (red absorbing), and Pfr (far-red-absorbing) (Li et al., 2011; Rockwell et 

al., 2006). Thus, light acts as a switch between these two forms, and the transition 

between the Pr and Pfr states is reversible upon sequential absorption of red (R) and far-

red (FR) light (Cerdán & Chory, 2003; Yanovsky & Kay, 2003). Understanding more about 

how these proteins interact with light will enable us to design protein optical properties, 

creating unique opportunities for light controlled systems that have potential applications 

in medicine, imaging and synthetic biological systems including biofuel-producing species. 

Plant phytochomres contain an N-terminal photosensing module (PSM) (Figure 

31A), responsible for the dimerization and signal transduction (Burgie et al., 2014; Burgie 

& Vierstra, 2014; Kikis, Oka, Hudson, Nagatani, & Quail, 2009). The PSM contains a PAS 

(Period/Arnt/Single-Minded) domain, a GAF (cGMP phosphodiesterase/adenylyl 

cyclase/FhIA) domain where the chromophore binding pocket is located (Figure 31B), and 

a PHY (Phy-specific) domain, also involved in photoisomerization (Burgie et al., 2014). 

Several groups have shown that the GAF domain forms most of the chromophore binding 

pocket in PhyB (Kikis et al., 2009; Velázquez Escobar et al., 2017; von Horsten et al., 

2016), through a covalent bond and several hydrogen bonds (Burgie et al., 2014). The 
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hydrogen bonds promote stabilization in the Pr form or red light absorbing form, are 

several arginine and histidine residues, among others (e.g., using 4OUR numbering: 

R252, R222, J257, Y261, D207, R482, H303) (Burgie et al., 2014; Burgie & Vierstra, 

2014).  

Mutational analyses with PhyB confirmed the importance of several other residues 

around the binding pocket. Studies have also shown that mutations to residues in that 

pocket are disruptive to chromophore binding, even if the chromophore attachment site 

(C256) is not modified. Furthermore, mutations to the binding pocket are known to not 

only disrupt chromophore binding but photoreversibility, stability, and disruptions in the 

PIF3 binding (Kikis et al., 2009). Although there are extensive publications relating the 

residues involved in chromophore binding, only annotated binding residues from NCBI, 

RCSB and UniProt were considered for validation of HANprot.  

HANprot identifies the amino acids that make up the chromophore binding pocket 

and assigns it the highest attention for the sequence, including amino acids that are far 

apart in their primary structure (Figure 32A, also showing a zoom into the segment with 

highest attention scores). SCA results for PhyB are largely nonspecific (Figure 32C) and 

obtains a AUC score of 0.5620 compared to HANprot’s score of 0.778. Figure 33 shows 

the results for PhyB when HANprot is trained using full sequences. Figure 33A shows the 

shows the three-dimensional structural distances between the attention residues (red), 

and the spatial distribution of those residues over the chromophore binding site in the 

PhyB homology model-generated structure. In addition, in Figure 33B, the segment with 

the second highest level of attention is shown in red. The residues in this segment span 

the junction between the PAS and GAF domains, which is involved in PIF binding and 
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other Pfr-specific interactions (Burgie & Vierstra, 2014; Kikis et al., 2009). Figure 34 shows 

the results for PhyB when HANprot is trained in the windows method. 

3.4.5 Effect of Dataset quality on residue identification  

There is a noticeable the variability in the AUC scores for the different protein 

families. This is expected since not every protein family has the same level of diversity or 

conservation due to evolutionary constraints that have been imposed to the protein. In 

addition, the length and number of sequences available for each protein family will impact 

the learning accuracy of the deep learning algorithm. I hypothesized that the dataset’s 

quality (number of sequences available, number of gaps, etc.) affected the conservation 

scores as calculated by the Henikoff weights. In turn, I expected variation in those scores 

to impact the training of the dataset. Indeed, when I compared the AUC scores and the 

mean HSW, as a measure of the dataset’s quality. High HSWs are associated with small 

proteins (short sequences), or limited datasets (small number of sequences) (Appendix I).  

3.5 Summary 

The biological properties displayed by proteins can arise from interactions among 

amino acid residues and from the basic chemical properties of polypeptide chains, but 

new methods to identify relevant residues are still lacking. Here, I show that by applying 

principles of natural language processing machine learning methodologies and sequence 

conservation, HANprot can identify positions that control different properties of a protein’s 

function, and scores better than previous methods. However, significant technical 

challenges remain for proper identification and ranking of those residues. The novelty of 

my proposal will require validation at the intersection of many approaches: a combination 

of molecular dynamics, machine learning, and biological experimentation. 
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Limitations in the known properties or functional importance of other residues 

identified in my method highlight the need for further functional studies and more detailed 

database annotations. Nevertheless, visualization of the attention vectors generated by 

HANprot illustrates its effectiveness in identifying important residues or short segments of 

residues. And, the fact that attention residues identified correspond to important functional 

properties of the proteins discussed provides strong support for HANProts’ biological 

relevance. As pointed out by Halibi et al., residues identified by SCA and similar methods 

that compare sequences throughout evolution often form sparse, physically connected 

and functionally independent groupings. This was evident in the three-dimensional 

structures presented in this work. More poignantly, several studies have also pointed out 

that amino acids contribute unequally, but still cooperatively to a protein’s structure and 

function (Halabi et al., 2009). This highlights the importance of methods like HANprot, 

were relevance of a residue can be predicted. 

As such, I argue that HANprot represents the first step towards identifying 

important residues and their level of contribution using a deep learning approach. 

Moreover, my results suggest that deep learning methodologies and architectures can be 

translated for use in proteomics, and to identify a pattern of functional residues in a protein 

sequence. The automated identification of important residues or sectors in a protein 

sequence provides a basis to direct further experiments or as a scientific/experimental 

gateway to explore perturbation analyses, drug response, protein mechanisms and 

protein engineering, among other possibilities.  
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Figure 32: HANprot results for PhyB. (A) Attention levels for each residue are shown in 
black, and a focus in a segment with the highest attention is shown. This segment contains 
the chromophore binding pocket. (B) Attention levels are plotted (black) with the blue bars 
represent annotated binding sites. (C) SCA-determined relevant residues. (D) For window 
method results, attention levels for each residue are shown in black, with the blue bars 
represent annotated binding sites. Red line indicates attention threshold, given by the 
values above one standard deviation of the mean of the sequence’s attention score (blue 
lines in (A) and lack lines in (B) and (D) plots). 
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Figure 33: Three-dimensional localization of attention residues. (A) Red residues 
correspond to those in Figure 32B with highest attention scores. (B) Red residues 
correspond to a segment of residues that obtained second highest attention scores. In 
Figure 32B, the segment is circled in green. 
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Figure 34: Three-dimensional localization of attention residues, when HANprot is trained 
in the window method. Red residues correspond to those in Figure 32D with highest 
attention scores.  
  



 

131 

 

 

  



 

132 

The results of this study can guide efforts to modify, disable or disrupt a protein’s 

function. For example, for PhyB, the results shown introduced possible sites for 

customizing the protein’s photoswitchable properties. While we already knew the binding 

pocket from the annotations and structure, the results from HANprot highlight that this tool 

is useful for identifying important sites when structures are not available. The integration 

of these techniques holds great promise, but also brings forth new challenges that must 

be met for this platform to realize its full potential. Regardless, utilizing different types 

sequence lengths and segments, my method performs relatively well in both cases. Even 

though SCA reaches high, albeit in average, lower scores than HANprot, I suspect it is in 

part due to the large number of residues it identifies, increasing the chances of a positive 

match. 

For future work, exploration of different architectures and network parameters will 

be needed. In addition, it is important to validate this work through experiments and 

through the training of larger protein sequences. 

Chapter 3, in part, is currently being prepared for submission for publication of the 

material by Catanho, Marianne; Gao, Shang; Kyriakakis, Phillip; Coleman, Todd P.; 

Ramanathan, Arvind. “Discovering sequence coevolution signatures with hierarchical 

attention networks”. The dissertation author is the primary investigator and author of this 

material. 
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APPENDICES 

Appendix A: Table 1 - Plasmids used in this work 

Genes for enzymes were synthesized by Genscript and Integrated DNA Technologies. 

Plasmids and sequences will be made available on Addgene or upon request.  

Plasmid Number Description Source 
Addgene 

Plasmid ID 

pMZ-802 
FLuc under control of pTet (tetO13-
CMVmin-FLuc-pA) 

Müller et al. N/A 

pPKm-102 pcDNA3 - mOrange This study 90493 

pPKm-105 pcDNA3 - PhyB NT - GBD,  This study 104853 

pPKm-112 pcDNA3 - MTAD - PIF3,  This study 90494 

pPKm-113 pcDNA3 - MTAD - PIF6,  This study 90495 

pPKm-118 pcDNA3 - 5X UAS - pFR Luciferase This study 90491 

pPKm-145 
Empty plasmid, pSIN-EF1-alpha-
IRES-puro 

This study 90505 

pPKm-163 pcDNA3 - PIF3 - GBD,  This study 104854 

pPKm-195 pcDNA3 - PhyB NT - MTAD  This study 90496 

pPKm-196 pcDNA3 - PIF6-DBD  This study 90511 

pPKm-202 
pcDNA3 – CMVmin 5X UAS - pFR - 
Luciferase 

This study 90492 

pPKm-226 pcDNA3 - PIF3 – VPR This study 90497 
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Appendix A: Table 1 - Plasmids used in this work, Continued. 

pPKm-227 pcDNA3 - VPR - PIF3 This study 90498 

pPKm-230 
pSIN - EF1-alpha - PIF3 - MTAD - 
IRES - PhyB - GBD 

This study 90499 

pPKm-231 

pSIN - EF1-alpha - MTS - tFd - P2A 
- MTS - tFNR, encoding for 
mitochondrial-tagged 
Thermosynechococcus elongatus 
Ferredoxin (Fd) and Ferredoxin-
NADP(+) oxi0doreductase (FNR) 

This study 90500 

pPKm-232 

pSIN - EF1-alpha - MTS tHO1 - P2A 
- MTS - tPCYA, encoding for 
mitochondrial-tagged 
Thermosynechococcus elongatus 
Heme Oxygenase-1 (HO1) and 
phycocyanobilin:ferredoxin 
oxidoreductase (PcyA) 

This study 90501 

pPKm-233 

pSIN - EF1-alpha - sFD - P2A - MTS 
- sFNR, encoding for 
Synechococcus sp. Ferredoxin (Fd) 
and Ferredoxin-oxidoreductase 
(FNR)  

This study 90508 

pPKm-234 

pSIN - EF1-alpha - MTS sHO1 - P2A 
- MTS - sPCYA, encoding for 
mitochondrial-tagged 
Synechococcus sp. Heme 
Oxygenase (HO1) and 
phycocyanobilin:ferredoxin 
oxidoreductase (PcyA),  

This study 90507 

pPKm-235 

pSIN - EF-1alpha - MTS sHO1 - P2A 
- MTS - sPCYA, encoding for 
mitochondrial-tagged 
Synechococcus sp. Heme 
Oxygenase-1 (HO1) and 
Arabidopsis thaliana 
phytochromobilin:ferredoxin 
oxidoreductase (Hy2) replacing the 
chloroplastic targeting sequence 
with a MTS 

This study 90509 
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Appendix A: Table 1 - Plasmids used in this work, Continued. 

pPKm-240 

pSIN - EF1-alpha cyto-sHO1-P2A – 
cyto-sPcyA, 
encoding for cytoplasmic-tagged 
Synechococcus sp HO1 and PcyA 

This study 90510 

pPKm-241 

pSIN - EF1-alpha - cyto-sFd - P2A - 
cyto-sFNR, vector encoding for 
cytoplasmic-tagged Synechococcus 
sp Fd and FNR 

This study 104855 

pPKm-243 

pSIN - EF1-alpha - mOrange-P2A-
mitosfGFP, 
mOrange and mitochondrial-tagged 
sfGFP  

This study 90506 

pPKm-244 
pSIN – EF1-alpha - MTS - tHO1 - 
P2A - MTS - tPCYA - IRES - MTS - 
tFD - P2A - MTS - tFNR 

This study 90502 

pPKm-245 
pSIN - EF1-alpha - MTS - tHO1 - 
P2A - MTS - tPCYA - P2A - MTS - 
tFD - P2A - MTS - tFNR 

This study 90503 

pPKm-248 
pSIN - EF1-alpha - MTS - tPCYA - 
IRES - MTS - tHO1 - P2A - MTS - 
tFD - P2A - MTS - tFNR 

This study 90504 

pPKm-292 pcDNA3 – GAL4_DNA BD -MTAD This study 105816 

pPKm-293 pcDNA3 – TET DNA BD -MTAD This study 105817 

pPKm-300 

pSIN - EF1-alpha - MTS - tFd, 
encoding for mitochondrial-tagged 
Thermosynechococcus elongatus 
Ferredoxin (Fd) 

This study 104626 

pRL-TK 
Control reporter for constitutive 
expression of wildtype Renilla 
luciferase (Rluc) under pRL-TK 

Promega E2241 
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Appendix B: Table 2 - Transfection and illumination details for each figure 

 Each experiment described in this work was transfected according to the following 

table. To the best of our ability, ratios and concentrations were kept identical for 

comparable experiments.  

Figure 2 

HEK293 cells were transfected 24 hours after plating. Calculations are 
for each well. Transfected in a 6 well plate. Cells were harvested 44 
hours post-transfection followed by Immunoprecipitation and Zn-
PAGE as described in methods.  

    

NE control Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-102 125 1/20 
 pPKm-145 1125 18/20 
    

M2-sPcyA Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-243 125 1/20 
 pPKm-234 1125 9/20 
 pPKm-145 1125 9/20 
    

M4-sPcyA Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-243 125 1/20 
 pPKm-234 1125 9/20 
 pPKm-233 1125 9/20 
    

M2-tPcyA Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-243 125 1/20 
 pPKm-232 1125 9/20 
 pPKm-145 1125 9/20 
    

M4-tPcyA Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-243 125 1/20 
 pPKm-232 1125 9/20 
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Appendix B: Table 2 - Transfection and illumination details for each figure, Continued. 
 

 pPKm-231 1125 9/20 
    

M2-Hy2 Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-243 125 1/20 
 pPKm-235 1125 9/20 
 pPKm-145 1125 9/20 
    

M4-Hy2 Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-243 125 1/20 
 pPKm-235 1125 9/20 
 pPKm-233 1125 9/20 
    

Figure 3A 

HEK293 cells were transfected 24 hours after plating. Calculations are 
for each well. Transfected two of each in a 6 well plate, one with and 
one without heme. 10µM (Frontier scientific) was added 18 hours and 
43 hours post-transfection. Cells were harvested 44 hours post 
transfection followed by Immunoprecipitation and Zn-PAGE as 
described in methods.  

    

NE control Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-243 125 1/20 
 pPKm-145 1125 18/20 
    

C2 Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-243 125 1/20 
 pPKm-240 1125 9/20 
 pPKm-145 1125 9/20 
    

C4 Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-243 125 1/20 
 pPKm-240 1125 9/20 
 pPKm-241 1125 9/20 
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Appendix B: Table 2 - Transfection and illumination details for each figure, Continued. 
 

    

M2 Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-243 125 1/20 
 pPKm-234 1125 9/20 
 pPKm-145 1125 9/20 
    

M4 Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 125 1/20 
 pPKm-243 125 1/20 
 pPKm-234 1125 9/20 
 pPKm-233 1125 9/20 
    

    

Figure 3B 

HEK293 cells were transfected 24 hours after plating. Calculations are 
for each well in a 6-well plate. Cells were harvested 44 hours post 
transfection followed by Immunoprecipitation and Zn-PAGE as 
described in methods. 

    

M2 Plasmid DNA mass (ng) DNA ratio 

 pPKm-105 125 1/20 

 pPKm-243 125 1/20 

 pPKm-232 1125 9/20 

 pPKm-145 1125 9/20 

 
   

M3 Plasmid DNA mass (ng) DNA ratio 

 pPKm-105 125 1/20 

 pPKm-243 125 1/20 

 pPKm-232 1125 9/20 

 pPKm-300 1125 9/20 

 
   

M4 Plasmid DNA mass (ng) DNA ratio 

 pPKm-105 125 1/20 

 pPKm-243 125 1/20 

 pPKm-232 1125 9/20 
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Appendix B: Table 2 - Transfection and illumination details for each figure, Continued. 
 

 pPKm-231 1125 9/20 

 
   

NE Plasmid DNA mass (ng) DNA ratio 

 pPKm-105 125 1/20 

 pPKm-243 125 1/20 

 pPKm-145 2250 18/20 
    

Figure 4 

HEK293 cells were transfected 24h after plating, followed by a 
medium change 24h after transfection. For illumination, 1μmol/m2/s 
1-minute pulses of red light were delivered for 24h, starting 12h after 
the medium change. Cells were kept in darkness before and after 
illumination. Lysis was performed 72h after transfection, and samples 
stored in -20C until assayed. 

    

 Plasmid DNA mass (ng) DNA ratio 

9HP:9EV pPKm-102 425.0 25.5/30 

(1:1 ratio 
HP:EV) 

pPKm-105 16.7 1/30 

pPKm-112 16.7 1/30 

pPKm-232 16.7 1/30 

 pPKm-202 16.7 1/30 

 pRL-TK 8.3 0.5/30 

 
   

 Plasmid DNA mass (ng) DNA ratio 

9HP:9FF pPKm-102 408.3 24.5/30 

(1:1 ratio 
HP:FF) 

pPKm-105 16.7 1/30 

pPKm-112 16.7 1/30 

 pPKm-232 16.7 1/30 

 pPKm-231 16.7 1/30 

 pPKm-202 16.7 1/30 

 pRL-TK 8.3 0.5/30 

 
   

 Plasmid DNA mass (ng) DNA ratio 

17HP:1EV pPKm-102 158.3 9.5/30 

(17:1 ratio 
HP:EV) 

pPKm-105 16.7 1/30 

pPKm-112 16.7 1/30 

 pPKm-232 283.3 17/30 

 pPKm-202 16.7 1/30 

 pRL-TK 8.3 0.5/30 
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Appendix B: Table 2 - Transfection and illumination details for each figure, Continued. 
 

 
   

 Plasmid DNA mass (ng) DNA ratio 

17HP:1FF pPKm-102 141.7 8.5/30 

(17:1 ratio 
HP:FF) 

pPKm-105 16.7 1/30 

pPKm-112 16.7 1/30 

 pPKm-232 283.3 17/30 

 pPKm-231 16.7 1/30 

 pPKm-202 16.7 1/30 

 pRL-TK 8.3 0.5/30 
    

    

Figure 9 

HEK293 Cells were transfected 24h after plating on polylysine-coated 
coverslips. 43 hours later media was changed with media+5µM PCB 
(Frontier Scientific P14137) added to the NE+PCB control. One hour 
later cells were rinsed in PBS and fixed in 4%Paraformaldehyde for 
10 minutes. Next cells were incubated in permeabilization buffer (5% 
BSA + 0.3% TritonX-100 in PBS) for 30min, followed by primary 
antibodies overnight at 4°C in antibody buffer (2% BSA + 0.2% 
TritonX-100 in PBS; anti-flag mouse monoclonal 1:1000 (Sigma 
F3165) anti-HA rabbit polyclonal 1:500 (Santa Cruz Y-11) ); Next 
coverslips were rinsed twice and washed three time in PBS and then 
incubated in antibody buffer with goat anti-mouse AlexaFluor 488 
1:1000 (Thermo-Fisher A11001) goat anti-rabbit AlexaFluor 568 
1:1000 (Thermo-Fisher A11011)). Coverslips were then mounted with 
Fluoromount-G (SouthernBiotech 0100-20). Images were taken using 
a DeltaVision RT Deconvolution Microscope. 

    

NE control Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 100 4/20 
 pPKm-145 400 16/20 
    

C2 Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 100 4/20 
 pPKm-240 375 15/20 
 pPKm-145 25 1/20 
    

C4 Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 100 4/20 
 pPKm-240 375 15/20 
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Appendix B: Table 2 - Transfection and illumination details for each figure, Continued. 
 

 pPKm-241 25 1/20 
    

M2 Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 100 4/20 
 pPKm-234 375 15/20 
 pPKm-145 25 1/20 
    

M4 Plasmid DNA mass (ng) DNA Ratio 
 pPKm-105 100 4/20 
 pPKm-234 375 15/20 
 pPKm-233 25 1/20 

    

    

Figure 11 

HEK293 Cells were transfected 24h after plating, followed by a 
medium change 24h after transfection. For illumination, 1 μmol/m2/s 
1-minute pulses of red light were delivered for 24h, starting 12h after 
the medium change. Cells were kept in darkness before and after 
illumination. Cell lysis was performed 72h after transfection, and 
samples stored in -20C until assayed. 

    

245 Plasmid DNA mass (ng) DNA ratio 
 pPKm-102 10 1/50 
 pPKm-230 225 22.5/50 
 pPKm-245 225 22.5/50 
 pPKm-202 20 2/50 
 pRL-TK 20 2/50 

 
   

244 Plasmid DNA mass (ng) DNA ratio 
 pPKm-102 10 1/50 
 pPKm-230 225 22.5/50 
 pPKm-244 225 22.5/50 
 pPKm-202 20 2/50 
 pRL-TK 20 2/50 

 
   

248 Plasmid DNA mass (ng) DNA ratio 
 pPKm-102 10 1/50 
 pPKm-230 225 22.5/50 
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Appendix B: Table 2 - Transfection and illumination details for each figure, Continued. 
 

 pPKm-248 225 22.5/50 
 pPKm-202 20 2/50 
 pRL-TK 20 2/50 
    

Figure 12 

HEK293 cells were transfected 24h after plating, followed by a 
medium change 24h after transfection. For this experiment, 15uM of 
PCB (Frontier Scientific) was added 47h after transfection. Light at 1 
μmol/m2/s in 1-minute pulses of red light was delivered 1h after PCB 
was added. Cells were kept in darkness before and after illumination. 
Lysis was performed 72h after transfection, and samples stored in -
20C until assayed. 

    

P3-MTAD Plasmid DNA mass (ng) DNA ratio 
 pPKm-102 325 33/50 
 pPKm-105 50 5/50 
 pPKm-112 50 5/50 
 pPKm-118 50 5/50 
 pRL-TK 25 2/50 
    

P3-VPR Plasmid DNA mass (ng) DNA ratio 
 pPKm-102 325 33/50 
 pPKm-105 50 5/50 
 pPKm- 226 50 5/50 
 pPKm-118 50 5/50 
 pRL-TK 25 2/50 
    

VPR-P3 Plasmid DNA mass (ng) DNA ratio 
 pPKm-102 325 33/50 
 pPKm-105 50 5/50 
 pPKm- 227 50 5/50 
 pPKm-118 50 5/50 
 pRL-TK 25 2/50 
    

Figure 13A 
HEK293 cells were transfected 24h after plating, followed by a 
medium change 24h after transfection. Cells were lysed 72h after 
transfection, and samples stored in -20C until assayed. 
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Appendix B: Table 2 - Transfection and illumination details for each figure, Continued. 
 

    

Renilla Plasmid DNA mass (ng) DNA ratio 
 pPKm-102 480 48/50 
 pRL-TK 20 2/50 
    

TET-UAS-
CMVmin 

Plasmid DNA mass (ng) DNA ratio 

 pPKm-102 430 43/50 
 pMZ-802 50 5/50 
 pRL-TK 20 2/50 
    

G4-UAS-
Flucmin 

Plasmid DNA mass (ng) DNA ratio 

 pPKm-102 430 43/50 
 pPKm-118 50 5/50 
 pRL-TK 20 2/50 
    

G4-UAS-
CMVmin 

Plasmid DNA mass (ng) DNA ratio 

 pPKm-102 430 43/50 
 pPKm-202 50 5/50 
 pRL-TK 20 2/50 

    
    

Figure 14B 
HEK293 cells were transfected 24h after plating, followed by a 
medium change 24h after transfection. Cells were lysed 72h after 
transfection, and samples stored in -20C until assayed. 

    

TET-CMV 
(pMZ-802) 

Plasmid DNA mass (ng) DNA ratio 

pPKm-102 380 38/50 
 pPKm-293 50 5/50 
 pMZ-802 50 5/50 
 pRL-TK 20 2/50 
    

G4-CMV 
(pPKm-202) 

Plasmid DNA mass (ng) DNA ratio 

pPKm-102 380 38/50 

pPKm-292 50 5/50 
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Appendix B: Table 2 - Transfection and illumination details for each figure, Continued. 
 

 pPKm-202 50 5/50 
 pRL-TK 20 2/50 

    

Figure 15 an 
16  

Cells were transfected 24h after plating, followed by a medium change 
24h after transfection. In Figure 4D, red light at 1μmol/m2/s, 
0.1μmol/m2/s, 0.01 μmol/m2/s and 0.001 μmol/m2/s were delivered for 
a total of 24 hours. Similarly, in Figure 4E, continuous illumination for 
24h was delivered to the cells, in the intensities listed above. For 
Figure 4F, red light at 0.1 and 1μmol/m2/s was continuously delivered 
or shone for 1-minute pulses every 4 minutes, 9 minutes or 29 
minutes, starting 12h after medium change for a total of 24h. For 
Figures 4G, red light at the intensity of 1μmol/m2/s was delivered to 
the cells every 30minutes, every hour, every 2 hours, every 4 hours, 
6 hours, 8 hours or every 12 hours. For Figure 5B, cells were kept in 
darkness, illuminated with far-red light, red light for 24 hours, or with 
12 hours or red light followed by darkness or far-red light. For Figure 
5C, cells were illuminated with red light at 1 μmol/m2/s and given a 1 
min red light pulse every 5 minutes for 24 hours. In all cases, cells 
were kept in darkness before and after illumination. Far-red samples 
were kept under constant illumination starting at medium change. Cell 
lysis was performed 72h after transfection, and samples stored in -
20C until assayed. 

    

All conditions Plasmid DNA mass (ng) DNA ratio 
 pPKm-102 10 1/50 
 pPKm-230 225 22.5/50 
 pPKm-248 225 22.5/50 
 pPKm-202 20 2/50 
 pRL-TK 20 2/50 
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Appendix C: Table 3 - Parameters for the kinetic model 

 Parameters used in simulations are detailed bellow. Units are defined in S.I. units 

with concentrations as the number of molecules for species (#𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠, or 𝑐), and 

parameters as bimolecular rate constants in #𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠/𝑠−1(or 𝑐/𝑠−1). 

Parameter Value Description 

k1 0.1228 HO1 and heme binding rate  

k2 1e-12 HO1 and heme unbinding rate 

k3 0.5687 HO1:Heme and Fdred binding rate 

k4 1e-12 HO1:Heme:Fdred unbinding rate 

k5 0.2285 
Fdred:HO1:Heme unbinding, forming 
HO1:BV and Fdoxi  

k6 0.4750 HO1 unbinding from BV, releasing BV  

k7 0.1825 
Rate of BV and PcyA binding, forming 
PcyA:BV 

k8 1e-12 PcyA:BV unbinding rate 

k9 0.2500 
PcyA:BV and Fdred binding rate, forming 
Fdred:PcyA:BV 

k10 1e-12 Unbinding rate of Fdred:PcyA:BV 

k11 0.1220 
Fdred:PcyA:BV unbinding, forming 
PcyA:PCB and Fdoxi 

k12 0.2667 Unbinding of PcyA:PCB, producing PCB 

k13 0.2250 Reduction of Fdoxi, forming Fdred 

kdeg,PCB 0.1567 Degradation of PCB 

Heme, at t=0 100 Initial concentration of Heme 

HO-1, at t=0 10 Initial concentration of HO-1 

PcyA, at t=0 10 Initial concentration of PcyA 

Fdred,oxi, at t=0 5 Initial concentration of Fd (red and oxi)  
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Appendix D: Table 4 - Similarity Tables for Ferredoxin and Ferredoxin-dependent Bilin 

Reductases 

(A) The similarity of ferredoxin-dependent bilin reductases and similarity of Fds. (B) The 

similarity of ferredoxins with eukaryotic sequences containing signal sequences. (C) The 

similarity of ferredoxins with eukaryotic sequences with signal sequences removed. 

Sequence alignments were performed using UniProt (http://www.UniProt.org/).  

Fd types: Cyanobacterial; Chloroplastic; Mitochondrial.  

Species: Cyanobacterial, Arabidopsis; Yeast; Human.  

      

A Ferredoxin-dependent Bilin Reductases   

  THEEB-
PCYA 

Syn-PCYA   

 W/SS     

 ARATH-Hy2     

 % Identity 14.454 8.627   

 Identical AA 49 49   

 Similar AA 82 89   

 W/O SS     

 ARATH-Hy2     

 % Identity 15.667 15.282   

 Identical AA 47 46   

 Similar AA 80 88   

      

      

B With Signal Sequence 

  THEEB SYNP2 
ADX_HUMA

N 
FDX2_HUMAN 

 THEEB     

 % Identity 100 71.429 10.811 12.973 
 Identical AA 98 70 20 24 
 Similar AA 0 16 37 36 

 SYNP2     

 % Identity 71.429 100 11.17 12.5 
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Appendix D: Table 4 - Similarity Tables for Ferredoxin and Ferredoxin-dependent 
Bilin Reductases, Continued.  
 

 Identical AA 70 97 21 23 
 Similar AA 16 0 37 32 

 FER1_ARATH     

 % Identity 39.597 42.568 16.754 19.565 
 Identical AA 59 63 32 36 
 Similar AA 26 23 55 47 

 FER2_ARATH*     

 % Identity 39.597 44.595 17.617 17.857 
 Identical AA 59 66 34 35 
 Similar AA 26 20 44 46 

 FER3_ARATH     

 % Identity 40.645 40.645 18.135 17.949 
 Identical AA 63 63 35 35 
 Similar AA 25 23 57 49 

 FER4_ARATH     

 % Identity 32.432 40.645 15.426 12.821 
 Identical AA 48 63 29 25 
 Similar AA 31 23 57 53 

 MFDX1_ARAT
H 

    

 % Identity 12.563 12.183 31.25 32.258 
 Identical AA 25 24 65 70 
 Similar AA 37 35 58 56 

 MFDX2_ARAT
H 

    

 % Identity 13.568 9.645 30.653 34.653 
 Identical AA 27 19 61 70 
 Similar AA 37 40 65 63 

 ADRX_YEAST     

 % Identity 15.517 16.000 29.798 33.333 
 Identical AA 27 28 59 61 
 Similar AA 31 28 52 56 

 ADX_HUMAN     

 % Identity 10.811 11.170 100 30.688 
 Identical AA 20 21 184 58 
 Similar AA 37 37 0 61 
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Appendix D: Table 4 - Similarity Tables for Ferredoxin and Ferredoxin-dependent 
Bilin Reductases, Continued.  
 

 FDX2_HUMAN     

 % Identity 12.973 12.500 30.688 100 
 Identical AA 24 23 58 183 
 Similar AA 36 32 61 0 
      

            

  Without Signal Sequence 

    THEEB  SYNP2  ADX_HUMAN 
FDX2_HUM

AN 

  THEEB         

  % Identity 100 71.429 16.000 18.045 

  Identical AA 98 70 20 24 

  Similar AA 0 16 37 35 

  SYNP2         

  % Identity 71.429 100 16.406 15.909 

  Identical AA 70 97 21 21 

  Similar AA 16 0 37 35 

  FER1_ARATH         

  % Identity 59.184 63.918 16.8 18.321 

  Identical AA 58 62 21 24 

  Similar AA 25 22 37 31 

  FER2_ARATH*         

  % Identity 59.184 67.010 16.126 18.321 

  Identical AA 58 65 20 24 

  Similar AA 26 20 34 31 

  FER3_ARATH         

  % Identity 59.434 59.434 16.794 21.053 

  Identical AA 63 63 22 28 

  Similar AA 25 23 36 32 

  FER4_ARATH         

  % Identity 48.485 49.495 15.152 13.74 

  Identical AA 48 49 20 18 

  Similar AA 31 29 41 37 

  MFDX1_ARATH         

  % Identity 15.244 14.815 32.927 38.272 
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Appendix D: Table 4 - Similarity Tables for Ferredoxin and Ferredoxin-
dependent Bilin Reductases, Continued.  
 

  Identical AA 25 24 54 62 

  Similar AA 37 35 39 43 

  MFDX2_ARATH         

  % Identity 21.600 15.447 43.2 45.455 

  Identical AA 27 19 54 60 

  Similar AA 37 40 38 38 

  ADRX_YEAST         

  % Identity 23.077 22.881 38.71 36.641 

  Identical AA 27 27 48 48 

  Similar AA 31 29 35 39 

  ADX_HUMAN         

  % Identity 16.000 16.406 100 31.579 

  Identical AA 20 21 124 42 

  Similar AA 37 37 0 46 

  FDX2_HUMAN         

  % Identity 18.045 15.909 31.579 100 

  Identical AA 24 21 42 131 

  Similar AA 35 35 46 0 
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Appendix E: Table 5 - Protein family dataset information  

Each protein family used in this work is described below with its PFAM number 

(not applicable for NCBI-originated MSAs), number of sequences, length of each 

sequence in the alignment. In addition, the reference protein used to generate 

visualizations of results, and its PDB ID code is given.  

Protein 
Family 

PFAM 
Number 

Number of 
Sequences 

Length of 
Sequences 

Reference 
Protein Name 

Reference 
Sequence PDB 

ID 

Cadherin PF00028 6210 93 
human 
protocadherin 9 

2EE0  
(Sato et al., 

n.d.) 

PDZ 
 

PF00595 12886 81 
PDZ domain 
from PSD-95 

1BE9  
(Doyle et al., 

1996) 

N/A 7517 81 
PDZ domain 
from PSD-95 

1BE9  
(Doyle et al., 

1996) 

PhyB N/A 5333 300 

Arabidopsis 
thaliana 
phytochrome B 
photosensory 
module 

4OUR  
(Burgie et al., 

2014) 

HSP70 PF00012 6223 381 
Human Hsp70 
ATPase domain 

1S3X 
(Sriram, 
Osipiuk, 

Freeman, 
Morimoto, & 
Joachimiak, 

1997) 
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Appendix F: Annotated binding site as shown in NCBI, RCSB and UniProt. 

 

 

Figure 35: PDZ (PDB ID: 1BE9) Annotated binding sites (Doyle et al., 1996)(A) 

Annotations screenshot from RCSB (Doyle et al., 1996). (B) Annotation screenshot from 

NCBI (National Center for Biotechnology Information, 1988). No relevant annotations were 

available in UniProt.  
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Figure 36: Cadherin (PDB ID: 2EE0) Annotated binding sites.(Sato et al., n.d.) (A) 

Annotations screenshot from RCSB (Sato et al., n.d.). (B) Annotation screenshot from 

NCBI (National Center for Biotechnology Information, 1988). No relevant annotations were 

available in UniProt (The UniProt Consortium, 2017).  
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Figure 37: HSP70 (PDB ID: 1S3X) Annotated binding sites.(Sriram et al., 1997) (A) 

Annotations screenshot from RCSB (Sriram et al., 1997). (B) Annotation screenshot from 

NCBI (National Center for Biotechnology Information, 1988). (C) Relevant annotations 

were available in UniProt.  
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Appendix G: Table 6 - AUC and F1 scores for all sequences used in this work (full 

sequence input for training)  

Highest values for each protein are shown in bold.  

Protein 
Family 

AUC 
(sequences) 

F1 (sequences) 
SCA AUC 

score 
SCA F1 score 

Cadherin 0.568 0.817 0.546 0.670 

PDZ (NCBI) 0.715 0.840 0.520 0.753 

PDZ (PFAM) 0.660 0.827 0.520 0.753 

PhyB 0.718 0.957 0.562 0.620 

HSP70 0.510 0.771 0.553 0.709 

¥ Result shown for window size 9 with overlap of 1. 
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Appendix H: Table 7 - AUC window method scores 

Highest values for overlap condition are shown in bold.  

 
 

Overlap 

Window 
Size 

(number of 
residues) 

1 residue 2 residues 3 residues 4 residues 

AUC F1 AUC F1 AUC F1 AUC F1 

5 0.375 0.667 0.465 0.827 0.5 0.716 0.583 0.779 

6 0.465 0.740 0.520 0.830 0.611 0.740 0.437 0.691 

7 0.403 0.716 0.451 0.803 0.493 0.790 0.403 0.716 

8 0.667 0.840 0.521 0.840 0.520 0.753 0.437 0.778 

9 0.799 0.815 0.445 0.790 0.500 0.802 0.534 0.778 

10 0.340 0.605 0.423 0.753 0.430 0.765 0.410 0.728 

11 0.438 0.778 0.410 0.728 0.430 0.765 0.416 0.740 

12 0.389 0.691 0.632 0.778 0.430 0.765 0.631 0.864 
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Appendix I: Table 8 - AUC vs. mean HSW, showing the distribution and variability in the 

datasets used. Higher AUC is associated with a higher average HSW. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Protein Family Sequences AUC Mean HSW 

PhyB (NCBI) 5333 0.778 0.056254 

Cadherin (PFAM) 6210 0.568 0.014976 

HSP70 (PFAM) 6223 0.510 0.058141 

PDZ (NCBI) 7517 0.715 0.010776 

PDZ (PFAM) 12886 0.660 0.006286 
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